
The Effects of Threading, Infection Time, and
Multiple-Attacker Collaboration on Malware

Propagation

Yu Zhang, Bharat Bhargava∗
Department of Computer Sciences

Purdue University

West Lafayette, USA

Email: zhangyu, bb@cs.purdue.edu

Philipp Hurni
Institute of Computer Science and Applied Mathematics

University of Bern

CH-3012 Bern, Switzerland

Email: hurni@iam.unibe.ch

Abstract—Self-propagating malware spreads over the network
quickly and automatically. Malware propagation should be mod-
eled accurately for fast detection and defense. State-of-the-art
malware propagation models fail to consider a number of issues.
First, the malware can scan a host for multiple vulnerabilities
on multiple ports. Second, the vulnerability scanning can be
done by multiple threads concurrently. Third, the exploitation
of vulnerabilities and the infection of vulnerable hosts cannot be
done instantly. Fourth, the malware propagation can start from
multiple places in the network rather than a single release point.
Finally, the malware copies can collaborate with each other to
cause much more damage.

Little was done to understand the effects of Multi-port scan-
ning, Multi-threading, Infection time, Multiple starting points,
and Collaboration (MMIMC) on malware propagation. This
research quantitatively measures the effects of MMIMC on
infected hosts. We employ the Fibonacci Number Sequence (FNS)
to model the effects of infection time. We derive the Shift
Property, which illustrates that different malware initializations
can be represented by shifting their propagations on the time
axis. We prove the Linear Property, which shows that the effects
of multiple-attacker collaboration can be represented by linear
combinations of individual attacks. Experimental results show
that the above issues significantly affect malware propagation
and verify our analysis.

Index Terms—Malware, Thread, Collaboration, Propagation,
Network Security.

I. INTRODUCTION

Malware is software designed to compromise computer

systems. Examples include Logic Bombs, Viruses, Worms, and

Botnets [2], [7]. Malware can be classified into two categories:

self-propagating malware and non-self-propagating malware.

Self-propagating malware poses a serious threat due to its

ability to propagate through networks to infect a large number

of hosts. E.g., worms have infected thousands of computers

[1], [10], [11], [12]. Malware replicates itself and intrudes

vulnerable hosts without human intervention. Malware can

∗The authors would like to thank Leszek Lilien at West Michigan University
for his contributions to this work. The authors would like to thank Ziyu Zhang
at Stanford University and Yi Mao at Georgia Institute of Technology for
helpful discussions. This work was supported in part by grants from NSF-
0242840 and NSF-0219110.

carry malicious payloads that can be released upon infection of

the vulnerable hosts. Malware can cause significant damages,

including consumption of network bandwidth, destructions of

infected hosts, and leakage of private information, such as

credit card numbers, etc.

Typical Malware propagation consists of a number of steps:

1. Reconnaissance: search vulnerable victim hosts by perform-

ing port scans;

2. Infection: transmit malicious payloads, exploit vulnerabili-

ties on victim hosts to gain control;

3. Discovery: perform information-gathering activities on vic-

tim hosts, e.g., steal passwords and personal files;

4. Destruction: perform destructive activities on victim hosts,

e.g., re-format their hard disks.

After the Infection step is done, the malware is ready to prop-

agate from the newly infected host to another one by repeating

the whole process. Note that not all malware propagation

follow all of the above steps.

To perform a thorough port scan during reconnaissance,

malware sends probe packets to each port on each victim

host, and analyzes their responses. In a hypothetical scenario,

a packet sent to FTP port 21 on a victim host triggers a reply

packet, which is then analyzed by malware to infer detailed

information, such as the type and version of the operating

system, about the victim host. Based on this information,

a well-tailored attack can be launched (e.g., exploiting the

vulnerability that exists on the particular operating system).

Malware has to perform port scans for a huge number of

IP address/port number combinations. In IPv4 networks, the

size of the IP address space is 232, and the size of the port

number space is 216. Hence, the size of the search space for

the IP address/port number combination is 248. While the large

size of the search space renders port scanning a daunting task,

malware authors have employed sophisticated techniques to

perform fast scanning. E.g., many real-world worms search

vulnerabilities only on a particular port, which effectively

reduces the size of the search space to 232 [9].

It is clear that malware with different scanning and

propagation strategies has different propagation time.

2009 28th IEEE International Symposium on Reliable Distributed Systems

1060-9857/09 $26.00 © 2009 IEEE

DOI 10.1109/SRDS.2009.17

73

A number of models have been proposed to characterize

propagation of worms, including the state-of-the-art Analytical

Active Worm Propagation (AAWP) model [1], and the

epidemiological two-factor model [10]. Existing malware

propagation models fail to consider a number of issues,

including the following:

a) That malware can scan a host for multiple vulnerabilities:

E.g., if malware fails to find any vulnerability on the FTP

port 21 of a host, it can look for vulnerabilities on other ports,

e.g., the DNS port 53. In case that malware discovers multiple

vulnerabilities, it is able to exploit the most promising one

according to some criteria (e.g., infection time).

b) That scanning can be done by multiple threads: Multi-

threaded malware can scan and infect multiple machines

concurrently. Moreover, since vulnerabilities exist on many

ports, multi-threaded scanning of multiple ports on one host is

an effective way to speed up port scans. Most existing models,

including the AAWP model, fail to consider that malware may

spawn a large number of threads to scan concurrently.

c) That exploitation of vulnerabilities and infection of victim
hosts are not done instantly: It takes time for malware to

transmit its payload, exploit a vulnerability, and subvert the

defense system on a victim host. A newly found vulnerable

host can neither be infected immediately nor be ready right

away to infect other hosts. Although the AAWP model claims

to incorporate the infection time, it simply makes the clock

ticks larger, without calculating the ratio of scan time to in-

fection/propagation time. In AAWP, all infected hosts perform

scanning activities at the next time tick (denote it as t and

time tick length as L). Therefore, newly infected hosts that

were infected between time (t, t + L) are treated equally: hosts

infected near time t perform the same number of scans as those

infected near time t + L. Such equal treatment is imprecise. It

should be noted that port scans can be done much faster than

infections. In the extreme case, Figure 1(c) in [1] assumes that

the infection time could be as long as 60 seconds, while the

scanning time for one IP/port combination is usually shorter

than 0.1 second [16].

