OMNeT++ based Opportunistic Routing Protocols Simulation: A Framework

Zhongliang Zhao, Torsten Braun
Institute of Computer Science Applied Mathematics, University of Bern
Neubriickstrasse 10, 3012 Bern, Switzerland
Email: {zhao, braun} @iam.unibe.ch

Abstract—This paper describes a framework for simu-
lating opportunistic routing protocols in the INETMANET
framework of OMNeT++. The proposed modules adopt an
abstraction of the generic functions of the most representative
opportunistic routing algorithms. The main contribution is an
OMNeT++ modeling architecture that could be extended to
implement different opportunistic routing schemes. Our work
provides an analysis of the most representative opportunistic
routing algorithms. We decouple the opportunistic routing
schemes into four procedures - Forwarder Candidate Selection,
Forwarder Selection, Forwarder Role Change Notification and
Collision Avoidance. Different protocols should have specific
implementations of each procedure. In the framework, these
four procedures are defined as virtual functions and act
as implementation stubs such that different protocols could
be implemented by overriding them in the derived function
according to their distributed strategies.

I. INTRODUCTION

Opportunistic networks are one of the most interesting
evolutions of MANET, in which mobile nodes are enabled
to communicate with each other even if there is no source-
destination route available. Routes are built dynamically,
while messages are en route between the sender and the
destination. Any node may opportunistically act as next
relay, given that it is likely to bring the message closer to the
final destination. One important feature is that the multiple
receivers of a message negotiate and decide which packet to
forward but not the sender (receiver-based forwarding).

OMNeT++[1] is an open-source modular simulation plat-
form that has primarily been used for simulating wired and
wireless communication networks. It includes, and is con-
tinuously complemented by, multiple modeling frameworks
like INET, INETMANET, MiXiM, etc. The INETMANET
framework includes multiple radio wave propagation mod-
els, simple battery models and supports multi-radio commu-
nications, which are the key characteristics for simulation of
opportunistic routing protocols. MiXiM is another popular
framework for wireless network simulation. However, it
focuses more on the modeling of low layer protocols and
because our focus is at routing, we prefer INETMANET as
our implementation supporting platform.

The idea of this work is based on the fact that OMNeT++
(including INETMANET) lacks support for some of the key
features of opportunistic routing protocols. Opportunistic
routing tries to take advantage of the time-varying nature

of wireless environment to provide hop-by-hop packet for-
warding in scenarios where traditional MANET routing may
not perform well. The goal is to implement a framework for
simulating opportunistic routing protocols with the INET-
MANET framework in the OMNeT++ simulator.

II. RELATED WORK

Opportunistic routing protocols make use of the broadcast
nature of wireless communications during data forwarding
by taking advantage of the transient nature of channel
and node availability. This design principle seems to be a
countermeasure for the situation of mobile ad hoc networks,
where nodes are highly mobile and wireless propagation is
inherently instable, making network topology changes fre-
quently. Typical MANET routing protocols may not perform
ideally in those scenarios.

Various opportunistic routing protocols have been pro-
posed. BLR [2] is a geographic routing protocol that uses lo-
cation data to minimize the routing overhead by eliminating
the periodic Hello message. Data packets are broadcasted
and the protocol takes care that just one of the receiving
nodes forwards the packet. EXOR [3] pioneers the concept
of being opportunistic when wireless links are weak by using
the broadcast nature of wireless communication. In ExOR,
the sender specifies a list of candidate nodes in the packet
header, which are potential forwarders of the packet. The
receivers relay the packet according to its priority in the list
by negotiating with surrounding nodes. MORE [4] is a MAC
independent protocol that combines the idea of opportunistic
routing and network coding to utilize spatial reuse. MIXIT
[5] improves the throughput by applying network coding at
the physical layer. SOAR [6] uses priority-based timers to
make sure that the most preferred node forwards the packet
with little coordination overhead. MCExOR [7] extends
opportunistic routing to multi-channel environments. The
use of multiple non-overlapping RF channels contributes
to the reduction of overall interference and the throughput
increases superproportionally. In Chapter 3, we recapitulate
the general strategies of the most representative opportunistic
routing protocols and abstract them as the core of the
framework.

