Bachelor Thesis: Indoor Localization with iBeacon/iOS

Patrick Hodel University of Bern

April 28, 2017 Seminar FS17

Patrick Hodel Indoor Localization with iBeacon/iOS

▲ 同 ▶ → 三 ▶

Outline

1 Thesis proposal

- Goal of the project
- iBeacon and BLE

2 Approach

- 3 Achievements & Challenges
 - Current app
 - API Restrictions
 - Signal are not always reliable

• Project from Jose Luis Carrera

- Indoor tracking to support continuous tracking and positioning
- Enhanced particle filter to fuse:
 - Range information from RSSI
 - IMUs information
 - Floor plan information
- Double resampling method in the particle filter
- Real-time system, which runs on commodity smartphones

- Project from Jose Luis Carrera
- Indoor tracking to support continuous tracking and positioning
- Enhanced particle filter to fuse:
 - Range information from RSSI
 - IMUs information
 - Floor plan information
- Double resampling method in the particle filter
- Real-time system, which runs on commodity smartphones

< /₽ > < E >

- Project from Jose Luis Carrera
- Indoor tracking to support continuous tracking and positioning
- Enhanced particle filter to fuse:
 - Range information from RSSI
 - IMUs information
 - Floor plan information
- Double resampling method in the particle filter
- Real-time system, which runs on commodity smartphones

- Project from Jose Luis Carrera
- Indoor tracking to support continuous tracking and positioning
- Enhanced particle filter to fuse:
 - Range information from RSSI
 - IMUs information
 - Floor plan information
- Double resampling method in the particle filter
- Real-time system, which runs on commodity smartphones

- Project from Jose Luis Carrera
- Indoor tracking to support continuous tracking and positioning
- Enhanced particle filter to fuse:
 - Range information from RSSI
 - IMUs information
 - Floor plan information
- Double resampling method in the particle filter
- Real-time system, which runs on commodity smartphones

Goal of the project iBeacon and BLE

How about apple?

Apple does not provide methods to read RSSI of Wifi AP

Alternative: Implementation using Apple's iBeacon protocol

Patrick Hodel Indoor Localization with iBeacon/iOS

< ロ > < 同 > < 三 > < 三 >

Goal of the project iBeacon and BLE

How about apple?

Apple does not provide methods to read RSSI of Wifi AP

Alternative: Implementation using Apple's iBeacon protocol

Patrick Hodel Indoor Localization with iBeacon/iOS

< ロ > < 同 > < 三 > < 三 >

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

Allows reading and writing of values

• □ • • • • • • • • • • •

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

 Allows reading and writing of values

• □ • • • • • • • • • • •

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

 Allows reading and writing of values

< D > < () > < () > <</p>

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

 Allows reading and writing of values

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

Allows reading and writing of values

Much lower consumption (1% to 50%), lower range and datarate compared to Classic Bluetooth technology

Advertising mode

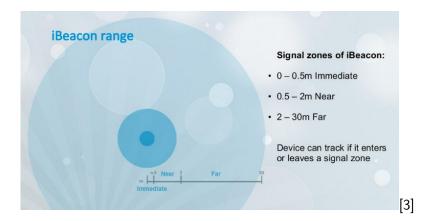
- One-way discovery mechanism
- Packet transmission every 20ms to 10 seconds
- Can be set up to operate in non-connectable advertisement-only mode
- Used for iBeacon operation

Connecting mode

 Allows reading and writing of values

< /₽ > < E >

Goal of the project iBeacon and BLE


iBeacon technology is not intended to be used for specific location identification.[2]

Patrick Hodel Indoor Localization with iBeacon/iOS

< ロ > < 同 > < 三 > < 三 >

Goal of the projec iBeacon and BLE

iBeacon zones

イロト イボト イヨト イヨト

э

Goal of the project iBeacon and BLE

BLE Propagation model[5]

$$\mathsf{RSSI} = \mathsf{R}^0 - 10\gamma \log\left(\frac{\hat{d}}{d^0}\right) \Longrightarrow$$
$$\hat{d} = 10^{\left(\mathsf{R}^0 - \mathsf{RSSI}\right)/10\gamma}$$

 R^0 is a calibrated RSSI value corresponding to one-meter distance γ is a calibration parameter for the path loss exponent

▲ 御 ▶ ▲ 王

Goal of the project iBeacon and BLE

Hardware[4]

- Beacons available from different vendors
- Different shapes, battery sizes, chipset, firmware

(日)

Thesis proposal

Achievements & Challenges

Goal of the project iBeacon and BLE

Estimote Beacons[1]

Characteristics				
Battery life	2 years			
Range	70 meters			
Price	59\$ for 3 beacons			
Features	Multiple sensors			
	Configuration &			
	Monitoring Tools			

