# SUPSI $oldsymbol{u}^{\prime}$

UNIVERSITÄT BERN

# **On the Social Influence in Human Behavior**

Luca Luceri PhD Student

Communication and Distributed System Group Institute of Computer Science University of Bern

Information Systems and Networking Institute Department of Innovative Technologies SUPSI – University of Applied Sciences and Arts of Southern Switzerland

On the Social Influence in Human Behavior

# SUPSI $u^{\scriptscriptstyle b}$

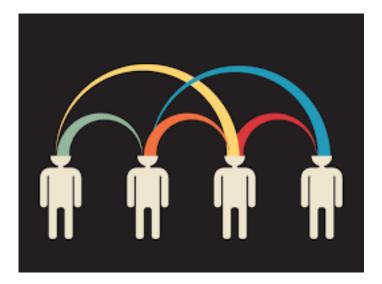
# Outline

<sup>b</sup> UNIVERSITÄT BERN

- Social Influence and Human Behavior Prediction
- Case of Study
  - o EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Works

# SUPSI $u^{\scriptscriptstyle b}$

# Outline


b UNIVERSITÄT BERN

- > Social Influence and Human Behavior Prediction
- Case of Study
  - EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Works

# Social Influence and Human Behavior SUPSI $u^{\flat}$

<sup>b</sup> UNIVERSITÄT BERN

Social influence: change in individual's thoughts, feelings, attitudes, or behaviors that results from interaction with another individual or a group.



# Social Influence and Human Behavior SUPSI $oldsymbol{u}^{ m imes}$

<sup>b</sup> UNIVERSITÄT BERN

# > Application:

- > Human Behavior Prediction (actions, decisions, mobility)
- > Recommendation (LBSN, EBSN, products)
- > Viral Marketing
- > Targeted Advertising



# SUPSI $u^{\scriptscriptstyle b}$

# Outline

<sup>b</sup> UNIVERSITÄT BERN

- Social Influence and Human Behavior Prediction
- > Case of Study
  - o EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Works

Case of Study

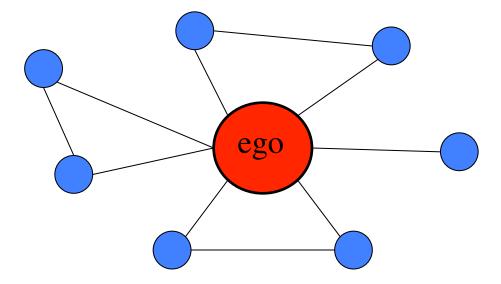




# **Event Based Social Network (EBSN)**

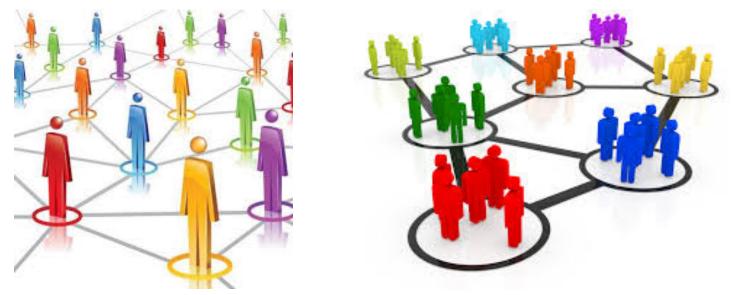
- Plancast is a service for sharing your upcoming plans with friends".
  - > Events attended by the users
  - > Location of the events
  - > User subscriptions (following/follower)
- > Dataset:
  - > 93041 users
  - > 401634 events
  - > 1702058 user subscriptions
  - > 869200 user-event participations

# SUPSI $u^{\scriptscriptstyle b}$


# Outline

<sup>b</sup> UNIVERSITÄT BERN

- Social Influence and Human Behavior Prediction
- > Case of Study
  - o EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Works


<sup>b</sup> UNIVERSITÄT BERN

> The *ego network* is typically utilized to represent subject's community and to analyze social influence.



<sup>b</sup> UNIVERSITÄT BERN

Hypothesis: individuals are differently influenced by distinct communities related to interlaced factors that affects human behavior, such as physical location, interests, social ties.