Most of the existing opportunistic routing algorithms are
evaluated with specific simulators. ONE [8] is probably the
most successful simulator specifically designed for evalu-

ating DTN and opportunistic routing protocols. It allows
users to create scenarios based upon different synthetic
movement models or real-world traces to offer a frame-
work for implementing routing and application protocols.
However, ONE focuses on the modeling of the behavior
of store-carry-forward networking, and hence refrains from
detailed modeling of the low layer mechanisms such as
signal attenuation and congestion of the physical medium.
Instead, the radio link is modeled as a communication range
and a link with a certain bit-rate, which are assumed to
be constant over the simulation. All these limitations make
ONE imperfect for simulating opportunistic routing proto-
cols, which heavily and inherently make use of links that
packet delivery is possible with low variational probability
and should easily accommodate with channel fluctuation.
INETMANET contains numerous implementations for each
of the ISO/OSI layers, from physical/data link layer to
application layer, which are essential to build the opportunis-
tic routing framework. Later in Chapter 3, we will show
how to adopt the existing components of INETMANET,
such as mobility model, battery module, multi-radio module,
radio propagation module and multiple link layer protocol
implementations(802.11.a/e/g and 802.15.4) to set up our
framework.

There have been earlier works in the MANET commu-
nity to develop frameworks, with integrated functionalities
for implementing ad hoc routing protocols. ASL [11] and
FRAd-Hoc [12] present such routing frameworks in mobile
ad-hoc networks. [13] provides a MANET routing protocol
framework for the OMNeT++ community. [14] designs a
framework for opportunistic routing protocols in ad-hoc
networks, but it targets to emphasize that the throughput gain
achieved by opportunistic routing is not clearly attributed
to the opportunistic selection of forwarder but also partly
due to its acknowledgement and scheduling features which
may also be implemented by traditional MANET routing
protocols. It does not focus on the compositional architecture
of generic opportunistic routing protocols. Our framework,
consisting of abstract components and common functional-
ities, builds an architecture for designing and implementing
opportunistic routing protocols.

III. DESIGN & IMPLEMENTATION

In this section, we describe the general architecture of our
framework.

A. Framework Architecture

Our implementation is based on the work of the OP-
PONET project [9] [10], which provides basic mechanisms
for simulating opportunistic and delay-tolerant networks in
OMNeT++. OPPONET allows simulating open systems of
wireless mobile nodes where synthetic or real mobility traces
are used to drive the simulations. One possible application
scenarios of opportunistic routing are Unmanned Aerial

Vehicle(UAV) ad hoc networks, where UAV might leave
the networks for charging and rejoin the system afterwards.
However, OPPONET is too much limited to the mobility
modeling (scripted mobility) and object creation. Moreover,
it does not focus on routing aspects.

An example of an opportunistic routing node in the OM-
NeT++ simulator can be found in Figure 1. The Navigator
module is responsible for the movement of nodes. It is
designed as a module interface, which should be imple-
mented as specific mobility model like Random Walk or
Random Waypoint. Module implementation is derived from
OPPONET with slight modifications. During the simulation,
the configuration file ommnet.ini could be set to use the
generated xml-formatted trace file, which was beforehand
produced by the mobility generation tool of OPPONET to
control the movement and subsistence of the nodes.

The Controller module is simply in charge of the initial-
ization of the node. It mainly includes the channel utiliza-
tion, packet storage management and other functionalities.

The WNIC module is an implementation of a wireless
network interface controller, composed of physical and
MAC layer. We choose IEEE 802.11 from INETMANET
as our WNIC implementation, which includes the IEEE
802.11a/e/g implementation. A node could have multiple
WNIC modules working at different radio frequencies to
support multi-radio communication. The ChannelControlEx-
tend module from INETMANET is adopted to implement
the multichannel related functions.

The EnergyManager module is derived from the INET-
MANET InetSimpleBattery module and is a simple energy
related implementation. The InetSimpleBattery module pro-
vides a linear model of batery usage with fairly coarse
estimate of battery consumption, together with little com-
putational overhead.

The NotificationBoard is employed for modules to notify
each other about the “event” of state changes, such as
interface status changes (up/down), mobile node position
updates, etc. The NotificationBoard acts as an intermedi-
ary between modules, where state changes can occur, and
modules that are interested in learning about those changes.
Modules should “subscribe” to the notification categories
they are interested in. The NotificationBoard module from
INETMANET is adopted in our framework.

The OppRoutingProtocol module is the core component
of the framework. It is implemented as a simple module
such that it could be easily extended. It abstracts the general
functions of the most representative opportunistic routing al-
gorithms and modularizes them such that a specific protocol
could be implemented by extending the module. For exam-
ple OppRoutingProtocolExOR is the EXOR implementation
module by extending the OppRoutingProtocol.

i

controller

opproutifgprotocol wnic[numRadios]

navigator energymanager notificationboard

Figure 1. Opportunistic Routing Node Structure in OMNeT++ Simulator.