Theorem 1 in AAWP is proven by induction on the number

of scans. If the scan is successful, it brings in a newly infected

host. Hence, each induction step adds at most one host. At the

next time tick, the number of infected hosts increases by at

most one. AAWP assumes that the scans are performed step by

step, i.e., in each step the scanning of one worm is performed,

and the number of infected hosts is updated. The assumption

differs from most real-world scenarios. For example, the

famous NMAP scanner [16] is capable of scanning many

hosts in parallel by dividing targets into multiple groups, and

scanning an entire group at a time.

d) That malware propagation can start from multiple places
rather than a single starting point, and infected hosts can
collaborate to increase damage (e.g., the Botnet [7] and
the orchestrated attacks on Estonia [21]): Multiple attackers

can simultaneously release the same malware at multiple

places. Researchers suspect that the Witty Worm [2] was

released from multiple IP addresses. Malware can be released

in different geographical regions as well, e.g., Europe, Asia,

and North America, to significantly expedite its propagation.

Multiple starting points are not well-represented by existing

models.

In summary, little was done to understand the effects of

Multi-port scanning, Multi-threading, Infection time, Multiple

starting points, and Collaboration (MMIMC) on malware prop-

agation. In this paper, we quantitatively measure the effects of

MMIMC on infected hosts. We employ the Fibonacci Number

Sequence (FNS) to model the effects of infection time. The

extended model can explain the impact of threading, infection

time, and multiple-attacker collaboration, as well as the effects

of hitlist size, birth rate, and patching rate on malware prop-

agation. We derive the Shift Property, which illustrates that

different malware initializations can be represented by shifting

their propagations on the time axis. We prove the Linear

Property, which shows that the effects of multiple-attacker

collaboration can be represented by linear combination of

individual attacks. Experimental results show that the above

issues significantly affect malware propagation and verify our

analysis. To our knowledge, this is the first paper that provides

quantitative analysis and experimental results on the effects of

MMIMC.

The rest of the paper is organized as follows. In Section

II, we discuss related work. In Section III, we quantitatively

measure the effects of MMIMC on malware propagation. In

Section IV, we conduct experiments to verify our theoretical

analysis. Section V concludes this paper.

II. RELATED WORK

Scan Strategy. Over the years, researchers have proposed

various scanning algorithms for malware, including: (a) naive
random scanning, in which malware chooses a random address

niformly from the IP address space [1]; (b) localized scanning,

in which malware scans a local IP address with a high proba-

bility p and scans a random address with a low probability (1-

p) each time [19]; (c) importance scanning, in which malware

assumes that the vulnerable hosts are unevenly distributed

and such distributions are obtainable [6]; (d) self-learning
scanning, in which malware estimates the distribution of the

vulnerable hosts [18]; (e) hit-list scanning, in which malware

uses an existing list. e.g., BGP routing table list, social network

list, etc., to look for vulnerable hosts [12]; (f) permutation
scanning, in which malware can determine whether a host is

already infected and changes scan targets [12]; (g) sampling
scanning, in which malware samples a target network before

spreading to it [3]; and (h) passive scanning, in which malware

analyzes the network traffic passively.

Malware Propagation. Wagner et al. [15] present charac-

teristics of worms, including protocol, size of the payload, and

scanning strategy, etc. Zou et al. [9] analyze the performances

of different propagation strategies. Voyiatzis et al. [14] de-

scribe a class of worms that target network components such

as routers. Vojnovic et al. [3] discuss how to minimize the

required number of scans to infect hosts. Storm Worm [4],

74

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Explanation
b the number of IP addresses on the blacklist of the malware
c the number of ports scanned for each IP address
w the number of contagious hosts that can infect other hosts
q the probability that a given IP address/port combination will

be discovered by at least one infected host

d
destruction rate: the number of destructed hosts over

the number of infected hosts
k the number of threads in the malware

p
patching rate: the rate at which

the vulnerable machines are patched

r
birth rate: the rate at which

the new vulnerable hosts joins the network

v
the number of vulnerable (excluding infected)
host/port combinations

V
the number of vulnerable (including infected)
host/port combinations

PT Propagation Time
IT Infection Time

[5] uses the Distributed Hash Table (DHT) protocol based

on Kademlia [17] to control infected nodes. Chen et al. [1]

propose the Analytical Active Worm Propagation (AAWP)

model. Zou et al. [10] propose the epidemiological two-factor

model. Dagon et al. [23] discuss the taxonomy of Botnets.

III. ANALYSIS OF MMIMC AND THE GENERIC
FIBONACCI MALWARE PROPAGATION (GFMP) MODEL

In this section, we extend the existing malware propagation

models to address the issues of MMIMC.

A. Preliminaries

1) Probability on Port Scanning: We assume that during

the reconnaissance step malware performs port scanning to

discover vulnerable ports on the target host.

Malware can scan a part of all IP addresses. For instance,

reverse engineering [19], [11] shows that Code Red I and

II never scan local (127.0.0.0/8) and multicast (224.0.0.0/8)

addresses. This is overlooked by researchers (e.g., in [10] the

authors assume that CodeRed scans all IP addresses with equal

probability). Assume that IPv4 is in use and malware puts b IP

addresses on its blacklist, i.e., it never scans those IP addresses.

Thus, the number of IP addresses malware scans is (232 - b).

Assume that malware scans c ports for each IP address. The

size of the search space for malware is c(232 - b).

