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Introduction and Motivation

> Top-most motivations of Mobile Cloud Networking: 
➡ Extend the concept of Cloud Computing beyond data 

centres towards the mobile end-user. 
➡ Deliver and exploit the concept of an End-to-End Mobile 

Cloud for novel applications.
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Introduction and Motivation

> Where does ICN fit?
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Requirements

> Cloud Principles 
➡Agility 
➡On-demand instantiation 
➡Multi-tenancy 
➡Pay-As-You-Go 
➡Elasticity 
➡Reliability 
➡Performance 

> Specific Requirements 
➡ Integrated with network, delivering content at the edge. 
➡Leverages multiple radio technologies. 
➡Accounts for very dynamic user mobility.
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Architecture
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Design

> Platform 
➡ Infrastructure 
• OpenStack (Infrastructure as a Service) 
• Includes multiple modules, e.g. Nova, Neutron, Heat 
• Typically using Kernel Virtual Machine (KVM) as hypervisor 

➡ Cloud Controller 
• Abstracts interfaces to OpenStack modules 
• Manages stacks, coordinates inter-service interfaces and 

supports external modules 
➡ Service Manager 
• Provides a way of describing services for users, allowing them 

to select/configure the desired service. 
• Manages instances of services by deploying each of their 

Service Orchestrators and starting/ending lifecycles.
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Design

> Service Instance Components (SICs) 
➡ Service Orchestrator 
• Manages the entire instance lifecycle via OCCI interfaces 

to Service Manager and Cloud Controller. 
• A decision module gathers processed metrics from the 

monitoring service (MaaS) and dimensions the service 
accordingly. 

➡ ICN Manager 
• Based on information received from the network topology, 

decides about placement of CCN routers. 
• Using a REST API, allows the full control of the ICN 

topology. Namely: endpoints, prefixes management, 
automatic routes setting and load balancing policies.
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Design

➡ CCN Routers 
• Run CCNx 0.8.2. 
• Modified code to include monitoring, Follow-Me Cloud (FMC) and 

legacy compatibility (HTTP proxying).  
• CCN Server to receive external commands (REST API) and provide 

monitoring information to FMC Manager. 
• Zabbix Agent to push gathered metrics to the monitoring service 

(MaaS). 
➡ FMC Manager 

• Decide if content migration should occur, where to and what content 
should be transferred. 

• Inputs from mobility prediction (MOBaaS) and from metrics gathered 
at the CCN Routers. 

➡ Management Agent 
• Provides a direct interface to the API of the ICN Manager to control 

the SICs.
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Standalone Evaluation

> Two types of evaluation: 
➡ Functional: 
• All the SICs are correctly deployed, integrate well 

between each other and ensure content is delivered 
when requested. 

• All the APIs respond as supposed and no exceptions 
occur. 

➡ Non-Functional: 
• Service lifecycle operates under reasonable timings. 
• Clear benefits can be obtained from newly developed 

concepts (e.g. Follow-Me Cloud), edge caching, etc. 
• Service scaling keeps content access latencies low.
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Standalone Evaluation

11

Scale	Decision

Scale	
Completed

0

5

10

15

20

25

30

35

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

Co
nt
en
t	
Tr
an
sf
er
	T
im
e	
(s
ec
on
ds
)

Time	Instant	(seconds)	

Content	Transfer	Performance

0
20
40
60
80

100
120
140
160
180
200

1 2 5 10

To
ta
l	S
ca
lin
g	
Ti
m
e	
(s
ec
on
ds
)

Number	of	New	Instances

Scaling	Performance

Scaling	Out

Scaling	In

Avg. Deployment Time Avg. Disposal Time Avg. Scaling 
Decision Time

207.817 seconds 10.485 seconds 305 milliseconds



Issues and Improvements

> How realistic was the evaluation? 
➡ Measurements were obtained with a static Service 

Orchestrator (SO). What happens when it will be 
deployed along the instance? 
• With OpenShiftv2 to run SOs, initial deployment times 

rise by up to 5 minutes. 
• OpenShiftv3 to the rescue, but it means SOs have to 

be adapted and now be based on a Docker container 
pulled from Docker Hub. SO deployment time: up to 
30 seconds.
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Issues and Improvements

➡ Could images be shrunk to improve deployment times? 
• Docker container images: yes. Reduce the number of 

layers and use a small base distro. New SO 
deployment time: less than 5 seconds. 

• Other images: not much of a difference, but 
deployment + provisioning phases could be optimized 
at the SO side. 

➡ Automated and more accurate way to collect metrics? 
• Yes. Graylog to log events inside Service Managers 

and Orchestrators. Zabbix (MaaS) to fetch service 
specific metrics and correlate. 
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Issues and Improvements

➡ How to scale? 
• Metrics component by component, scale components 

individually. 
• Metrics aggregated by layer, scale layers as a whole 1 

at a time. 
• Metrics aggregated by layer, scale layers as a whole 

calculating how many more components are needed. 
• Huge differences in performance for the 3 methods. 
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End-to-End Evaluation

> Also two types of evaluation: 
➡ Functional: 
• Inter-service communication is working as expected. No 

exceptions/errors in the multiple APIs. 
• After deployment and provisioning, service functionalities 

work well and leverage the usage of other services. 
➡ Non-Functional: 
• Services’ lifecycle operate under reasonable timings. 
• Performance improvements and other benefits can be 

gathered by leveraging integration of cloud services. 
• Services scale according to load and are able to stay 

within the pre-defined thresholds.
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End-to-End Evaluation

16



End-to-End Evaluation
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Conclusions

> Mobile Cloud Networking brought an innovative and 
complete platform for cloud services. 

> ICN was brought to the cloud and specifically developed 
and researched to provide numerous benefits to mobile 
networks and their users. 

> Future directions already point to even higher granularity of 
data centers (fog computing) and more flexible SDN-based 
mobile networks. 

> All the software is open-source and is readily available: 

https://github.com/MobileCloudNetworking 
http://git.io/v4Z5j
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Q&A - Discussion
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