B. OppRoutingProtocol Module

Opportunistic routing differs from the traditional ad hoc
routing in that it exploits the broadcast nature of the wireless
medium by deferring the route selection decision to the
receiver side. Clearly, this feature copes well with the unre-
liable and unpredictable characters of wireless transmission.
However, opportunistic routing requires coordination among
the potential forwarding nodes, which means additional
overhead. The major challenge in designing opportunistic
routing is to maximize the routing progress of each individ-
ual packet transmission and keep the additional coordination
overhead as low as possible.

As our focus is mainly on the opportunistic routing
protocols, it makes sense to analyze the kernel of the most
representative protocols and perceive some fundamental
structures. By interpreting the five distinguished opportunis-
tic routing protocols presented in Chapter 2 and references,
we describe a general picture of opportunistic routing and
decompose it into four phases. We think these should be the
key features of an efficient opportunistic routing algorithm.
The four phases are:

e Forwarder Candidates Selection

o Forwarder Selection

o Forwarder Role Change Notification
o Collision Avoidance

Forwarder Candidates Selection is the first procedure
of the routing protocol. The sending node utilizes the
peer-discovery service provided by the WNIC module. It
periodically polls the node factory to check the nodes inside
its range. Certain attributes (e.g., geographic region or nodes
movement tendency) are adopted additionally to build the set
of potential next-hop nodes. The design of these attributes
should take into account that only the nodes that are closer to
the destination or that have the movement towards it, should
be the candidates. The frequency of the polling operation
should be correlated with the nodes’ speed and the rapid
change of the network topology.

Forwarder Selection defines rules how the actual for-
warding node is picked from the candidates set. Each node
inside the candidates set will be added into a peer collection
and marked as unreachable once the WNIC reports its un-
reachability. Unreachable peers will remain in the collection
for a period, which enables the re-acquisition of nodes that
are temporarily unreachable in an intermittent environment.

One design proposal is that the sending node periodi-
cally broadcasts a message containing its current available
channels, transmission bit-rate, movement statistical infor-
mation. Candidates that successfully receive these packets
will consider the status of these information, its remaining
battery lifespan, and the pre-calculated Expected Transmis-
sion Count(ETX)/Expected Any-path Transmission(EAX)
metrics to the destination. A comprehensive utility function
will be executed, based on the combination of the ETX/EAX
value and the relationships between the received and local
data. Each candidate will return an utility value and all the
successfully received candidates will share its value with
others. The candidate with the highest value will be the one
winning the election process.

Forwarder Role Change Notification enables the win-
ning forwarder to announce its new role and responsibility
to surrounding nodes, to make them aware of the selection
winner and stop the competition. This procedure is important
because if it is well-designed, the duplicated transmission
could be avoided. Otherwise duplicated transmission leads
to retransmissions, which means additional overhead. A
possible implementation could be that the selected forwarder
broadcasts a “StartToSend(STS)” packet to indicate the start
of data transmission, including the adopted channel usage
and bit-rate. The data transmission will start if no more
messages are received within an interval after the STS. In
the framework, we implement this module as a broadcast
function. The data transmission to a peer will be aborted
whenever the node is detected as lost by the WNIC module.

Collision Avoidance concerns how the nodes, which
wish to access the wireless medium at the same time and
contend for the channel. A subsequent contention resolution
mechanism must be defined. Contention could happen in
two cases: the first case is imperfect design of the Forwarder
Role Change Notification process, which leads to duplicated
transmission; the second case is when two or more nodes
want to send packets at the same time, which could result
in packet collisions. To avoid this, multiple channel access
mechanisms could be applied, such as CSMA-CA.

These four procedures are defined as virtual functions,
which just have the general interfaces with necessary data
structures. Concrete routing modules need to be created for
respective protocol by extending the OppRoutingProtocol
module. The four virtual functions are defined as following:

o candidateSelection(Src, Dst): This function returns a
vector of nodes by selecting the candidate nodes as the
potential relays to a given destination(Dst), from the
neighbors of a given node(Src) based on specific rules.

o forwarderSelection(HostVector): This function returns
a forwarder from the candidates set(HostVector).

o roleChangeNotification(Host): This function broad-
casts a message notifying the Host’s surrounding nodes
about its new role. The receiving nodes will stop
competing for the channel access.

o collisionAvoidancne(): This function avoids that two
nodes attend to access the medium at the same time.

