

INTEGRATION OF CELLULAR
ASSISTED HETEROGENEOUS

NETWORKING AND
BLUETOOTH SERVICE

DISCOVERY PROTOCOL

Diplomarbeit

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Simon Winiker

2004

Leiter der Arbeit:

Prof. Dr. Torsten Braun

Forschungsgruppe Rechnernetze und verteilte Systeme (RVS)

Institut für Informatik und angewandte Mathematik

Betreuer der Arbeit:

Marc Danzeisen

Forschungsgruppe Rechnernetze und verteilte Systeme (RVS)

Institut für Informatik und angewandte Mathematik

iii

ACKNOWLEDGEMENTS

First of all I want to thank my family for their support and infinite confidence in me. Further my

thanks go to my girl-friend Claudine for the encouraging words during the whole time I was

working on my diploma.

Thanks to Swisscom AG, who provided the material and the resources needed for my diploma

work. Further I would like to thank all the people at Swisscom Innovations for their cooperation. It

was an inspiring time working with you and I collected very valuable experiences.

My special thanks go to Prof. Dr. T. Braun for making this cooperation with Swisscom AG

possible and for care during my diploma work. Special thanks also to M. Danzeisen and Dr. D.

Rodellar for the technical assistance and support during my diploma work.

Further I would like to thank J. Linder for all his help during my time in Swisscom AG, M.

Schädler for the provisioning of the needed hardware and E. Maghsoudi for his patient assistance

during the test phase of this diploma work.

Last but not least I want to thank all my friends. They will know for what.

iv

ABSTRACT

New computer applications and the development of user end devices show a clear trend towards

mobility. Devices become smaller and thus portable or even wearable. So-called road warriors,

employees who work while being on the move, need to access their enterprise data, while they are

out of the office.

This need for mobility is generating troubles in terms of network organization and security, as this

data is often quite sensitive. Technologies like MobileIP [1] try to cope with the mobility problem

on the behalf of the network layer and Virtual Private Networks (VPN, a good overview is

presented in [2]) are dealing with security issues for remote intranet accesses. SecMIP [3] is a

solution, which mixes up these mechanisms to provide a secured MobileIP mechanism.

Additionally there is not just one access technology for mobile devices, what causes access

problems. Access Technologies like Bluetooth [4], WLAN [5] and GSM [6] are different, and so the

user has to have the right interface with the right configuration to access a certain network. Coping

with these configurations can be quite a hassle for the inexperienced user and applications become

available to ease this task.

After all, there are also applications, which are not prepared for mobility. For example a printer can

not just be omnipresent to offer the mobile user its service. As a solution for this kind of problems,

public services, like public printers, become available. Again, it can be really complicated for a user

to access such public services. Service discovery protocols cope with those issues and define a set

of protocols for dynamic server-client applications. Dynamic means that a service provider can

share a certain service, which a client can search for and access with help of the protocols provided

by a service discovery protocol Environment.

Deeper analysis of service discovery protocol specifications shows two main issues for a possible

deployment: the lack of security and the need for Multicast. Security is important for today’s

applications as sensitive data between the service providers and its users has to be protected. To

prove the authenticity of messages exchanged between the players in a service discovery protocol

environment, authentication mechanisms have to be implemented. Authentication is also crucial for

possible billing infrastructures. On the other hand support for Multicast in large scale networks is

improbable which has a negative impact on the scalability of service discovery protocol

Environments. Other means for the transport and the spreading of messages has to be found to

transport messages to multiple users.

v

CAHN (Cellular Assisted Heterogeneous Networking) is an approach for managing devices in a

heterogeneous environment, which can be the result of the mentioned trend towards mobility. In

this approach it is suggested to separate the signaling plane from the data plane for the

establishment of an automated and secured data link between the users. For the signaling plane a

cellular network is suggested, which qualifies itself by a high coverage. The existing trust relation

between the user and the operator of a cellular network can build the basis for authentication.

These features make CAHN interesting in terms of the mentioned problems of Service Discovery

Protocols.

This diploma now aims at providing an integration of the CAHN approach and Service Discovery

Protocols. To do so the Bluetooth Service Discovery Protocol builds the basis for the development

of an application integrating the two technologies.

This diploma work shows, that the integration of the two technologies is very promising and both

technologies can profit from the integration. Bluetooth will gain an improved authentication

method and scalability and CAHN can indicate its features via the Bluetooth Service Discovery

Protocol. But it will also become clear, that further work in the topic is necessary to improve the

behavior of the provided application. Further this diploma work can not treat the mentioned

Multicast issue, certain Service Discovery Protocols have. The idea that Multicast messages could

also be sent over the signaling plane provided by CAHN has not been analyzed so that no

conclusions can be drawn at the moment and this makes this issue topic of future work.

vi

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 DIPLOMA WORK DESCRIPTION 1
1.2 DOCUMENT STRUCTURE 3

2 BLUETOOTH BASICS 4

2.1 GENERAL 4
2.2 THE BLUETOOTH PROTOCOL STACK 4
2.3 PICONETS AND SCATTERNETS 6
2.4 INQUIRY AND PAGING 6
2.5 SERVICE DISCOVERY 7
2.6 BLUETOOTH PROFILES 7
2.7 BLUETOOTH SECURITY 8
2.8 THE BLUETOOTH NETWORK ACCESS POINT SCENARIO 9
2.9 SECURITY LIMITATIONS OF THE PAN PROFILE 9

3 SERVICE DISCOVERY PROTOCOLS 11

3.1 INTRODUCTION 11
3.2 JINI 12
3.2.1 CONCEPTS 12
3.2.2 COMPONENTS 14
3.2.3 SERVICE ARCHITECTURE 15
3.2.4 THE PROTOCOL STACK 16
3.2.5 SELF CONFIGURATION 16
3.3 UPNP 17
3.3.1 CONCEPTS 17
3.3.2 COMPONENTS 18
3.3.3 THE UPNP PROTOCOL STACK 19
3.4 SSDP 22
3.4.1 CONCEPTS 22
3.4.2 COMPONENTS 23
3.5 SALUTATION 25
3.5.1 CONCEPTS 25
3.5.2 COMPONENTS 27
3.5.3 SALUTATION LITE – DOWN-SCALED SALUTATION 28
3.6 BLUETOOTH SERVICE DISCOVERY 29
3.6.1 CONCEPTS 29
3.6.2 COMPONENTS 30
3.6.3 THE PROTOCOL STACK 31
3.7 SERVICE LOCATION PROTOCOL 33
3.7.1 CONCEPTS 33
3.7.2 COMPONENTS 35
3.7.3 RESOURCE DISCOVERY PROTOCOL 36
3.8 CONCLUSIONS 37

vii

4 CELLULAR ASSISTED HETEROGENEOUS NETWORKING (CAHN) 41

4.1 THE BOOTSTRAPPING PROBLEMS 41
4.2 AUTHENTICATION AND SECURED LINK ESTABLISHEMENT BY CELLULAR
OPERATORS 42
4.3 THE CAHN TARGET SCENARIO 44
4.4 CONCLUSIONS 45

5 DESIGN 46

5.1 REQUIREMENT SPECIFICATIONS 47
5.2 DEFINITION OF THE CAHN BLUETOOTH SERVICE AND THE CAHN BLUETOOTH
SERVICE ATTRIBUTE 48
5.2.1 SERVICES IN BLUETOOTH SDP 48
5.2.2 DEFINITION OF THE CAHN SERVICE 49
5.2.3 DEFINITION OF THE CAHN SERVICE ATTRIBUTE 50
5.2.4 DEFINITION OF A CAHN PROFILE 50
5.3 CAHN PROTOCOL DEFINITION 51
5.3.1 CAHN BLUETOOTH SERVICE REQUEST 51
5.3.2 CAHN BLUETOOTH SERVICE RESPONSE 52
5.3.3 CAHN ERROR RESPONSE 52
5.4 CAHN CORE 54
5.4.1 CAHN COMMUNICATION MANAGER (CCM) 55
5.4.2 CAHN CONNECTOR 56
5.4.3 CAHN ADAPTER 57
5.4.4 CAHN SMS ADAPTER 60
5.5 THE GUI 61
5.6 MESSAGE FLOW 62
5.6.1 CLIENT SIDE 62
5.6.2 SERVER SIDE 63

6 IMPLEMENTATION 64

6.1 INTEGRATION OF THE CAHN BLUETOOTH SERVICE AND THE CAHN
BLUETOOTH SERVICE ATTRIBUTE IN THE BLUETOOTH SDP IMPLEMENTATION 64
6.1.1 USED BLUETOOTH IMPLEMENTATION 64
6.1.2 BLUETOOTH SDP MODIFICATIONS 65
6.2 CAHN COMMUNICATION MANAGER (CCM) 69
6.3 CAHN CONNECTOR 72
6.4 CAHN ADAPTER 74
6.5 CELLULAR NETWORK 75
6.5.1 GSMLIB 76
6.6 CAHN SMS ADAPTER 77
6.7 THE GUI 78

viii

7 EVALUATION 90

7.1 THE TEST BED 90
7.2 CONNECTION ESTABLISHMENT TIMES 91
7.3 SMS MESSAGE EXCHANGE DELAYS 94
7.4 BLUETOOTH PAN CONNECTION ESTABLISHMENT TIMES 95
7.5 PERFORMANCE SUMMARY 97

8 CONCLUSIONS 99

8.1 LESSONS LEARNED 99
8.2 FUTURE WORK 100

9 REFERENCES 102

1

1 INTRODUCTION

1.1 DIPLOMA WORK DESCRIPTION

In the past years the Internet has gained a big importance as a platform not only for non-

commercial applications, but also for commercial interests. The client server principle has proved

to be very successful for Internet based applications and many companies deploy their own servers

for the provisioning of their offers. Online transactions have become a part of the daily life and

many clients are using online services. The fast growth of the Internet and the availability of an

incredibly high number of services can be confusing for the end user. But not only the access to the

services introduces much confusion, but also the configuration and use of the numerous different

access technologies, like Bluetooth, Wireless LAN and GSM, can be a hassle for the user. Many

services, many logins, many different security mechanisms and much configuration work may be

the consequence. Newer technologies moreover enable device mobility, which can permit the

spontaneous and ad-hoc formation of networks or communities to share services and resources

with other users.

