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Abstract

Wireless Mesh Networks (WMNs) have proven to be a key technology for increased network coverage of Internet

infrastructures. The development process for new WMN protocols and architectures is typically split into evaluation by

network simulation and testing of a prototype in a test-bed. Testing in simulation often requires the developer to write

software that is not directly portable to test-beds, whereas pure prototype testing on real hardware is time consuming

and expensive. Irrepressible external interferences can occur, which make debugging difficult. Moreover, the test-bed

usually supports only a limited number of test topologies and sites. Finally, mobility tests are impractical. Therefore, we

propose VirtualMesh as a novel testing architecture, which can be used before evaluating in a real test-bed. It provides

instruments to test the real communication software, including the network stack inside a controlled environment.

VirtualMesh has been implemented by capturing real traffic through a virtual interface at the mesh nodes. The traffic is

then redirected to the network simulator OMNeTþþ. In our experiments, VirtualMesh has proven to be scalable, to

have minimal influence on throughput and to introduce only negligible delays (less than 0.4 ms per hop). Hence, it is a

valuable tool for protocol and application developers to test their software prior to the final deployment.

Keywords

integration of real nodes in a simulated environment, network emulation, network simulation, OMNeTþþ,

pre-deployment testing, wireless emulation

1. Introduction

Wireless Mesh Networks (WMNs) have become one of
the key technologies for providing increased network
coverage of Internet infrastructures. Their simple,
cost-efficient deployment with self-configuration facili-
ties makes them a valuable alternative to wired net-
works to increase network coverage.1 Therefore,
WMNs are in the focus of current research. Several
research and city WMNs already exist.2–4 Currently,
WMNs are evolving from pure research networks to
carrier-grade communication infrastructures, which
require extensive pre-deployment testing.

For the commercial utilization of WMNs, new com-
munication protocols as well as new customer services
have to be developed. The development process in
WMNs is typically split into evaluations by simulations
and testing a real prototype in a test-bed. Firstly, pro-
tocols and architectures are implemented and evaluated

in a network simulator. Afterwards, a prototype is
implemented on the target platform, such as Linux,
and tested inside a test-bed before deployment in the
real network. Simulation provides most flexibility in
testing. Different and large-scale experiments, as well
as experiments with mobility of devices and users, are
possible. Thus, the focus here can be set on testing and
debugging the functionality of the proposed protocols.
Unfortunately, simulation models cannot cover all
influences of the operating system, the network stack,
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the hardware and the physical environment due to com-
plexity constraints. Therefore, the transition from sim-
ulation models to the deployable solution remains
challenging. Testing the prototype in a test-bed during
the implementation process is time consuming, costly
and very limited in test scenarios. Due to economical
reasons, the scale of the test-beds is limited and they are
often not deployed in isolated environments, which
limit reproducibility. Interferences with existing net-
works are possible and irrepressible, which makes the
debugging of new protocols very challenging.
Furthermore, the number of test topologies is limited
and mobility tests are impracticable. Moreover,
WMNs provide an enhanced testing challenge com-
pared to simple wireless access networks. They support
mobile users and high-throughput applications. Their
architecture contains self-configuring and self-healing
mechanisms, which have to be included in the tests.
Cross-layer interactions have to be tested in a con-
trolled environment without any irrepressible influ-
ences. Moreover, the tests have to cover the time and
delay aspects of the real network stack. Not all these
tests can be fully done in simulations, but it is also
difficult to perform them in a test-bed.

We therefore propose to use the final operating soft-
ware of the nodes, to replace the wireless interfaces with
virtual ones and to emulate the physical medium for
gaining more control in the development process.
This substantially facilitates the testing process, as the
real software stack may be evaluated within a con-
trolled environment.

Our contribution is an emulation framework called
VirtualMesh for WMNs, based on the network simu-
lator OMNeTþþ. This framework offers enhanced
evaluation of communication software written for real
and virtualized nodes on top of an OMNeTþþ simu-
lation model. Communication software can be tested
without any adaptations over an emulated network in
OMNeTþþ. VirtualMesh uses real mesh nodes with a
real network stack. It intercepts wireless traffic before
transmitting it over the air and forwards it to a simu-
lation model. This simulation model offers a vast flex-
ibility in topologies and mobility tests. In addition, the
scale of the test scenarios can be increased by host
virtualization.5

The remainder of this paper is structured as follows.
Firstly, we provide an overview of related work in
Section 2. Then, we present the general architecture
of VirtualMesh in Section 3, with its key concepts,
packet interception and forwarding in Section 3.1 and
processing of network traffic by a simulation model in
Section 3.2. Besides details about the simulation model,
Section 3.2 describes the integration of real traffic into
the simulator. The individual procedures used in
VirtualMesh are illustrated in Section 3.3. Afterwards,

we provide an evaluation of VirtualMesh in Section 4
and show the value of VirtualMesh for pre-deployment
tests. Finally, we present our conclusions in Section 5.

The work presented in this paper extends the
VirtualMesh architecture and the corresponding evalu-
ation published in Staub et al.6 The internal message
flow has been redesigned to reduce the latencies intro-
duced by VirtualMesh and to support dynamic scenar-
ios with nodes joining and leaving. Besides a detailed
and illustrated description of the VirtualMesh architec-
ture, an enhanced evaluation is presented.

