^b UNIVERSITÄT BERN

User(s) Mobility Prediction in Mobile Networks to Enhance Location Based Services (LBS) Performance

Mostafa Karimzadeh 14.March.2016

b UNIVERSITÄT BERN

Agenda

- Introduction
- Research question
- Proposed research plan
- Where my research is now?
- Summery

Introduction(1/3)

b UNIVERSITÄT BERN

Background:

 Different type of information (history about user movement trajectories, BTSs location map, city map,...) could be used to estimate the next location of user(s).

Motivation:

- Information about the next location of user(s), could be applied to improve various performance metrics (e.g, handover latency, content retrieval, resource utilization,...), in the different applications.
- Application (in our research!):
 - LBS(Location Based Services)

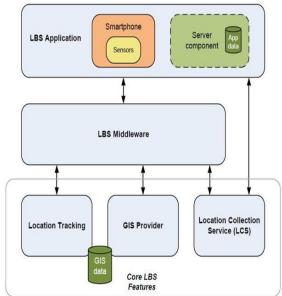
b UNIVERSITÄT BERN

Introduction(2/3)

> LBS

- Examples of LBS applications
 - Navigation assistances
 - Emergency location detection
 - Disaster aid
 - Finding friends in social networks
- Benefits of Location-Based Services
 - Traffic coordination and management.
 - Content delivery and advertising.
 - Tourist services.
 - Traveling related services.

Introduction(3/3)


LBS Components

LBS Application

- Specific application such as "find my friends."
- Smartphone components and sensors.
- Server component.

LBS Middleware

- Services to implement MUs coordination, information correlation and information dissemination.
- Core LBS Features
 - Location Tracking
 - GIS provider
 - Location Collection Service(LCS)

D UNIVERSITÄT BERN

Research Questions:

- How information about the next location of user(s) can be used to enhance the LBS-based applications performance?
 - Sub ques 1 : What are the possible and most related mobility prediction approaches?
 - Sub ques 2 : Which mobility prediction mechanism(s) are most fitted in our research area?
 - Sub ques 3 : How the selected mechanism(s) are feasible to implement in our research area? (possible inputs/ outputs/ doable!)
 - Sub ques 4 : How to evaluate and validate the solution ?

Proposed research plan

D UNIVERSITÄT BERN

- Step 1- Preforming comprehensive literature review about the mobility prediction approaches--> to answer sub ques 1
- Step 2- Studying detail about the most fitted mechanisms in our research area and classify them based on pros and cons -> to answer sub ques 2
- □ Step 3- Investigating about the feasibility of selected mobility prediction approaches --> to answer sub ques 3
- Step 4- Finding possible way(s) for evaluation -> to answer sub ques 4

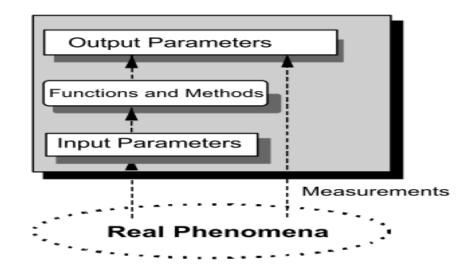
$u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Where I am (my research is) now?

□ Step 1

- Started since first of February 2016
- Partially (mostly) is done
- One report is written
- Still continue to have a complete overview!

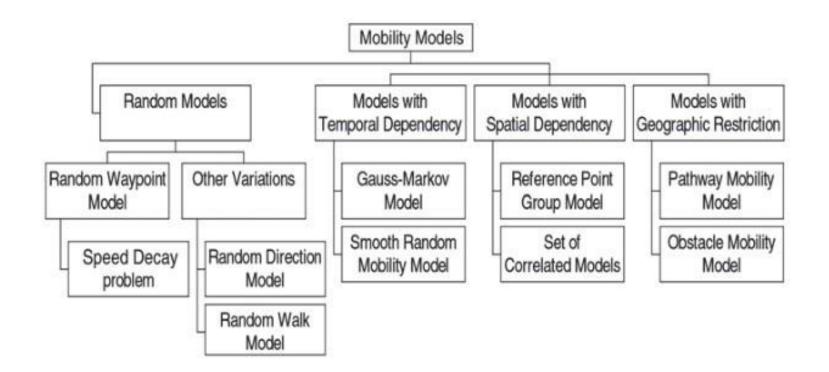

□ Step 2

- Starting to have preliminary comparison about the mechanisms
- Having some initial idea
- Continuing the research!