While real-world scanners are mostly multi-threaded [16],

existing malware propagation models overlook multi-threading

issues. We assume that malware employs multi-threaded pro-

gramming and scans multiple address/port combinations con-

currently. If there are k threads for each malware scanning

module, we assume that each infected host can scan k ad-

dress/port combinations simultaneously.

We need to calculate how many new vulnerable IP ad-

dress/port combinations are discovered in each time tick. Note

that vulnerability discovery is not equivalent to successful

infection. After the vulnerability discovery, malware needs

time to propagate to victim hosts and exploit the vulnerability.

Fig. 1. The malware propagation tree.

Assume that there are vi uninfected vulnerable IP address/port

combinations (multiple ports on one host can be infected) at

time tick i (time steps are equally sized). Given that each

infected host can perform k scans simultaneously, we can

calculate how many out of those vi combinations can be

discovered by all infected hosts.
Denote the number of newly infected hosts as ni, the

number of contagious hosts as w, and the probability that a

given IP address/port combination is discovered by at least

one infected host as q. Note q = k
c(232−b) . For a given IP

address/port combination, we have:
P(discovered by at least one infected host at time tick i)

= 1− P (not discovered by any of w infected hosts)
= 1− P (not discovered by one infected host)w

= 1− (1− P (discovered by one infected host))w

= 1− (1− q)w

Hence,

ni = [1− (1− q)w]vi (1)

2) The Propagation Tree of Self-Propagating Malware:
Assume that malware propagation starts from a single node.

As shown in Fig. 1, the propagation tree of malware PropTr

consists of: (a) a root node r: the node where the malware

executor releases it; (b) intermediate nodes: nodes that caused

direct infections of one or more nodes; and (c) leaf nodes:

nodes that caused no direct infections of other nodes.
Formally, we define:
(1) Source (Parent) Function S, such that: S(i) = j, iff node

i, j ∈ PropTr, and j is a parent of i in the tree PropTr. As

shown in Fig. 1, if S(i) = j, node i is the child of node j.
(2) Malware Propagation Tree PropTr, a directed tree in

which each node is either: (a) root node r, where � node j

∈ PropTr such that j �= r and S(r) = j; (b) intermediate node
i, where ∃ node j ∈ PropTr such that j �= i and S(j) = i; or

(c) leaf node e, where � node j ∈ PropTr such that j �= e and

S(j) = e, and ∃ node k ∈ PropTr such that k �= e and S(e) =

k.

75

3) The Propagation Forest of Self-propagating Malware:
If malware is released at k sources, ri, i ∈ [1, . . ., k], we

can generate one propagation tree for the malware propaga-

tion rooted at each source node. The propagation forest of

self-propagating malware Fprop is the disjoint union of the

propagation trees rooted at nodes ri, i ∈ [1, . . ., k], formally:

Fprop =
k⋃

i=1

PropT ri
(2)

4) The Infection Time and Propagation Time: As shown

in Fig. 1, there is a short delay between the intrusion of

the malware and its propagation to other hosts. Such delay

includes the time spent on the vulnerability exploitation and

subversion of the victim host. We denote the delay as infection
time.

Intuitively, we define the Infection Time (IT) as the time

interval between the start of the infection on a particular host

(i.e., the time when the host was initially intruded) and the

start of propagation on the same host (i.e., the time when the

same host was starting to infect other hosts). Formally,

IT = TStartPropagation − TStartInfection (3)

Actual infection times may vary and follow particular proba-

bility distributions.

We could define the Propagation Time (PT) between

two hosts as the time interval between the infection of a

particular host (denote it as s) and the successful infection of

a subsequent target host (denote it as T(s)) that was caused

by this particular host. Formally,

PT (s, T (s)) = TInfection(T (s)) − TInfection(s) (4)

For a host m that was never intruded or infected successfully,

the time of infection (TInfection(m))) is defined as +∞ (infi-

nite).

We can measure the propagation time for all infected hosts

and collect statistics about them. E.g., we can calculate the

average propagation time. There is one problem with definition

(3): it works only if there is at least one subsequent successful

infection from the original host (s). If such infection was

unsuccessful (e.g., if the target host was invulnerable) or there

was no subsequent infection attempt (e.g., if malware on the

host was quarantined by administrators) the propagation time

is +∞ (infinite).

Alternatively, we can calculate the propagation time from

the infected hosts, under the observation that each infected

host must be infected by some source host. Hence, we define

the Propagation Time (PT) between a host and its infector

as: the time interval between the successful infection of a

particular host (denote it as t) and the infection of the host

that infected t [8] (denote it as S(t)). Formally,

PT (S(t), t) = TInfection(t) − TInfection(S(t)) (5)

B. Generic Fibonacci Malware Propagation (GFMP) Model

We employ Fibonacci Number Sequence (FNS) to model

infection time. Recall that in the Fibonacci rabbit problem,

newly-born rabbits cannot give birth to baby rabbits immedi-

ately. Instead, they need some time to mature, which is rem-

iniscent of the infection/propagation time problem discussed

above: a captured host cannot scan and infect other hosts until

its infection matures, i.e., until it is completely infected.

1) Recursive Equation for the Malware Propagation
Denote the number of all vulnerable hosts in the beginning

as V and the number of infected hosts as Ij , where j denotes

the time tick. Denote the length of the time slice between time

ticks as L (one time slice could represent one second). Assume

that the administrators may patch the vulnerable hosts. Assume

that the propagation time is two time slices for all infections.

Hence, the newly infected hosts intruded at time t are not able

to infect new hosts at time t + L, but will be able to infect new

hosts at time t + 2L. At time tick j + 2, there are Ij infected

hosts that are contagious and can infect other hosts. Formally:

w = Ij (6)

At time tick j + 1, the number of uninfected vulnerable

hosts is the number of all unpatched vulnerable (including

infected and newly born) hosts minus the number of infected

vulnerable hosts. Assume that malware can carry destructive

payloads (e.g., programs that can re-format the hard drive). In

this case, the destructed hosts are wiped out and removed from

the vulnerable host list. Note that neither dead (or significantly

damaged) nor newly-born hosts could be patched.

