Introduction to my bachelor thesis

RSSI & Magnetometer Based Fingerprinting Localization In Indoor Wireless Environments

Otline

• Basics

- The current localisation approach
- Main goals
- Preliminary results
- To-Do's

Basics

RSSI (Received signal strength indicator)

- Strength of wireless signal (dbm)
- Depends on
 - Distance
 - Environnement (walls)
- 🔶 WiFi module 🚺

Magnetic field

- Earth's inherent magnetic field
- Outdoor case:
 - Mostly undisrupted
- Indoor case:
 - Disrupted by electronics and metal objects

Magnetometer sensor

The current localisation approach

Triangulation problem

Problem

- Accuracy of distance to AP varies
 - due to walls etc.
- LLS algorithm does not account for that

AP1

(w) AP2

WLS (weighted least squares) allows for weights:

Define weights based on room

Main goals

 Room recognition magnetic field & RSSI fingerprint
 Improve current localisation approach Adjust triangulation weights based on room

Room recognition - fingerprinting

Assumption

 RSSI & magnetic field data can be used to recognize the room

Training Phase

Improve localisation - define weights for WLS

Prerequisites

- Room recognition
- Regression model for distance to AP

Assumption

• Defining different weights for each room improves the accuracy of WLS

Question

• How do we determine the optimal weights?

Room recognition - methodology

Questions

- Does it work?
- What infrastructure is needed?
- What data is important?
 - Effect of magnetic field data
 - Density of measurements

Methodology

- Testbed: My Apartment
- AP's: my own & neighbours
- Gathering different datasets
- Comparing results of SVM classifier

Room recognition - findings

- It works with high accuracy (89%)
- No special infrastructure needed
- Magnetic field data is important
 - 40% increase in accuracy
- Data-density affects accuracy Best Results:
 - Very high density at borders
 - Low density in room center

4 TP-LINK_BCC3A8:-79	NETGEAR31:-69	Beatevents_WLAN:-59	devolo-000B3B9BC9A9:-58	UPC0048103:-56	489-652:-71	Berntiger:0	X-Axis:21	Y-Axis:-86	Z-Axis:-125
2 TP-LINK_BCC3A8:-81	NETGEAR31:-73	Beatevents_WLAN:0	devolo-000B3B9BC9A9:-70	UPC0048103:-59	489-652:-65	Berntiger:-75	X-Axis:10	Y-Axis:-80	Z-Axis:-137
2 TP-LINK_BCC3A8:-79	NETGEAR31:-73	Beatevents_WLAN:-64	devolo-000B3B9BC9A9:-69	UPC0048103:-70	489-652:-69	Berntiger:-70	X-Axis:18	Y-Axis:-85	Z-Axis:-124
2 TP-LINK_BCC3A8:-83	NETGEAR31:-74	Beatevents_WLAN:-67	devolo-000B3B9BC9A9:-66	UPC0048103:-62	489-652:-63	Berntiger:-74	X-Axis:38	Y-Axis:-99	Z-Axis:-122
2 TP-LINK_BCC3A8:-82	NETGEAR31:-68	Beatevents_WLAN:-68	devolo-000B3B9BC9A9:-68	UPC0048103:-58	489-652:-63	Berntiger:-76	X-Axis:53	Y-Axis:-80	Z-Axis:-116
2 TP-LINK_BCC3A8:-82	NETGEAR31:-76	Beatevents_WLAN:-67	devolo-000B3B9BC9A9:-68	UPC0048103:-54	489-652:-65	Berntiger:-75	X-Axis:18	Y-Axis:-83	Z-Axis:-126
2 TP-LINK_BCC3A8:-86	NETGEAR31:-71	Beatevents_WLAN:-64	devolo-000B3B9BC9A9:-65	UPC0048103:-63	489-652:-62	Berntiger:-75	X-Axis:13	Y-Axis:-85	Z-Axis:-127
3 TP-LINK_BCC3A8:-82	NETGEAR31:-72	Beatevents_WLAN:0	devolo-000B3B9BC9A9:-61	UPC0048103:-55	489-652:-71	Berntiger:-77	X-Axis:20	Y-Axis:-75	Z-Axis:-130
3 TP-LINK BCC3A8:-76	NETGEAR31:-75	Beatevents WLAN:-63	devolo-000B3B9BC9A9:-55	UPC0048103:-56	489-652:-73	Berntiger:-79	X-Axis:12	Y-Axis:-85	Z-Axis:-124

ToDo's

- Build a testbed at uni

 can use existing testbed
- Build fingerprint database for the testbed \checkmark
- Test the room recognition 🧹 91% accuracy in early tests
- (maybe) improve the room recognition Neural Networks
- Regression model for distance to AP
- Define weights for each room
- Compare the accuracies of LLS and WLS

Thank you for your attention