2. Related work

Emulation is valuable for network research and proto-
col development. It can approximate the real environ-
ment more accurately than pure simulation. In Ivanov
et al.7 the authors validated the wireless model in the
network simulator ns-2 by comparing measurements of
a real network setup with an emulated and simulated
network. They concluded that with a proper parame-
terization the simulation model can approximate the
real network, but some aspects, such as delays intro-
duced by hardware and the operating system, cannot be
considered in the simulation. Therefore, their emulated
network provides results that matched the real mea-
surement more accurately than the simulation.

In the following we discuss several approaches for
wireless network emulation and compare them to
VirtualMesh.

The combination of node virtualization and network
emulation used in VirtualMesh has been proposed by
Engel et al.,5 Krop et al.,8 and Zimmermann et al.9

These three approaches are explained in more detail
in the following.

The approach presented in Engel et al.5 tries to inte-
grate the behaviour of the real network stack and the
operating system into the testing process by using vir-
tualized hosts connected through an emulation frame-
work. The virtual hosts are running an L4 microkernel
on top of a real-time kernel. To integrate the wireless
network behaviour, the hosts are connected by the
802.11b network emulator MobiEmu.10 Like in
VirtualMesh, the wireless interface driver has been
modified to communicate with the emulator instead
of the physical interface, but keeping the interface to
the applications unaltered. A drawback of the
approach is inherited by the use of MobiEmu; the com-
munication is either possible without errors or not at
all. In comparison to VirtualMesh, MobiEmu does not
model any communication errors. Unfortunately, no
results about the accuracy of the setup are available.

UMIC-Mesh9 is a hybrid WMN test-bed. Besides a
test-bed with real wireless mesh nodes, UMIC-Mesh
provides virtual nodes by using XEN11 virtualization.
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The virtual nodes are interconnected by a combination
of the advanced networking features of the Linux
kernel. This includes packet filtering for controlling
the communication between the nodes. The virtual net-
work is only intended for software development and
functionality validation. Therefore, the behaviour of
the wireless medium has not been modelled in this
approach.

JiST/MobNet8 provides a comprehensible Java
framework for the simulation, emulation and real-
world testing of a wireless ad hoc network. It allows
the running of the same tests independently of the plat-
form and abstraction level. MobNet is a wireless exten-
sion on top of the Java in Simulation Time (JiST)
simulator. The drawback of this approach is that
most communication software and network protocol
stacks are not written in Java and therefore a further
transition to a real-world system may be necessary
afterwards.

Another approach for testing real implementations
in a very flexible network is provided by the ORBIT
test-bed.12 It provides a configurable indoor radio grid
for controlled experimentation and an outdoor wireless
network for testing under real-world conditions. The
indoor radio grid offers a controlled environment as
an isolated network, in which background interferences
can be injected. Although the 20� 20 grid of nodes
offers a large variety of different topologies, it can be
too restricted and mobility tests are even more limited.
Furthermore, the scarce ORBIT resources may be not
available for all experiments.

The network test-bed Emulab13 provides various
experimentation facilities with advanced experiment
management controls. For experiments with wired net-
works, network nodes run standard operating systems
(FreeBSD, Linux and Windows XP) and communicate
over an emulated network using virtual local area net-
works (VLANs) and the emulator Dummynet.14

Emulab has been extended to the wireless domain15

by an IEEE 802.11a/b/g test-bed. Several nodes with
real wireless interfaces are deployed on the floors of
an office building and can be integrated in an Emulab
experiment scenario. Besides the lack of mobility sup-
port, the Emulab wireless test-bed suffers from limited
repeatability due to the shared location in an office
building with interferences from productive networks.

Limited mobility is supported in a further test-bed,
named mobile Emulab.16 However, currently, mobile
Emulab is not suitable for IEEE 802.11-based net-
works. Small robots, whose movements can be remo-
tely controlled through an Emulab control script, carry
wireless sensor motes with 900MHz radios. The current
setup uses an IEEE 802.11b network for the remote
control. This and the size of the test-bed room limit
possible extensions of mobile Emulab for wireless

LAN (WLAN) experiments. Moreover, the robots-
based test-bed is a costly and scarce resource, similar
to the ORBIT test-bed. In comparison, VirtualMesh is
a cost-efficient test-bed as it is composed of standard
computers and network components. The complete
emulation of the wireless medium avoids interference
problems and offers arbitrary network topologies,
including mobility by a simple adaptation of the simu-
lation model.

The wireless network emulator QOMET17,18 con-
verts the wireless scenario into a time-series of network
states. This state description is then delivered to wired-
network emulator Dummynet14 in order to emulate the
wireless link between end points. The end points are
standard computers emulating the wireless nodes. The
communication is sent over Dummynet using a wired
network. QOMET provides repeatability and testing of
real application software. As the normal operating
system tools cannot change the wireless parameters of
the network, QOMET is not suitable for testing soft-
ware that influences the wireless interface of a node,
which is possible in VirtualMesh due to the standard
interface of the wireless devices.

Another interesting approach is a wireless emulator
using a hardware channel simulator.19,20 The unaltered
network nodes are packed in radio frequency (RF)-
shielded boxes and their radio interfaces are connected
to the hardware channel simulator, which then emu-
lates the signal propagation using a field-programmable
gate array (FPGA). The channel simulator supports
directional antennas and mobility. The system pre-
sented in Borries et al.20 supports 15 nodes operating
in a 2.4GHz industrial, scientific and medical (ISM)
band. The main advantage of a FPGA-based wireless
emulator is the provided repeatability in combination
with a real media access control (MAC) layer and a
realistic physical layer supporting multipath fading.
The main drawbacks are the costs and the limited
number of nodes. VirtualMesh provides more flexibility
due to the usage of commodity hardware.

