UNIVERSITÄT BERN

On Bloom Filter-based Routing in Information-Centric Networks

July 24, 2017

Ali Marandi Communication and Distributed Systems Institute of Computer Science University of Bern, Switzerland marandi@inf.unibe.ch

Summary of the talk

- Gist of the talk: A comparative performance analysis of BFR and COBRA routing approaches
 - Overview of BFR
 - > Overview of BFR performance analysis
 - Description of COBRA
 - Comparative performance analysis for BFR and COBRA routing schemes
- Starting subject: Different types of Bloom Filters (BFs)
- Ending content: Future work

Ali Marandi: On Bloom Filter-based Routing in Information-Centric Networks

b UNIVERSITÄT BERN

Different types of BFs

CDS seminar, Bern, July 24 2017

BF (let us call it classical BF)

>Benefits: representing large sets in a compact way, allowing fast membership queries independent of set size

Benefit in networking: reduced overhead of transferring or storing information

False negative errors are impossible

Dealing with false positive errors is the only price to pay

➤It is not allowed to delete elements from the classical BF

D UNIVERSITÄT BERN

Theoretical tradeoffs

▶m: BF length (bits)

▶n: number of inserted elements

k: number of hash functions

$$k = \frac{m.\ln 2}{n}$$

>p: false positive probability

$$m = \frac{-n \ln p}{(\ln 2)^2}$$

Counting Bloom Filter (CBF)

> Main feature: deletion operation is allowed

- > How? Using a table of *counters* rather than using a *bit* table
- An example of a CBF with four hash functions and 12-bit counters

- Insertion operation consists on incrementing the associated counters and deletion operation consists on decrementing the associated counters
- Problem1: frequent insertions might lead the counter to overflow (false positive errors)
- Problem2: frequent deletions might lead the counter to underflow (false negative errors)

Stable Bloom Filter (SBF)

Is a CBF

Insertion operation consists on setting the associated counters to their maximum value as well as randomly decrementing I<N counters (assuming N the total number of counters)

Deletion operation has the same mechanism, like CBFs
 Benefit: storing the most fresh elements over time and removing stale elements gradually

Ali Marandi: On Bloom Filter-based Routing in Information-Centric Networks

D UNIVERSITÄT BERN

Overview of BFR

CDS seminar, Bern, July 24 2017

A summary of features for BFR scheme

^b UNIVERSITÄT BERN

- Intra-domain
- Topology oblivious
- Fully content-oriented
- Does not adopt any IP-based approach
- Works based on content advertisements
- Uses classical BFs for content advertisement
- Reasonable storage and signaling overhead for content advertisements
- BFR benefits from multi-path content discovery by using the multicast forwarding strategy

BFR operation

^b UNIVERSITÄT BERN

- Representation of content objects using BFs
- > BF-based content advertisement
- Content retrieval and FIB population
- Handling of
 - False positive errors
 - Topology changes
 - Content migration

Representation of content objects with BF

BF-based content advertisement

D UNIVERSITÄT BERN

PIT TABLE OF ${\cal C}_Z$

/ContentAdvertisement/A /ContentAdvertisement/B /unibe.ch/images/fileName1/01

Impact of false positive errors on BFR

> What if a false positive error occurs ?

- BFR benefits from multi-path content discovery, thus the Interest will be routed towards both the correct and wrong origin servers
- But the Interest will be anyway satisfied, because it has been routed towards the correct origin server
- > The Interest *might reach* a wrong origin server
- All the Interests will be satisfied in presence of false positive errors

Robustness to topology changes

D UNIVERSITÄT BERN

- Resiliency to link failures
 - > Avoiding all the Interests from going through the failed link
 - Removal of the face associated with the failed link from all the FIB entries
 - Removal of the face associated with the failed link from all the in-records of all the stored CAIs
- Adaptation to link recoveries
 - > Enforcing all the Interests to pass through the recovered link
 - Adding the face associated with the recovered link to all the FIB entries
 - Adding the face associated with the recovered link to all the in-records of the stored CAIs

Ali Marandi: On Bloom Filter-based Routing in Information-Centric Networks

 $u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

BFR performance analysis

Simulation settings

D UNIVERSITÄT BERN

101 nodes

- > 39 routers
- > 56 consumers
- Five servers
- URL catalogue
 1000 URLs
 Each divided to 100 segments
- CS capacity = 100
- Zipf-like popularity
- Simulation time of 28 hours

UNIVERSITÄT RERN

Results for average round-trip delay

0.07 BFR BFR+link failure Average delay [Seconds] 0.06 Flooding Flooding+link failure 0.05 Shortest path Shortest path+link failure H 0.04 0.03 0.02 0.01 0 0.8 1 1.2 1.4Zipf's power parameter

D UNIVERSITÄT BERN

Results for communication overhead

Results for routing overhead

Routing overhead [MBytes] 500 400 300 200 100 Content advertisement Shortest path calculations 0 16 6.38 2.29 23.7 28.3 False positive rate (%)

UNIVERSITÄT BERN

Impact of false positive error on BFR

^b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Content advertisement overhead

0.3 BFR Grid withoutF Average delay [Seconds] BFR Grid withF 0.25 0.2 0.15 0.1 0.05 0 0.8 1.2 1.4 Zipf's power parameter

Average round-trip delay

UNIVERSITÄT BERN

COBRA routing scheme in a nutshell

UNIVERSITÄT BERN

- Routes Interests according to breadcrumbs
- Uses Stable SBFs for storing breadcrumbs
 - Each node assigns one SBF per face for this purpose

- Before learning the routes, simply floods the Interests
 - Higher communication overhead for Interest diffusion
- Does not benefit from multi-path content discovery (uses Best-Route strategy)
- Upon detecting a link failure, resets the associated SBF to avoid forwarding Interests over the failed link
- Upon detecting a link recovery, sets the associated SBF to encourage Interests to go through the recently recovered link

b UNIVERSITÄT BERN

Comparative performance analysis of BFR and COBRA routing approaches

UNIVERSITÄT BERN

Average round-trip delay comparison

D UNIVERSITÄT BERN

Normalized communication overhead

Total communication overhead for Interests

D UNIVERSITÄT BERN

Dissatisfaction due to link failure

Mean hit distance comparison

D UNIVERSITÄT BERN

To do

b UNIVERSITÄT BERN

- BF aggregation
- Enlarging the content universe size
- Testing with other topologies

Ali Marandi: On Bloom Filter-based Routing in Information-Centric Networks

 $u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

Thank you ! Questions ?