This situation is the key motivation to find a solution, which can provide the needed features for

upcoming applications. This includes:

• the dynamic formation and handling of networks without configuration hassles,

• the possibility to share services, browse for shared services and access shared services in a

simple way,

• the setup of security relations between the users in the network.

Cellular Assisted Heterogeneous Networking (CAHN) suggests reusing a cellular network to

transport the needed configuration and security parameters in a heterogeneous environment, to

build up a secured network connection. An environment is heterogeneous, when not all

participating nodes share a common access technology. Users in a CAHN environment are

identified by their phone number, and can be authenticated by the cellular operator. Therefore

CAHN can help to dynamically form and handle a network and can assist the user in the security

setup.

Service discovery protocols define sets of protocols, which can be used to share services, search for

services and access shared services. Service discovery protocols do have issues, which have to be

2

solved for a successful deployment in heterogeneous and spontaneously built environments, as well

as in the Internet.

The suggested approach to deal with the issues of service discovery protocols is to integrate CAHN

in the service discovery protocol. This integration will show whether CAHN can help to deploy

service discovery protocols in heterogeneous and spontaneously built networks. As CAHN and

service discovery protocols both contain interesting aspects for the ease of network formation,

service access and security establishment, the integration of the two technologies seems to be a

promising approach for the deployment of future services.

This diploma work aims at providing a basic implementation of CAHN and its integration in the

service discovery protocol that is defined and used in the Bluetooth technology, further referred to

as Bluetooth SDP. This implementation will serve as a proof of concept and will give some

practical ideas about the use of CAHN in service discovery protocol controlled infrastructures.

The resulting implementation shows that both, CAHN and the service discovery protocol can

profit from the integration. CAHN can be used to integrate security in the service discovery

protocol and the service discovery protocol can be used to detect the provided CAHN features of

other devices and services in the network. Further the implementation acts on the behalf of the

user and thus facilitates the connection and security establishment. With the help of the provided

application, the user can easily share services, browse for available services and access shared

services in a secure way.

The implementation of the integration is used on a demonstrator to evaluate the practical behavior

of the implementation. This shows that the implementation itself performs well, and that the idea

of integrating CAHN in the Bluetooth SDP is a valuable approach for enabling secured

connections in public Bluetooth environments. On the other hand the evaluation also proves that

the implementation of CAHN is too primitive and that especially the SMS mechanism does not suit

for the delivery of CAHN protocol messages over the cellular network. Ideas on how this could be

improved are presented at the end of this diploma work.

Furthermore it has to be concluded that even if the integration of CAHN in the Bluetooth SDP is a

promising approach, it cannot be definitively predicted, whether an integration of CAHN in more

sophisticated service discovery protocols is still as valuable or even possible.

3

1.2 DOCUMENT STRUCTURE

Chapter 1 gives an overview of the motivation for this diploma work and the acquired results.

After that the structure of the document is presented.

Chapter 2 introduces the Bluetooth technology. The most important principles of Bluetooth

defined in the specifications are explained.

Chapter 3 is about service sharing and access. Service discovery is the approach of interest. The

different service discovery protocols share the same basic functionality, but differ in some

important aspects, so that they will be presented individually.

Chapter 4 explains CAHN, which is an approach to ease the configuration in heterogeneous

environments and helps to establish secured links among the peers.

Chapter 5 introduces the basic idea of merging the CAHN approach with the Bluetooth SDP.

Further it identifies the requirement specifications and explains the design of the implementation

integrating CAHN and Bluetooth SDP

Chapter 6 contains the explanation of the implementation of the design.

Chapter 7 presents evaluations that were made using the application in a demonstrator.

Chapter 8 concludes the document and presents the lessons that have been learned during this

diploma work and suggests future work in the domain.

4

2 BLUETOOTH BASICS

2.1 GENERAL

The Bluetooth technology is named after the Danish king “Harald Blatand”, which united the

Scandinavian people during the 10th century. As well, Bluetooth should unite the devices in a

Personal Area Network (PAN). The development started in 1998, when Ericsson, IBM, Intel,

Nokia and Toshiba formed the Bluetooth Special Interest Group (SIG) to promote a global

solution for short-range wireless communication. The goals were primarily to provide a cable

replacement with low-power and low-cost chips. To improve the acceptance of the new standard,

the Bluetooth SIG decided to offer the specifications to members of the group royalty-free. Today

the group has more than 3000 members. In summer 1999 the Bluetooth SIG released the first

version of the specifications: 1.0A. By the time of this writing release 1.2 is the most recent version.

The Bluetooth specifications are divided in two parts: Part A, Core and Part B, Profiles [4].

2.2 THE BLUETOOTH PROTOCOL STACK

Radio

Baseband

LMP

HCI

L2CAP

RFCOMM TCS SDP

Applications / Profiles

Figure 2.1: The Bluetooth Protocol Stack

In figure 2.1 the schematic building of the Bluetooth protocol architecture defined in the Bluetooth

specifications is shown.

5

The Radio layer defines the technical characteristics of the Bluetooth radio. The Bluetooth radio

operates in the 2.4 GHz Band and defines a fast (1600 hops/s) frequency-hopping between 2.402

GHz and 2.480 GHz on 78 channels. Every channel is split in slots with a length of 625

microseconds, which are used for sending and receiving. Further the radio link defines three classes

of power consumption for the Bluetooth chip. Class 1 radios use a transmission power of 100 mW,

class B radios 2.5 mW and class C radios 1 mW with an estimated range of 100 m for class A

radios, 10 m for class B radios and about 1 m for class C radios.

The Bluetooth baseband defines the basic procedures that are used to establish communication

between Bluetooth devices, like the formation of a Piconet or Inquiry and Paging mechanisms.

The Link Manager Protocol (LMP) is used by two communicating devices to exchange information

about the supported link properties, like the supported power or security modes. Further Bluetooth

does define two different link types, the synchronous connection-oriented (SCO) links (i.e. used for

voice traffic) and asynchronous connection-less (ACL) links (used for data traffic), which’s

capabilities my be exchanged using the LMP.

The Host Controller Interface (HCI) provides a standardized interface to the upper layers to

control the baseband and the radio. It is used for the connection setup and therefore Inquiry

commands, security parameters or packets for connected devices can be passed to the HCI.

The Logical Link Control and Adaptation Protocol (L2CAP) offers a packet interface to the upper

layers. The principles of master/client (explained later in “Piconets”) do not exist any more on this

layer. The L2CAP manages the communication between two devices by multiplexing different

logical channels over an ACL link. Further, the L2CAP is responsible for packet fragmentation and

reassembling.

The RFCOMM is a standard protocol to simulate a serial (RS-232 conform) link over the air. Upon

RFCOMM a PPP link can be established to setup an IP link between Bluetooth devices.

The Telephone Control Signalling (TCS) can be used for binary telephone related controlling of

links, i.e. to pick up a call on a Bluetooth headset or to indicate the caller’s phone number.

The service discovery protocol and the Profiles will be explained later in this document.

6

2.3 PICONETS AND SCATTERNETS

A Bluetooth Piconet is formed in an ad-hoc manner and consists of a master device, which creates

and controls and up to seven active clients. The master/slave role is a dynamic role and not

statically assigned to a device. The master decides which client can send packets at which time.

Besides the seven active clients, Bluetooth Piconets can have inactive clients, which are in a so-

called parked mode. Devices in parked mode can be set active to join the communication, but only

seven clients may be active at the same time. Furthermore, clients can be members of more than

one Piconet and what results is referred to as Scatternet. Figure 2.2 shows two Piconets forming a

Scatternet.

Master

Active Slave

Piconet 1

Piconet 2

Scatternet

Parked Slave

Figure 2.2: Bluetooth Piconets and Scatternet

2.4 INQUIRY AND PAGING

In a Bluetooth environment devices can scan the environment for other Bluetooth devices. For

that purpose a message is periodically spread on different frequencies. This frequency altering is

important, as Bluetooth uses a frequency hopping and the two devices may therefore miss each

other. A device allowing to be discovered enters periodically in the Inquiry scan mode, where it

listens to Inquiry messages. If such a message arrives, the device answers with its Bluetooth address

and its clock. The clock is needed to synchronize the devices’ frequency hopping sequences, if a

connection will occur. To prevent other devices from detecting a certain device, this latter device

may also be hidden by using the “undiscoverable” option. With this option enabled a device does

not enter the Inquiry scan state and can thus not answer to Inquiry messages and will stay

undiscovered. Within an Inquiry the discovered device does not get any information about the

7

discovering device. The result of an Inquiry is a list of Bluetooth addresses of possible connection

partners with their clocks.

Once the Inquiring device has the knowledge about other devices in its vicinity, it can try to

establish connections to them. For that purpose, it does actively page devices to join its Piconet.

The initiator of a Paging will become the master of the formed Bluetooth Piconet. If the master

already knows a certain device, no prior Inquiries are needed and the Paging can be done

immediately.

2.5 SERVICE DISCOVERY

In addition to the feature to discover other devices Bluetooth can also help to discover services

supported by other devices. For that purpose Bluetooth does define its own service discovery

protocol. More details on this service discovery protocol can be found later in this document.

Services can either be detected on a known device to get the list of its capabilities or services may

be searched for in the environment. In both cases the Inquiry can be involved to get available

devices. In order to be able to announce services and detect services, a common description must

be defined in advance. This is achieved by using profiles. Profiles are standardized through the

“Bluetooth Special Interest Group” (Bluetooth SIG) and describe the service in detail. Devices

enabled with a certain profile can announce this capability and detect other devices with this

capability. The use of profiles is fundamental in Bluetooth. In order to protect services and devices

from abuse, Bluetooth does define its own security, which will be explained below.

2.6 BLUETOOTH PROFILES

Bluetooth profiles are used to describe services. Profiles are revised and standardized by the

Bluetooth SIG. What sets Bluetooth apart from other technologies is that a profile not only

describes the involved protocols for a certain service but also possible applications and use cases.

With respect to the communication stack, a Bluetooth profile defines the use of the layers for a

service. This feature adds value for the end user, as applications are defined, too. All profiles in

Bluetooth are depending on the “Generic Access Profile (GAP)” [18], which defines how

Bluetooth links can be established and how security settings allow the devices to be detected and

the services to be connected. A number of profiles have already been defined and integrated and

others are still under development by the Bluetooth SIG. Profiles can also define means how

security is used.