Moreover, the integration of real network stacks
inside a network simulator provides another mecha-
nism for testing complex protocol behaviour.
OppBSD21 integrates the transmission control proto-
col/internet protocol (TCP/IP) stack of FreeBSD in
the network simulator OMNeTþþ. The Network
Simulation Cradle22 project provides support for
using the real network stacks of Linux, FreeBSD and
OpenBSD with the network simulator ns-2. The inte-
gration of a real TCP/IP stack provides results that are
closer to a real-world network. Nevertheless, both
approaches do not support the testing of native unal-
tered applications, which is targeted by VirtualMesh.

The newly developed network simulator ns-323

allows the integration of virtualized nodes running
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native applications and protocol stacks under the Linux
operating system. The virtualized nodes in ns-3 are con-
nected through a TUN/TAP device of the Linux kernel
and a proxy node to the simulation. However, there is
no support to modify device parameters of the simula-
tion directly and dynamically by the virtualized nodes,
especially for wireless devices. VirtualMesh shares a
similar approach for traffic redirection and internal
representation of virtualized nodes. However, in
VirtualMesh, virtualized or real nodes can directly
manipulate the wireless device parameters through
usual system tools (e.g. iwconfig). In addition, dynamic
changes of the parameters during the emulation are
possible.

When injecting real network traffic into a network
simulator, there is always the problem that the simula-
tion may not keep pace with the real network. The
simulation may be too slow. In order to cope with the
problem of a simulator overload during network emu-
lation, Weingärtner et al.24 introduce the concept of
synchronized network emulation. They replace real
hosts with virtualized hosts using XEN. A central syn-
chronizer component then controls the time flow of the
virtual hosts by an adapted scheduler for XEN. It keeps
them synchronized with the network simulator
OMNeTþþ.25 Synchronized network emulation repre-
sents a valuable extension to avoid scalability problems
and could be integrated in VirtualMesh in the future.

3. VirtualMesh: concept and
architecture

The main concept of VirtualMesh6 is to intercept and
redirect real traffic generated by real nodes to a simu-
lation model, which then handles network access and
the behaviour of the physical medium. The network
stack is split into two parts as shown in Figure 1. The
application, transport and Internet layer are handled by
the real/virtualized node. At the MAC layer, the traffic
is captured by a virtual network interface and then redi-
rected to the simulation model. The simulation model
calculates the network response according to the virtual
network topology, the propagation model, the back-
ground interferences and the current position of the
nodes. Only the MAC layer and the physical medium
are simulated. All the other layers remain unchanged
and work just as in a real test-bed of embedded Linux
nodes.

VirtualMesh combines the advantages of real-world
tests performed on embedded Linux systems with the
flexibility and the controlled environment of a network
simulator. The main advantages are: the real commu-
nication software is used, the real network stack is
tested, the effects of temporary unavailable nodes can
be evaluated, background traffic/interferences can be

controlled and different mobility tests can be easily per-
formed. The real implementation of the communication
software can be tested. Accordingly, the behaviour of
the Linux network stack is embedded in a controlled
testing environment. There are no irrepressible influ-
ences on the experiments, such as interferences from
neighbouring networks and power lines, steel structures
of buildings or changing weather conditions. In addi-
tion, the underlying simulated network enables large-
scale experiments. It supports changing topologies and
different mobility scenarios. This makes automated
testing of the real communication software with a
high variety of scenarios possible.

The general architecture of VirtualMesh is shown in
Figure 2. It consists of an arbitrary number of com-
puters hosting the simulation model and real or virtua-
lized mesh nodes. A dedicated IEEE 802.3 Ethernet
service network interconnects the nodes and the
model. The wireless interfaces of the nodes are replaced
by virtual interfaces, which communicate over the ser-
vice network to the simulation model. Besides real
nodes, the architecture supports virtualized hosts.
Host virtualization is performed by XEN, but other
virtualization techniques could be used too. Host vir-
tualization provides additional scalability of the system.
One standard server machine may hold up to ten virtual
mesh nodes without any problem.

3.1. Traffic redirection: virtual interface and
PacketModeller

Traffic interception/redirection at the MAC layer is the
fundamental concept that VirtualMesh builds upon. In
order to redirect wireless traffic from the virtual/real
nodes to the simulation model, we replace the actual
wireless device by a virtual interface in combination
with the PacketModeller daemon. Our virtual wireless

MAC

Internet (ARP, IP and ICMP)

Transport (TCP, UDP, ...)

Application

R
eal or V

irtualized N
odes

M
odel

Figure 1. Subdivision of the network stack to the real/virtua-

lized nodes and the simulation model.
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device is built on top of the TUN/TAP device of the
Linux kernel and is managed by a small user space
virtual interface device daemon (vifd). Of course, this
could have been implemented combined as a Linux
kernel module, which should lead to a performance
increase, but in favour of a broader applicability we
decided against this solution. In our approach the test-
ing environment is not bound to a specific out-of-tree
kernel add-on and the daemon could even be ported to
other operating system platforms, which offer a POSIX
system interface and a TUN/TAP driver (e.g. *BSD,
Darwin). The TUN/TAP device redirects any received
network traffic as Ethernet frames to the user-space,
where the PacketModeller takes care of them, while
vifd is responsible for the configuration of the wireless
parameters. On the other side, the PacketModeller
reinjects the traffic that it receives from the simulation
model to the Linux networking stack via the TUN/TAP
device.

