Service-Centric Networking

Mikael Gasparyan

PhD Student University of Bern Switzerland

Workshop – July 2017 Bern, Switzerland

Agenda

- > Service-Centric Networking requirements
- > Session Support
 - Benefits of session support
 - Designed session support for SCN
 - Evaluation of the SCN session support mechanism
- > IaDRA-SCN
 - Intra-domain routing architecture for Service-Centric Networking
- > Session Support
 - Node failure recovery

> Conclusion

SCN Requirements

u^b

BERN

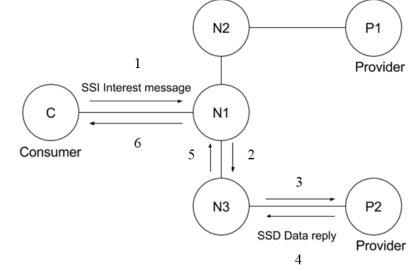
- > Session support
- > Load balancing
- > Node failure recovery
- > Service composition

> ...

Benefits of session support

UNIVERSITÄT BERN

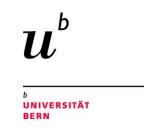
- > Session use cases
- Service provider need to instantiate a virtual machine before processing incoming requests
 - Requires processing context
- Security-related applications
 - E.g., encryption/decryption services that require a key exchange
 - Requires processing context
- Sessions are beneficial for the processing of continuous service requests requiring an execution context


Session support – design and evaluation

- > The following slides will present the designed session support
 - Session establishment
 - Session usage
 - Session termination
- > Our mechanism for SCN session support
 - NDN was extended to integrate the SCN session support
- > To implement and evaluate our work
 - We used the ndnSIM framework
 - ndnSIM is a ns-3 based simulator integrating the NDN implementation of the CCN concept

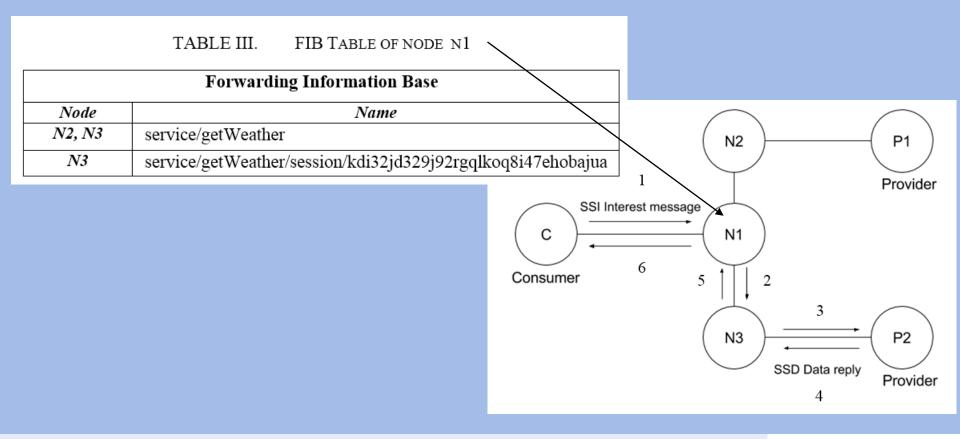
Session establishment 1/3

- > To establish a session two messages need to be sent
 - Session Start Interest (SSI)
 - Service Start Data (SSD)
- SSI is sent by the service consumer and SSD is the reply of the Producer to the incoming SSI Interest
- In the figure below consumer C establishes a session with producer P2


Session establishment 2/3

^b UNIVERSITÄT BERN

- SSI name contains three elements
 - Requested Service Identifier
 - Keyword indicating a request for a Session
 - Unique session ID generated by the service consumer
- > SSD service producer data reply contains
 - Unique session ID generated by the service producer
- Intermediate nodes store in their FIB the session name
 - Which consists of the SSI name concatenated with unique ID generated by the producer
 - e.g.,


service/getWeather/session/kdi32jd329j92rgqlkoq8i47ehobajua

Session establishment 3/3

> FIB table of node N1 after session establishment

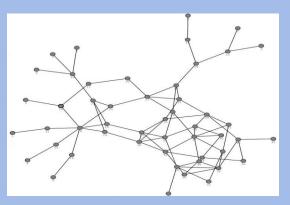
Route to the session of N3 is added

Session usage

- The service consumer needs to send an Interest with the following naming convention
 - <u>service</u>/[service-identifier]/<u>session</u>/[session-identifier]
- The name contains two <u>keywords</u> and the service and session identifiers
- Intermediate nodes forward the Interest based on the standard NDN forwarding scheme
 - Routing based on the FIB table entries