8

2.7 BLUETOOTH SECURITY

As mentioned, devices can be hidden when they are in undiscoverable mode. This does not really

enable strong security. In order to protect the services Bluetooth implements its own security

model for the access. With help of this model nodes can be authenticated and links can be

encrypted. The Bluetooth security model defines three modes of security.

• Security Mode 1: No security procedures are enforced. Unrestricted access.

• Security Mode 2: A device does not initiate security procedures before channel

establishment. This mode allows different and flexible access policies for applications,

especially running applications with different security requirements in parallel.

• Security modes 3: (link level enforced security): A device initiates security procedures before

the link set-up is completed. In this mode it is even not possible to exchange service

discovery protocol messages, prior the secure link establishment.

These security modes are defined in the GAP and form the basis for each connection attempt. In

order to setup a secured link corresponding to the needed security mode 2 or 3 the accessing device

must be authenticated. This authentication is based on a PIN. The PIN furthermore is used to

generate a link key, which in turn is the basis for the encryption key, which is re-generated

periodically during transmissions. For a secure connection establishment a link key shared by the

devices is needed. If no such link key exists, it has to be generated and therefore the user has to

provide a PIN. If the PINs entered on both devices correspond the computed link keys will lead to

a successful connection establishment. This handshake procedure either happens upon link layer

connection establishment or L2CAP connection establishment, depending on the used security

mode.

Bluetooth security is representative of the shared secret cryptography. In this approach all

participating members have the knowledge about a common key, which is used for both, the

encryption and the decryption of the data. Therefore these encryption mechanisms are also referred

to as synchronous encryption. The weakness in synchronous encryption approaches is the possible

exposure of the shared secret, which makes it possible for an attacker to decrypt all the encrypted

data.

In contrast to the shared secret approach, the public/private key cryptography makes use of a key

pair to provide data encryption. There the public key is used to encrypt the data and the private key

is used to decrypt the data. Therefore these encryption mechanisms are referred to as asynchronous

9

encryption. Every member has to keep secret its proper private key. The public key has to be made

available to the members, so they can encrypt messages. If someone’s private key is exposed, an

attacker can only decrypt messages encrypted with the related public key. Therefore the risk for the

community is much lower than in synchronous encryption. Asynchronous encryption is known to

perform worse and to be more expensive, than synchronous encryption. Therefore often

asynchronous encryption is used to exchange a shared secret to enable synchronous encryption. By

using this approach, the shared secret is re-build on every new connection, which makes it hard for

attackers to break in.

2.8 THE BLUETOOTH NETWORK ACCESS POINT SCENARIO

The Personal Area Network Profile (PAN profile) defines mechanisms for the use of the Internet

Protocol (IP) in a Bluetooth Piconet. For the transport of IP packets over a Bluetooth connection

the Bluetooth Network Encapsulation Protocol (BNEP) is used, which is also defined in the PAN

profile. Furthermore the profile presents two scenarios, how devices can interact in a Piconet. First

the master of a Piconet becomes the Group Network controller (GN) and all the slave devices, also

called PAN users (PANU), connect to that GN forming a star topology with the GN as central

point. All devices can get assigned an IP address and with help of the BNEP IP-networking is

enabled. All messages are routed through the GN. The second scenario differs from the first in the

circumstance that the master, in this scenario referred to as Network Access Point (NAP) shares an

Internet connection by implementing bridging mechanisms to enable network access to the clients

of this Personal Area Network.

With help of this profile it is possible to implement a Bluetooth Access Point. Of course security

plays an important role in this scenario and the Bluetooth security modes 2 and 3 can be applied to

authenticate the users and encrypt the traffic between the NAP (GN) and the PANUs.

2.9 SECURITY LIMITATIONS OF THE PAN PROFILE

As mentioned above, the Bluetooth security is a shared secret cryptography mechanism. Devices

have to agree on a common PIN (key) to enable security. This brings in the known key distribution

problem. Users intending to connect to such a Bluetooth network access point must acquire a PIN

first. Pre-paid scenarios are imaginable, where a user can buy a ticket containing a PIN. For

spontaneous and ad-hoc connection establishment, this requirement can not so easily be fulfilled

and automated as the parties must have a common and secured communication channel to

exchange the PIN. As the PIN is also needed for authentication, methods like Diffie-Hellman

cannot help with this issue. Therefore the Access Point scenario can be easily deployed in small

environments, where the users know and trust each other, but the scenario does not scale for

10

public Access Points. Therefore some means for distributing the PINs to the members have to be

deployed in a public Access Point scenario.

The targeted integration of CAHN in the Bluetooth SDP will show how the key distribution issue

can be solved, and how the Bluetooth PAN profile can be adopted for a public Access Point

Scenario, by using the a separate channel to exchange the PIN.

11

3 SERVICE DISCOVERY PROTOCOLS

3.1 INTRODUCTION

The base strategy to provide a dynamic environment for service sharing and access is used among

all the presented service discovery protocols. They mainly consist of three entities: the service

catalogue server, the service server and the client. The service catalogue server contains information

about the available services in the network. The service server can register information about the

service it provides on the service catalogue server. A client can then query the catalogue server for

available services and gather information on how to contact the service server and how to access

the provided service. Besides these entities, service discovery protocols define also typical actions

which can be performed in this environment and the protocol messages, which are exchanged

between the different components. These action and protocol definitions differ from one service

discovery protocol to the other, depending on the special purpose they pursue. Important actions

are for example the discovery of service catalogue servers, the search for services or the registering

of services. Bluetooth SDP does integrate the service catalogue server into the service server and is

therefore a little different from the other presented service discovery protocols. But as can be seen

later, there exist methods to map Bluetooth SDP to more complex environments. Even if the main

principle is about the same in the different service discovery protocol proposals, they differ in

important aspects, so that the different service discovery protocols are presented individually.

12

3.2 JINI

A Jini system is a distributed system based on the idea of federating groups of users and the

resources required by those users. The goal of the architecture is to turn the web in a flexible and

easily administered tool with which resources can be found. The end goals can be summarized as

follows:

• Enabling users to share services and resources over a network

• Providing users easy access to resources while network structure changes

• Simplifying the building, maintaining and altering the network

Jini extends the Java system from one single virtual machine to a network of machines. Java is ideal

because data and code are portable, because Java provides security and because Java applications

can be distributed.

The Jini infrastructure provides mechanisms for devices, services and users to join and detach from

a network. The presented specifications are a summary of [7].

3.2.1 CONCEPTS

Services

The service is the most important concept of Jini. A service can be code, hardware, software or

even a user. A Jini system should not be thought as a client and server infrastructure, but as a set of

services put together to fulfil a certain task. The system provides mechanisms for service

construction, service lookup, service communication and service use in a distributed system.

Interaction among services is done by the use a protocol. This is a set of interfaces written in Java.

This protocol is open ended, but a base protocol is defined within the system.

Lookup Service

The lookup service is used for finding and resolving services. It is the major point between the

system and the user. A service is added to the lookup system by a pair of protocols called discovery

and join.

13

Java Remote Method Invocation (RMI)

RMI [8] is rather a part of the infrastructure than a service. It provides mechanisms to find, activate

and garbage collect object groups. RMI is a Java extension to normal Remote Procedure Call (RPC)

[9] mechanisms. With help of RMI full object code can be transmitted, not only objects. This is one

of the key benefits of this system.

Security

The design of the security for Jini is built on twin notions of a principal list and an access control

list. Services are accessed on behalf of some entity, the principal, which traces back to a user of the

system. Whether access is allowed or not depends on the entries in the access control list. As Java

code is moved across the network and executed on the different nodes, the virtual machine security

concept known from other Java applications also applies to this code.

Leasing

Access on many services in Jini is lease based. Each lease time is negotiated between the provider

and the user of a service as part of the protocol. When the lease is not renewed before it is freed

(because the service is not longer needed, not longer allowed or network errors have occurred), the

provider or the user can free the lease. Leases are either exclusive or non-exclusive. Exclusive leases

ensure that no one else may take a lease on the resource during the period of the lease.

Transactions

A series of operations within a service (or many relied services) is wrapped as a transaction. The Jini

transactions supply a service protocol needed to coordinate a two-phase commit. How transactions

are implemented is left up to the service using those interfaces.

Events

Distributed events are supported by Jini. An object may allow other objects to register interest in

events of the object and receive a notification of the occurrence of such an event. This enables

distributed event-based programming with a variety of reliability and scalability guarantees.

14

3.2.2 COMPONENTS

Jini can be divided in three parts: infrastructure, programming model and services. The

infrastructure provides the components needed to build a Jini system. The services are the entities

of this Jini system and the programming model is a set of interfaces that enables the construction of

services.

Infrastructure

The Jini infrastructure consists of the following three parts:

• Distributed Security: Integrated in RMI, extension to Java security for distributed systems

• Discovery and Join protocols: Allow services to become part of and announce services to

the system

• Lookup service: Repository of objects written in Java, that can be downloaded or serve as a

proxy

The discovery and join protocols define the way a service becomes part of a Jini system; RMI

defines the base language with help of which the services communicate and the distributed security

model defines how entities are identified and how they get the rights to perform their actions. The

lookup service reflects the current members of the system and acts as the central market place for

services.

Programming Model

Services define interfaces through which can be communicated. The sum of these interfaces builds

the Jini programming model. There exist three kinds of interfaces:

• Leasing interface

• Event interface

• Transaction interface

The Jini transaction protocol provides two steps to coordinate actions: voting phase and commit

phase. The service votes whether and how a task is achieved in the voting phase and in the commit

phase the coordinator can commit these changes. The Jini transaction protocol defines the

15

transaction interfaces and transaction objects used to achieve their tasks. The Jini infrastructure

now makes use of these interactions. E.g.: The Lookup service uses the lease and event interfaces.

The implementation of services does not need to support the Jini implementation model, but the

interfaces of this service.

Service

The Jini technology infrastructure and programming model are built to enable services to be

offered and found in the network federation. These services make use of the infrastructure to make

calls to each other, to discover each other, and to announce their presence to other services and

users. A service has an interface that defines the operations that can be requested of that service.

Some of these are intended for the interaction with the infrastructure, others for the user

interaction. The type of service defines the interfaces and the methods that can be used to access

that service.