BERN

Step1

- Step1: Mobility and Prediction models
 - Mobility Models: Represent the movement of mobile users and how their location, velocity and acceleration change over time.
 - Input parameters.
 - Function and methods.
 - Output parameters.



BERN

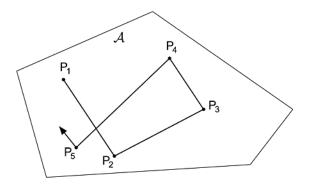
b

Step1

Classification of mobility prediction models:

Step1

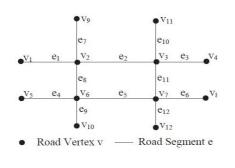
Random Models:


- Mobile nodes move randomly and freely without restriction.
- Mobile nodes have independent destination, speed and direction.
- Models with temporal dependency:
 - Mobile nodes trajectories are constrained by acceleration, velocity, and direction.
 - Mobile nodes mobility patterns are affected by their movement history.
- Models with spatial dependency:
 - Mobile nodes mobility patterns are affected by mobility pattern of other neighbouring nodes.
 - Applicable in disaster relief and battlefield scenarios.
- Models with geographic restriction:
 - Mobile nodes' trajectories are subject to the environment and bounded by freeways, local streets...

D UNIVERSITÄT BERN

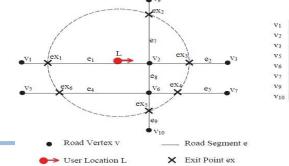
Random Models

- Random Waypoint (RWP) model:
 - Synthetic model for mobility in Ad Hoc-like network.
 - Each node moves along a zigzag line from one waypoint Pi to the next Pi+1.
 - The waypoint are uniformly distributed over the given convex area.
 - At the start of each leg a random velocity is drawn from the velocity distribution.



Models with temporal dependency

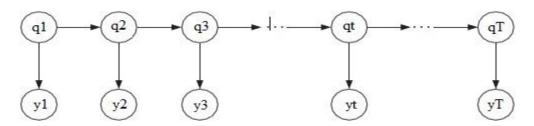
- The Gauss-Markov Mobility Model
 - Probability density function of node's location used for mobility prediction.
 - Input parametrs:
 - The mobile node's location and velocity updated report, which is inspected periodically by node.
 - The mobile node's velocity is correlated in time.
 - The probability density function of the mobile's location
 - Function and methods:
 - $\circ \qquad R_v(\tau) = E[v(t)v(t+\tau)] = \sigma^2 e^{-\beta|\tau|}$
 - $-\sigma^2$: The variance
 - $-eta \geq 0$: The degree of the memory in the mobility pattern
 - $-v_n = v(n\Delta t)$: The discrete version of the mobile velocity
 - $-\alpha = e^{-\beta \Delta t}$, $0 \le \alpha \le 1$
 - $-\Delta t$: The clock tick period
 - Output parameters:
 - The future location of a mobile at time t

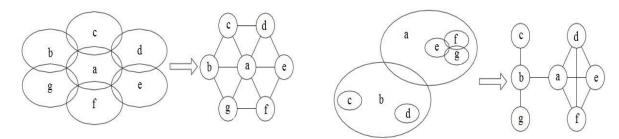

Models with temporal dependency cont.