æ

Overview

æ

Overview

Learning Estimote & Swift programming

Patrick Hodel Indoor Localization with iBeacon/iOS

э

< (□) ト < 三

Overview

Understand current Wi-Fibased positioning system

Learning Estimote & Swift programming

э

∃ >

-

Overview

Develop BLE-based ranging model

Understand current Wi-Fibased positioning system

Learning Estimote & Swift programming

< 17 ▶

∃ ► < ∃ ►</p>

Overview

Integration with IMU readings & floor plans

Develop BLE-based ranging model

Understand current Wi-Fibased positioning system

Learning Estimote & Swift programming

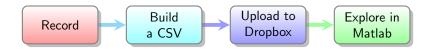
< 1 →

-

Overview

Evaluate and compare solution with Wi-Fi-based solution

Integration with IMU readings & floor plans

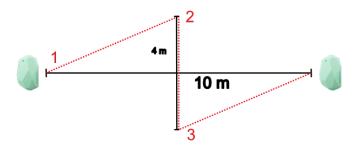

Develop BLE-based ranging model

Understand current Wi-Fibased positioning system

Learning Estimote & Swift programming

Current app API Restrictions Signal are not always reliable

Prototyping Workflow



イロト イボト イヨト イヨト

э

Current app API Restrictions Signal are not always reliable

Walking

Patrick Hodel Indoor Localization with iBeacon/iOS

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Achievements & Challenges

Current app

00:06:33

AccelZ

Screenshots / Demo

00.00						
Current phase						
0						
,						
(Next	t phas	se			
AccelX	0.077	GyroX	-0.019			
AccelY	-0.559	GyroY	-0.038	3		
AccelZ	-0.834	GyroZ	-0.026			
Beacons	Proxim.	Ac	RSSI			
34251:2	2	1.80	-79			
38445:5	. 3	10.59	-96			

Label AccelX

.....

≣ ▶ æ

filename.csv

ulu, \odot Beacon: Patrick Hodel

Indoor Localization with iBeacon/iOS

Label

Current app API Restrictions Signal are not always reliable

Scanning Frequency

CoreLocation Ranging updates only once per second

- Low frequency of RSSI updates impede's reliable location prediction
- Alternative: Use CoreBluetooth methods
 - Association between scanned RSSI values and iBeacon missing
 - Guessing might be unreliable
 - Other Bluetooth devices can interfere

Image: A mathematical states and a mathem

Current app API Restrictions Signal are not always reliable

Scanning Frequency

CoreLocation Ranging updates only once per second

- Low frequency of RSSI updates impede's reliable location prediction
- Alternative: Use CoreBluetooth methods
 - Association between scanned RSSI values and iBeacon missing
 - Guessing might be unreliable
 - Other Bluetooth devices can interfere

Image: A mathematical states and a mathem

Current app API Restrictions Signal are not always reliable

Scanning Frequency

CoreLocation Ranging updates only once per second

- Low frequency of RSSI updates impede's reliable location prediction
- Alternative: Use CoreBluetooth methods
 - Association between scanned RSSI values and iBeacon missing
 - Guessing might be unreliable
 - Other Bluetooth devices can interfere

Image: A mathematical states and a mathem

Current app API Restrictions Signal are not always reliable

Scanning Frequency

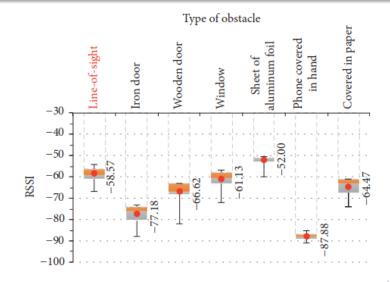
CoreLocation Ranging updates only once per second

- Low frequency of RSSI updates impede's reliable location prediction
- Alternative: Use CoreBluetooth methods
 - Association between scanned RSSI values and iBeacon missing
 - Guessing might be unreliable
 - Other Bluetooth devices can interfere

< 4 1 → 4 3

Current app API Restrictions Signal are not always reliable

Scanning Frequency

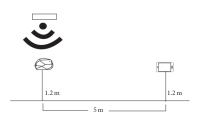

CoreLocation Ranging updates only once per second

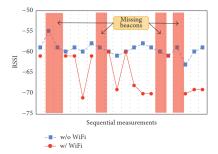
- Low frequency of RSSI updates impede's reliable location prediction
- Alternative: Use CoreBluetooth methods
 - Association between scanned RSSI values and iBeacon missing
 - Guessing might be unreliable
 - Other Bluetooth devices can interfere

▲ 同 ▶ ▲ 三

Current app API Restrictions Signal are not always reliable

Obstacles[5]




Patrick Hodel Indoor Localization with iBeacon/iOS

æ

Current app API Restrictions Signal are not always reliable

WiFi Interferrence[5]

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Current app API Restrictions Signal are not always reliable

Bibliography I

Estimote.

http://estimote.com/.

Getting Started with iBeacon -Getting-Started-with-iBeacon.pdf. https://developer.apple.com/ibeacon/ Getting-Started-with-iBeacon.pdf.

Cisco.

iBeacon - ibeacon_faq.pdf.

http://www.cisco.com/c/dam/en/us/solutions/ collateral/enterprise-networks/ connected-mobile-experiences/ibeacon_faq.pdf.

A (1) < A (1) </p>

Current app API Restrictions Signal are not always reliable

Bibliography II

The Hitchhikers Guide to iBeacon Hardware: A Comprehensive Report by Aislelabs (2015).

Jeongyeup Paek, JeongGil Ko, and Hyungsik Shin.

A measurement study of ble ibeacon and geometric adjustment scheme for indoor location-based mobile applications. *Mobile Information Systems*, 2016, 2016.

Image: A image: A

Current app API Restrictions Signal are not always reliable

Questions

Questions?

Patrick Hodel Indoor Localization with iBeacon/iOS

< ロ > < 回 > < 回 > < 回 > < 回 >

æ