3.2.3 SERVICE ARCHITECTURE

Discovery and Lookup Protocols

The heart of the Jini system consists of three protocols, discovery, join and lookup. Discovery and

join occur, when a device is plugged in. It first searches for a lookup service, with help of the

discovery protocol and when it finds a lookup service, it registers to it with help of the join

protocol. An object of the service is then uploaded to the lookup service. Lookup is used when a

client or user needs to locate and invoke a service described by its interface type. Then the service

can be loaded onto the client.

The service can implement a private protocol between the client and the service provider. The

movement of the code from the service provider to the client is one of the most important features

of Jini. The client is only dealing with an interface written in Java. Behind this interface RMI may be

used to call methods from the server or the methods can be computed locally, or some

combination of both, which is called a smart proxy.

A user interface stored on the lookup service offers the possibility to the user to manipulate the

service. In fact such a user interface is a special form of a service interface.

If no lookup service is available the client can send a peer lookup to the service provider instead.

This one can register his service as he would do with a lookup service. The client can then use this

service.

16

Service Implementation

Objects can share the same address space with other objects especially when there are certain

location or security requirements. Such objects make up an object group. An object group is

guaranteed to always reside on the same address space or in the same virtual machine.

A service can be implemented directly or indirectly by specialized hardware. Such devices can be

contacted by the code associated with the interface for the service.

From a client’s point of view, it does not change, whether a service is implemented with objects in

the same address space, on the same virtual machine or implemented by hardware. For the client

they always occur just as a service which can be used.

3.2.4 THE PROTOCOL STACK

Figure 3.1: The Jini Technology Stack

As can be seen in Figure 3.1 Jini does not define the underlying network structure.

3.2.5 SELF CONFIGURATION

Jini does not directly address this area. An IP device when plugged onto the network will have to be

configured with an IP address, a subnet mask and optionally with a gateway and DNS server. From

then on, the lookup services can be used. But the use of the JAVA platform means that it cannot

directly interfere with the native operating system and its configuration. The AutoIP and Multicast

DNS protocols used by UPnP, which will be discussed later, can actually fit into this void.

Network Services
JavaSpace Security

Transaction Manager

Jini Technology Leasing, Events, Transactions
Lookup

Discovery / Join

Java Technology
RMI

Java Security

Operating System

Network Transport

17

3.3 UPNP

UPnP is an extension of the normal PnP, which is known from single stations. The goal of UPnP is

to reach a zero configuration network. In this network devices can join and leave without

configuration changes and new devices may become aware of other devices or of services in the

network. UPnP uses TCP/IP as communication protocol for ensuring a large compatibility.

UPnP defines an open network structure, without any architectural needs (as the Internet). No

APIs are defined neither, which allows the programmers to define own APIs.

The Universal Plug and play Forum defines UPnP device and service descriptions (also called

Control Protocols or DCP) according to a common device architecture contributed by Microsoft.

This forum is also responsible for the standardization. The specification overview is taken from

[10].

3.3.1 CONCEPTS

Addressing

As UPnP is based on TCP/IP, DHCP is used to assign an IP address to a device. When no DHCP

server is available AutoIP is used. AutoIP chooses intelligently an address of a set of private

addresses. If this is used the device can easily change between managed and unmanaged networks.

Services in UPnP can use friendly names. To resolve the IP addresses corresponding to these

names DNS and Dynamic DNS shall be used.

Discovery

Once an address is assigned, the device can discover control points, or if the device is a control

point, it can search for devices of interest in the network. This is done with SSDP (explained later

in this document) and an XML discovery message which contains the specific information about

the device or one of its services.

Description

After discovery, the control point still knows very little about the device it discovered. Therefore it

retrieves a description from the URL given in the XML discovery message. It also gets information

of all embedded and included devices of this device.

18

Control

Once the control point has the description it is ready to control the device. It also has to get a

description of all the included services in the device. This description is also in XML and contains

variables which express the state. To control a device a control point sends control messages to the

control URL for the device. This again is expressed in XML using SOAP. In return to a control

message the device sends action specific data or error codes.

Eventing

A PnP description contains state variables which express the state of a service at run time. The

service publishes updates, when changes to these variables occur. A control point may be interested

in such messages. This is done with event messages expressed in XML formatted with GENA.

Presentation

A device can have an URL for presentation, from which the control point can download a

presentation page.

3.3.2 COMPONENTS

Devices

An UPnP device is a container of services and nested devices. Different categories of UPnP devices

will be associated with different sets of services and embedded devices. The type of a device and

the associated set of services are defined in XML device description documents, with a list of

properties that a device must host.

Services

The smallest unit of control in an UPnP network is a service. A service exposes actions and states

with state variables. Similar to the device description, this information is part of an XML service

description standardized by the UPnP forum. A pointer on these service descriptions is held in the

device description. Devices may contain more than one service.

A service consists of a state table, a control server and an event server. The state table models the

state through state variables. The control server receives action requests, executes them, updates the

state table and returns responses. The event server publishes events to interested subscribers.

19

Control Points

A control point in an UPnP network is a controller capable of discovering and controlling other

devices. It does:

• Retrieve the device description and get a list of associated services

• Retrieve service descriptions

• Invoke actions to control the service

• Subscribe the service’s event source

3.3.3 THE UPNP PROTOCOL STACK

Figure 3.2 shows the UPnP protocol stack.

The three upper layers show the parties involved for the provisioning of a service description. To

define a service, the UPnP device architecture first defines a schema for creating device and service

descriptions for any device and service type. Individual working committees then standardize

device and service types and create templates for individual device or service types. Finally, a

vendor fills in this template specific to the device or service he offers.

This data is then encapsulated in the UPnP specific protocols defined in the UPnP device

architecture document.

The UPnP specific information is then put in all the messages before they are formatted using

SSDP, GENA and SOAP.

20

Figure 3.2: The UPnP Protocol Stack

Networking Media for UPnP

As UPnP needs IP to function, the media, which transports IP, is not important for UPnP. Only

the bandwidth can limit the UPnP functionalities. UPnP uses standard networking technologies like

XML, TCP/IP and HTTP.

TCP / IP

Is the basis of UPnP and ensures that UPnP can be run upon different transport media. UPnP can

use many protocols in the TCP/IP stack, like ICMP, UDP and service of it, like DHCP. How this

is achieved will be highlighted later.

UPnP Vendor defined

UPnP forum working committee defined

UPnP Device architecture defined

HTTPMU
(Discovery)

UDP

Linux # adapter_sms sms_text

HTTP

SSDP GENA

HTTPU
(Discovery)

SSDP

GENA
(Events)

SOAP

(Control)

HTTP
(Description)

TCP

21

HTTP, HTTPU, HTTPMU

As HTTP is the base for the Internet success it is a core part of UPnP. All aspects of UPnP are

built upon HTTP. HTTPU (and HTTPMU) are variants of the HTTP standard and are used to

provide the features of HTTP over UDP/IP instead of TCP/IP. They are used by SSDP, which

will be explained next.

SSDP

Simple Service Detection Protocol (SSDP, explained below) is used to discover services in the

network. It is used for locating resources and for announcing device availability. Both, control

points and devices run SSDP.

GENA

Generic Event Notification Architecture (GENA) [11] was designed to provide the ability to send

and receive notifications using HTTP over TCP/IP and multicast UDP. GENA formats are used

to send availability notifications used in SSDP and signal channels in service state for UPnP

eventing.

SOAP

Simple Object Access Protocol (SOAP) [12] defines the use of XML and HTTP to execute Remote

Procedure Calls (RPC). It can also use SSL for securing the communication and it is the standard of

Internet RPC. Like RPC UPnP uses SOAP to deliver control messages to devices and return results

or errors back to control points.

XML

Extensible Mark-up Language (XML) [13] is the universal format for structured data on the Web. It

is the way to put nearly all kind of structured data in a text file. XML is used in UPnP service

descriptions, control messages and eventing.

22

3.4 SSDP

The Simple Service Discovery Protocol (SSDP) provides a mechanism to discover network services

by clients with little or no static configuration. Therefore SSDP supports multicast discovery, server

based notification and discovery routing.

This chapter about SSDP is a summary of the Internet draft [14].

3.4.1 CONCEPTS

Message Flow on a SSDP Multicast Channel

SSDP clients discover services by using the reserved local administrative scope multicast address

239.255.255.250 over the SSDP port (also referred to as SSDP multicast channel, port). Discovery

occurs when a client asks for a service on the SSDP multicast channel/port using HTTP over

UDP. A server listens to this channel/port and if one of his services matches the request, it replies

to the query through this SSDP multicast channel/port using HTTP over UDP. SSDP services may

signal through this channel using HTTP over UDP their presence. For network performance

reasons SSDP supports both, service discovery requests and service presence announcements.

The multicast seems to be the right solution to guarantee that a client that is searching for a certain

service can discover all the servers in reach providing such a service. Or that the client can inform

each other about his presence. On the other hand this mechanism can work without any

configuration, management or administration. The administrative scope has been chosen to give

the administrator the possibility to choose the machines that are grouped in a unit.

The use of multicast on the other hand can be an issue, as possible deployments of UPnP in large

scale networks, like MANs or WANs, can not be achieved, because of the lack of multicast

support.

SSDP Discovery Information Caching Model

Services are identified by a unique paring of type URI and name URI (USN). Additionally service

discovery results and service presence announcements also provide expiration and location

information. Location information tells how to contact a service. The expiration information is like

a lease.

23

3.4.2 COMPONENTS

SSDP Discovery Requests

SSDP discovery requests are extended HTTP SEARCH methods, which serve to discover services

in the network. These messages are delivered with HTTP over UDP, but future implementations

are expected to support also TCP.

A SSDP discovery request contains a single URI and can specify the service type. Only SSDP

services with a matching service type may respond to these requests. Responses to a SSDP

discovery request have to be sent to the IP the request came from. Such a response should contain

the service location. Responses should also contain information about the expiration of the service.

This can be compared to the lease based approach of Jini.

SSDP Presence Announcements

SSDP services may declare their presence on the network by sending a [GENA] NOTIFY method

using SSDP presence announcements (ssdp:alive) sent to the SSDP multicast channel/port. When

a SSDP presence announcement is received by anybody with a matching USN in the cache, all

information in the cache is updated. So SSDP Presence Announcements can be used to update

location information and to prevent expirations.