- Predictive Location Model (PLM):
 - Map-based location prediction model.
 - Comprises a database and error control mechanism to improve prediction accuracy.
 - Input parameters:
 - PLM data base
 - Road network
 - Historical trajectories
 - Probability matrix
 - Function and methods:

	\mathbf{v}_1	v_2	V_3	\mathbf{V}_4	v_5	v_{6}	V_7	v_8	V9	V_{10}	v_{11}	V12
v_1	0	e ₁	0	0	0	0	0	0	0	0	0	0]
v_2	e ₁	0	e22	0	0	e _s	0	0	e ₇	0	0	0
V3	0	e ₂	0	e3	0	0	e ₁₁	0	0	0	e ₁₀	0
v_4	0	0	e3	0	0	0	0	0	0	0	0	0
V5	0	0	0	0	0	e4	0	0	0	0	0	0
V ₆	0	e _s	0	0	e4	0	e _s	0	0	e,	0	0
V7	0	0	e ₁₁	0	0	e ₅	0	e ₆	0	0	0	e ₁₂
V8	0	0	0	0	0	0	e ₆	0	0	0	0	0
V9	0	e ₇	0	0	0	0	0	0	0	0	0	0
V10	0	0	0	0	0	e,	0	0	0	0	0	0
V11	0	0	e ₁₀	0	0	0	0	0	0	0	0	0
V12	0	0	0	0	0	0	e ₁₂	0	0	0	0	0

- Information retrieval method, using dynamic computational window.
- Output parameters:
 - Detect all candidate trajectories
 And rank them.

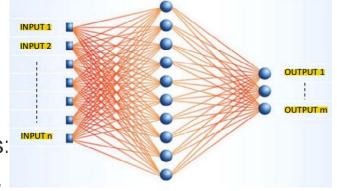

	Γo	e1	0	0	0	0	0	0
	e ₁	0	e2	0	es	0	e7	0
	0	e ₂	0	0	0	0	0	0
	0	0	0	0	e4	0	0	0
	0	e _s	0	e4	0	e ₅	0	e,
	0	0	0	0	e ₅	0	0	0
	0	e ₇	0	0	0	0	0	0
ć	0	0	0	0	e,	0	0	0


BERN

Models with temporal dependency cont.

- Hidden Markov Model:
 - Two kind of stochastic variables (Hidden&Observable).

Transfer Matrix which is distributed and managed by BSC.

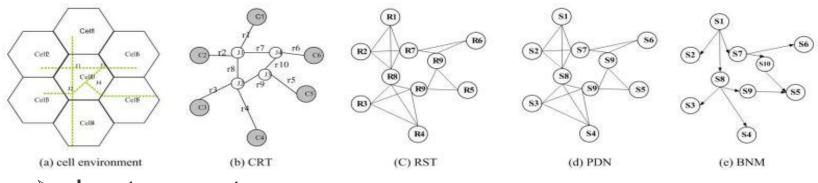

^b UNIVERSITÄT BERN

Models with temporal dependency cont.

- Hidden Markov Model (HMM)
 - Input parameters:
 - History of mobile nodes trajectories.
 - Learning parameters acquired as long as user steps into new cell.
 - Graph model of cellular network.
 - > Functions and methods:
 - A hybrid technique-Bayesian Neural Network.
 - Output parameters:
 - Prediction of mobile user's location

Models with temporal dependency cont.

- Multilayer Neural Network (MNN)
 - Predict the future location of Mus based on the past predicted information.
 - Single or multiple mobile target can be predicted.
 - Input parameters
 - Moving direction
 - Moving distance (Number of cells)
 - Function and methods
 - A hybrid technique with other methods:
 Bayesian Network, Hidden Markov Model.
 - Output parameters
 - Next direction and distance travelled.

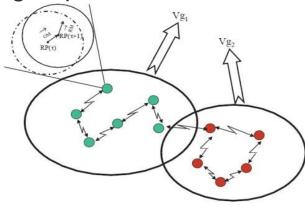


^b UNIVERSITÄT BERN

Models with temporal dependency cont.

- Bayesian Network Model
 - Resolve location prediction with multiple restricting factors.