Besides the core virtual functions, there are some other
common functionalities, which are fundamentals for most
opportunistic routing protocols. The framework also includes
the implementation of these shared functions. Although there
might be differences for each protocol(some protocols may
not explicitly include all the four procedures), we believe
that most of the protocols could be easily adapted to use
the common mechanisms provided by the framework. These
common utility tasks include:

o Neighbor Discovery & Management
o Packet Broadcasting

o Packet Buffer Management

e Transmission Reliability Control

o Time Scheduling

o Node Interface Management

o ETX/EAX Calculation

Neighbor Discovery & Management: Nodes need to
detect neighbors that are physically reachable in one hop.
Neighbor detection is essential for opportunistic routing
because a well-designed neighbor detection mechanism acts
as a basis for forwarder selection. Neighbor management
service of INETMANET is adopted to control neighbors.

Packet Broadcasting: In almost all routing protocols,
nodes have to distribute information throughout the network.
An adapted implementation from OMNeT++/INETMANET
is provided.

Packet Buffer Management is another compulsory op-
eration for nodes. Nodes need to store received packets
and do other manipulations. Potential data structures and
corresponding operations are defined inside the framework
to fulfill this task.

Transmission Reliability Control: In the simulation, the
delivery of a packet from one node to another has a pre-
determined probability. OMNeT++ assigns three parameters
to each link: propagation delay, bit error rate and data rate.
INETMANET includes numbers of channel propagation
models, which provides a detailed simulation basis for
transmission control. The INETMANET link layer imple-
mentation is adapted to control the packet transmission.

Time Scheduling plays a vital role in opportunistic
routing, because nodes need to schedule their transmission
based on the information they observe from the Transmission
Reliability Control. An accurate time scheduling mechanism
could avoid collision.

Node Interface Management: Nodes inside the network
may be equipped with more than one physical antennas
to increase the network throughput. The management for
multiple interfaces is necessary for benefiting from more
antennas, i.e., to support multichannel communication. This
function is to be implemented in the future.

ETX/EAX Calculation: Most of the “Candidate Selec-

Table I
BASIC DATA STRUCTURES

Data Structure

Implementation

Function

Packet Message

typedef struct packet

Packet Format

Packet
std:list (Packet) Stores received
Packet Buffer PacketQueue packets

Host Node Entry

typedef struct
HostEntryExtendedExOR

Node structure
type definition from

HostEntryExtended ChannelControlExtended

std::vector Vector of pointers to the

Host Node (HostRe f Extended) HostEntryExtended, stores
Entry Vector HostRefExtended Vector the pointers to nodes

tion” processes of the opportunistic routing protocols are
based on the same principle that the source node pre-
determines a forwarder priority list based on the estimates
of the path loss rates according to ETX/EAX value. This
function is implemented to calculate the ETX/EAX of each
node pair.

C. Message Format & Data Structure

The message format is also an important issue of the
OMNeT++ simulation, because it triggers the basic event
handlers. In our framework, implementation of the message
format follows the C++ language structures struct, such
that all the fields could be easily manipulated. A general
message structure of the opportunistic routing protocols is
defined in the OppRoutingProtocol simple module, which
includes message id, source/destination node id, etc. One
important composition would be a set consisting of ranked
nodes, which are selected as the candidate forwarders based
on certain metrics. We implement this as a vector container
from C++ Standard Template Library(STL) libraries using
C++ generic programming. Because this will facilitate the
operation of a user-defined data type according to interested
metrics, e.g., prioritize nodes according to the ETX value.
Some additional data structures are listed in the Table I.

IV. EVALUATION STRATEGY

To illustrate the usefulness of the framework, we now
demonstrate its use in building the well-known ExOR rout-
ing protocol, show the process how to define modules to
accommodate the main procedures of EXOR. Figures 2&3
are the flow charts of source/forwarder node of ExOR
protocol. The defined virtual procedures and implemented
common functionalities could be found embedded to show
their roles (presented as dashed frame).

Demonstration of the ExOR implementation flow charts
evaluates our framework in terms of its configurability
and expressibility. Next we plan to provide a preliminary
evaluation of the overhead of the framework. This will be
based on a performance comparison between an existing
standalone ExOR implementation and the framework-based
ExOR implementation to see the performance loss by mov-
ing from a dedicated to a framework-based implementation.
The evaluation metrics we will use include: forwarding
overhead, end-to-end delay, memory footprint, initialization

1 ETX_Calculation()
[] to create pkt

| Candidate Selection |

v

| Forwarder Selection |

Broadcast_Pkt()

@ Scheduled_Time()
with certain
Transmission_Model()
& Delivery_Probability()

- -
,==" -
S -
-

Figure 2. Flow Chart of Source Node in ExOR.

receive packet

Am | on the
candidates

| Buffer_Pkt() '

First pkt of NO.

certain batch ?

