
SMTP – Simple Mail Transfer Protocol

What is SMTP?
SMTP stands for Simple Mail Transfer Protocol. This protocol allows transmitting electronic mail

over the Internet or any other network. The protocol itself is designed on a character basis. Thus the
entire transfer of a mail can be examinated by a human beeing without having to decode first the
data. This is the reason why mails can be send without major problem using a simple Telnet
application. The entire process of sending a mail is describe here using a Telnet application as
example base.

The communcation is always carried out over the port 25. A mailserver needs an open port 25
which is one of the major problems if ISPs are blocking those. In contrast to the HTTP service the
SMTP service can not simply use another port to communice out of the box. This is due to the
restricting nature of this protocol.

What is a MTA and what's his function?

The MTA is the middle man between the client and the server in a mail transfer scenario. It stands
for Mail Transfer Agent. This piece of software is running on a mail server and has the
responsibility to transfer mails from the client to the server. You can imagine an MTA like a
postman delievering mails to your mailbox. But in this case the mailbox is not in front of your
house. Beyond this MTAs have also a responsibility of checking mails depending on the restrictions
and demands of the mail server they are running on.

The Process of Mail Transfer

Sending a mail to another person is not a difficult process but it's far from beeing a short process.
The entire transfer process starts at the user who wishes to send a mail to his collegue. After writing
the text he sends it off. At this point the mail client, which is usually something like Mozilla
Messanger, Outlook or even more simple a Telnet application, takes over the mail and prepares it
for sending. For this the mail client generates a mail header containing the informations needed to
carry out the transfer process. This header contains informations like the adress of the person who
send the mail, the adress of the person who shall receive the mail and additional informations like
the subject of the mail or feedback options. Headers are dealt with in more detail later in this
document. Any attachments are converted into text form too. It's a bit unbelievable at first that all
binary files are not transmitted as binary files in a mail but it's true. This is also the reason why send
binary files tend to be bigger than the original file itself. After packing together all informations the
mail client is ready to initiate the process of delivering the mail to the mail server.

At first the mail client starts a communcation with the sending mail server on the port 25. A mail
server will only accept mails on this port unless the mail server has been configurated to not do this.
But it's highly unlikely you will ever see a mail server not running on port 25. This is the mail
server where our user has an account and a mail box. This server is also called the Relaying Server.
He has the responsibility to forward the mail to the correct mail server owning the mailbox we are
looking for. If you send a mail you notice that you have to suply login informations before you can
go on. This is due to the relaying process. Mail Providers do this to decrease the likelyhood of
spammers using their mail server to distribute spam in large numbers. Thus only registred users can
use the server to relay mails through it. There exist different methods of verifying a user trying to
send a mail. The simplest method forces the mail client to check for new mails before sending. This
way the server knows from which IP the user is trying to communicate with the server. The IP is
marked as valid for a certain period of time (something around 15 to 30 minutes). During this time
the mail client can then send mails through this server without further verification. Another
possibility is using an authentification process. In this the mail client has to send authentification
informations like username and password just after initiating the transfer process to verify it`s
identity. These are the major versions of verifying the user. If you are using a Telnet application
you do not need this step if you are the mail server yourself. Sounds a bit strange but you can play
mail server yourself. The detailed transfer process is described later using this Telnet shema.

As soon as the mail server has verified that you are allowed to send mails using his services your
mail client will transfer the entire mail to the mail server. The relaying mail server checks the
receiver adress and hooks up with a DNS service to determine the IP of the mail server owning the
user mentioned in the mail adress.

The mail adress looks always the same. The first part contains the name of the user on the mail
server. Then, seperated by an @, the name of the mail server is specified. Thus rptd@gmx.net
identifies the user rptd on the mail server named gmx.net. You recognizes this one perhaps, it's the
GMX Mail Provider. Thus an email can tell you immediately where a certain user has it's account.
A mail adress is only considered valid if all those parts are present.

Now the relying mail server has found out the IP of the server it has to send the mail to. Our
relaying mail server now starts a communication on the port 25 mentioned above. The receiving
mail server checks the mail send request of the relaying mail server for validity. At this point spam
filters can already reject a mail based on the server trying to connect or the domain the server is
residing in. Now that the receiving mail server is happy with the mail send request it checks the
user part of the receiver mail adress to locate the mail box on the server. If it can not find that user
the system will reject the mail and deliver an error report back to the sending mail server.
Otherwise the receiving mail server accepts the mail transfer and stores the received mail
unchanged in to the mail box just found. Finished with this the receiving mail server reports a
success to the sending mail server and shuts down the communcation.