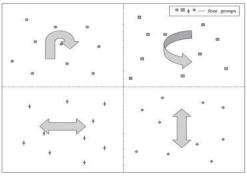
- Input parameters
 - Environment factors (Cell ID, Road length, Intersection Location)
 - Movement factors (Position Information, Current Velocity, Acceleration, Angular velocity)
- Function and methods $P(\text{new data} | \text{data}) = \int P(\text{new data} | \text{data})$


 $= \int P(\text{new data} | \text{parameters}) P(\text{parameters} | \text{data})$

- Output parameters
 - Prediction of MUs next location

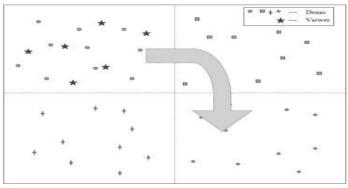
Models with spatial dependencies

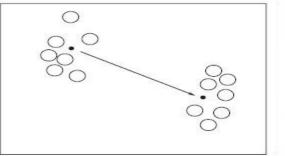
- Reference Point Group Mobility Model (RPGM)
 - Mobile nodes are organized in different groups.
 - Mobile node could be assigned into several groups.
 - Input parameters
 - Logical relationship among groups' member
 - Place and motion of target for each teams
 - Function and methods
 - Reference Point Group Mobility (RPGM)
 based on the relationship among mobile nodes.
 - Output parameters
 - Prediction of users group location

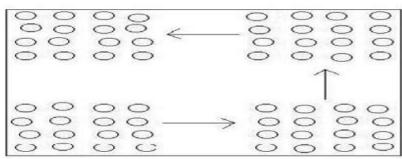

Based on RPGM model we can define following models:

RERN

Models with spatial dependencies cont.

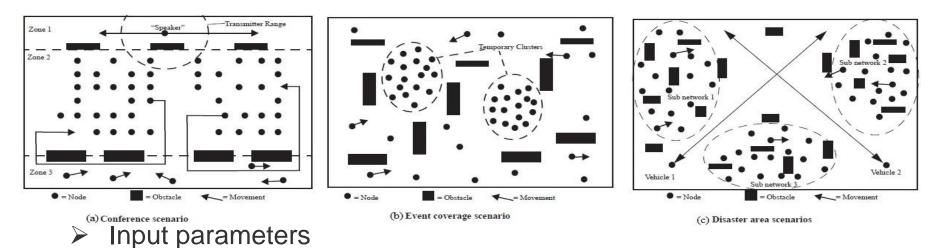

- In-place Mobility Model
 - Dividing the serving area to several adjacent region.


- Overlap Mobility Model
 - Various groups, different tasks, different mobility pattern in a geographical area.


Models with spatial dependencies cont.

- Conventional Mobility Model
 - Models the interaction between exhibitors and viewers.

- Nomadic Community Mobility Model
 - Mobile nodes have a common reference point, and they move jointly from on point to another.



RERN

Models with geographic restriction

- Obstacle Mobility Model
 - Allows users to define the position of obstacles, so the mobile node
 - changes its trajectories accordingly.

- Information about the place and position of obstacles
- Function and methods
 - Obstacle mobility model based on information about obstacles
- Output parameters
 - Prediction of mobile node trajectories

$u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Step 2

Prediction Techniques	Advantages	Shortcomings				
Random Waypoint Model	Simple memoryless equations	 Lower prediction accuracy Nodes walk randomly around the origin, never so far. Disruptive in path turns. 				
Gauss-Markov Model	More realistic than Random Waypoint Model	 More parameters to learn and tune. 				
Predictive Location Model	 Determine a user location as a point Reduced number of predicted routes 	 GPS will be needed Costly prediction mechanism Appropriate for outdoor Inaccurate data on narrow roads 				
Hidden Markov Model	Good prediction percentage	 Long training phase before prediction Service area is too large Slow reaction to users behaviors 				
Reference Point Group Mobility Model	Low complexityGroup prediction	Lower accuracy in cellular networks				
Obstacle Mobility Model	 Easy to implement and work Low complexity and easy equations 	Not realistic.Low accuracy.				
Dynamic Bayesian Network	 Higher accuracy in prediction Easy for implementation Only based on user trajectory trace data 	 Requires training phase for prediction Require quit enough users trace data as input 				
Multilayer Neural Network	Higher accuracy in prediction	 The choice of model parameters is essentially arbitrary Single weight vector 				

b UNIVERSITÄT BERN

Summary

- The prediction methods are not optimum
- Performance and prediction accuracy depends on scenario and input parameters.
- It seems to be better to have a Hybrid prediction mechanism.

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Thanks for Your Attention!