<sup>b</sup> UNIVERSITÄT BERN

- Hypothesis: individuals are differently influenced by distinct communities related to interlaced factors that affects human behavior, such as physical location, interests, social ties.
  - > Physical Community

b UNIVERSITÄT BERN

- Hypothesis: individuals are differently influenced by distinct communities related to interlaced factors that affects human behavior, such as physical location, interests, social ties.
  - > Physical Community,
  - > Homophily Community

b UNIVERSITÄT BERN

- Hypothesis: individuals are differently influenced by distinct communities related to interlaced factors that affects human behavior, such as physical location, interests, social ties.
  - > Physical Community,
  - > Homophily Community,
  - > Social Community

b UNIVERSITÄT BERN

- Hypothesis: individuals are differently influenced by distinct communities related to interlaced factors that affects human behavior, such as physical location, interests, social ties.
  - > Physical Community,
  - > Homophily Community,
  - > Social Community,
  - > and the ego network.

On the Social Influence in Human Behavior: Physical, Homophily, and Social Communities Luca Luceri, Alberto Vancheri, Torsten Braun, Silvia Giordano

On the Social Influence in Human Behavior

# Communities as sources of influence SUPSI $oldsymbol{u}^{ m m s}$



### **Event Based Social Network (EBSN)**

- Plancast is a service for sharing your upcoming plans with friends".
  - > Events attended by the users
  - > Location of the events
  - > User subscriptions (following/follower)



### **Event Based Social Network (EBSN)**

- Plancast is a service for sharing your upcoming plans with friends".
  - > Events attended by the users
  - > Location of the events
  - > User subscriptions (following/follower)



- > Physical, Homophily, and Social Community
- > Ego network

### **Event Based Social Network (EBSN)**

- Physical, Homophily, and Social Community
- > Ego network



UNIVERSITÄT Rern



<sup>b</sup> UNIVERSITÄT BERN

#### **Features Creation**

For each user u, group g, and event e we evaluate the feature:

$$p_e^g = \frac{|\{i \in g | e \in A_i\}|}{|g|}$$

where

- $A_i$  are the events attended by user *i*
- $g = \{ego, SC, PC, HC\}$

# Communities as sources of influence SUPSI $oldsymbol{u}^{^{b}}$

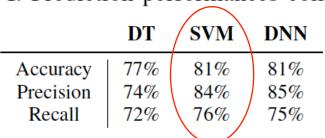
b UNIVERSITÄT BERN

#### **Features Creation**

| u <sub>1</sub> | ego | SC  | PC  | HC  |
|----------------|-----|-----|-----|-----|
| e <sub>1</sub> | 0.3 | 0.2 | 0.7 | 0.8 |
| e <sub>2</sub> | 0.6 | 0.7 | 0.1 | 0.3 |
| e <sub>3</sub> |     |     |     |     |
|                |     |     |     |     |
|                |     |     |     |     |
| e <sub>N</sub> |     |     |     |     |



#### **Performances**


<sup>b</sup> UNIVERSITÄT BERN

|           | DT  | SVM | DNN |
|-----------|-----|-----|-----|
| Accuracy  | 77% | 81% | 81% |
| Precision | 74% | 84% | 85% |
| Recall    | 72% | 76% | 75% |



UNIVERSITÄT BERN

#### **Performances**





UNIVERSITÄT BERN

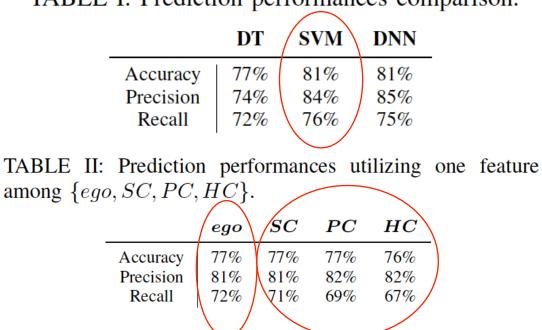
#### Performances

 DT
 SVM
 DNN

 Accuracy
 77%
 81%
 81%

 Precision
 74%
 84%
 85%

 Recall
 72%
 76%
 75%


TABLE II: Prediction performances utilizing one feature among  $\{ego, SC, PC, HC\}$ .

