D UNIVERSITÄT BERN

Indoor Positioning in Smartphones by Adopting Inertial Sensors and Radio Information

Jose Luis Carrera

Communication and Distributed System Group Institute of Computer Science University of Bern

21 March, 2016

b UNIVERSITÄT BERN

Outline

- Motivation.
- > Proposed Tracking Algorithm
 - Radio Information Component.
 - > Inertial Sensor Component.
 - > Floor Plan Information Component.
 - > Data Fusion Component.
- > Implementation of the Tracking Algorithm in Smartphone
- > Preliminary Experiment and Results
- > Conclusions and possible future work.

Motivation

^b UNIVERSITÄT BERN

- Locating in indoor environments has become a key issue for emerging location based application.
 - > Mobile phones important interface user-environment.
- > Crucial for pervasive mobile applications:
 - > Tracking of medical equipment
 - > Store navigation
 - > Parking lots
 - > Tracking in disaster areas
- > No easy and accurate solution nowadays.
- > No accepted standards do yet exist.
- > SwissSenseSynergy project

Indoor Tracking System

Radio Information Component

^b Universität Bern

h

1

[1] Z. LI, T. Braun, "A Passive WiFi source localization system based on fine-grained power-based trilateration ", University of Bern, IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2015

Inertial Sensor Component

D UNIVERSITÄT BERN

Accelerometer:

• Linear acceleration.

Gyroscope

- Angular rotation velocity
 Magnetometer
 - Azimuth value

Floor Plan Component

D UNIVERSITÄT BERN

U

Data Fusion Component

Bayesian Filter

•Model of how state changes in time.

- •Model of what observations you should see.
- •Represents a PDF as a set of samples (particles).
- •Belief of the current state given all the observation so far.

Implementation Ranging I

^b UNIVERSITÄT BERN

b

Ú

Implementation Ranging II

b UNIVERSITÄT BERN

h

II,

Non-Linear Regression Model

$$\hat{d}_i = \alpha_i \cdot e^{\beta_i \cdot \mathbf{RSS}_i}$$

Implementation Inertial Measurement Unit I

11

b UNIVERSITÄT BERN

Implementation Inertial Measurement Unit II

Magnetometer, Accelerometer, Gyroscope

Heading Orientation

OffsetX: Inclination X axis Magnetic North **Azimuth:** Magnetic North and Y axis

θ=(OffsetX-Azimuth**). st=**stride length.

Implementation Particle Filter

D UNIVERSITÄT BERN

Implementation Technical Challenges

- Resources: Android solution.
- Sampling Rate.
 - IMU 14Hz
 - WiFi sensor 3Hz.
- Delay Uploading Position Information.
 - Stop scanning process.
 - Cellular network (Future work).

Experiment

b UNIVERSITÄT BERN

U

EXPERIMENT

•5 Trajectories•18 Check Points each•90 Check Points

Preliminary Results

b

•90 points.
•Mean Error: 1.25m.
•Std: 0.79 m.

Conclusions

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

- > Tested complex scenario. Room entrance prone to error.
- Proposed Ranging-PF assisted approach higher accuracy, more stable than PDR.
 - > 50% accuracy achieve around 1m. (PDR: 7.5m.)

> Outperforms PDR by 86%.

> 90% accuracy achieve around 2m. (PDR: 11m.)

> Outperforms PDR by 81%.

> Use RSSI information to recalibrate PDR system and deal with accumulative errors.

Future Work

b UNIVERSITÄT BERN

- > Design more experiments.
- > Publish results.
- Try different technologies to upload information to the server.
- Implement solution in the server side.
 - > Share computation server-phone. (more particles)
- > Test multiple user performance.
 - > Using cloud.
- Include room recognition.

DEMO

^b UNIVERSITÄT BERN

b

 $\boldsymbol{u}^{'}$

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Questions