The configuration of the network device is per-
formed at machine installation and adapted during
the lifetime. A standard Linux network interface (see
Figure 3(a)) is configured by net-tools or by the
ip-route2 suite (i.e. by the commands ifconfig or ip).
In addition, for wireless devices, wireless parameters
such as wireless channel, operation mode, transmission

power, Ready-to-Send/Clear-to-Send threshold and
encryption are set by the wireless-tools (e.g. iwconfig)
through the Wireless Extension application program-
ming interface (API) of Linux. Due to the use of the
kernel’s TUN/TAP driver, our virtual device behaves
the same as any Linux network device. Hence, no
changes in the network configuration itself are required.
Furthermore, the wireless parameters of our virtual
interface can be set by a patched version of wireless
tools, such as iwconfig (see Figure 3(b)), which then
sets the parameters in our device daemon vifd.

The user space daemon PacketModeller receives all
packets transmitted to the virtual interface and encap-
sulates them in new packets, which are sent to the host
running the simulation model. In the opposite direc-
tion, the PacketModeller is listening on a user datagram
protocol (UDP) port for packets coming from the sim-
ulation model. These packets are then decapsulated and
original Ethernet frames are injected back into the net-
work stack via the virtual interface, which then passes
them to the application (see Figure 4, numbers corre-
spond to the individual steps). This way, the virtual
interface, the PacketModeller, and the simulation
model process the complete wireless traffic of the node.

Figure 4 shows the packet flow from the application
at source node S to destination node D. Both nodes are

Virtualized Nodes
with Virtual Interfaces: (Emulation)

Real Nodes
with Virtual Interfaces

Virtual
Interfaces

Communication
between Nodes and Model

Model in
Network Simulator (OMNeT++)

Mesh Routers

Mesh Clients

Virtual
Interfaces

XEN Hypervisor

Figure 2. VirtualMesh architecture with real nodes, virtualized nodes and the simulation model.

Staub et al. 5



hardware device

App

Linux

Network

Stack

driver

network

interface

wireless

extensions

w
ire

le
ss

 to
ol

s

ne
t-

to
ol

s,
 ip

-r
ou

te
2

Node with physical interface

PacketModeller

driver (tun)

App

Linux

Network

Stack

network

interface
vifd

w
ire

le
ss

 to
ol

s

ne
t-

to
ol

s,
 ip

-r
ou

te
2

Node with virtual interface

(b)(a)

Simulation model

VirtualHost

simulated network 
device (WlanNIC)

Figure 3. Node with Linux network stack and (a) a real network interface or (b) our virtual network interface (PacketModeller)

communicating with the OMNeTþþ simulation model.
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Figure 4. Packet flow between two nodes interconnected by the OMNeTþþ simulation model.

6 Simulation: Transactions of the Society of Modeling and Simulation International 0(00)



connected to the simulation model on host H. The
application at node S sends the packets to the Linux
network stack (1), where they are intercepted by the
virtual wireless interface vifx (2). The original
Ethernet frames are then redirected to the
PacketModeller (3), which encapsulates them in new
packets (4). These packets are transmitted through
the Ethernet interface ethx (5) to the simulation
model on host H (6). At host H, the packets are fed
into the simulation model (described later in Section
3.2). After processing in the simulation model, the
resulting packets are encapsulated again and sent to
their destination node D (7). There, the packets are
received via the Ethernet interface ethx (8) and the
PacketModeller (9). The PacketModeller decapsulates
the packets and injects them back into the network
stack via the virtual interface vifx (10). Finally, the
application at node D receives the packets (11).
Packet redirection is fully transparent for the applica-
tions and the network stack.

For accurate simulations, the model needs to incor-
porate several additional static and dynamic parame-
ters describing the external nodes and the current
configurations of their wireless interfaces. Static param-
eters (e.g. IP address and listening port of the
PacketModeller) are set at startup of the node. The
PacketModeller has to register itself at the model by a
REGISTRATION message (see Figure 5). This message
contains a sequence number (msg id), the host identifi-
cation (unique id, e.g. 000b6bdbe502), the host name

(e.g. node01), the infrastructure IP address (IPv4 or
IPv6), the port where the PacketModeller is listening
for incoming traffic and the number of interfaces. It
further contains the initial values of dynamic parame-
ters, such as interface name, MAC address and index,
as well as wireless parameters (e.g. channel, transmis-
sion power, MAC level retries and receiver sensitivity)
for each virtual interface. The PacketModeller sends the
REGISTRATION message just after startup of the
node. This REGISTRATION message is then retrans-
mitted if not acknowledged by the model through an
ACK message within 10 seconds. After successful recep-
tion of the acknowledgement, the node can start trans-
mitting its wireless traffic to the model. Upon node
registration, the model created an internal representa-
tion of the external node (VirtualHost). If any dynamic
wireless parameters, such as the current communication
channel and transmission power, have changed on the
node, a CONFIGURATION message is sent to the
model. The CONFIGURATION message includes
the host identification, the index of the interface with
the changes, and all the changed parameters of the
interfaces as type/value tuples. The model is, therefore,
supplied with these parameters and can calculate the
simulation behaviour.