|           | ego | SC  | PC  | HC  |
|-----------|-----|-----|-----|-----|
|           | 77% | 77% | 77% | 76% |
| Precision | 81% | 81% | 82% | 82% |
| Recall    | 72% | 71% | 69% | 67% |



UNIVERSITÄT BERN

#### **Performances**





UNIVERSITÄT BERN

#### Performances

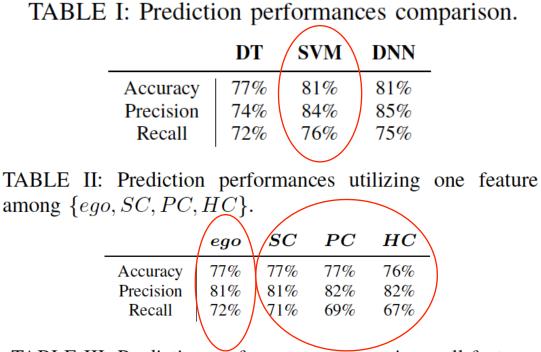



TABLE III: Prediction performances comparison: all features vs. fixed feature vs. feature selection.

|           | all features | fixed feature | feature selection |
|-----------|--------------|---------------|-------------------|
| Accuracy  | 81%          | 77%           | 80%               |
| Precision | 84%          | 82%           | 84%               |
| Recall    | 76%          | 70%           | 76%               |

#### On the Social Influence in Human Behavior



UNIVERSITÄT BERN

Performances

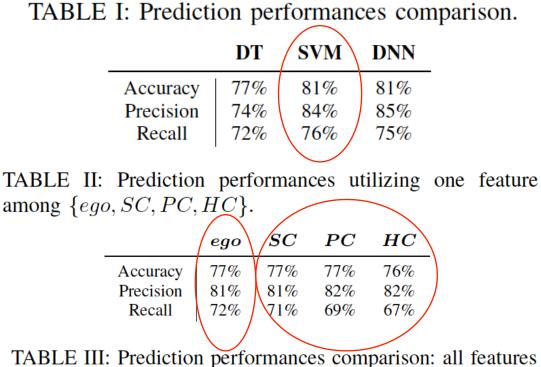


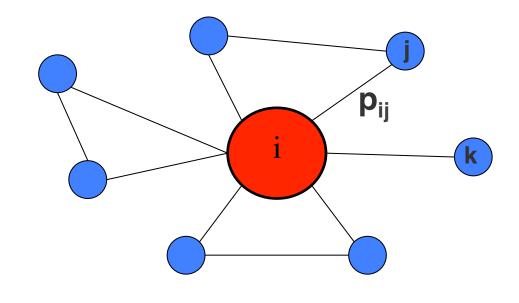

 TABLE III: Prediction performances comparison: all features

 vs. fixed feature vs. feature selection.

|           | all features | fixed feature | feature selection |
|-----------|--------------|---------------|-------------------|
| Accuracy  | 81%          | 77%           | 80%               |
| Precision | 84%          | 82%           | 84%               |
| Recall    | 76%          | 70%           | 76%               |

# SUPSI $u^{\scriptscriptstyle b}$

# Outline

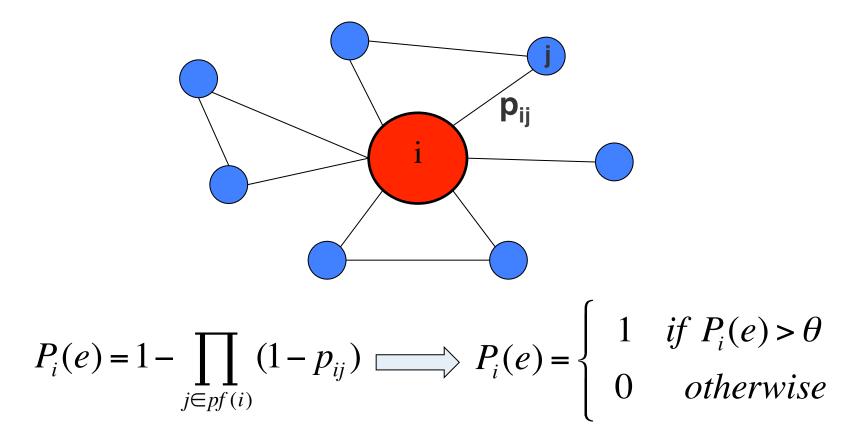

<sup>b</sup> UNIVERSITÄT BERN

- Social Influence and Human Behavior Prediction
- Case of Study
  - o EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Works