All this mail checkings and the final storing of the mail in the mail box is performed by the MTA
described above. If a mail can not be delievered to a mail box because such a mail box does not
exist or the mail box is not accessible or another error occurred then the MTA can decide the accept
the mail nevertheless. In this case the MTA stores the mail in a temporary place and tries
delievering the mail at a later time in the hope of beeing able to succed at this point. If the MTA is
not able to deliver the mail after a certain time or number of tries it will generated a failure mail and
send it back to the sending mail adress. These are those MAILER-DEAMON mails you have
received once upon the time certainly. Thus the process of sending a mail is not reliable in the
common way. There are services allowing secure mail transfer which are described later on.

The sending mail server will now report the success or failure back to the mail client. Sometimes
this mail server can also keep a copy of the mail in the hope of beeing able to deliver it at a later
time. After sending back the success report to the mail client the sending mail server shuts down the
communcation and goes home.

After receiving a success or failure notice from the sending mail server the mail client will finish
the mail transfer and another mail has found it's way to it's goal or sometimes not. By now the mail
is only at the mail server of the receiver. To be able to read it the appropriate user has to fetch the
mail.

Now we are the user who wants to fetch his new mail. For this he uses again his mail client and
his relaying mail server. But this time he uses the so called POP3 protocol. This is short for Post
Office Protocl and is the version 3. This protocol is similar to the SMTP protocol in that way it uses
a pure character oriented communcation itself and that the communcation shema is comparable to
the SMTP way of doing transfers. Another difference is that the POP3 protocol communcation
between the mail client and the mail server is held on port 110. This is the common port for POP3
communcation but can be changed too if needed. The mail client connects thus to the mail server
and aska for new mails. Again the mail server will check for the correct user to access the mailbox.
If all is ok the mail server will send the just newly received mail to the users mail client. Shutting
down the communcation our user is now able to read his new mail.

The Mail Tranfer Process in detail, explained at Telnet

Now we go over to the concrete transfer of a mail using a Telnet application as example. A Telnet
application is in fact no more than a kind of simple one way chat between a client and a server. The
client connects to the server exhibiting a couple of commands and the server answers to those
commands with certain informations or actions. A very simple process thus the name 'Simple' in
SMTP. In this example we hook up directly to the receiving mail server playing the sending mail

mailto:rptd@gmx.net

server ourself.
At first we initiate the communication on the port 25 to the server:
telnet mymailserver.ch 25
The receiving mail server will now take the connection and replies with a couple of informations

like what mail server is running, what escape sequence is accepted and sometimes even
informations about what mail services are available. These informations depend a lot on the MTA
used. Now because we are a polite mail server we greet the other mail sever first. For greeting we
specify the domain we are currently in so the mail server can reject us already if we would be a bad
spammer trying to flood it. Now let's greet:

HELO my.domain.ch
The mail server is happy and sends us a 250 message indicating beeing happy. Now we tell first

who we are. It's like on the phone. We tell what mail adress wants to submit a mail. This is done
like this:

MAIL FROM: <user@domain.ch>
The brackets are important and have to be there. At this stage the MTA can check if a certain mail

adress is blocked or otherwise disallowed. Spam filters are common to step in at this point to stop
spam. These are usually hard code filters set by the Mail Provider and can not be modified by the
users. This can sometimes lead to certain frustration about not reaceived mails. After specifiying
who send the mail we have to tell where the mail shall end up. This is done like this:

RCPT TO: <user@domain.ch>
Again the brackets are mandatory and have to be there. Also spaces have to be correct. The mail

server will now check if the given user exists. If this is ok we receive again a 250. If this should not
be the case we will receive an error code. They are listed at the end of this document. If the receiver
is confirmed all is ready for receiving the mail. Now we send the entire mail prepared in advance.
This we start with the following command:

DATA
Now all text send is considered beeing part of the mail. A more profound description of the mail

headers and data follows right after this topic. To end the data block we enter a single dot on a line.
Just a dot and nothing else. After the server received this end signal it will deliever the mail to the
mailbox and return us a 250 value. After we received this confirmation we close the connection
using the quit command:

QUIT
This time we receive the code 221 indicating the end of the communcation. After this the

connection will be closed by the mail server and the mail has arrived.

The Mail Header and other data send
The mail data block consist of the so called Mail Header and the data. Attachments also are part

of the mail data and don't belong to the header. A header contains besides some important data also
a lot of informations about the transfer itself not relevant to the user. The following table will list
some header fields commonly used.
From sender Contains the name of the mail sender. The format is not always the

same but the most usual form is “Name” <e-mail>. Sometimes
date informations are included there too. This field is displayed by
the mail client as the sender. Unfortunatly this field can be falsified
and thus is not reliable.