SSDP Presence Announcements must be set to the service’s type and must contain the USN of the

service. Besides this, they should contain a Location. If no DNS is available at least one IP should

be specified.

On the other hand SSDP may notify the clients of the intention to cease by sending a [GENA]

NOTIFY using SSDP Presence Announcements (ssdp:byebye) sent to the SSDP channel/port.

SSDP Auto-Shut-Off

There must be an algorithm to prevent that too much network traffic for the network is generated.

In a worst-case scenario a huge amount of traffic can be generated by the SSDP. At the moment

there is no such algorithm specified in the draft [14]. Nevertheless, this issue has to be handled with

care.

24

SSDP Service Enumeration

All SSDP services must respond to these SEARCH requests over SSDP multicast channel/port as

if the request would contain their service type. This can be used to enumerate all the services

available on a particular multicast channel/port. This enumerating feature can be useful for

monitoring and analysing purposes. And the collected information about all available services can

then become available outside the multicast’s scope.

25

3.5 SALUTATION

Salutation is defined by the Salutation consortium and is another approach for service discovery

and utilization among the network. With a special attention to the different kinds of devices

Salutation proposes a processor, operating system and communication protocol independent

solution. The Salutation architecture provides a mechanism for services and devices to describe

their capabilities to other services and devices, a mechanism for services and devices to search for

other services and devices and a mechanism to request and establish session between them. This

chapter is a summary of [15] and [16].

3.5.1 CONCEPTS

Services and Service Descriptions

The concept of a service is broken down into a collection of Functional Units. These Units are

representing a special feature, like Fax, Print or sub features of these, like page setup. A service then

is made up of a collection of these Functional Units and a service description is a collection of

Functional Unit descriptions. These Functional Unit descriptions contain a set of attributes, which

are name value pairs. These attributes are queried and matched against queries during service

discovery requests. These query and matching requests can be implemented as functions, which

define the API for clients.

Registration

Clients can register and un-register themselves with a Salutation Manager (SLM, explained below).

This is always done with the local or nearest SLM. When a client registers information the SLM

registry is updated and shared with other SLMs. For this interaction the Salutation Manager

protocol (see figure 3.3 below) is utilized, which uses Sun’s RPC. To discover other SLMs RPC

broadcasts can be used or broadcasts dependent on the transport layer and therefore managed by

the Transport Manager (TM, see below) internally. This is similar to the Jini lookup service.

Discovery

Clients almost always talk directly to the SLM. Therefore services have to be made discoverable on

the different SLMs. To provide this, SLMs discover other SLMs and services registered there.

Again, for this the Salutation Manger Protocol is used. For the service discovery the local SLM

specifies the service types and service attributes and tries to discover matching entries in other

SLMs. This feature is called capability exchange. This capability exchange forms a lookup service

distributed over the network.

26

Eventing

As mentioned the call-backs into the devices from the Salutation can not be used to have the same

eventing feature in Salutation like in Jini. To simulate a ‘service is now available’ event, the client

can ask the local Salutation Manager to check periodically for a certain service.

Session Management

A session is established when a client wants to use a service, which it discovered through a service

discovery. The communication between client and server can be delegated through a Salutation

Manager or not. This is called the Session Management. For this Session Management Salutation

defines three modes, in which a session be held:

• Native mode

• Emulated mode

• Salutation mode

In the native mode all the message exchange is done with help of a native protocol and the Session

Manager is never involved in the communication.

In the emulated mode, the Salutation Manager Protocol is used for the message exchange. The

massages are carried over this protocol, but the content is not inspected.

In the Salutation mode not only the Salutation Manager Protocol is used for the message exchange,

even the message format is defined by the Salutation Managers.

27

3.5.2 COMPONENTS

Salutation Manager

The Salutation Manager (SLM) is the core of the Salutation architecture. It can be compared to the

Lookup service in Jini. Services register their capabilities with a SLM and clients can search for

other services and devices by sending requests to the SLM. The SLM coordinates requests with

other SLMs and establishes a connection channel between the client and the returned service. The

behaviour of SLMs can be compared to the one of agents: everything on behalf of the clients.

SLMs can even mediate data transfers. This is useful when client and server are using a different

communication layer. The framework also provides event messages like data arriving or device

unavailable. These events cannot be compared to the Jini event Model.

Salutation Manager Protocol

The Salutation Manager Protocol (SMP) is used by Salutation Managers to communicate. For this

protocol Sun’s RPC [9] is used. To discover other SLMs an SLM can use RPC broadcasts.

Transport Manager

With help of the Transport Manager (TM) the transport layer independence is achieved. The

Transport Manager is dependent on the network transport layer it supports. An SLM can have

more than one TM, one for each transport layer, over which the SLM has to communicate. The

TM provides transport-independent interfaces to the SLM.

Transport-independent Interfaces

These interfaces ensure the network transparency for the SLM and the clients and servers in top of

a SLM. SLMs communicate with TMs through the transport-independent TM interface (SLM-TI)

and with clients and servers through a transport-independent API (SLM-API).

28

Salutation Architecture Overview

Figure 3.3: The Salutation architecture

3.5.3 SALUTATION LITE – DOWN-SCALED SALUTATION

The Salutation consortium is responsible for the definition of the Salutation Architecture. This is a

service discovery and session management protocol. The goal was the definition of an open

standard for resource management which is distributed royalty-free.

The consortium detected also the need to support small bandwidths and low battery devices. For

this the focus was on wireless networking technologies and on handhelds. So the footprint of the

software was the key requirement. Specifications are available under [17].

Client / Server Client / Server

TRANSPORT TRANSPORT

TM TM

SLM

Client / Server

TRANSPORT

TM

Client / Server

TRANSPORT

TM

SLM

SLM

SMP
SLM-API

SLM-TI

29

3.6 BLUETOOTH SERVICE DISCOVERY

About Bluetooth Service Discovery

The Bluetooth SDP is defined by Bluetooth SIG under [19]. Many Bluetooth applications and

services are under development at the moment and therefore many new Bluetooth profiles appear.

As users can hardly track the whole evolution of new profiles, the Service Discovery Application

profile has been defined. It should ease the way services can be discovered and configured with the

right parameters. The goal of service discovery in Bluetooth differs from the goals of the above

examined service discovery protocols. Auto configuration and building a community wherein

services can be announced and discovered by all the members are not essential within Bluetooth

service discovery. Much more Bluetooth service discovery is a simple client server scenario in

which a client may ask the server about the availability of services on the server and information

about how they can be accessed. Configuration is still up to the user or at least to the application

intending to use the service. So it can be summarized that Bluetooth SDP provides:

• Search for services by service classes

• Search for services by service attributes

• Browse a device for services

3.6.1 CONCEPTS

Role Playing

For a Bluetooth service discovery procedure at least two devices have to be involved, which play

the roles of the service server and client respectively.

The client is the initiator of the service discovery procedure. Thus it must at least implement the

client portion of the Bluetooth service discovery profile. This device can discover services and

display results of a service discovery process.

The server device is the device which can reply to the service queries and it must at least implement

the server portion of the Bluetooth service discovery profile. This device contains a service record

database which is consulted by the server portion of the profile to generate responses.

30

The server and client portions of the service discovery profile can be implemented in the same

device and the device can play both of the above roles. But within one service discovery process,

the device is always either the service server or client.

Device detection, service discovery and connections

To initiate a service discovery procedure a device first has to detect other Bluetooth equipped

devices within its range. Then a connection to the detected devices has to be established with

Bluetooth conform security aspects (e.g. by providing a PIN). After the connection establishment

the client can do service discovery queries over the created link.

3.6.2 COMPONENTS

Service Discovery Server

The service discovery server implements the function primitives to interact with the server’s

database and the protocol data units (PDU) to interact with the service discovery client over a

Bluetooth link. The function primitives are necessary to register a service description and to do

queries in the server’s database to answer to discovery requests and the PDUs are necessary to

communicate via the Bluetooth link with a Bluetooth service discovery client.

Service Discovery Client

The client side of the Bluetooth service discovery profile implements the function primitives for

the application to query a remote device for available services and service attributes. On the other

hand it provides the PDUs to interact with the service discovery server over a Bluetooth link.

Service Discovery Application

The application uses the interface, the client part of the Bluetooth service discovery profile

implementation provides, to do queries to a remote device. The application can also implement the

Inquiry and connection establishment to ease a service discovery process. The application is used

to:

• Search for services by service classes

• Search for services by service attributes

• Browse for services

31

on the remote device and to display the results via a user interface or to establish a connection to

the service. With help of the application some of the principles of Jini, UPnP and Salutation can be

simulated (like Auto configuration, service enumeration and service discovery). But this approach is

still a very basic approach and cannot fulfill the same tasks as the former mentioned service

discovery protocols.

Service Descriptions

Service descriptions are done by filling in description templates. For known services there exist

already predefined templates. They are built of attributes, which are name value pairs or a collection

of other attributes. The predefined service templates can be seen in Bluetooth Assigned Numbers –

Service Discovery Protocol [20].

3.6.3 THE PROTOCOL STACK

Figure 3.4: The Bluetooth SDP Stack

Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer

As explained above, the Salutation architecture is a very flexible approach for service discovery. It is

independent of the transport layer. This chapter describes how the Salutation architecture and the

Bluetooth Service Discovery Protocol can be merged. This would have the advantage that also

Bluetooth devices could fit perfectly in a Salutation environment. The full suggestion can be

accessed under [21].

L2CAP L2CAP

SDP Client SDP Server

LM LM

Base band

Base band

Application

Database
(Contains service
records)

BTMCR

Legend

BTMCRT: Bluetooth
Module Control
L2CAP: Link Layer
Control and Adaptation
Protocol
LM: Link Manager Client Server

Application

32

To map the two service discovery protocols, there can be two approaches. The first approach will

assume that the Salutation APIs are implemented on top of the Bluetooth Service Discovery

Protocol and Bluetooth SDP attributes pass through the Salutation API.

The second approach will assume that a Salutation Manager can directly communicate over

Bluetooth links, with an implementation of a Bluetooth specific Transport Manager. In this

approach the whole Bluetooth SDP layer would be replaced by the Salutation Manager, which

maps its functionality to the Bluetooth Service Discovery Protocol.