We define destruction rate as the number of destructed hosts

divided by the number of infected hosts, considering that only

infected hosts can be destroyed. Therefore, we calculate the

number of dead hosts by multiplying the destruction rate by

the number of infected hosts, instead of the number of all

vulnerable hosts. We denote the destruction rate of the hosts

as d, the birth rate of the vulnerable hosts (e.g., new vulnerable

hosts that just joined the network) as r, and the patching rate

of infected hosts as p. Formally, the number of hosts that

are vulnerable (including infected and newly-born) and can

be patched at time tick j + 1 is:

vj+1 = (1− p)vj − dIj + rvj = (1− p + r)vj − dIj

This is a recursive equation. We expand the recursion and get:

vj+1 = (1− p + r)j+1v0 −
j∑

k=0

(1− p + r)kdIj−k.

Given that v0 = V, we have:

vj+1 = (1− p + r)j+1V −
j∑

k=0

(1− p + r)kdIj−k (7)

The number of hosts that are vulnerable but not infected is:

v′j+1 = vj+1 − Ij+1 (8)

After one time slice (time tick j + 2), without considering

destruction and patching, the number of infected hosts is the

sum of the number of infected hosts at the previous time tick

(j + 1) and the number of newly infected hosts during the time

slice. The number of infected hosts that died or were patched

during the time slice is

dpj+1 = (d + p)Ij+1 (9)

The number of newly infected hosts is calculated in Section

III-A.

Given (1), (6), (7), (8), (9), we have:

Ij+2

= Ij+1 + nj+1 − dpj+1

= Ij+1 + v′j+1(1− (1− q)Ij)− (d + p)Ij+1

= (1− d− p)Ij+1 + [(1− p + r)j+1V−
j∑

k=0

((1− p + r)kdIj−k)− Ij+1][1− (1− q)Ij]

(10)

Note this recursive growth function applies when there is at

least one vulnerable host.

2) Special Cases
Special cases are as follows:

a) If the birth and patching rates are equal, (10) can be

simplified to:

Ij+2

= (1− d− p)Ij+1+

(V − d

j∑
k=0

Ij−k − Ij+1)[1− (1− q)Ij]
(11)

b) If the birth, destruction, and patching rates are all zero,

(10) can be simplified to:

Ij+2 = Ij+1 + (V − Ij+1)[1− (1− q)Ij] (12)

c) Binomial expansion can be used to expand and simplify

1 - (1 - q)Ij :

1− (1− q)Ij

= 1−
Ij∑

m=0

(
Ij

m

)
(−q)m

(13)

We observe that: k represents the multi-threading level of

the malware propagation scanner, and normally ranges from 1

to 210 or one thousand; V represents the number of vulnerable

hosts(including infected hosts), and is normally smaller than

220 or one million; c represents the number of ports that the

malware is scanning, and c > 0; and b represents the number

of IP addresses that the malware puts on the blacklist. If the

malware puts local and multicast addresses on the blacklist

only, 232 - b ≈ 232. Hence, qV = kV
c(232−b) < 210×220

232 = 1
4 .

Note that these are conservative estimations since normally k
is much smaller than 210 and V is smaller than 220. Since the

number of infected hosts cannot be larger than the number of

all vulnerable hosts, i.e., Ij ≤ V, we conclude that qIj is small.

Therefore, we can safely discard the high order elements in

Equation 13. We can rewrite Equation (12) as:

Ij+2 = Ij+1 + (V − Ij+1)[1− (1− q)Ij]

= Ij+1 + (V − Ij+1)[1−
1∑

m=0

(
Ij

m

)
(−q)m]

= Ij+1 + (V − Ij+1)
(

Ij

1

)
(q)

= Ij+1 + qIj(V − Ij+1)
= Ij+1 + qIjV − qIjIj+1

During the initial phase of the spread of the malware,
Ij+1

V
is a small number, so we can safely throw away −qIjIj+1.

Therefore:

Ij+2 = Ij+1 + qV Ij (14)

Equation 14 suggests that the initial spread of the malware

approximately follows the Generic Lucas Number Sequence

(LNS) [20] with α = 1 and β = -qV :

Ij =

⎧⎪⎨
⎪⎩

x if j = 0;

y if j = 1;

Ij−1 − (−qV)Ij−2 if j > 1.

(15)

d) We now discuss the effects of different lengths of the

propagation time. Equation 14 holds when the propagation

time is 2L (twice as much as the length of the unit time slice).

Generally, if propagation time is eL, where e is an integer, we

have:

Ij+2 = Ij+1 + qV Ij+2−e, where j + 2 > e (16)

We now have the equation that quantitatively measure the

effects of propagation time. The equation shows that the longer

propagation time is, the slower the malware propagates, which

follows the intuition that longer propagation time hampers

malicious activities of newly infected hosts.

C. Properties of the GFMP Model

We use the GFMP model to study the issues of threading,

infection time, multiple starting points, and collaborations.

Due to space limitations, we omit the discussion of properties

of FNS and use them directly. Interested readers are referred

to [13] for details.

1) Multi-threading and the Closed-Form Expression: The

closed-form expression for the number of infected hosts at

time tick j, when x = 0 and y = 1, is:

Ij =
φj

θ
, where θ =

√
1 + 4qV and φ =

1 + θ

2

=
[
√

c(232 − b) +
√

c(232 − b) + 4kV]j

2
√

c(232 − b) + 4kV [2
√

c(232 − b)]j−1

Note that the malware propagation stops when all vulnerable

hosts that can be infected are infected. Hence, during the

77

propagation Ij ≤ V. Hence, we can rewrite Ij as:

Ij =

⎧⎪⎪⎨
⎪⎪⎩

λ, if λ ≤ V;

V, if λ > V.

