Predicting Future Locations of Users based on History Data

Dominic Kohler Institute of Computer Science Communications and Distributed Systems (CDS) Universitaet Bern

28.04.2017, CDS Seminar

b UNIVERSITÄT BERN

Outline

- > Motivation
- > Algorithms and Features
 - Difference in Leaving Time
 - Single/Ensemble Predictors
- > Evaluation & Results
 - Temporal & Hybrid Features
 - User Movement
- > Conclusion

Motivation - Goal

b UNIVERSITÄT BERN

- > Improve Location based Services
 - Ubiquity of smartphones "opened new doors"

Predict Future Locations of a User

- > Supervised Machinelearning Task
 - Set(User,features) \rightarrow placeID prediction

Quality of extracted Users

D UNIVERSITÄT BERN

h

Difference in Leaving Time

Place_id	Leaving_time	Next_place _id		place_id	Leaving_time	Next_place_id
1	07.40	2		1	07.50	?
2	08.30	1		Table 2: Insta	nce to classify	· · · · · · · · · · · · · · · · · · ·
1	07.54	3				
3	07.15	5		· · · · · · · · · · · · · · · · · · ·		
Table 1: visit_10min						
· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
$currentDiff = T_{leavingTime} - I_{leavingTime} $						

 $if (currentDiff < smallestDiff \&\& currentDiff < Threshold) \\ I_{nextPlaceID} = T_{nextPlaceId}$

smallestDiff = currentDiff

Difference in Leaving Time - Rationale

- > Decision Tree if leaf node ambigous → home or office as next_pid
 - Allows for adaption in pattern changes (Holiday, new Home...)

Difference in Leaving Time - Results

- > Stacking: J48 and DLT as Base Learner
- Mispredicted Instances from J48 as Input for DLT
 DLT could not improve overall accuracy

For some users could not even predict one place correctly

MDC Dataset - Categories

D UNIVERSITÄT BERN

Selected Features

- > Temporal
 - Duration
 - Leavingtime
 - Weekday
- > System
 - Charging
 - Profile
- Acceleration
 - Average. Delta
- > Networking
 - #WLAN IDs
 - #GSM IDs

Not Selected Features

b UNIVERSITÄT BERN

- > Application
- > Media
- > Calllog
- > Calendar

General Problems:

- high variance in data
- sparse data

Places - Features

b UNIVERSITÄT BERN

Charging: True Profile: General #Wlans: 1<=x<5 #GSM: 6<=x<12

Charging: False Accel: high Duration: 0<=x<40

Charging: True Profile: Silent/Meeting #Wlans: 5<=x<10 Weekday: MON-FRI Leavingtime: 09-12.30, 14-18

Decison Tree Model (J48)

Nbr of correct/wrong prediction

```
nbrwlans = 5 \le x \le 10
 duration = 300 \le x \le 480
      leaving time = 14:00 \le x \le 10:00; 2 (25.0/1.0)
      leaving time = 23:00 \le x \le 07:00: 8 (1.0)
      leaving time = 12:30 \le x \le 14:00; 2 (7.0)
      leaving time = 18:00 \le x \le 19:00; 2 (0.0)
      leaving time = 07:00 \le x \le 09:00: 8 (2.0)
      leaving time = 09:00 \le x \le 12:30: 8 (1.0)
      leaving time = 19:00 \le x \le 23:00: 2 (0.0)
 duration = 140 \le x \le 200; 2 (23.0/1.0)
  duration = 480<=x<2880
      leaving time = 14:00 \le x \le 18:00: 8 (14.0/6.0)
      leaving time = 23:00 \le x \le 07:00: 8 (9.0)
      leaving time = 12:30 \le x \le 14:00: 8 (1.0)
      leaving time = 18:00 \le x \le 19:00: 2 (3.0)
      leaving time = 07:00 \le x \le 09:00: 8 (5.0)
      leaving time = 09:00 \le x \le 12:30: 8 (11.0)
      leaving time = 19:00 < x < 23:00: 2(3.0)
 duration = 60 < x < 100
      nbrgsms = 0 <= x < 3: 2 (20.0/1.0)
      nbrgsms = 3<=x<6: 33 (8.0/3.0)
```

$u^{\scriptscriptstyle \flat}$

Confusion-Matrix of Output Predictions

Adding "Profile" Feature

```
nbrwlans = 5 \le x \le 10
 profile = pager: 2 (0.0)
 profile = outdoor: 2 (0.0)
 profile = silent
     nbrgsms = 0 \le x \le 3; 2 (212.0/27.0)
     nbrqsms = 3 <= x < 6: 33 (8.0/2.0)
     nbrqsms = 6 <= x < 12; 2 (0.0)
     nbrqsms = x > 11: 2 (0.0)
 profile = general
      duration = 300 <= x < 480; 8 (5.0/1.0)
      duration = 140 <= x < 200; 8 (1.0)
      duration = 480<=x<2880: 8 (33.0)
      duration = 60 <= x < 100; 2 (4.0/3.0)
      duration = 200 <= x < 300; 8 (3.0)
      duration = 0<=x<40: 22 (95.0/54.0)
      duration = 100<=x<140: 2 (4.0/2.0)
      duration = 40 < x < 60
          leaving time = 14:00 \le x \le 10:00: 2(7.0/3.0)
          leaving time = 23:00 \le x \le 07:00: 64 (1.0)
          leaving time = 12:30 \le x \le 14:00: 7 (2.0/1.0)
          leaving time = 18:00 \le x \le 19:00; 2 (0.0)
          leaving time = 07:00 \le x \le 09:00: 2 \ (0.0)
          leaving time = 09:00 \le x \le 2 (0.0)
          leaving time = 19:00 \le x \le 23:00: 2 (0.0)
```

b UNIVERSITÄT BERN

Evaluation - Single Predictors

UNIVERSITÄT BERN

b

10 - Folds Crossvalidation

Evaluation - Single Predictors

Hybrid Features 100 90 80 70 avg. accuracy [%] **Avg. Accuracy** 60 50 72% Complex Movement 40 Simple Movement 84% 30 20 10 0 **Random Forest** J48 Rep. Tree Algorithm 10 – Folds Crossvalidation

Evaluation - Ensemble Predictors

b UNIVERSITÄT BERN

10 - Folds Crossvalidation

- K. Aberer et. Al, "Next Place Prediction usin Mobile Data" — Users:
 - Simple Movement Pattern: avg. Accuracy: 71.85%
 - Heterogenous Movement: avg. Accuracy: 54.27%
 - —Temporal Features—Holiday Detection—Difference in Leavingtime

Conclusion

b UNIVERSITÄT BERN

- Hybrid features improve accuracy
 -WLAN and GSM are potent features
- > Prediction accuracy depends on user quality
- > Ensemble methods did not significantly improve accuracy