^b UNIVERSITÄT BERN

Seminar Communication and Distributed Systems

Service Distribution Mechanisms in Information-Centric Networking

Bachelor Thesis of Oliver Stapleton

11.05.2015

Outline

^b UNIVERSITÄT BERN

h

- > Introduction
- > Keywords
- > Approaches
 - Trivial Approach
 - Probability-based Approach
- > Evaluation
- > Conclusion
- > Future Work

Thesis

- > Topic:
 - "Service Distribution Mechanisms in Information-Centric Networking"
- > Motivation:
 - Current concept of ICN allows objects to be distributed, but the processing of services relies on a single ad hoc server
 - Distribution of a task by splitting it into several parts and distributing them to separate nodes has not been implemented yet

Thesis

- > Tasks at a glance:
 - get familiar with ICN / CCN / SCN
 - design a service distribution mechanism
 - implement it
 - evaluate its performance

Keywords

^b UNIVERSITÄT BERN

- > ICN: Information-Centric Network
 - decoupling of information and location
 - Consumers only express name of information, not location
 - Routing takes care of retrieving information from closest source
 - 2 kinds of messages:
 - Interest Message (Request): "/service/factorial/!{N="5"}"
 - Data Message (Information): "120"
- > CCN: ICN, where information = (static) content
- SCN: ICN, where information = service
- > CCNx: implementation of CCN
- NextServe: extension of CCNx that adds SCN-capability

$u^{\scriptscriptstyle b}$

Task distribution

^D UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Task distribution

D UNIVERSITÄT BERN

Task distribution

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Goals of Task distribution

b UNIVERSITÄT BERN

> Time

Minimize turnaround time for Tasks

- Optimize power consumption
 - Exploit the available resources of other, idle nodes in the network
 - Minimize power consumption of Requester
 - Requester might be mobile/running on a limited battery

Considered approaches

b UNIVERSITÄT BERN

b

- 1. Trivial Approach
- 2. Delegated Approach
- 3. Probability-based Approach

Trivial Approach (TA)

- 1. Requester defines Task and splits it into *n* Jobs
- 2. Requester expresses each Job as an Interest Message (IM)
- 3. Providers receive IMs (aka the Jobs)
- 4. Providers process IMs, and return the Job results as Data Messages (DMs)
- 5. Requester waits until all *n* DMs (aka Job results) have arrived and then merges them to form the overall Task result

Trivial Approach (TA)

b UNIVERSITÄT BERN

Trivial Approach (TA)

^b UNIVERSITÄT BERN

- > Problems with the trivial approach:
 - IMs aren't "delegated" to separate Providers
 - Each Provider receives each IM
 - Each Provider processes each IM
 - Requester must wait for fastest Provider to have processed all IMs
 - No gain over just sending out the whole Task as a single IM!

- Mechanism to solve the issues of the Trivial Approach
- > Order of incoming IMs is "shuffled" by the Providers
- > Probability-based:
 - Providers queue incoming IMs
 - IMs contain P-value
 - Providers iterate through queue
 - For each IM, they "throw a dice":
 - In 1 out of P times, they decide to process the IM
 - In P-1 out of P times, they add the IM back to the queue

^b UNIVERSITÄT BERN

b

Queue of incoming IMs:

^b UNIVERSITÄT BERN

b

Queue of incoming IMs:

1. Dequeue top IM

^b UNIVERSITÄT BERN

b

Queue of incoming IMs:

1. Dequeue top IM

b UNIVERSITÄT BERN

b

Queue of incoming IMs:

2. Read P-value

b

Queue of incoming IMs:

P=3

- process
- don't process (yet)
- don't process (yet)

2. Read P-value

^b UNIVERSITÄT BERN

Queue of incoming IMs:

3. Decision (B & C): Enqueue IM again

^b UNIVERSITÄT BERN

Queue of incoming IMs:

3. Decision (B & C): Enqueue IM again

b UNIVERSITÄT BERN

Queue of incoming IMs:

3. Decision (A): Process the Job within the IM

b UNIVERSITÄT BERN

Queue of incoming IMs:

^b UNIVERSITÄT BERN

h

Queue of incoming IMs:

^b UNIVERSITÄT BERN

b

Queue of incoming IMs:

head	Job3	P =	3
------	------	-----	---

^b UNIVERSITÄT BERN

b

Queue of incoming IMs:

 $\xrightarrow{\text{head}}$

Probability-based Approach

D UNIVERSITÄT BERN

Simulation: Order that Providers process incoming IMs

Probability-based Approach

D UNIVERSITÄT BERN

Simulation: Order that Providers process incoming IMs

- > Only PBA
 - TA is actually special case of PBA with P=1
- > Two phases
 - Phase 1: Evaluation of PBA on model
 - Model simulates ICN with PBA distribution mechanism
 - To prove that PBA does actually reduce turnaround-time
 - Find out what is the best value for P, amount of Jobs
 - Phase 2: Show that PBA also works when implemented in CCNx/NextServe

- > Task: Count from 1 to 100, one number per second
 - Takes 100s to solve locally
 - Can be split into independent Jobs
 - 2: [count: 1-50],[count: 51-100]
 - 4: [count: 1-25], [count: 26-50], [count: 51-75], [count: 76-100]
 - etc.
 - Dummy Task to minimize outside influences on measurement
 - no data transfer
 - multiple Providers can be powered by same CPU

b

 \boldsymbol{u}^{\prime}

^b UNIVERSITÄT BERN

- > Phase 1, session 1:
- > Varying inputs for
 - Number of Jobs => $\{2, 4, 6, 8, 10\}$
 - Number of Providers => $\{2, 4, 6, 8, 10\}$
 - Value for $P \Rightarrow \{2, 4, 6, 8, 10, 12\}$
- > 10 measurements for each combination of inputs

per value of P ▶P=1 time (ms) P=3 P=5 P=7 P=9 P=11 local

Mean time to solve task depending on amount of **Providers**,

number of Providers

Mean time to solve task depending on amount of Jobs,

- > Phase 1, session 1:
- > Conclusions:
 - PBA minimizes turnaround-time for task in most cases
 - The more Providers, the better the performance (obviously)
 - Best performance for varying numbers of providers is achieved with:

Number of jobs = 4

^b UNIVERSITÄT BERN

- > Phase 1, session 2:
- > Constant inputs for
 - Number of Jobs => 4
 - Number of Providers => 4
- > Varying inputs for

— Value for $P \Rightarrow \{1, 1.1, 1.2, ..., 19.8, 19.9, 20\}$

> 20 measurements for each set of inputs

- > Phase 1, session 2:
- > Conclusions:
 - Mean time, std. dev, min, max all grow with increasing P-value
 - Best results are acheived with P-value < 5
 - Might be biased because number of Jobs and number of Providers were constant

- > Phase 2, session 1:
- > Count task implemented in CCNx/NextServe environment
- Constant inputs for
 - Number of Providers => 4
- Varying inputs for
 - Number of Jobs => $\{4, 6, 8, 10, 12\}$
 - Value for $P \Rightarrow \{1, 2, ..., 11, 12\}$
- > 2 measurements for each set of inputs

number of Jobs

^b UNIVERSITÄT BERN

- > Phase 2, session 1:
- > Conclusions:
 - Qualitatively, measurements in CCNx/NextServe environment seem to match measurements obtained by the PBA-Model
 - More overhead in CCNx/NextServe than in the PBA-Model
 - PBA still proves to be more efficient than to locally process the task

- > Phase 2, session 2:
- > Transcode a 10 minute video file from 1080p .avi to 576p .mpg in CCNx/NextServe environment
- > Task involves transfer of big quantities of data (video files)
- > Constant inputs for
 - Number of Providers => 4
- > Varying inputs for
 - Number of Jobs => $\{2, 4, 8\}$
 - Value for $P \Rightarrow \{1, 2, 3, 4, 6, 8, 12, 16\}$
- > 2 measurements for each set of inputs

- > Phase 2, session 2:
- > Conclusions:
 - PBA passes the "real-world" test, still more efficient than locally transcoding
 - Have to be careful with parameters (number of Jobs, P-value)
 - Overhead is rather large (tranfer of video files)

Conclusion

- > Possible to distribute services in an ICN network
- > Implementation not trivial
 - Need to alter routing/scheduling behaviour of ICN
- It is possible to implement the PBA in CCNx/NextServe
- It is possible to improve turnaround-time for a "real-world" task (transcoding of a video file) using an implementation of the PBA in CCNx/NextServe

- CCNx could be extended to support the PBA natively
- Selection of P-Value at run-time could be improved
 - Use information obtained in previous iterations
 - Intervals at which the results arrived
 - Duration after which the results arrived

Thank you!

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Questions?