(λ = [
√

c(232−b)+
√

c(232−b)+4kV]j

2
√

c(232−b)+4kV [2
√

c(232−b)]j−1
)

(17)

In Equation 17, k denotes the number of active threads in the

malware scanner. As k increases, the infection rate increases.

However, note that multi-threaded programs can easily gen-

erate huge network traffic by sending out a large number of

packets. While context switching for threads are smaller than

those of processes, the costs increase as k increases. Real-

world multi-threaded malware normally employs 10 - 100

threads. Equation 17 was derived from Equation 14, where

we assume that the number of previously infected hosts is

much smaller than the number of all vulnerable hosts (
Ij−1

V

is small), and dropped − k
c(232−b)IjIj+1. Hence, Equation

(17) grows faster than actual malware propagation when the

number of infected hosts is large. Experimental results that

support Equation 17 are discussed in Section IV.

2) Sophisticated Scanning and the Shift Property: In

Section III-C1, we derived the closed-form expression when

malware employs multi-threaded random scanning, and the

initial values of x and y are 0 and 1, respectively. However,

malware can employ more sophisticated scanning techniques,

such as a combination of scanning strategies. Malware can use

hitlist scanning to infect a large number of pre-selected vul-

nerable hosts [12] before performing regular random scanning

on newly infected hosts. Our extended model represents such

scanning strategies by different initializations of x and y. E.g.,

if the size of the hitlist is h, we assume that at time tick 1

the number of infected hosts is h (the original release point of

malware) instead of 1, i.e., x = 0 and y = h.

According to the Shift Property of FNS, The Generic LNS

sequence determined by Equation 17 with initial values x and

y can be calculated as:

GIx,y,j = I
[j+

log(yφ+x)
log φ −1]

(18)

When x = 0 and y = h, we have:

GI0,h,j = I
[j+

log(hφ)
log φ −1]

(19)

Hence, the number of infected hosts of the malware with a

hitlist of size h and the combined scanning strategy at time

j can be represented by the number of infected hosts of the

original random-scanning malware at time (j + s), where s is

the shifting number
log(hφ)
log φ − 1.

Furthermore, according to properties of the FNS,

GIx,y,j = xIj−1 + yIj

Hence, the propagation of malware employing the combined

hitlist and random scanning is the linear combination of two

propagations of malware employing random scanning only.

When x = 0 and y = h, we have:

GI0,h,j = hIj (20)

We call h the linear Fibonacci Coefficient (FC) of the linear

combination.

3) Multiple Starting Points, Collaborative Attacks and
the Linear Property: Malware propagation can start from

multiple places in the network rather than from a single

point, and infected hosts can collaborate with each other to

cause much more damage. E.g., the coordinated Botnet zombie

nodes can collaborate to launch DoS attacks [7], and the well-

orchestrated collaborative attacks on Estonia caused large-

scale disruptions [21].

We consider the representation of the following attacks:

Case 1. There are m uncoordinated attackers who release

the same copy of malware at m places simultaneously. We

assume that malware employs the localized random scanning

strategy. We assume that the search spaces of attackers are

independent (e.g., attackers divide the whole IP address space

equally into m parts and each attacker will be responsible for

one part). For the initializations, we assume that x = 0 and y =

1 for all attackers. According to Equation 15, the propagation

of malware released by all attackers can be represented as

I0,1,j because their initial values and β coefficients are the

same. Note that |β| = kV

c(232
m −b)

now since the search space

for each attacker is now reduced to 232

m . Recall that we have

|β| < 1
4 . As discussed in Section III-B, if we assume that

V = 220 and b = 0, we have kV

c(232
m −b)

= mk
212c < 1

4 . Hence,

mk
c < 210, which means that the product of the number of

threads per malware and the number of attackers divided by

the number of scanned ports is smaller than 1024, if there are

one million vulnerable hosts. We assume that this condition

holds and denote the propagation of the whole collaborative

attack as ITOTALxtotal,ytotal,j .

According to the Linear Property of the FNS, we have:

ITOTALxtotal,ytotal,j =
m−1∑
n=0

I0,1,j

= mI0,1,j

= I0,m,j

Hence, the number of infected hosts of m uncoordinated

attacks that perform localized scanning is equivalent to that

of the single attack released at one point with initial values

xtotal = 0, and ytotal = m.

Case 2. There are still m collaborative attackers releasing

malware. We assume that malware employs the sophisticated

scanning strategy (but each malware copy shares the same

search space) and malware at different hosts can communicate

with each other to avoid duplicate infection attempts. Note

we do not assume that infected hosts can avoid duplicate

scanning (in which multiple attackers can be modeled as

one attacker with a huge number of threads and minimal

thread maintenance costs). We assume that initial values of

the propagation of the malware released by Attacker An are

xn and yn (n∈[0, . . ., m)). We still denote the propagation of

the whole collaborative attack as ITOTALxtotal,ytotal,j .

78

According to Linear Property of the FNS, we have:

ITOTALxtotal,ytotal,j =
m−1∑
n=0

Ixn,yn,j

= I∑1
n=0 xn,

∑1
n=0 yn,j +

m−1∑
n=2

Ixn,yn,j

= . . .

= I∑ m−1
n=0 xn,

∑ m−1
n=0 yn,j

(21)

Hence, the power of the m collaborative attacks is equivalent to

the single attack released at one point with initial values xtotal

=
∑m−1

n=0 xn, and ytotal =
∑m−1

n=0 yn. Equation 21 quantifies

the power of collaborative attacks, and grows much faster than

Equation 15.