Regular network traffic between the nodes is sent as
DATA messages, which are illustrated in Figure 5.
A DATA message contains the intercepted Ethernet
frame, its size and the host identification. In
VirtualMesh, the management network uses a higher

Ethernet Packetsize
type:
data

DATA Message

host
id

msg
id

type:
register

host
name

IP
v4 / v6

port

REGISTRATION Message

#
interfaces

vif
name

host
id

vif
MAC

vif
index

vif
parameters

CONFIGURATION Message

type:
config

host
id

vif
index

parameter
type

parameter
value

msg
id

host
id

egasseMKCAegasseMNOITARTSIGER-ED

type:
ack

msg
id

type: de-
register

host
id

Figure 5. Message format to communicate with the model: node registration, data transmission and configuration.
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maximum transfer unit (MTU) to compensate for the
overhead of these DATA messages and guarantee the
standard MTU for the data traffic coming from
the nodes. As usually at least 1 Gbps interconnection
is used, MTU sizes up to 9000 bytes are possible.
At startup, the PacketModeller checks correctness of
MTU sizes of the management network.

3.2. Simulation model

Our simulation model is called WlanModel and has been
written as a module for the network simulator
OMNeTþþ.25 It receives traffic coming from external
nodes, calculates the system’s response and then sends
the processed packets back to external nodes. It consists
of the modules VirtualMeshScheduler, PacketProxy,
NodeManager, and several VirtualHosts, including
MsgHandler and the INET Ieee-80211NicAdHoc
stack (WlanNIC). INET’s ChannelControl and
MobilityModels model the wireless network behaviour.
Figure 6 shows the individual components, which are
described in more detail in the following.

The main components of the WlanModel are
the PacketProxy and the VirtualMeshScheduler.

The VirtualMeshScheduler handles the simulation inter-
nal message scheduling including in-/outcoming net-
work traffic. It listens on UDP port 2424 for
incoming packets (as depicted in Figure 6) from the
PacketModeller daemons of external nodes. Upon
packet reception (1), the new packet is stored in the
interface receive buffer, the VirtualMeshScheduler is
informed (2) and schedules a notification message
with the reception time for the PacketProxy module
(3) in the message queue of the simulation. This mes-
sage queue is then processed step-by-step, ensuring that
the required timing constraints are met.

As soon as the PacketProxy module gets a notifica-
tion message (3), it processes the received messages
coming from outside the simulator (4). If a new external
node registers its presence to the model, the
PacketProxy calls the NodeManager (5), which
acknowledges the reception of the REGISTRATION
message. The NodeManager is responsible for the
administration of external nodes inside the simulation
model. If the registering node does not already exist in
the simulation model, the NodeManager creates a new
instance of VirtualHost and saves all node attributes
(hostname, infrastructural IP address, listening
port) to the node database of the VirtualHost.

VirtualMeshScheduler

PacketProxy

WlanNIC

VirtualHost

Virtual
Host

Channel Control

Traffic to/from nodes

packet

packet

VirtualHost
simulated host

simulated host

packet

NodeManager
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packet
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MsgHandler

Receive
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Figure 6. Packet flow inside the simulation model WlanModel.
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After successful initialization, the VirtualHost acknowl-
edges its presence to the external node by an ACK
message.

Upon DATA message reception (4) the PacketProxy
first checks whether the sending node has already reg-
istered at the NodeManager (5). If no registration exists,
the packet is dropped immediately. Otherwise, the
PacketProxy notifies the MsgHandler of the corre-
sponding VirtualHost (6). The MsgHandler processes
the packet (7). The encapsulated original Ethernet
frame is included in a new RAWEtherFrame packet
that is then transmitted to the WlanNIC of the
VirtualHost (8). The WlanNIC uses the current wireless
parameters from the node database for the transmis-
sion to the next node (9). Changes of the wireless
parameters of external nodes are propagated to the
simulation model by the transmission of a
CONFIGURATION message. The PacketProxy is
only involved in the processing of incoming traffic to
the simulator.

The external nodes are modelled as VirtualHosts. A
VirtualHost is a compound module of OMNeTþþ, i.e.
it does not contain any message processing logic but
simply adds a logical interface to a MsgHandler
module, the node database and the existing WlanNIC
module. The MsgHandler is called by the PacketProxy
to process a new DATA message (6,7). It extracts the
original Ethernet frame and generates a new
RAWEtherFrame (8). The RAWEtherFrame is then fur-
ther processed through the WlanNIC, which is the
Ieee80211NicAdhoc model of the INET framework
(9). Henceforth, the existing IEEE 802.11 model imple-
mentation of INET takes care of the packet (10) until it
has been received again by a VirtualHost module (11).
The WlanNIC checks whether the packet belongs to
this node by checking the MAC addresses. If yes, it is
forwarded to the MsgHandler (12). Otherwise, it is
omitted. The MsgHandler generates a new DATA mes-
sage that includes the packet (13). When the Interface
Send Buffer gets a DATA packet from the MsgHandler
(14), the packet is finally forwarded over the system
network (15) to the external node.