b UNIVERSITÄT BERN

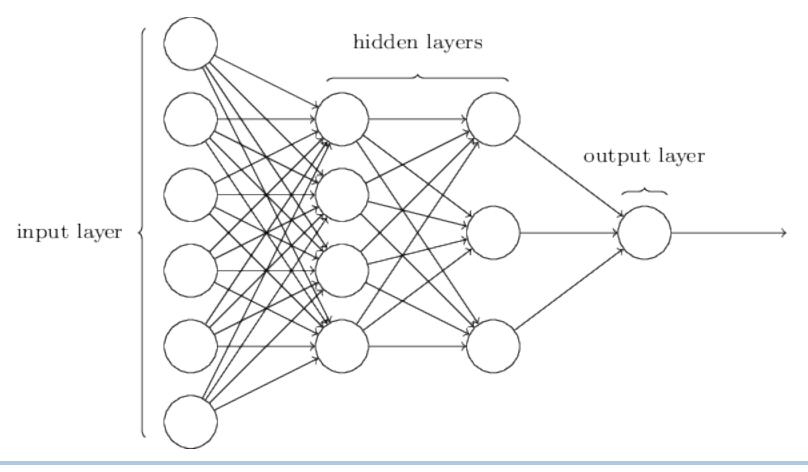
> Social Influence Learning: State of the Art