IV. EXPERIMENTS

In this section, we present the experimental results on

the impact of threading, infection time, and multiple-attacker

collaboration, as well as the effects of hitlist size, birth rate,

and patching rate on malware propagation. We have conducted

the experiments on a network that consists of a Pentium

4 workstation and virtual machines. We simulate the worm

propagation and use one machine to simulate multiple victim

hosts. We implemented the malware propagation model in

C++. Without loss of generality, in all the experiments, we

set V (the number of all vulnerable hosts) to 1,000,000, c
(the number of ports the malware scans for one host) to 1,

and b (the number of IP addresses that the malware does not

scan) to the size of local and multicast address space, which

is approximately 225.

A. Verification of the GFMP model: the Shift Property

We perform experiments to verify our theoretical GFMP

model before employing it to study the effects of other

parameters. In particular, we want to show the Shift Property

discussed in Section III-C2. In this experiment, we set k to

100, d to 0, p to 0.0002, and r to 0.0002.

From Equation 20, GI0,h,j = hIj , the number of infected

hosts with hitlist size h divided by the number of infected hosts

with hitlist size 1 is h. Hence, if sizes of the hitlists are 2, 100,

and 200, the quotients are 2, 100, and 200, respectively. Note

that the number of infected hosts with hitlist size 200 is 200
100=2

times of the number of infected hosts with hitlist size 100.

Fig. 2 shows the results on the propagation with hitlist sizes

1, 2, 100, and 200. Note that numbers of infected hosts for

hitlist sizes 1 and 2 are enlarged 100 times. The results confirm

our theoretical analysis, and verify the Shift Property. For

instance, numbers of infected hosts with hitlist size 100 (or

200) are essentially coincident with the numbers of infected

hosts (enlarged 100 times) with hitlist size 1 (or 2). Numbers

of infected hosts with hitlist size 200 are approximately twice

as many as those with hitlist size 100.

According to Equation 19, GI0,h,j = I
[j+

log(hφ)
log φ −1]

. There-

fore, we can compute the number of shifts required to calculate

Fig. 2. The propagation of hitlist size 100 and 200, and 100 times of hitlist
sizes 1 and 2.

Fig. 3. The propagation of hitlist size 100 and 200, and 100 times of hitlist
sizes 1 and 2.

the number of infected hosts with hitlist size h = 100. Since

k = 100, V = 220, b = 225, c = 1, we have: q = 100∗220

1∗(232−225) =
100

32∗127 = 0.025. Hence, θ =
√

1 + 4q =
√

1.098 = 1.048, and φ

= 1+θ
2 = 1.024 Therefore, the number of shifts is :

log((h)φ)
log φ −1

=
log(100∗φ)

logφ -1 = 2.010
0.010 - 1 = 200.

Fig. 3 confirms our theoretical analysis. The solid line shows

the propagation with hitlist size 1. The dotted line shows the

propagation with hitlist size 100. The dashed line that connects

the solid and dotted lines illustrates the number of required

shifts, which is approximately constant. The projection of the

dashed line on the x-axis shows that the number of shifts is

roughly equal to 200, which verifies our analytical result.

B. The effect of different hitlist sizes on the multi-threaded
propagation

We have conducted experiments to evaluate whether the

hitlist scanning can accelerate the propagation of multi-

threaded malware, and compared the effects of different hitlist

sizes on the malware propagation. In this experiment, we set k
(the number of threads in the malware vulnerability scanner of

the malware) to 100, d (destruction rate) to 0.0001, p (patching

rate) to 0.0002, and r (birth rate) to 0. Note that we set

birth rate to 0 to show the effects of threading (otherwise the

increased number of infected hosts might be caused by newly

joined vulnerable hosts).

79

Fig. 4. The Propagation of the multi-threaded malware with different hitlist
sizes.

Fig. 4 shows the malware propagation with hitlist sizes

50, 100, 1,000, 10,000, and 100,000. We observe that the

propagation speed of the multi-threaded malware increases

as the size of the hitlist increases. Specifically, with hitlists

of sizes 100,000, 10,000, 1,000, 100, and 50, the malware

propagated to 500,000 hosts in 100, 210, 319, 441, and 489

time ticks (seconds), respectively. We conclude that the hitlist

scanning can effectively accelerate the multi-threaded malware

propagation, especially when the size of the hitlist is large.

When the size of the hitlist is 100,000, the malware propaga-

tion reached its peak after 290 time ticks, after which the actual

number of infected hosts decreased. Such decrease is caused

by patching and destruction. In our experiment, destruction

and patching rates are not zero. Moreover, we set the birth

rate to zero so that no new vulnerable hosts will join the

network. Therefore, after the malware propagation reached

its peak, there will be no new vulnerable host to infect, and

patched hosts can no longer be infected. Hence, the number of

infected hosts decreases. Note that different birth and patching

rates can cause different propagation behavior. We discuss our

experimental results on the birth patching rates in Sections

IV-D and IV-E, respectively.

C. The effect of different threading-levels

We conducted experiments to study how the number of

scanning threads affects malware propagation. In this experi-

ment, we set d to 0.0001, p to 0.0002, r to 0, and the hitlist

size to 10000.

Fig. 5 shows the propagation with different threading-levels:

50, 100, and 250. We observe that the propagation speed

increases as the number of threads in the malware increases.

The effects of the multi-threads are significant: when the

number of threads is 50, the malware took almost 700 time

ticks to infect 800,000 hosts, while the same malware took

approximately 300 time ticks with 100 threads and 100 time

ticks with 250 threads to accomplish the same task. Note that

when the number of threads is 250, the malware propagation

reaches its peak in less than 200 time ticks. The number

of infected hosts then decreased because of destruction and

patching, since we assume that a patched host cannot be

infected again in this experiment. The patching rate we set

Fig. 5. The malware propagation with different number of threads.

Fig. 6. The malware propagation with different birth rates.

in this experiment is fairly high (0.0002), which means that

in every time tick two out of one thousand infected hosts are

patched.