3.3. Node registration, node de-registration,
packet transmission, packet reception and
the configuration process

In the following, the different processes in VirtualMesh
are shown step-by-step covering the communication
between the real node and simulation model, as well
as the communication inside the simulation model.
Actually, five processes exist in VirtualMesh. Firstly,
the external node has to register itself at the simulation
model (node registration). It can also cancel its

registration within the model afterwards (node de-regis-
tration). When successfully registered, the external
node can transmit packets (packet transmission) to
its representation in the simulation model. After
packet processing inside the simulated network, an
internal representation of a node receives the packet
and then transmits it to the connected external
node (packet reception). By the transmission of a
CONFIGURATION message, the external nodes can
modify their interface parameters (node configuration).
The numbers in the brackets (4.x and 6.y) reflect the
steps in Figure 4 and Figure 6, respectively. In addition,
node registration, de-registration, and configuration are
illustrated in Figures 7–9.

3.3.1. Node registration

1. The node with a VirtualMesh interface boots. The
configuration of the virtual interface contains the IP
address and the port of the simulation model.

2. The node’s PacketModeller sends a REGISTRATION
message to the model (4.4–4.6).

3. The simulation model adds the node to the
NodeManager and replies with an acknowledgement
(6.1–6.5).

4. The NodeManager creates a new VirtualHost. The
node database of the VirtualHost is initialized with
the values of the REGISTRATION message. This
includes host name, the infrastructural IP address
and the listening port of the PacketModeller, and
the number of interfaces and their configuration
(name, MAC, transmission power, MAC level
retries, receiver sensitivity, etc.).

5. Positions and mobility patterns of the VirtualHost
have to be configured in advance by the
OMNeTþþ setup file and are therefore already pre-
sent inside the simulation model.

6. Upon reception of the acknowledgement, the node is
registered and can send/receive traffic to/from the
simulation model.

3.3.2. Node de-registration

1. A shutdown of the PacketModeller daemon, e.g.
when rebooting the external node, triggers the trans-
mission of a DE-REGISTRATION message. It
forces the VirtualHost to leave the emulated network
(4.4–4.6).

2. Upon reception of a DE-REGISTRATION message,
the PacketProxy invokes a node removal by the
NodeManager (6.1–6.5).

3. The NodeManager removes the corresponding
VirtualHost.

Staub et al. 9



Node registration and de-registration allows the
emulation of dynamic networks. Nodes can join and
leave the network. They are automatically added and
removed, respectively, from the simulation model.

For example, this can be used to test a configuration
and management framework. The effects of rebooting
nodes or unavailable nodes at configuration time can be
evaluated.

External node
Simulation model

Virtual
Host

Packet-
Proxy

Node-
Manager

node boots

REGISTRATION message

ACK message

Packet
Modeller

creates new
VirtualHost

packet
transmission
to the model

10s

Figure 7. Node registration.

External node
Simulation model

Packet-
Proxy

Node-
Manager

node
shuts down

DE- REGISTRATION message

Packet
Modeller

removes
VirtualHost

stopped

node
unavailable

Virtual
Host

Figure 8. Node de-registration.
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3.3.3. Packet transmission by an external node

1. The source application at the node sends a packet to
the virtual interface vif (4.1, 4.2).

2. The PacketModeller encapsulates this packet and
then redirects it as DATA message to the simulation
model (4.3–4.6).

3. The DATA message is received by the simulation
model and stored in the Receive Buffer (6.1).

4. The VirtualMeshScheduler is notified and schedules
the notification message to the PacketProxy
(6.2, 6.3).

5. The PacketProxy checks message type and, via
NodeManager, whether the sender of the DATA
message exists (6.4, 6.5). If it exists, it receives a
pointer to the corresponding VirtualHost.

6. The PacketProxy calls the MsgHandler of the
VirtualHost to handle the packet (6.6).

7. The MsgHandler gets the DATA message and a new
RAWEtherFrame is transmitted (6.7–6.10).
7.1. The DATA message is read from the Receive

Buffer (6.7).
7.2. A new RAWEtherFrame packet is created (6.8).
7.3. The original Ethernet frame of the DATA mes-

sage is copied to the new packet.
7.4. The destination address of the RAWEtherFrame

packet is set to the destination MAC address of
the original Ethernet frame.

7.5. The packet is passed to the WlanNIC (6.9).

7.6. The packet is transmitted inside the simulation
model (6.10).

7.7. The RAWEtherFrame message is transmitted to
the corresponding VirtualHost (6.9, 6.10).

3.3.4. Packet reception by an external node

1. The VirtualHost receives a packet through the
WlanNIC (6.11) and passes it to the MsgHandler
(6.12).

2. The MsgHandler encapsulates the Ethernet frame
inside a new DATA message, includes the infrastruc-
tural IP address and listening port of the corre-
sponding external node and then transmits it to the
Interface Send Buffer of the model (6.13, 6.14).

3. The DATA message is then forwarded to the exter-
nal node (6.15).

4. The PacketModeller at the external node then dec-
apsulates the packet and injects the Ethernet packet
to the network stack of the node (via the virtual
interface vifx) (4.7–4.11).

3.3.5. Node configuration

1. The wireless tools, such as the iwconfig utility,
modify the wireless interface configuration of the
external node.

External node
Simulation model

Packet-
Proxy

wireless parameter
modification by
wireless tools

Packet
Modeller

vifd
CONFIGURATION
message

VirtualHost

MsgHandler

WlanNIC

update node db

Figure 9. Node configuration.
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2. The patched version of the iwconfig tool propagates
all wireless configuration changes via libvif to the
shared memory vif configuration (vifd).

3. Then, the PacketModeller is triggered to send
a CONFIGURATION to the simulation model
(4.3–4.6).

4. The simulation model processes the
CONFIGURATION messages (6.1–6.7).
4.1. The PacketProxy reads the

CONFIGURATION message (6.4).
4.2. It then checks whether a representation of the

external node exists in the model with the help
of the NodeManager (6.5).