90% of local
batch map full ?

lBuffer Batch Map()I

Calculate
what to forward &
when to forward

Broadcast_Pkt() "
1 @ Scheduled Time() '

Am | the

highest priority ? N with certain .
¥Transmission_Model()x
&]

Source finishes
all pkts of
this batch ?

1 Broadcast_pkt() immediatelly with certain]
:Transmission_ModeI() & RoIe_Change_Notiﬁcation():

Figure 3. Flow Chart of Forwarder Node in EXOR.

time, etc. The gain of the framework to protocol developers
will also be analyzed, e.g., in terms of the number of lines
of code required to implement a protocol.

V. CONCLUSION & FUTURE WORK

The main contribution of the work is an OMNeT++
modeling framework that could be extended to implement
different opportunistic routing schemes. Our framework
provides a straightforward analysis of the most represen-
tative opportunistic routing algorithms. We decouple the
opportunistic routing schemes into four tasks - Forwarder
Candidate Selection, Forwarder Selection, Forwarder Role
Change Notification and Collision Avoidance. Different pro-
tocols should have specific implementations of each phase.
These four functions are defined as virtual functions in

the framework and act as implementation stubs such that
different protocols just override them in the derived function
according to their distributed strategies.

In the future, our short-term goal is to fulfill the frame-
work and finish the existing opportunistic routing protocol
implementations, such as ExXOR and MORE. As a result, we
aim to build an opportunistic routing protocol library. Long-
term goals include developing new opportunistic routing
mechanisms and mobility models by learning from real-
world measurement of specific scenarios (i.e. UAV ad hoc
networks) using the components provided by the framework.

ACKNOWLEDGMENT

The work presented in this paper is partly supported by
the Swiss National Science Foundation under grant number
200021-130211/1.

REFERENCES

[1] A.Varga. The omnet++ discrete event simulation system. Pro-
ceeding of European Simulation Multiconference, June 2001.

[2] T. M.Heissenbutel, T.Braun and M.Walchli. Blr: beacon-less
routing algorithm for mobile ad hoc networks. Computer
Communication Journal, 2004.

[3] S.Biswas and R.Morris. ExOR: Opportunistic routing in
multi-hop wireles networks. Proceedings of ACM SIGCOMM,
Philadelphia, Pennsylvania, August 2005.

[4] S.Chachulski. Trading structure for randomness in wireless
opportunistic routing. Proceeding of ACM SIGCOMM, 2007.

[5] S.Katti and D.Katabi. Symbol-level network coding for wire-
less mesh networks Proceeding of ACM SIGCOMM, Seattle,
WA, USA, August 2008.

[6] E.Rozner and J.Seshadri.
wireless mesh networks.
Reston, VA, USA, 2006.

[7] A.Zubow and M.Kurth. Multi-channel opportunistic routing.
European Wireless, 2007.

[8] Ari Kerédnen and Jorg Ott and Teemu Kérkkdinen. The ONE
Simulator for DTN Protocol Evaluation. SIMUTools '09:
Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, Rome, Italy, 2009.

[9] O.R.Helgason and K.V.Jonsson. Opportunistic Networking in
OMNeT++ SIMUTools ’08: Proceedings of the Ist Interna-
tional Conference on Simulation Tools and Techniques, 2008.

[10] K.VJonsson. A Gateway for Wireless Dissemination of
Delay-Tolerant Content. Master Dissertation, Janurary 2008.

[11] V. Kawadia, Y. Zhang and B. Gupta. System Services for Ad-
Hoc Routing: Architecture, Implementation and Experiences.
MobiSys '03: Proceedings of the Ist international conference
on Mobile systems, applications and services, 2003.

[12] U. Correa, C. Montez, V. Mazzola, M. A. R Dantas. Frad-
Hoc: A Framework to Routing AD-Hoc Networks. [IFIP
International Federation for Information Processing, Vol. 212,
page 71-82, 2006.

[13] A. Ariza-Quintana, E. Casilari and A. Trivio Cabrera. Imple-
mentation of MANET routing protocols on OMNeT++. SIMU-
Tools *08: Proceedings of the 1st International Conference on
Simulation Tools and Techniques, 2008.

[14] N. Gazoni, V. Angelakis, V. A. Siris and B. Raffaele. A
framework for opportunistic routing in multi-hop wireless net-
works. PE-WASUN ’10: Proceedings of the 7th ACM workshop
on Performance evaluation of wireless ad hoc, sensor, and
ubiquitous networks, 2010.

Simple opportunistic routing for
Wireless Mesh Networks, 48-54,