D. The effect of different birth rates

We conducted experiments to study the effects of different

birth rates on the malware propagation. In this experiment, we

set d to 0.0005, p to 0.0000, k to 100, and the hitlist size to

10,000. Note we set the patching rate to 0 to focus on the

birth rate.

Fig. 6 shows the propagation with birth rates 0, 0.0001,

0.0002, 0.0003, 0.0004, and 0.0005. Note that when the birth

rate is 0.0005, it is equal to the destruction rate (0.0005). We

observe that the birth rate does matter during the malware

propagation. Specifically, we observe that the number of

infected hosts peaked at 1,050,000 when the birth rate is

0.0004, while the number of the infected hosts peaked at only

917,000 when the birth rate is 0.

Moreover, when the birth rate is 0.0005, which is equal to

the destruction rate, we observe that the number of infected

hosts peaked at 1,080,000. The number of infected hosts

neither increased nor decreased afterwards. Therefore, an

equilibrium was reached: although 5 out of 10,000 hosts are

destructed in each time slice, 5 out of 10,000 hosts are newly

born and infected by the malware in each time slice.

80

Fig. 7. The malware propagation with different patching rates.

E. The effect of different patching rates

We performed experiments to evaluate the effects of dif-

ferent patching rates on the malware propagation. In this

experiment, we set d to 0.0001, r to 0.0003, k to 100, and

the hitlist size to 10,000.

Fig. 7 shows the malware propagation with patching rates

ranging from 0 to 0.010. We observe that patching significantly

reduces the number of infected hosts. Specifically, we observe

that the malware propagation peaked at 900,000 hosts when

there was no patching, and the number of hosts dropped to

approximately 700,000 when the patching rate was just 0.001,

which means that only one out of one thousand hosts is

patched. The malware propagation peaked at only 193,000

hosts when the patching rate was 0.005, and the malware

propagation was significantly reduced and peaked at only

66,000 hosts when the patching rate was 0.01 (one out of

one hundred hosts). Therefore, we conclude that patching can

significantly diminish the malware propagation and should be

employed in all networks.

F. The effect of multiple attackers

We conducted experiments to study the effects of multiple

attackers on the malware propagation. In this experiment, we

set d to 0.005, p to 0.005, r to 0.03, and k to 100. We

first set the hitlist size to 100 and 200, respectively, and

performed the experiments. Then, we simulated the multiple-

attack scenario discussed in Case 2 of Section III-C3: there are

two collaborative attackers, one with hitlist size 100, and the

other with hitlist size 200. The two attackers start at the same

time, and communicate with each other to avoid duplicate

infection attempts.

According to Equation 21, the effects of a collaborative

attack is the sum of the individual attacks. Fig. 8 presents

the experimental results. The dotted line represents the propa-

gation with hitlist size 100. The dashed line represents the

propagation with hitlist size 200. The solid line represents

the propagation with two attackers, one with hitlist size 100

and the other with hitlist size 200. The number of infected

hosts for the collaborative attack is approximately the sum

of the number of hosts infected for the individual attacks with

hitlist sizes 100 and 200 initially, which confirms Equation 21.

Fig. 8. The malware propagation with multiple attackers.

Fig. 9. The malware propagation with different propagation times.

However, we note that after around time tick 300, the sum of

the number of infected hosts for the individual attacks become

larger than the number of infected hosts for the collaborative

attacks, which means:

ITOTALxtotal,ytotal,j < I∑ m−1
n=0 xn,

∑ m−1
n=0 yn,j

The explanation is that the number of infected hosts for

the collaborative attacks increases more slowly due to the

contention between the collaborating attackers. In Case 2 of

Section III-C3, we assume that the collaborative attackers can

avoid duplicate infection attempts, but cannot avoid duplicate

scanning. Hence, some scanning activities in the collabora-

tive attack may collide and such collision can decrease the

efficiency of the collaborative attack.

G. The effect of different propagation times

We performed experiments to evaluate the effects of dif-

ferent propagation times on the malware propagation. In this

experiment, we set d to 0.005, p to 0.005, r to 0.003, k to

100, and the hitlist size to 1,000. Note that these destruction

and patching rates are high. The sum of the two rates is 0.005

+ 0.005 = 0.01. Note that the birth rate is 0.003, which is

smaller than the patching rate.

Fig. 9 shows the malware propagation with different prop-

agation times: 2 time slices, 20 time slices, and 50 time

slices. We observe that as the propagation time increases, the

propagation speed decreases. In 200 time slices, the malware

81

infected 38,416, 13,249, and 5,512 hosts, with the 2-time-slice,

the 20-time-slice, and the 50-time-slice propagation times,

respectively. In 300 time slices, the malware infected 125,980,

39,497, and 13,403 hosts, with the 2-time-slice, the 20-time-

slice, and the 50-time-slice propagation times, respectively.

Furthermore, the malware propagation reached its peak at

time tick 482 with 263,732 infected hosts with the 2-time-

slice propagation time, while the malware propagation with

the 20-time-slice and the 50-time-slice propagation times are

still in the process of trying to infect more nodes. Therefore,

we conclude that the defenders fighting malware should try to

maximize its propagation time.

H. Comparison with existing models

In this subsection, we show that our model is better by

comparing it to existing models. Fig. 1 in [1] shows the

results obtained by the AAWP model. Their experiments

employ one million vulnerable machines, a scanning rate of

100 scans/second, a death rate of 0.001/second, and random

scanning.

The leftmost graph in Fig. 1 in [1] illustrates the effects of

hitlist size. In comparison, our results (Fig. 2, 3, and 4) verify

the important shift property, and measure the impact of multi-

threading and hitlist size on malware propagation. Our results

are more practical since threading is employed by most real-

world malware. The middle graph in Fig. 1 in [1] illustrates the

effects of patching rate. In comparison, our results (Fig. 6 and

7) provide more insights into the effects of patching/birth/death

rates. We incorporate not only patching and death rates in our

studies, but also the birth rate. Our results on the birth rate

(Fig. 6) are significant, especially for wireless and peer-to-peer

networks, in which hosts may join or leave at any time. Our

results show that death rate can cause the number of infected

hosts to decrease over time, which cannot be inferred easily

from Fig. 1 in [1].