33

3.7 SERVICE LOCATION PROTOCOL

The Service Location Protocol (SLP) is being developed by the IEFT SrvLoc working group [22].

With help of SLP computers use little or no static configuration of network services for network

based applications. SLP is a decentralized, lightweight, scalable and extensible protocol for service

discovery and service selection. Traditionally users had to find services by knowing the name of a

network host or an IP address providing the desired service. SLP eliminates the need for a user to

know about the name or the address of the host providing the service. Rather the user supplies the

desired type of service and a set of attributes describing the service. Based on this information SLP

resolves the name of a host providing the needed services.

SLP is designed to work in networks under a corporative administrative control. This allows

providing security, multicast routing and organization of clients and services, which would not be

possible in the whole Internet. Therefore SLP has been designed to serve enterprise networks with

shared services and it may not necessarily scale for WANs. The SLP definitions are accessible in

[23].

3.7.1 CONCEPTS

In the definition of the SLP user applications are modelled as User Agents (UA) and services are

provided by Service Agents (SA). For reasons of scalability Directory Agents (DA) are used. With

these DAs services can be registered and services can be discovered.

When a user application needs a service, the UA issues a service request (ServReq) on behalf of the

client application, specifying the characteristics of the needed service. As answer the UA will receive

a service reply (SrvRply) containing the location of all the services satisfying the request.

Service Requests

The simplest case is when an UA issues service requests directly to a SA. In this particular case the

request is multicast over the network. SAs receiving a request for a service send replies via unicast

to the UA with the location of the service. In larger network this process does not scale and

therefore Directory Agents are used. DAs have the functionality of a cache. SAs register services

with a DA and UAs contact DAs for service requests. To do so UAs can unicast service requests

directly to a DA instead of multicasting them over the network. The DA will answer to the request

with a unicast service reply containing the location of every service matching the request. If no DA

is known, the UA will try to discover one.

34

Service Registration

SAs can send service register (SrvReg) messages for the services they advertise to a DA and receive

acknowledgements (SrvAck) when the registration of a service with a DA was successful. Both, the

Registration Request and the Registration Acknowledgement are unicast. The service registrations

have to be refreshed periodically or the service registrations on the DA will expire. If a SA does not

know any DA it will try to discover one.

Directory Agent Discovery

UAs and SAs can discover DAs in two ways. First they can multicast a service request over the

network and second by receiving presence announcements the DAs send out periodically and the

UAs and SAs are listening for. In both cases the UA respectively the SA will receive a DA

advertisement (DAAdvert), which in the first case is unicast to the requesting agent and in the

second case multicast over the network.

Scopes

Services can be grouped together by using scopes. These scopes are strings identifying the services.

With help of scopes locations can be identified, administrative grouping can be done or proximity

in the network topology can be modelled. SAs and DAs are always assigned a scope. This means

that they will only answer to service requests in their particular scope. They can also be assigned

more than one scope. UAs can contain a scope, which means that UA will only be able to discover

services within that scope. With help of such a scope the administrator can make a basic

assignment of services to users.

Security Aspects

SAs and UAs can verify digital signatures provided with DAAdverts. UAs and DAs can verify

service information registered by SAs. The security parameters to verify these signatures are

specified in the SLP Security Parameter Index (SLP SPI) and passed within Authentication Blocks,

which extend the normal SLP protocol. The interested reader may find the definition of

authentication block in [24].

Service URLs

A service URL indicates the location of a service This URL is conforming to the URI standard, but

SLP always uses address specification. Every network service can be defined with a service URL.

35

3.7.2 COMPONENTS

The User Agent

As mentioned the User Agent takes the part of the client. In order to have a working SLP

implementation an UA interacts either directly with a Service Agent or when a Directory Agent is

present with the Directory Agent. For this interaction an UA must be able to send service requests

and to interpret DA Advertisements, SA Advertisements and service replies. Service requests are

issued following these rules:

1. UA issues a request to a DA which it has been configured with via DHCP

2. UA issues a request to a DA which it has been statically configured with

3. UA uses multicast service requests to discover DAs

4. UA uses multicast service requests to discover SAs

An UA can be configured with a scope using DHCP or static configuration. No configuration

means the scope “Default” and the UA will detect its scope list automatically. The UA must issue

service requests with at least one of the configured scopes.

The Service Agent

The Service Agent takes the role of the service provider. In an SLP implementation a SA must be

able to answer to service requests either with service replies or with service advertisements. An SA

has to register its services with a DA as soon as DAs are detected, when they are serving the same

scope as the SA is configured with. Like UAs SAs can be configured with a scope following the

same rules. In addition to a UA an SA must listen to unsolicited DA Advertisements to become

aware of available DAs.

The Directory Agent

In an SLP implementation the Discovery Agent takes the role of some kind of a cache. The DA

can be thought as a relay component between the UA and SA. An SA registers all its services,

which match the scope(s) the DA serve(s), with a nearby DA. The SA can be configured with DA

addresses or the SA can try to discover DAs. The UA in turn searches on a nearby DA for the

appropriate services. Also here, UAs can be configured with DA addresses or it can detect DAs.

The Directory Agent must therefore be able to accept unicast requests and multicast Directory

36

Agent Discovery service requests and it must be able to respond to UDP and TCP requests as well

as to multicast DA discovery service requests. In addition the DA can send out unsolicited DA

Advertisements to signal his presence to SAs and DAs in the network. The DA is not necessary for

a basic SLP implementation, but an implementation without DAs will not be scalable. If possible,

DAs should be used.

3.7.3 RESOURCE DISCOVERY PROTOCOL

The Resource Discovery Protocol (RDP) originates from an approach to solve the problems that

exist in a Mobile IP based infrastructure. In such a structure the client does use the resources

provided in the home network in an application-transparent way. The approach of the RDP was to

use local resources. To do so, a protocol was defined, which can be seen as the basis of the SLP. In

RDP the three components UA, DA and SA are defined. The SA is the resource provider, the DA

a kind of repository and the UA is the resource client. The RDP is rather a proof of concept as a

protocol and therefore there are some basic problems. First of all the RDP does only define the use

of one DA which’s address is provided by DHCP. The SA is registering resources with this unique

DA and the UA is requesting resources from this unique DA. This is applicable for small networks

with just a handful of shared resources, but it does not scale for larger networks. As a second

problem the security has to be mentioned. The address of the DA is stored in a plain file, to make it

easily accessible for the applications requesting resources. The address is also stored on a bad guy’s

snooping machine, which then can identify resource request, which can help to construct Denial of

Service (DoS) attacks. The third weakness of the approach is resided in the fact that exclusively

UDP packets are used. As UDP packets are fixed sized, and resource request can result in a list of

available resources, the size of UDP packets can be to low to hold the whole response.

As mentioned the RDP serves as a basis for the SLP. The work of the RDP has been taken over

from the IETF SrvLoc group, developing the SLP. The SLP solves the weaknesses of the RDP.

For the scalability issues in SLP the use of no or more than one DA is allowed. Therefore the SLP

does scale for very small networks as well as for large ones. This made it unavoidable to solve the

UDP problem as well, as SA or DA search requests could cause responses which are too big for a

UDP packet. So the use of TCP is also defined in SLP. As an addition the SLP does define

multicast, which has to be used to detect DAs respectively SAs which can not be longer configured

only by using DHCP. With help of multicast scopes can be used which offers a weak security.

Again, the use of multicast may prevent SLP deployment in large scale networks like MANs and

WANs. For a detailed comparison between RDP and SLP the document [25] can be consulted.

37

3.8 CONCLUSIONS

Service discovery protocols are defined to facilitate dynamic operation of network devices in

changing network scenarios without or with little user interaction. To achieve this dynamism,

devices in service discovery protocol environments must be detectable in the network, must be able

to discover services in the network and must be able to access these services. All the presented

service discovery protocols enable these features.

Jini has a forced dependence on the Java Virtual Machine. Therefore all devices, taking part in the

network, have to support Java. With the principle of the Jini-proxy, this need can be avoided,

especially for devices with limited resources, like cell phones. This Jini-proxy principle is one of the

strongest advantages of the Jini specification, not found in the other systems. But the proxy has an

impact on the service or device manufacturer as they have to use all the same standard interface for

the same type of devices or services to enable the proxy possibilities. Unfortunately Jini does not

exist in an open source implementation, which can make it hard to adopt Jini to be integrated with

CAHN.

UPnP has its dependence on the existing IP and Web technology. Therefore integration in today’s

networks should be rather easy. UPnP focuses more on strong description of device capabilities, on

distributed control of the devices and on eventing mechanisms. UPnP can be seen as an addition to

the known PnP principle. For that reason UPnP fits better in home networks than in large-scale

networks.

SSDP is a part of the UPnP definition and is used in combination with this system. It defines

solutions for some of the requirements of the UPnP system and addresses the same overall

purpose.

The Salutation Service Discovery Protocol has its focus on the service discovery problem and on

the session management. After all, Salutation’s transport layer independence make Salutation the

most flexible and scalable solution for service discovery. The downscaled version of Salutation,

Salutation-Lite provides the same approach for low-resource systems. The focus of Salutation-Lite

is on a small footprint of the implementation and on the additional Operational Environment and

Display Functional Units to give the service provider the possibility to adapt the services according

to the client’s device capabilities.

The Bluetooth Service Discovery Protocol is defined as a communication channel between a client

and a server device. The goal is to give a client the possibility to browse a detected device for

38

available services. Each device is able to be client or server, depending on the situation. With help

of an integration of the Salutation system into the Bluetooth Service Discovery Protocol the system

can be expanded and offer additional features. The Bluetooth SDP itself is a basic approach to

service discovery, but it has reached a productive state and can be an enabler for dynamic

networking.

Similar to Salutation the Service Location Protocol (SLP) focuses pure service detection. Unlike

Salutation SLP was defined to work in corporate networks and has no focus on scalability for larger

networks, even if better scalability could be achieved with some clues. SLP can work as a pure

client server approach and with help of Directory Agents (DA) as well in distributed systems. DAs

are needed by the system to scale. SLP offers a very clean and simple definition for service

discovery. OpenSLP is an open-source implementation of SLP, which already made his way into

several recent GNU/Linux distributions.

