D UNIVERSITÄT BERN

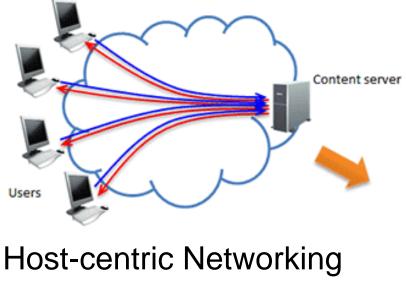
Service-centric networking - Architecture

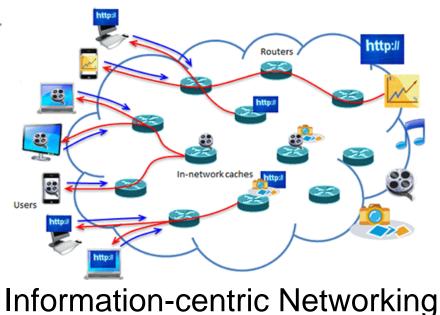
Mikael Gasparyan

Mikael Gasparyan Communication and Distributed Systems group Institute of Computer Science University of Bern, Switzerland

March 2016

 u^{-}


UNIVERSITÄT BERN


Agenda

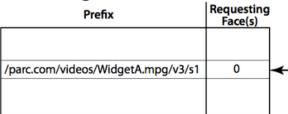
- > Introduction
- > Brief overview
 - CCN and SCN
 - SCN requirements
 - SoCCeR
 - NLSR
- > 2-level architecture
 - Simple nodes
 - Super nodes
- > Implementation
- > Conclusion

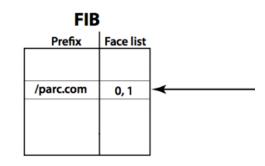
Intro: Content-centric networking

- Content-centric networking (CCN) is a new approach for future Internet architecture
 - Clients ask What (Content) instead of Where (IP)

Content-Centric Networking (CCN)

- > New paradigm for internet architecture
 - Content is the core
 - Content is directly addressable
 - Routing is based on the content identifier
 - Instead of IP
- > CCN has two type of messages
 - Interest
 - For example: /mywebsite.com/pictures/picture.jpg/v2/s1/
 - Content

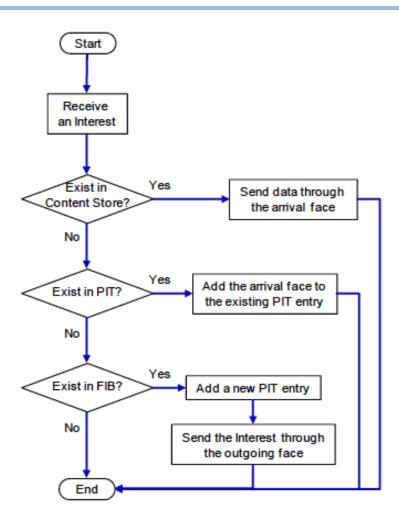

CCN node components



- Forwarding Information Base (FIB)
 - Matches faces and prefixes for forwarding
 - Longest prefix match
 - Like an IP Routing table
- > Pending Interest Table(PIT)
 - Requested contents
- > Content Store (CS)
 - Caches incoming data

Content Store		
Name	Data	
/parc.com/videos/WidgetA.mpg/v3/s0		-

Pending Interest Table (PIT)



CCN routing

- > When a CCN Client sends an Interest message (request)
 - It will send to all faces that have the longest prefix match
 - Incoming requests will be forwarded in the same way.
 - If a node possesses the content (stored/cached)
 - Then the forwarding process will stop and the data will be sent to the requester through the reverse path of the Interest Message
 - Intermediates nodes will cache the content

CCN : Interest message processing

b UNIVERSITÄT BERN

Service-Centric Networking (SCN)

- > Service-Centric Networking is a new networking paradigm
- SCN is an extension of Content-Centric Networking (CCN)
 - To support services
- > Nodes provide services
- > Messages
 - Interest Messages
 - Data Messages

$u^{\scriptscriptstyle b}$

SCN Requirements

b UNIVERSITÄT BERN

- > Load balancing
- Discovery guarantee of services
- > Scalability
- Should be easily integrated into current internet
- > Security
- Services with parameter support
- > Session support
- > Service composition
- > ...