Return-path <e-mail> This is the adress to reply to if needed. Again this field can be
falsified and is often used to trap users because the mail suddenly
gets send to another adress instead of the sender.

Delievered-to infos Contains informations about the system having received the mail.
This is optional and filled with some string of the mail server.

mailto:user@domain.ch
mailto:user@domain.ch

Received infos Each time a mail gets transmitted from one MTA to another the
MTAs involded usually prepend some stuff to the mail header.
These informations can be used to follow the path a mail has taken
until it arrived at the user.

Message-ID: <id-adress> In some cases the sender mail server creates an id for each mail and
it will be written at that place. This can be used for notification
callbacks like the 'has-received' options available in certain mail
clients like the ones mentioned above.

To: adress Specifies the adress the mail was sent to. Can also be messed up
which looks funny if the mail client delievers a mail to you that has
another e-mail set as from where you got it.

Subject: info The Subject line telling what this mail is all about.

Date: info The date when the mail was sent. Another nice field to put funny
stuff into like mails from the future.

Here an example of a possible mail header. The received lines have to be read bottom up.
From mustermann@hotmail.com Wed Aug 18 00:52:08 1999
Return-Path: <mustermann@hotmail.com>
X-Flags: 0001
Delivered-To: GMX delivery to paramind@gmx.net
Received: (qmail 5433 invoked by uid 0); 18 Aug 1999 00:52:08 -0000
Received: from f135.law3.hotmail.com (HELO hotmail.com) (209.185.241.135)
 by mx6.gmx.net with SMTP; 18 Aug 1999 00:52:08 -0000
Received: (qmail 41386 invoked by uid 0); 18 Aug 1999 00:52:01 -0000
Message-ID: <19990818005201.41385.qmail@hotmail.com>
Received: from 195.252.134.115 by www.hotmail.com with HTTP;
 Tue, 17 Aug 1999 17:52:01 PDT
X-Originating-IP: [195.252.134.115]
From: "Max Mustermann" <mustermann@hotmail.com>
To: paramind@gmx.net
Subject: Level2-Zugang
Date: Wed, 18 Aug 1999 02:52:01 CEST
Mime-Version: 1.0
Content-Type: text/plain; charset=iso-8859-1; format=flowed

Command and Code tables
There are more than only the mentioned commands you can use in a mail transfer and a couple of

error codes you can get. Below are listed the most common ones used in mail transfer.
HELO <domain> Begins the communication

MAIL FROM: <adresse> Begins mail transfer giving the sender adress

RCPT TO: <adresse> States the adress to deliver the mail to

DATA Starts transmitting the mail data

RSET Resets the current transmition

VRFY <adresse> Checks if the given adress is valid on this server

mailto:mustermann@hotmail.com
mailto:paramind@gmx.net
mailto:19990818005201.41385.qmail@hotmail.com
mailto:mustermann@hotmail.com
mailto:paramind@gmx.net

EXPN <adresse> Enumerates all mail distributors

HELP <befehl> Gives help about a command

NOOP Does nothing else than provoking a 250 response. Can be used to
check if the mail server is still working

QUIT Terminates transmition

The following error codes a returned commonly.

250 Success

251 User not local and has to be forwarded (adress will follow)

221 Closing transmition channel (after QUIT)

421 Service not ready. Happens if MTAs are suddenly down

450 Mailbox not available. Another error MTAs can occur if a user was removed

452 Out of Memory. Unlikely today but in old days was possible

500 Unvalid Command. Issued if you typed something wrong

502 Command not implemented. Should never happen

503 Bad Command Sequence. Occurs if you issued commands in the wrong order

554 Transaction Failed. The complete failure. Similar to a Stop Error on NT

Theorie Questions

Question Answer

On what port a mail server is listening for
incoming mail transfers?

On Port 25

What command does a mail client have to send
to the mail server to initiate a Mail transfer?

MAIL FROM: <mail-addr>
Example: MAILFROM: <rptd.dnsalias.net>

How does a mail client mark the end of a data
block? A single dot on an otherwise empty line

On what way does a mail usually travel towards
it's destination if you don't use a telnet

application but a conventional mail client?

The mail client sends the mail first to its
relaying mail server. This mail server then sends
the mail to the receiving mail server where the

mails ends in the mailbox of the user.
What Code signals a succesfull processing of a

command by the mail server? The Code 250

Which source adress is trustfull and why?
The mail adress in the MAIL FROM command is

trustfull because the other mail adress in the
DATA block can be manipulated very easily.