Compared with each other the Jini approach has his strength in the support for proxies, so that

clients of services do not have to install supplementary drivers to access a service. Another

advantage is the JAVA basis which offers JINI a high acceptance. UPnP does address the topic of

service discovery from the point of view of the network components, instead of the service itself.

Therefore the UPnP approach does not scale for big networks. Salutation offers this scalability, by

providing mechanisms, how different SLMs can talk together. So the whole system is distributed

over several SLMs, which makes the system very flexible. Moreover Salutation also focuses on the

applicability on devices with limited resources. The flexible design of Salutation also allows

integrating Bluetooth SDP into the system. The Bluetooth SDP itself focuses on the use of the

protocol to discover services on other Bluetooth equipped devices within the Bluetooth radio

range, which is very limited. Therefore it makes no sense to define a separate catalogue server,

where devices can register their services. So the catalogue is kept on the Bluetooth device, which

supports the services. Last but not least, the SLP offers a clear and straight forward definition of

service discovery. SLP does only address service discovery in LANs and corporate environments.

The use of Directory Agents is not mandatory so that SLP can be used in a comparable manner to

Bluetooth SDP, where the services are only advertised by the device providing the service.

Table 3.1 illustrates the comparison of the different service discovery protocols.

39

Main Purpose Dependencies Security Particularities

Ji
n
i

Providing a distributed

system, which is easy to

administer and where

federations of users and

their resources can be

built.

> Java

> IP networking

> Specialized Jini-

focused solutions

> Use of principal and

access list to control

permissions

Defines the use of Proxies

and RMI to provide the

communication between the

different entities. Therefore

client software is not

necessary to access a service.

U
P
n
P

Extend the known PnP

mechanisms to the

network, so that no

configuration is needed

when new network

components are added

or existing network

components are

removed.

> Multicast support

> IP-networking

> web standards (i.e

HTTP, XML …)

> SSDP

> Only scope

mechanisms of

multicast can be used

for access restrictions

Tries to rely on web based

standards to achieve an easy

integration into existing

networks. Does not focus

large-scale networks.

Seperate Service Discovery

Protocol: SSDP

S
a
lu
ta
ti
o
n

Proposes a processor,

operating system and

communication

protocol independent

solution with a special

attention to the different

kinds of devices.

No special

preconditions

Special down-scaled

solution exists with small

footprint. Bluetooth SDP

can be integrated in

Salutation. SLM

interoperation grants

scalability. Very flexible, but

very complicated

specifications

B
lu
e
to
o
th
 S
D
P

Providing a mechanism

to find Bluetooth

services in radio range

and get information

how to get access to

these services, with

optimization for the

usage by devices with

limited resources.

> Bluetooth > Bluetooth Security The Bluetooth SDP has no

specialized service catalogue.

The services are registered

on the device providing the

services.

S
L
P

Providing an

environment, where

devices can use services

with little or no static

information. With a

special focus on

corporate LANs.

> Mulitcast support

> IP networking

> Only scope

mechanisms of

multicast can be used

for access restrictions

Very clear and compact

definition of Service

Discovery Protocol. Service

Catalogues (Directory

Agents) are optional. Not

scalable, because of

multicast usage.

Table 3.1: Comparison of service discovery protocols

40

Finally it has to be drawn the conclusion that the presented service discovery protocols share two

main issues. The first issue is the lack of security. In the specifications of the service discovery

protocols is mentioned little or nothing about security. The suggested security approaches all

prerequisite prior registrations of the devices to a certain service discovery protocol system, so that

they can be authenticated later. This is not the desired solution, as service discovery protocols

should provide environments, where devices can participate with little or no static configuration.

The use of certificates on the different components can be a possible solution, but the therefore

necessary checks of the certificate revocation lists require Internet access. This can not be

guaranteed in all environments, i.e. Bluetooth environments.

The second issue that has to be mentioned here is the strong dependence of some service discovery

protocols on multicast support. Even if multicast support can be found in corporate networks,

large-scale network often do not provide support for it. This often reduces the scalability of a

service discovery protocol and is a serious issue for a possible deployment.

41

4 CELLULAR ASSISTED HETEROGENEOUS

NETWORKING (CAHN)

4.1 THE BOOTSTRAPPING PROBLEMS

Link Establishment

In heterogeneous environments the setup of a connection between two nodes can become quite

complicated. As many different access technologies may be involved, the setup of the network

quickly becomes confusing. This makes it hard, for the ordinary users to communicate with each

other. Furthermore, if the connection has to be secured between the nodes, additional parameters

have to be exchanged, and the configuration has to be adapted accordingly.

Authentication

Once two users have managed to setup a connection between their devices, they have to identify

and authenticate their devices in order to establish a secured connection. This is crucial, as the two

users have to be sure, that they really establish a secured connection with the indented nodes. This

makes it necessary for the users to prove, that a certain device really belongs to the right user. The

easiest way to do so is by using a shared secret, which have to be known by the users to prove their

authorization. The agreement on such a shared secret can be done verbally, but it is important, that

this agreement is kept secret from the public, and can not be done over an unsecured link. It is also

obvious, that the setup for later authentication processes has to be done prior to the authentication

process itself. Therefore a proper authentication setup can be seen as the enabler for a secured link.

Again, the existence of different authentication mechanisms makes it almost impossible, to find a

common authentication scheme, which is applicable for all the users in a heterogeneous network.

Secured Link Establishment

After the authentication, the link between the users has to be secured. For that purpose the users

have to exchange several security parameters, which do at least consist of the encryption algorithm

and the encryption key. To setup more sophisticated encryption mechanisms, further parameters

have to be negotiated. In any way, the users have to perform a handshake in order to establish a

secured connection and this handshake must also happen in a secure way.

42

4.2 AUTHENTICATION AND SECURED LINK ESTABLISHEMENT

BY CELLULAR OPERATORS

In the CAHN description [25] it is suggested to use a cellular network to assist the users in a

heterogeneous network. The cellular network thus serves as a channel which can be used for the

signaling. The exchange of the needed parameters for a connection establishment and further the

negotiation of the needed parameters to create a secured connection can be handled over such a

channel. The typically high coverage of a cellular network makes it very valuable for the use as a

signaling channel.

Besides the provisioning of a signaling channel, the cellular network offers an existing trust relation

between the users of a cellular network and its operator, which can be reused to provide

authentication.

Therefore the operator will serve as a signaling and configuration provider for heterogeneous

networks. It can locate the peers, authenticate them and offer a configuration for the secured

connection establishment.

In order to integrate the cellular operator to assisted users in a heterogeneous network, interaction

with the cellular network is necessary. Further the authentication of users in cellular networks is

most likely based on SIM mechanisms, which require the interaction with the operator. But not

every device in the heterogeneous network has an interface to the cellular network. Devices which

have an interface and thus access to the cellular network are referred to as Cellular Aware Nodes

(CAN) and devices which have no access are referred to as Non Cellular Aware Nodes (NCAN).

In order to integrate and enable the participation of NCANs in the system, CAHN proposes a

relaying of CAHN messages over a CAN. Based on the assumption, that users possess at least one

cellular capable device the formation of a Personal Area Network (PAN) for all the devices of a

user is suggested. In this network, every NCAN has a connection to the CAN, which can relay the

CAHN related messages over the cellular network. Figure 4.1 illustrates such a PAN.

43

Figure 4.1: Personal Area Network of CAN and NCANs

44

4.3 THE CAHN TARGET SCENARIO

In its target scenario CAHN can enable networking among nodes with heterogeneous access

technologies and furthermore it can assist in the establishment of secured connections among these

participating nodes. The presence of different technologies and the increase of complexity in

heterogeneous environments make the connection establishment among their devices difficult for

the users. CAHN can help in these cases, when it can collect information on the present

technologies. With help of this information a network topology can be computed, where all the

nodes are connected. How this calculation is done, is not defined, yet. Several approaches are

imaginable: from decentralized approaches using agent technologies up to the fully centralized

solution, where the cellular operator calculates the network design. Figure 4.2 shows an example of

a target scenario.

Bluetooth Access Point
(NCAN)

WLAN Access Point
(NCAN)

Figure 4.2: A CAHN target Scenario

45

4.4 CONCLUSIONS

CAHN is a very promising approach. In its basic functionality it can provide an authentication

feature, which is almost pervasive.

Further, the provided signaling can ease the configuration of the different networking technologies

present in a heterogeneous environment and can help to setup a secured connection between users

of the heterogeneous network.

To enable CAHN, devices must have the possibility to access the cellular network. As not every

device in the network will have an interface to the cellular network, CAHN proposes to relay the

CAHN messages over a CAN and to form a PAN of all the devices a user possesses.

The requirement that per person at least one cellular subscription must be present is not too heavy,

since almost every road warrior possesses such a mobile contract. Even if this would not be the

case, the price for a subscription and the costs for the exchanged information are bearable.

The problem of identifying devices in heterogeneous environments is not present in CAHN, as all

users are identified with their mobile phone number (MSISDN). Upon connection establishment

the nodes exchange their configuration parameters over the cellular network and thus also the

present connection identifiers of the data link (i.e. the IP address of a WLAN connection). For that

purpose it becomes possible to authenticate the participant and with help of the signaling also his

device.

46

5 DESIGN

As stated in the second chapter, the Bluetooth security can be very limited. In the case where no

former trust relation exists between the users and no common PIN has been defined the

Bluetooth security can not be applied and the connection has to remain unsecured. This is a

serious issue in public access scenarios, where security is a must.

To enable Bluetooth in public scenarios, enhanced authentication features are necessary, which

are also applicable without having agreed on the shared secret (PIN) in prior.

CAHN can now offer this enhanced authentication, which is based on the trust relation of the

user with the cellular operator. With help of this authentication and the secured channel, that

CAHN offers, the PIN can be negotiated dynamically, and the Bluetooth link can be secured,

using the built-in Bluetooth security mechanisms.

The second part of this diploma work aims at integrating CAHN in the Bluetooth SDP. With

help of this integration, the applicability of the Bluetooth security can be improved, and on the

other side, the Bluetooth SDP can be used to learn about the CAHN capabilities a certain device

can offer.

To show the benefits of this integration, a demonstrator will be implemented. This demonstrator

provides basic implementations of CAHN components and the CAHN protocol, and the

integration of CAHN as a service into the Bluetooth SDP.