$$P_i(e) = 1 - \prod_{j \in pf(i)} (1 - p_{ij})$$



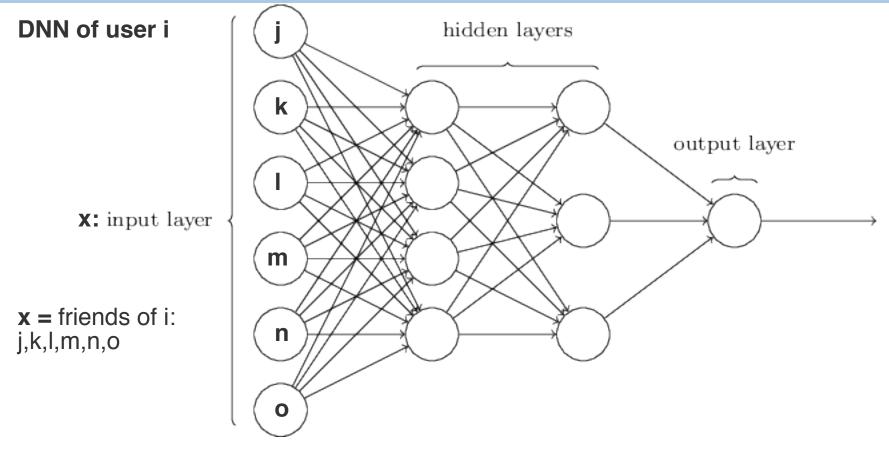
b UNIVERSITÄT BERN


Social Influence Learning: State of the Art





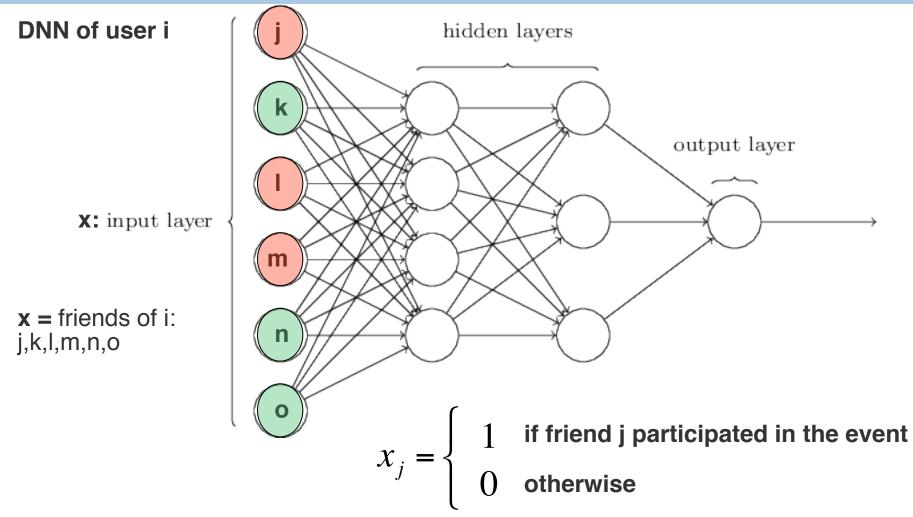
b UNIVERSITÄT BERN


> Our Approach: Deep Neural Network (DNN)



SUPSI  $u^{\flat}$ 

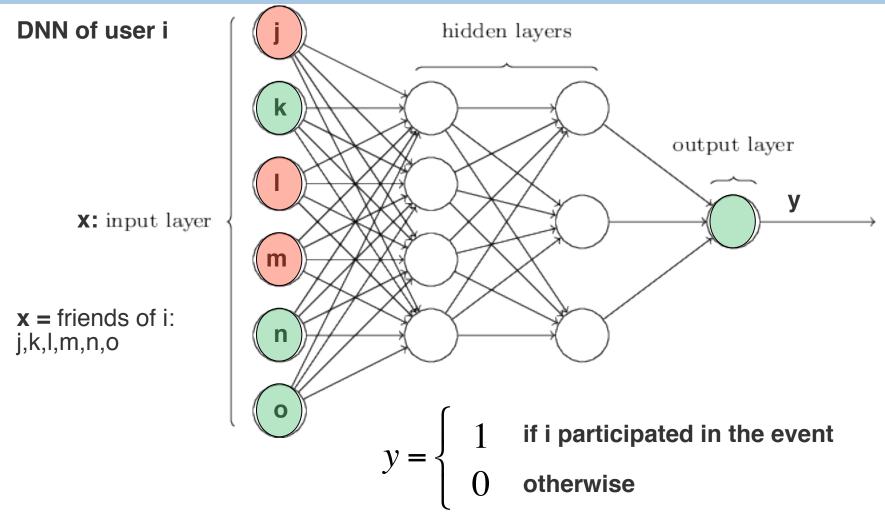
UNIVERSITÄT BERN


# Our Approach: Deep Neural Network (DNN)



b UNIVERSITÄT RERN

SUPSI  $\boldsymbol{u}^{\scriptscriptstyle \mathsf{D}}$ 


# Our Approach: Deep Neural Network (DNN)



SUPSI  $u^{b}$ 

RERN

# Our Approach: Deep Neural Network (DNN)





<sup>b</sup> UNIVERSITÄT BERN

#### Results

|          | DNN | <b>GT</b> <sup>(1)</sup> | <b>IC</b> <sup>(2)</sup> |
|----------|-----|--------------------------|--------------------------|
| Accuracy | 85% | 78%                      | 75%                      |
| TPR      | 75% | 74%                      | 54%                      |
| FPR      | 5%  | 14%                      | 4%                       |

- > (1) Goyal, Amit, Francesco Bonchi, and Laks VS Lakshmanan. "Learning influence probabilities in social networks." Proceedings of the third ACM international conference on Web search and data mining.
- > (2) Saito, Kazumi, Ryohei Nakano, and Masahiro Kimura. "Prediction of information diffusion probabilities for independent cascade model." Knowledge-based intelligent information and engineering systems.

# SUPSI $u^{\scriptscriptstyle b}$

# Outline

<sup>b</sup> UNIVERSITÄT BERN

- Social Influence and Human Behavior Prediction
- Case of Study
  - o EBSN
- > Communities as sources of influence
- > Social Influence (Deep) Learning
- > Conclusion and Future Work

### **Conclusion and Future Works**



<sup>b</sup> UNIVERSITÄT BERN

- > We introduced a novel interpretation of physical, homophily, and social community, as sources of social influence
- > We proved that the ego network alone is not sufficient to model social influence
- > We proposed a new method to learn social influence and predict human behavior