Session termination

- To termination a session the service consumer needs to send a session Interest request containing the keyword *terminate*
- The service provider will reply to this request to confirm the end of the session
- Intermediate nodes will delete the corresponding FIB entries
 - Upon forwarding the service provider confirmation

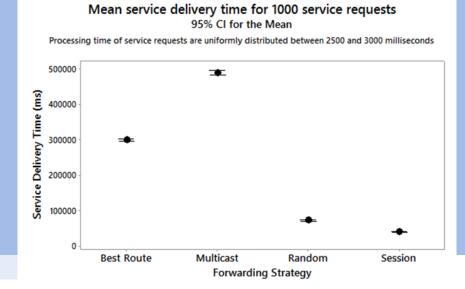

	TABLE III. FIB TABLE OF NODE N1	
	Forwarding Information Base	
Node	Name	
N2, N3	service/getWeather	
_ <u>N3</u>	service/getWeather/session/kdi32jd329j92rgqlkoq8i47ehobajua-	

Evaluation scenario

- > Topology composed of 50 nodes
 - 4 provider and 8 consumer nodes
- > Service consumers send service request
 - Approximatively every second
 - Random variable of exponential distribution

- Based on a uniformly distributed random variable
- Two different scenarios by varying the processing time (ms)
 - 1500-2000 and 2500-3000
- Processing time
 - Time required by a node to process a request
- > We compared the service delivery time
 - Time between the request sent and the response received by the consumer

Evaluation and results



- > We compared the three strategies present in ndnSIM and our session support strategy
- > By varying the processing time the ranking of the strategies considered remains unchanged
 - 1500-2000 and 2500-3000 (uniform random distribution)
- Our session support mechanism outperforms the existing strategies
 - Because existing strategies are not efficient for service request load-balancing

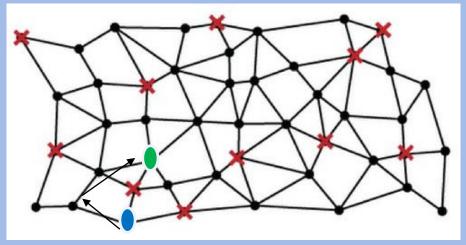
Evaluation and results

b UNIVERSITÄT BERN

- > Chart shows results for mean service delivery time
 - For 1000 service requests
 - For service processing time of 2500-3000 (ms)
 - Processing time distribution of 1500-2000 (ms) does not affect the performance rank
- > Random strategy is second best behind our session support
 - Effect of forwarding requests randomly to different service providers
 Mean service delivery time for 1000 service requests

IaDRA-SCN

> IaDRA-SCN


- Intra-domain routing architecture for Service-Centric Networking
- First SCN routing architecture based on NLSR
- Nodes propagate to the network
 - Prefix
 - Allows to distribute registered prefixes
 - Name prefix reachability
 - Adjacency
 - Contains active links to neighbours and their cost
 - Allows to build the network topology and compute path cost
 - Resource Availability
 - Service providers propagate periodically Resource Availability information
 - Allows load-balancing for service requests requiring processing

IaDRA-SCN

- > With the Adjacencies, nodes can:
 - Built the network topology
 - Identify which node is associated with which prefixes
 - Rank outgoing faces for future service request forwarding decisions
- Nodes have a significant knowledge of the entire network
- > Based on NLSR
 - Intra-domain
 - Protocol overhead

Session Support - Node failure recovery

- > Find alternative path in case of node failure
- Service provider propagates periodically BF containing session identifiers
 - Alternatively it can broadcast its node identifier
 - Less protocol overhead
- The service requester will broadcast a request to find an alternative path/face to reach the service provider

Conclusion

- Session Support Paper presented at Networking-Comet
- > Ongoing research to integrate node failure recovery
 - Session information propagation
 - Node failure recovery by propagating session/node identifiers
- > IaDRA-SCN
 - First NLSR based Service-Centric Networking routing architecture
 - NLSR was extended to propagate resource availability information

Questions

 $u^{\scriptscriptstyle \flat}$

D UNIVERSITÄT BERN

Thank you for your attention!