SoCCeR Architecture

- > The main SCN architecture
- > SoCCeR is SCN over CCN
 - CCN nodes forward a request to all faces that match the request, SoCCeR only forward to the best face
 - CCN Extended with Ant Colony Optimization (ACO)
- > Routers select the best face from the list of FIB faces
 - In Service routing there is processing at the end
 - Important to forward only to one node
- > To determine the best face
 - Next slide

SoCCeR : Determine the best face

- Nodes broadcast Interest Messages for random services periodically
- > When a node proposing the service receives an Interest Message
 - It sends back a Data Message containing
 - Timestamp
 - Service status information (service load, memory, etc.)
 - Intermediate nodes use information from the Data Message to classify faces

UNIVERSITÄT

SoCCeR : Advantages and Disadvantages

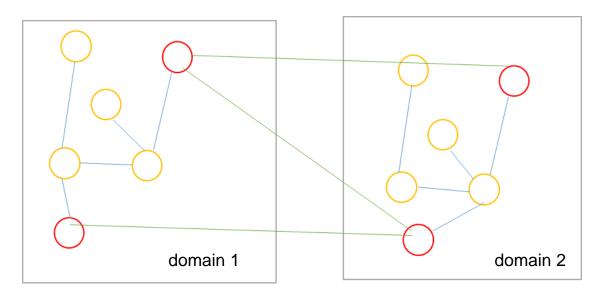
> Advantages

- Decentralized and distributed service routing
- No single point of failure
- Highly reactive to changes
- Routers select the best face for forwarding
- Responsive to network failure
- Scalable
- > Disadvantages
 - Do not support stateful services
 - Protocol overhead (control messages)
 - Service name does not support parameters

- Named-data Link State Routing Protocol (NLSR)
 - CCN messages are used to exchange routing messages
 - Nodes know the whole network topology
 - NLSR routers advertise local links and prefixes to the whole network
- Nodes use two type of broadcast messages to
 - Advertise local links
 - Periodically an alive message
 - When the node's neighbour status is changed
 - Advertise content availability
 - When content is created or deleted

NLSR: Advantage and Disadvantage

^b UNIVERSITÄT BERN


> Advantage

- NLSR nodes have a view of the network topology
 - Better load balancing and security
 - Service composition capabilities
- > Disadvantage
 - Protocol overhead

Proposed SCN architecture

- > Creating an architecture by combining SoCCeR and NLSR
- Inter and Intra domains
 - Inter-domain routing based on SoCCeR
 - Communication is done by supernodes
 - Intra-domain routing based on NLSR

$u^{\scriptscriptstyle b}$

2 level architecture

b UNIVERSITÄT BERN

- > Done by simple nodes
 - Intra-domain routing
 - NLSR like
- > Done by super nodes
 - Service composition
 - Service Directory storage and sharing
 - Inter-domain routing
 - SoCCeR like

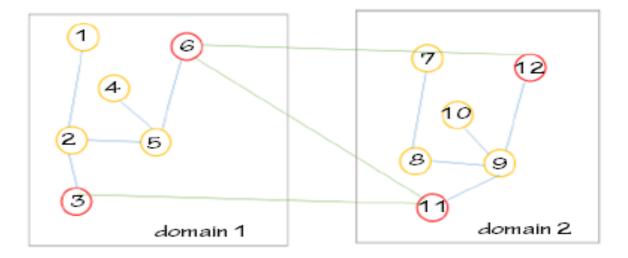
- > All nodes are simple nodes and some of them are also super nodes
- Simple nodes know the whole intra-domain topology and have an updated FIB table with the service availability information of the domain's nodes
- > NLSR-like