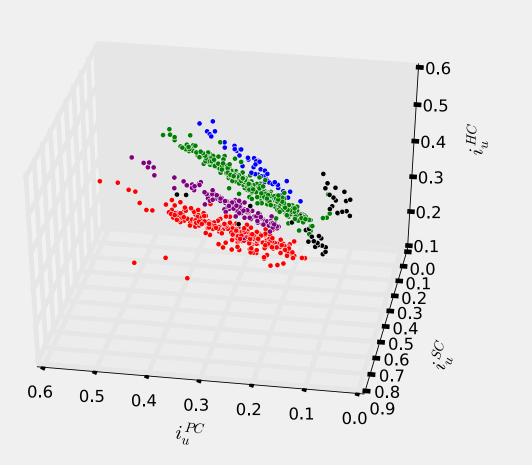


b UNIVERSITÄT BERN

- Merge the two works in a unique Social Influence framework: include SC, HC, PC in the DNN
- Validate it with different datasets
- Include Social Influence framework in an application scenario, e.g. recommendation:
  - > LBSN
  - > EBSN

### Q & A




<sup>b</sup> UNIVERSITÄT BERN



On the Social Influence in Human Behavior

### **Community-Features Correlation**

Results





<sup>b</sup> UNIVERSITÄT BERN

### **Empirical Analysis**





### **Community-Features Correlation**

For each user *u*, group *g*, and event *e* we evaluate the feature:

$$p_e^g = \frac{|\{i \in g | e \in A_i\}|}{|g|}$$

where  $A_i$  are the events attended by user *i*.

- > We utilize the four features related to the groups to:
  - infer users participation to the events;
  - > evaluate the relation among the communities and classify users accordingly.

### **User Classification**

SUPSI  $u^{\scriptscriptstyle b}$ 

b UNIVERSITÄT BERN

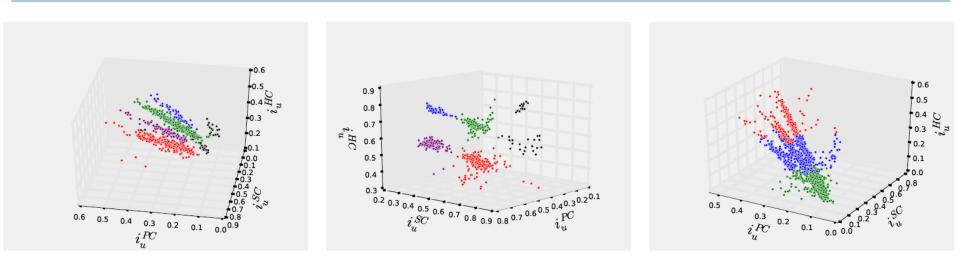



TABLE V: Performance of the prediction based on both fingers and classes of influence.

|           | average | low | medium | high |
|-----------|---------|-----|--------|------|
| Accuracy  | 82%     | 74% | 83%    | 89%  |
| Precision | 84%     | 75% | 86%    | 92%  |
| Recall    | 79%     | 73% | 78%    | 85%  |

# SUPSI $oldsymbol{u}^{\scriptscriptstyle b}$

<sup>b</sup> UNIVERSITÄT BERN

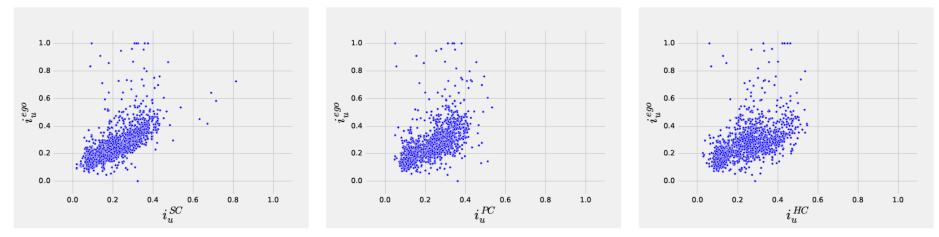



Fig. 1: Scatter plots of  $i_u^{ego}$  vs.  $i_u^{SC}$ ,  $i_u^{PC}$ , and  $i_u^{HC}$ . Each point represents a user.

On the Social Influence in Human Behavior