
2015 Autumn Semester Seminar

ICN in the Cloud

André Gomes
Universität Bern
2015-11-16

Outline

> Introduction and Motivation

> Requirements

> Architecture and Design

> Evaluation and Improvements

> Conclusions

2

Introduction and Motivation

> Top-most motivations of Mobile Cloud Networking:
➡ Extend the concept of Cloud Computing beyond data

centres towards the mobile end-user.
➡ Deliver and exploit the concept of an End-to-End Mobile

Cloud for novel applications.

3

Introduction and Motivation

> Where does ICN fit?

4

DSS/IMS
Player

RAN Domain

UE eNB

RANaaS

Network Core Domain

S-GW P-GW

EPCaaS

Application Domain

IMSaaS DNSaaS RCBaaS

DSSaaS AAAaaS SLAaaS

MaaS MOBaaS ICNaaS

ICNICNICNICN

Requirements

> Cloud Principles
➡Agility
➡On-demand instantiation
➡Multi-tenancy
➡Pay-As-You-Go
➡Elasticity
➡Reliability
➡Performance

> Specific Requirements
➡ Integrated with network, delivering content at the edge.
➡Leverages multiple radio technologies.
➡Accounts for very dynamic user mobility.

5

Architecture

6

User

Web
Browser

CCN/UDP
R

CCN Router

EEU

Switches

FMC
Manager

Cache

Core Network

ICN
Manager

Service
Orchestrator Cloud

Controller

MOBaaS

ICNaaS Instance

AAAService
Manager

Any Support Service (MaaS,
RCBaaS, etc.)

Execution

AAA

AAA

AAA

AAA

AAA

Management
Agent

User
Interface

Decision

RCB
Service

AAA

A A

A

A

A

 : Agent configured and
controlled by the SO, and

feeding the respective
Supp. SIC.

A

CCN
Client

CCN Filter

RHTTP/TCP

Content Source

CCN Router

Cache

A

CCN
Server

CCN
Server

A

Infrastructure

AAA

Design

> Platform
➡ Infrastructure
• OpenStack (Infrastructure as a Service)
• Includes multiple modules, e.g. Nova, Neutron, Heat
• Typically using Kernel Virtual Machine (KVM) as hypervisor

➡ Cloud Controller
• Abstracts interfaces to OpenStack modules
• Manages stacks, coordinates inter-service interfaces and

supports external modules
➡ Service Manager
• Provides a way of describing services for users, allowing them

to select/configure the desired service.
• Manages instances of services by deploying each of their

Service Orchestrators and starting/ending lifecycles.
7

Design

> Service Instance Components (SICs)
➡ Service Orchestrator
• Manages the entire instance lifecycle via OCCI interfaces

to Service Manager and Cloud Controller.
• A decision module gathers processed metrics from the

monitoring service (MaaS) and dimensions the service
accordingly.

➡ ICN Manager
• Based on information received from the network topology,

decides about placement of CCN routers.
• Using a REST API, allows the full control of the ICN

topology. Namely: endpoints, prefixes management,
automatic routes setting and load balancing policies.

8

Design

➡ CCN Routers
• Run CCNx 0.8.2.
• Modified code to include monitoring, Follow-Me Cloud (FMC) and

legacy compatibility (HTTP proxying).
• CCN Server to receive external commands (REST API) and provide

monitoring information to FMC Manager.
• Zabbix Agent to push gathered metrics to the monitoring service

(MaaS).
➡ FMC Manager

• Decide if content migration should occur, where to and what content
should be transferred.

• Inputs from mobility prediction (MOBaaS) and from metrics gathered
at the CCN Routers.

➡ Management Agent
• Provides a direct interface to the API of the ICN Manager to control

the SICs.
9

Standalone Evaluation

> Two types of evaluation:
➡ Functional:
• All the SICs are correctly deployed, integrate well

between each other and ensure content is delivered
when requested.

• All the APIs respond as supposed and no exceptions
occur.

➡ Non-Functional:
• Service lifecycle operates under reasonable timings.
• Clear benefits can be obtained from newly developed

concepts (e.g. Follow-Me Cloud), edge caching, etc.
• Service scaling keeps content access latencies low.

10

Standalone Evaluation

11

Scale	Decision

Scale	
Completed

0

5

10

15

20

25

30

35

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

Co
nt
en
t	
Tr
an
sf
er
	T
im
e	
(s
ec
on
ds
)

Time	Instant	(seconds)	

Content	Transfer	Performance

0
20
40
60
80

100
120
140
160
180
200

1 2 5 10

To
ta
l	S
ca
lin
g	
Ti
m
e	
(s
ec
on
ds
)

Number	of	New	Instances

Scaling	Performance

Scaling	Out

Scaling	In

Avg. Deployment Time Avg. Disposal Time Avg. Scaling
Decision Time

207.817 seconds 10.485 seconds 305 milliseconds

Issues and Improvements

> How realistic was the evaluation?
➡ Measurements were obtained with a static Service

Orchestrator (SO). What happens when it will be
deployed along the instance?
• With OpenShiftv2 to run SOs, initial deployment times

rise by up to 5 minutes.
• OpenShiftv3 to the rescue, but it means SOs have to

be adapted and now be based on a Docker container
pulled from Docker Hub. SO deployment time: up to
30 seconds.

12

Issues and Improvements

➡ Could images be shrunk to improve deployment times?
• Docker container images: yes. Reduce the number of

layers and use a small base distro. New SO
deployment time: less than 5 seconds.

• Other images: not much of a difference, but
deployment + provisioning phases could be optimized
at the SO side.

➡ Automated and more accurate way to collect metrics?
• Yes. Graylog to log events inside Service Managers

and Orchestrators. Zabbix (MaaS) to fetch service
specific metrics and correlate.

13

Issues and Improvements

➡ How to scale?
• Metrics component by component, scale components

individually.
• Metrics aggregated by layer, scale layers as a whole 1

at a time.
• Metrics aggregated by layer, scale layers as a whole

calculating how many more components are needed.
• Huge differences in performance for the 3 methods.

14

End-to-End Evaluation

> Also two types of evaluation:
➡ Functional:
• Inter-service communication is working as expected. No

exceptions/errors in the multiple APIs.
• After deployment and provisioning, service functionalities

work well and leverage the usage of other services.
➡ Non-Functional:
• Services’ lifecycle operate under reasonable timings.
• Performance improvements and other benefits can be

gathered by leveraging integration of cloud services.
• Services scale according to load and are able to stay

within the pre-defined thresholds.

15

End-to-End Evaluation

16

End-to-End Evaluation

17

0

500

1000

1500

2000

2500

16:47:43 17:02:07 17:16:31 17:30:55 17:45:19 17:59:43

N
um

be
r	o

f	I
nt
er
es
ts

Time

Edge	Router	1

Core	Router

Edge	Router	2

Edge	Router	3

Edge	Router	4

Scale	Out	Start

Scale	Out	Done

Scale	In	Start

Scale	In	Done

Scale	Out	Threshold

Scale	In	Threshold

Conclusions

> Mobile Cloud Networking brought an innovative and
complete platform for cloud services.

> ICN was brought to the cloud and specifically developed
and researched to provide numerous benefits to mobile
networks and their users.

> Future directions already point to even higher granularity of
data centers (fog computing) and more flexible SDN-based
mobile networks.

> All the software is open-source and is readily available:

https://github.com/MobileCloudNetworking
http://git.io/v4Z5j

18

https://github.com/MobileCloudNetworking
http://git.io/v4Z5j

Q&A - Discussion

19