The rightmost graph in Fig. 1 in [1] illustrates the impact of

infection time. While their results show that infection times do

not affect malware propagation significantly, our results show

otherwise. Our explanation is that we consider the impact of

threading, infection time, and multiple-attacker collaboration,

as well as the effects of hitlist size, birth rate, and patching

rate on malware propagation. Our results are more intuitive

because modern malware has very high propagation speed and

longer infection time leaves less vulnerable hosts infected.

In all, the comparison shows that our model is more accurate

and complete by considering the issues of MMIMC, and

provides more insights into malware propagation.

V. CONCLUSION

In this paper, we quantitatively study issues of Multi-port

scanning, Multi-threading, Infection time, Multiple starting

points, and Collaboration (MMIMC) in malware propagation.

To our knowledge, there is no previous study on the effects of

MMIMC. We discuss the limitations of current models, and

explain the impact of threading, infection time, and collab-

oration, as well as the effects of hitlist size, birth rate, and

patching rate. We consider the multi-threading issue during

the calculation of probability of successful scans. We model

the infection time and propagation time of the malware by

employing Fibonacci Number Sequence. We derive the Shift

Property and the Linear Property. We theoretically analyze the

effects of the above issues, and perform experiments to verify

the theoretical results.
In Section III, we assume that propagation time is the same

for all infections. In the real world, propagation time for

different infections may vary. If the propagation time is three

time slices, we can apply the Tribonacci Number Sequence

[22] to study the malware propagation. Analysis of effects of

varying propagation times is the subject for future work.

REFERENCES

[1] Z. Chen, L. Gao, and K. Kwiat, Modeling the Spread of Active Worms,
Proc. of the IEEE INFOCOM, Apr. 2003

[2] http://www.caida.org/research/security/witty/, last accessed Jul. 1, 2009
[3] M. Vojnovic, V. Gupta, T. Karagiannis, and C. Gkantsidis, Sampling

Strategies for Epidemic-Style Information Dissemination, Proc. of the
IEEE INFOCOM, Apr. 2008

[4] S. Sarat and A. Terzis, Measuring the Storm Worm Network. Technical
Report 01-10-2007, http://hinrg.cs.jhu.edu/uploads/Main/STORMTR.pdf

[5] C. Kanich, K. Levchenko, and B. Enright, G. M.Voelker and S. Savage,
The Heisenbot Uncertainty Problem: Challenges in Separating Bots from
Chaff, Proc. of the USENIX Workshop on Large-Scale Exploits and
Emergent Threats, San Franciso, CA, Apr. 2008

[6] Z. Chen and C. Ji, Optimal Worm-Scanning Method Using Vulnerable-
Host Distributions International Journal of Security and Networks, Special
Issue on Computer and Network Security, Vol. 2, 2007

[7] R. Vogt, J. Aycock, and M. Jacobson, Army of Botnets, Proc. of the
Network and Distributed System Security Symposium, San Diego, CA,
Feb. 2007

[8] A. Svensson, A note on generation times in epidemic models, Mathemat-
ical Biosciences, Vol. 208, Iss. 1, Jul. 2007

[9] C. Zou, D. Towsley, and W. Gong, On the Performance of Internet Worm
Scanning Strategies, Performance Evaluation, Jul. 2006

[10] C. Zou, W. Gong, and D. Towsley, Code Red Worm Propagation
Modeling and Analysis, Proc. of 9th ACM Conference on Computer and
Communication Security , Washington D.C., Nov. 2002

[11] D. Moore, C. Shannon, and J. Brown, Code-Red: a case study on the
spread and victims of an Internet Worm. In Proc. ACM/USENIX Internet
Measurement Workshop, France, Nov. 2002

[12] S. Staniford, V. Paxson and N. Weaver, How to Own the Internet in
Your Spare Time, Proc. of the 11th USENIX Security Symposium, Aug.
2002

[13] Y. Zhang and B.Bhargava, Fibonacci Modeling of Malware Propagation,
Technical Report TR-08-017, Department of Computer Sciences, Purdue
University, 2008

[14] A.G. Voyiatzis and D.N. Serpanos, Pulse: A Class of Super-Worms
against Network Infrastructure. Proc. of ICDCS Workshops, May 2003

[15] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand, Experiences
with Worm Propagation Simulations, Proc. of ACM Workshop on Rapid
Malcode, Oct. 2003

[16] NMAP documentation, http://nmap.org/book/man-performance.html,
last accessed Jul. 1, 2009

[17] Kademlia Specification, http://xlattice.sourceforge.net/components/
protocol/kademlia/specs.html, last accessed Jul. 1, 2009

[18] Z. Chen and C. Ji, A Self-Learning Worm Using Importance Scanning,
ACM Workshop on Rapid Malcode, Nov. 2005

[19] S. Friedl, Analysis of the new Code Red II Variant, http://
www.unixwiz.net/techtips/CodeRedII.html, Last accessed Apr. 3, 2009

[20] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-
Interscience, Aug. 2001

[21] Editorial, A Cyberblockade in Estonia, New York Times, Jun. 2, 2007
[22] I. Dumitriu, On generalized Tribonacci sequences and additive partitions,

Discrete Mathematics, Vol. 219 , Iss. 1-3, 2000
[23] D. Dagon, G. Gu, C. Lee, and W. Lee. ”A Taxonomy of Botnet

Structures.”, Proc. of the 23rd Annual Computer Security Applications
Conference (ACSAC), Dec. 2007.

82

