

Introduction to Bachelor Thesis

Implementation of Session Support in ndnSIM

Guillaume Corsini

Supervisor: Mikael Gasparyan

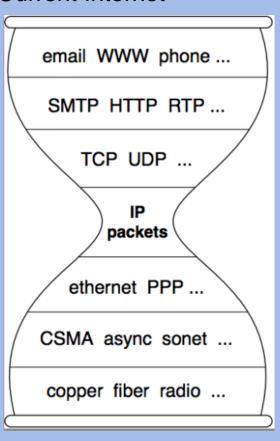
Prof. Dr. Torsten Braun

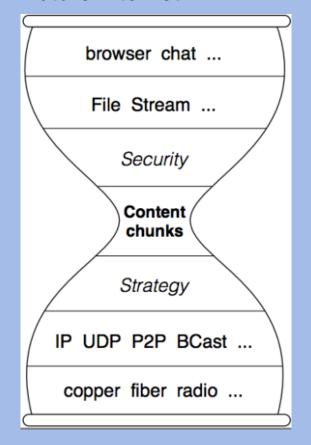
Computer and Distributed Systems group Institute of Computer Science (INF)
University Bern

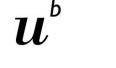
2nd of May 2016, Seminar Computer and Distributed Systems

Table of contents

UNIVERSITÄT BERN


- Current versus Future Internet
- Named Data Networking
- Named Data Networking: Architecture
- Named Data Networking: Basic Concept
- Introduction to SOFIA
- Service Session in SOFIA
- Service Session in SOFIA: Establishing a service session
- Named Data Networking Simulator: ndnSIM




UNIVERSITÄT Bern

Current Internet

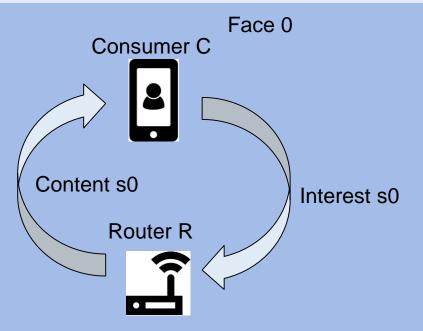
Future Internet

Named Data Networking

UNIVERSITÄT BERN

- Based on the original CCNx 0.x code
- Key Architectural Principles
 - End-to-end principle
 - Separating routing and forwarding planes
 - Self-regulation of network traffic
 - Built-In Security
 - Facilitating user choice and competition

b UN BE


Named Data Networking: Architecture

- > Two types of packets:
 - Interest
 - Data
- > Router Architecture:
 - Forwarding Information Base (FIB)
 - Pending Interest Table (PIT)
 - Content Store (CS)
 - Forwarding Strategy

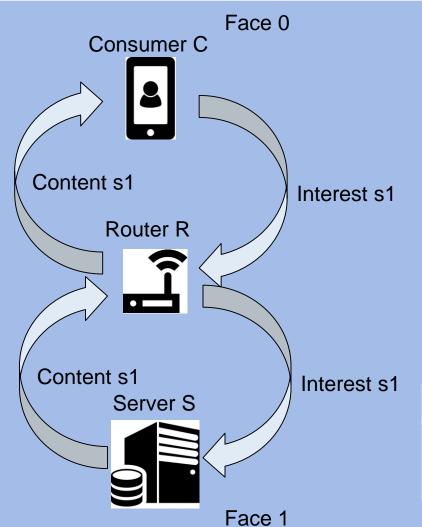
$u^{\scriptscriptstyle b}$

b Universität Bern

Named Data Networking: Basic Concept (I)

Content Store	
Name	Data
/parc.com/videos/WidgetA.mpg/v3/s0	

Pending Interest Table (PIT)	
Name	Requesting Face



Forwarding Information Base (FIB)		
Name	Face List	
/parc.com	0, 1	

$oldsymbol{u}^{\scriptscriptstyle b}$

Named Data Networking: Basic Concept (II)

Content Store	
Name	Data
/parc.com/videos/WidgetA.mpg/v3/s0	

Pending Interest Table (PIT)	
Name	Requesting Face
/parc.com/videos/WidgetA.mpg/ v3/s1	0

Forwarding Information Base (FIB)		
Name	Face List	
/parc.com	0, 1	

Introduction to SOFIA

- Paper "SOFIA: Toward Service-Oriented Information Centric Networking" by Wu, Qinghua et al. IEEE Network May/June 2014
- Architecture design based on host abstraction and content abstraction
- Support various applications beyond content retrieval
- Separated into service and network layer
- Applications are built on the service layer and manipulate information over a service session.

$u^{\scriptscriptstyle b}$

Service Session in SOFIA

b Universität Bern

- Service Session:
 - Built on service abstraction -> independent from servers that host the service
 - Uniquely identified by a set of two variables: $\langle V_c, X \rangle$ Where:
 - V_C is a virtual service name generated by the Consumer c
 - X is the requested service
- > Service Connection of the Service Session $\langle V_c, X \rangle$
 - Uniquely identified by a set of four variables: $\langle c, S, I_c, I_S \rangle$ Where:
 - S is specified Server that provides the requested service
 - I_c is a locally unique service instance of V_c
 - I_S is a locally unique service Instance of X generated by Server S

$u^{^{\scriptscriptstyle b}}$

Service Session in SOFIA: Establishing a service session

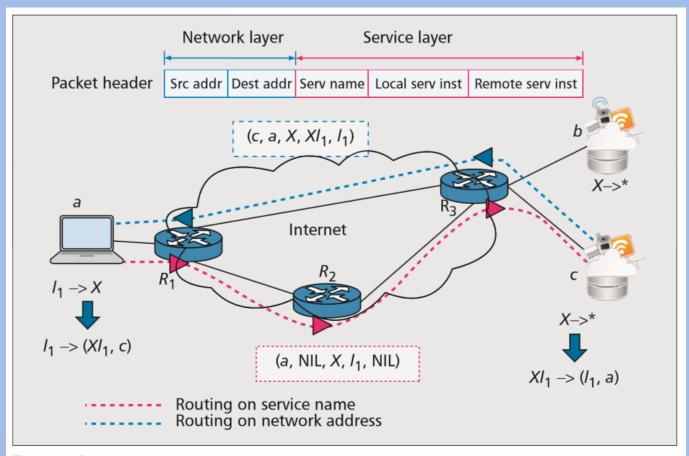


Figure 1. The process of establishing a service session.

Named Data Networking Simulator: ndnSIM

b Universität Bern

- Based on Network Simulator NS-3
- Current version: 2.1
- To be maximally realistic it uses Implementations of:
 - ndn-cxx library (NDN C++ library)
 - NDN Forwarding Daemon (NFD)
- Documentation is available (quality currently unknown)
- Small, active community
- Several code examples for different topologies (grid, bottleneck, etc.)

Thank you for your kind attention. Any questions?

$u^{\scriptscriptstyle b}$

References

b UNIVERSITÄT BERN

- > <u>www.named-data.net</u> (April 2016)
- > <u>www.ndnsim.net</u> (April 2016)
- Braun, Torsten et al. 2011. Service-Centric Networking. In 2011 IEEE International Conference on Communications Workshops (ICC).
- Jacobson, Van et al. 2009. Networking named content. In Proceedings of the 5th international Conference on Emerging Networking Experiments and Technologies (Rome, Italy, December 01 - 04, 2009). CoNEXT '09. ACM, New York, NY, 1-12.
- > Wu, Qinghua et al. 2014. SOFIA: Toward Service-Oriented Information Centric Networking. In *IEEE Network May/June* 2014.