4.3. The PacketProxy then invokes the MsgHandler
of the corresponding VirtualHost to process the
CONFIGURATION message (6.6, 6.7).

4.4. The MsgHandler stores the new wireless param-
eter values to the node database.

4.5. Hence, the VirtualHost uses the new values for
packet transmissions inside the model.

The nodes can modify the parameters of their wire-
less network interfaces by the wireless tools (iwconfig
utility) at any time during the simulation. Therefore,
even scenarios with dynamic multi-channel communi-
cation are possible, but simulation model has to
support them.

4. Evaluation

VirtualMesh has to fulfil the following requirements in
order to be useable for pre-deployment tests.
VirtualMesh should not change the behaviour of network
protocols and the application running on top of it. It has
to be fully transparent for the upper layers. This has been
verified in our functional evaluation in Section 4.3. In
addition, neither bandwidth nor delays of the wireless
network should be heavily influenced by VirtualMesh.
Due to traffic interception, traffic redirection to a simula-
tion model, and the optional node virtualization, the
architecture of VirtualMesh introduces some additional
delays to the system. We have performed several experi-
ments in order to quantify these delays and detect possible
bottlenecks. Furthermore, we quantify the effect of
VirtualMesh on the network bandwidth.

4.1. Design alternatives

For node virtualization, either full virtualization or
para-virtualization can be used. Full virtualization pro-
vides a complete simulation of the underlying hard-
ware. A full-virtualized host uses the real device
drivers, which then work on top of an emulated hard-
ware layer. All software, including the operating system
and device drivers, runs unmodified, in the same way as

on the raw hardware. In contrast, para-virtualization
introduces some adaptations to the guest operating
system. The software interface of a para-virtualized
machine is similar, but not identical, to that of real
hardware. Therefore, the drivers for network and
block devices are replaced. In our scenario, the para-
virtualized host employs our standard embedded Linux
system, which is also running on a real node. It makes
use of the new para-virtualization feature of recent
Linux kernels (paravirt_ops) that allows it to run on
native hardware and as para-virtualized machine. The
para-virtualized operating system kernel accesses the
network and blocks devices through a XEN specific
driver. The main advantage of para-virtualization is
its improved performance compared to full virtualiza-
tion. Moreover, the standard Linux kernel already
includes the para-virtualization features by default.
We have evaluated both approaches in Section 4.3.

4.2. Scenarios

To determine the round-trip times (RTTs), we have
used simple ping (Internet control message protocol
(ICMP) echo) measurements in a network with fixed
node positions. The network consists of one computer
hosting the simulation model (OMNeTþþ 4.0) and one
computer with the host virtualization (XEN 3.3.1),
holding up to five virtual node instances. The two
hosts (Pentium D 930 3GHz, 2 GB random-access
memory (RAM)) and the mesh nodes are intercon-
nected by a 1 Gbps Ethernet network.

We evaluated the latencies/delays introduced by the
service network, including virtualization and the traffic
interception/redirection, and those introduced by the
simulation model. In Figures 10–13, each data set rep-
resents measurement series of 1000 ICMP echoes with
default sending rates of 1 packet/s. Figure 14 shows the
resulting UDP throughput. The results are shown as
boxplots, i.e. a bold line marks the median value, box
lines represent the lower and upper quartiles and the
whiskers mark the minimum and maximum values.

4.3. Results

For functional evaluation, we have tested several exist-
ing Linux applications, such as secure remote shell (ssh)
and file transfers using the file transfer protocol (FTP)
and secure copy (scp). These applications just work
without any problems on top of the simulated network
of VirtualMesh.

Firstly, we conducted tests to measure the network
latencies between (a) two physical hosts, (b) a physical
host and a para-virtualized host and (c) a physical host
and a full-virtualized host. Our results in Figure 10
confirm that the additional delay introduced by

12 Simulation: Transactions of the Society of Modeling and Simulation International 0(00)



virtualization is less than 0.2ms for communication
between a physical host and another physical host (a),
or between a physical host and a para-virtualized host
(b) is nearly negligible. If we replace the para-virtua-
lized node with a fully virtualized node, the delay obvi-
ously significantly increases due to the hardware
emulation layer (see (c) in Figure 10), although it still
remains acceptable at 0.35ms. Nevertheless, we decided
to use para-virtualization for VirtualMesh, as it intro-
duces nearly half the delay. The mandatory require-
ment of a low delay for traffic redirection can thus be
confirmed by the tests. Moreover, the replacement of
the Ethernet driver does not affect the accuracy of
VirtualMesh.
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The second experiment evaluates the delay intro-
duced by the PacketModeller (see Figure 11). RTTs
between two virtual hosts with and without traffic inter-
ception by the virtual interface vifx and the
PacketModeller are measured. The result shows a mod-
erate increase of less than 0.15ms, which is absolutely
negligible.