Super nodes

- > Super nodes are the nodes with the best resources
 - Nodes can decide to become super nodes
 - Nodes can be defined as super nodes
 - All nodes in a domain possess resource information about all other nodes. If a node has very high resource availability in comparison to other nodes, then it becomes a super node.
 - A domain will have at least one super node
 - A Super node is also a Simple node
 - NLSR-like on Intra-domain level
 - SoCCeR-like on Inter-domain level
 - SoCCeR is used on the inter-domain level because of its scalability
 - NLSR is less scalable

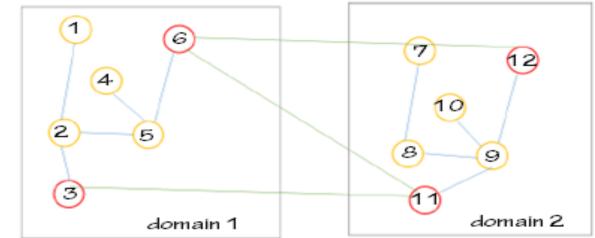
Super nodes

- ^b Universität Bern
- Super nodes broadcast requests for random services periodically
- Requests go through the super nodes until it reaches a super node (domain) where the service information is available
 - Concerned super node will send a response containing the service identifier, the resource availability information and a timestamp
 - Response will be forwarded back through the reverse path by using the Pending Interest Table (PIT)
 - Intermediate nodes will update their FIB tables by using the information inside the response message
- > To have up to date FIBs, super nodes will check periodically
 - The service online status and resource availability

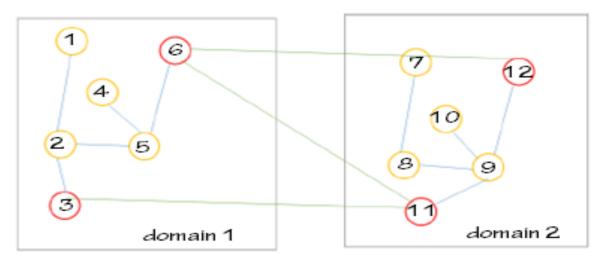


Service Directory

- > All nodes store a Service Directory that contains the following information about existing services in the network
 - Service-unique ID
 - Service Name
 - Service version
 - Service Description (Description text, parameters...)
 - In XML
- Service Directory is shared among the nodes

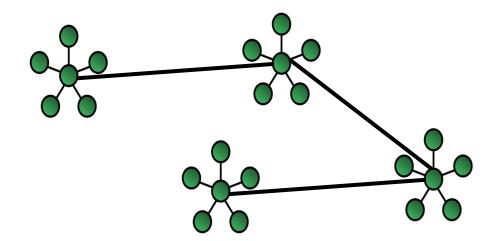

Example #1

- > Node 1 requires a service proposed by node 7
 - In a domain nodes are aware of all available services in the domain, in this example the service is not available in the domain


Example #2

- > Node 1 will broadcast a message to find the required service
 - The request will reach the super nodes
 - Super nodes will reply if they have in their FIB the forwarding information for the required service
 - Super nodes will broadcast the message to the inter-domain level
 - In this example super nodes (node 11 and 12) from domain 2 will reply with a timestamp and the status information of the node 7

- > Response message will be forwarded through the reverse path
 - Node 1 will receive the status information
 - The supernodes of domain 1 will update their FIBs with the forwarding information
- The Service Consumer (node 1) can now start sending its service request



Implementation

- > Implementation is done in the ndnSIM simulator
- > SoCCeR for ndnSIM
 - In development
 - First version should be ready in a couple of weeks
 - To have first results
- > NLSR for ndnSIM
 - Is currently being implemented by Cisco

Conclusion

- > First testing will use only SoCCeR approach
 - With a star network topology
- Interesting to assess other routing protocol composition
 - e.g. SoCCeR on both levels

Questions

^b Universität Bern

 $u^{\scriptscriptstyle b}$