Our third experiment shows the additional delays
introduced by packet redirection and packet processing
through the simulation model compared to the pure
simulation (see Figure 12). We use a chain topology
with 2–9 nodes (1–8 hops) in the simulated network.
The limitation to eight hops is reasonable, as paths
are usually shorter in WMNs. In each of the eight sce-
narios, a series of ICMP echo packets (1 packet/s,
56 bytes payload) is sent from the first node to the
last node in the row. Static routing is used in
VirtualMesh and simulation. The pure simulation
results show RTTs of approximately 1.6ms per hop.
In comparison, the RTTs measured per hop in the
VirtualMesh scenario are, at 2ms, slightly higher. The
difference can be easily attributed to about 0.3ms
seen from the transmission in the infrastructural net-
work (see Figure 10) and 0.1ms due to two context
switches between real space and simulated space.
These results are significantly better than the
results shown in our previous measurements.6 We
have considerably enhanced the performance of our
VirtualMesh implementation by heavily restructuring
the message flow inside the simulator and running
the model in a 64-bit environment. Besides the direct
comparison between simulation and VirtualMesh, we
have also evaluated the behaviour of VirtualMesh
when using a higher payload of 1492 bytes and an
increased sending rate of 10 packets per second. In
Figure 13, the results of VirtualMesh show the
normal linear increase of RTTs with the hop count,
independent of the payload.

Our fourth experiment compares the UDP band-
width performance over multiple hops of VirtualMesh
with that of a pure simulation (see Figure 14). The net-
work is again set up in a chain topology with 2–5 nodes
(1–4 hops). Inside the model, the raw data rate of the
radio is set to 11 Mbps. As expected, the throughput
values of VirtualMesh almost match the values of the
pure simulation. The retrieved throughput values with
5 Mbps for the one-hop connection, 2.5 Mbps for the
two-hop connection, 1.7 Mbps for the three-hop and
1.25 Mbps for the four-hop connection represent the
normal significant decrease of the throughput, depend-
ing on the number of hops similar to the 1/(hop count)
as shown in the literature.26,27 The throughput values
hence only depend on the used simulation model.
VirtualMesh does not include any additional limita-
tions concerning bandwidth in this setup. The higher

variance seen in the results of VirtualMesh depends on
the slightly different evaluation compared to the pure
simulation.

From these results, we conclude that VirtualMesh is
a valuable infrastructure for making pre-deployment
tests of various communication protocols and applica-
tions in WMNs. VirtualMesh has shown no influence
on throughput. It only introduces moderate additional
delays due to traffic redirection and packet processing
in the simulator. Therefore, it can be used for testing
real software before going to the final deployment.

5. Conclusions

After development and evaluation with network simu-
lators, wireless mesh communication solutions require
extensive pre-deployment testing of their target plat-
form implementations. This is difficult to achieve in a
real test-bed, as irrepressible sources of interference
exist. Furthermore, the variety of testing topologies is
limited and mobility tests are impracticable. Therefore,
we have designed VirtualMesh as a new testing archi-
tecture to be used before going to a real test-bed.
VirtualMesh is based on the interception of wireless
traffic at nodes and redirection to a simulation model
that provides more flexibility and a controllable
environment.

In comparison to other solutions, VirtualMesh pro-
vides a high integration of network emulation to real
and virtualized hosts. The wireless drivers of the nodes
are replaced by a virtual device that redirects traffic to
an OMNeTþþ simulation model instead of transmit-
ting it over the air. This is fully transparent to the Linux
network stack and the applications. The normal net-
work stack and all applications can be used without
any modification. Furthermore, even the standard con-
figuration utilities can be used for wireless network con-
figuration, as the virtual driver acts in the same way as
a standard wireless network driver under Linux. All
configuration parameters may be set using the usual
configuration tools.

The focus of VirtualMesh is on the evaluation of
wireless networks. It supports all common WMN sce-
narios, such as community networks and Internet shar-
ing, with virtual nodes acting as gateways. Although
VirtualMesh has been designed to test WMNs, it is
not limited to them. The concept can also be applied
to other wireless networks, e.g. mobile ad hoc networks
(MANET).

A main advantage of VirtualMesh is the dynamic
node management. Node registration and de-registra-
tion provides testing facilities even for management and
software distribution frameworks that require reboot-
ing of nodes, e.g. to update the operating system kernel
or the communication software. During shutdown,
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a node just de-registers from the model and is not avail-
able until it registers again when being started.

We have evaluated the influence of VirtualMesh on
delay and throughput. Our experiments have proven
the full functionality of the VirtualMesh testing infra-
structure. VirtualMesh introduces only negligible addi-
tional delays for traffic redirection and per real node
inside a simulated path (less than 0.4ms per hop). UDP
throughput measurements show that the throughput
only depends on the used simulation model. The results
match the ones gained from pure simulation.
VirtualMesh does not introduce additional limitations,
making it a valuable tool for protocol developers and
practitioners to test developed software for WMNs
prior to actual deployment.

Similar to other emulation frameworks, one problem
of VirtualMesh is that the simulation may be too slow
and cannot keep pace with the injected network traffic.
Thus, the simulation model of VirtualMesh needs to be
run on a powerful machine and to communicate over a
distinct and high-performance management network.
However, there may still be an overload situation.
Therefore, we plan to integrate the concept of synchro-
nized network emulation24 into VirtualMesh.

Even though VirtualMesh supports dynamic net-
works with nodes joining and leaving, as well as modi-
fications of wireless parameters, some parameters, such
as the node positions and mobility pattern, have to be
pre-defined. This limitation can be removed by propa-
gating position updates through configuration messages
to the simulation model in the future. Other future
enhancements are the support for channel sniffing, retrie-
val of signal-to-noise ratio (SNR) values and the full
support of highly dynamic multi-channel scenarios.

VirtualMesh is available for download.28
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