As usability is one of the key motivations for this diploma work, an easy-to-use Graphical User

Interface (GUI), which will act on the behalf of the user, will round up the implementation.

Last but not least, the demonstrator is used for measurements which will provide practical

knowledge about CAHN. These empirical parameters are important for the further development

of CAHN.

47

5.1 REQUIREMENT SPECIFICATIONS

The main purpose of the implementation of the integration of CAHN in the Bluetooth SDP is to

enhance the Bluetooth security and to provide a solution for the bootstrapping problem of

Bluetooth in public environments. Further, the Bluetooth SDP can enhance the applicability of

CAHN and can be reused to indicate and learn about the supported CAHN features of a certain

device. To meet these goals, the following requirements can be defined:

• CAHN must be integrated as a service in the Bluetooth SDP. This indicates the capability

of a certain device to support CAHN and to indicate the CAHN configuration parameters.

• CAHN must be implemented as a service attribute to point out that a certain service is

enabled for CAHN. This would bring in the flexibility to use Bluetooth services normally

or with CAHN enhancements.

• The CAHN core must provide a server implementation to handle connection requests and

generate responses.

• The CAHN core must provide a client implementation to generate connection requests and

to handle responses.

• The CAHN core implementation must be able to configure the Bluetooth interface.

• Devices must be able to act as a server or a client, according to the situation and therefore

the CAHN core must provide the server and the client implementation.

• The CAHN core implementation must provide the mechanisms needed to send/receive

messages over/from the used cellular network.

• A CAHN protocol has to be defined, for the CAHN core server and CAHN core client

interaction.

• Finally an easy-to-use GUI must be provided.

48

5.2 DEFINITION OF THE CAHN BLUETOOTH SERVICE AND THE

CAHN BLUETOOTH SERVICE ATTRIBUTE

5.2.1 SERVICES IN BLUETOOTH SDP

Bluetooth services are entirely described by sets of attributes. These sets are stored in service

records which are maintained by the Bluetooth SDP server. Attributes are name/value pairs. The

name of an attribute is represented as a 16 bit unsigned integer, which makes the attribute

distinguishable within a service record. Values of attributes can be of different basic types like

integers, strings, Booleans or a sequence (list) of those. Each service is defined by at least two

mandatory attributes, which are the Service Record Handle (AttributeID: 0x0) and the Service Class

ID List (AttributeID: 0x1). The Service Record Handle is a 32 bit unsigned integer and it uniquely

identifies each Service Record on a Bluetooth SDP server. The Service Record Handle with the

value 0x0 is the Service Record Handle of the Bluetooth SDP service, which must be present on

each Bluetooth SDP server and contains further details about the Bluetooth SDP service. Service

Records and thus services are organized hierarchically. This means, that a service can be a sub

service of a given service and add more details to his super service. For example a printer service

may be present on a Bluetooth SDP server with a sub service duplex printer, and another sub

service colour printer. A duplex colour printer service would then be a sub service of duplex printer

and a sub service of colour printer. For that reason the Service Class ID list contains a sequence of

Service Classes, a given service belongs to. Furthermore the Service Class of a service defines the

attributes contained in a Service Record for a specified service. Each service must belong to at least

one Service Class. Service Classes are referred to with the help of Universally Unique Identifiers

(UUID). The interested reader may find UUIDs for Service Classes in the “Bluetooth Assigned

Numbers” [20]. Besides the mandatory Service Record Handle attribute and the Service Class ID

list attribute typically three other attributes are defined: the Service UUID (AttributeID:0x3),

which’s value is a 128 bit value that uniquely identifies a certain service among all namespaces,

comparable with Service Class UUIDs; the Protocol Descriptor List (AttributeID: 0x4), which

contains a sequence of protocol IDs that are used for this service ; and the Human Readable String

(AttributeID: 0x100), which’s value is a string describing the service in a human readable way.

49

5.2.2 DEFINITION OF THE CAHN SERVICE

As explained in the previous chapter each service must be defined by at least two attributes, which

are the Service Record Handle and the Service Class ID List. The Service Record Handle is

generated according to the specific implementation of the Bluetooth SDP profile. As the CAHN

service does not fit into an existing Service Class ID (remember: the Service Class ID defines the

attributes present for a specific Service Record) a new Service Class with the ID 0x1220, which is

not yet taken for another Service Class according to “Bluetooth Assigned Numbers”, has been

chosen. This Service Class does now define the CAHN service.

• CAHN Service Class ID: 0x1220

In addition to the mandatory attributes certain existing attributes have been defined within the

CAHN Service Class: The Protocol Descriptor List (AttributeID: 0x4), which is empty, as no

Bluetooth protocols are used in the CAHN service; the Human Readable String (AttributeID:

0x100) with the string value “CAHN enabled device”; and the Service UUID (AttributeID: 0x3)

with a value of 0x1220. Again this UUID was not assigned to another service according to

“Bluetooth Assigned Numbers”.

• CAHN Service UUID: 0x1220

• CAHN Protocol Descriptor List: ‘empty’

• CAHN Human Readable String: “CAHN enabled device”

Last but not least the purpose of the CAHN service is not only to indicate the CAHN capability of

a given device, but also to enable a connection using CAHN. Therefore at least another important

attribute has to be added, to indicate the connection parameters, which in this case only consist of

the MSISDN of the given device. The new defined attribute has been assigned a free ID (according

to “Bluetooth Assigned Numbers”): 0x400 and its value is of the type String:

• CAHN MSISDN: AttributeID:0x400, value type: String, value: current MSISDN

With these definitions the CAHN service can be integrated in the implementation of the Bluetooth

SDP. How this is done in detail will be explained after the definition of the CAHN service

attribute.

50

5.2.3 DEFINITION OF THE CAHN SERVICE ATTRIBUTE

The CAHN service attribute is intended to be used to indicate the ability of CAHN of a given

service. This adds more flexibility to the implementation. Therefore, a new attribute with the

available ID 0x401 has been added, with a possible value of the type string. The exact value of the

attribute does not matter, as the pure presence of the attributes already indicates that the service is

CAHN enabled. In this implementation the value contains the Service Record Handle of the

CAHN enabled Service to facilitate Bluetooth SDP operations regarding that service. In practice it

would be better to assign just a Boolean value to this attribute, in order to reduce the submitted

data.

• CAHN service attribute: AttributeID: 0x401, type: String, value: does not matter.

5.2.4 DEFINITION OF A CAHN PROFILE

In order to have the CAHN service and the CAHN service attribute integrated in future Bluetooth

implementations the definition and standardization of a CAHN profile through the Bluetooth SIG

would be necessary. As the implementation and the definition were not in a final state at the time of

writing, this profile cannot be realized yet, but can be a future topic. Nevertheless, a Profile ID was

chosen and will be integrated in the used Bluetooth SDP implementation.

• CAHN Profile ID: 0x1220

51

5.3 CAHN PROTOCOL DEFINITION

The basic CAHN protocol must provide at least three kinds of messages: a connection request

message, a connection response message and an error message.

5.3.1 CAHN BLUETOOTH SERVICE REQUEST

This first message is needed to invoke a connection establishment. With help of this message the

client can request a connection with the server. Therefore the message is also used on server side to

identify the client and must thus contain the identifiers of the client. As the application is intended

to handle security per service, the client must also include the ID of the service to which he wants

to connect. Figure 5.1 shows the format of a Connection Request message.

Figure 5.1: CAHN Bluetooth Service Request

For a CAHN protocol packet three different kinds of header can be distinguished: the global

header (HDR) is used for packet identification and transmission; the CAHN header (CAHN HDR)

contains the information needed to identify the CAHN communication partners; the third header

(BLT HDR) is the header that is needed in respect of the service. As this application is based on

Bluetooth, this header contains the Bluetooth related parts. What follows the headers is the service

related data (SVC_DATA). The following list contains a brief explanation of the different fields of

the CAHN Bluetooth Service Request message depicted in Figure 5.1:

• The PDU_ID uniquely identifies the CAHN protocol message among all the CAHN

messages.

• The P_LEN indicate the length of the packet and is needed for packet reception, to allocate

an appropriate amount of memory for the packet.

• The SRC_MSISDN holds the MSISDN of the packet originator and

• the DST_MSISDN the MSISDN of the receiver.

• The SRC_BA contains the Bluetooth address of the sender and

PDU_ID P_LEN SRC_MSISDN DST_MSISDN SRC_BA DST_BA Bluetooth Service ID

HDR CAHN HDR BLT HDR SVC DATA

52

• the DST_BA the Bluetooth address of the receiver (this address must have been detected

before).

• The SVC_DATA comprises all the information that is necessary for a certain service (in

this case this field shows the Service ID, the user intends to connect to).

5.3.2 CAHN BLUETOOTH SERVICE RESPONSE

In order for a server to allow a connection and to give a positive answer upon to connection

request, a response message is needed. This message must contain the identifiers of the server, so

that the server can be authenticated on client side. In addition to that the message must include the

PIN that has been generated on server side for the connection request. Figure 5.2 shows such a

response message.

Figure 5.2 CAHN Bluetooth Service Response

The response message shown in the illustration does not differ much from the request message.

The fields are again the same as defined for the request. The only addition in the response message

is the PIN field in the service data section.

• The PIN field contains the PIN that has been generated for a Bluetooth Service Request on

server side.

5.3.3 CAHN ERROR RESPONSE

Not every connection request will lead to an accepted connection. In case of failure, the CAHN

Bluetooth Service Response cannot be used to indicate the reason that caused the error. For that

purpose error messages have to be defined. Figure 5.3 contains a scheme of a CAHN Error

Response.

Figure 5.3 CAHN Error Response

PDU_ID P_LEN SRC_MSISDN DST_MSISDN SRC_BA DST_BA Bluetooth Service ID

HDR CAHN HDR BLT HDR SVC DATA

PIN

PDU_ID P_LEN SRC_MSISDN DST_MSISDN SRC_BA DST_BA Error Code

HDR CAHN HDR BLT HDR SVC DATA
(Optional)

53

The header fields did not change compared to the previously defined messages. But errors in

CAHN are not always related to Bluetooth and therefore the Bluetooth header is optional in this

kind of message. The service data (name is not very appropriate) contains the code of the error that

has been detected. In case where the application is not able to assign a specific error code to an

error, a standard error code is used. The definitions of these codes will follow later in this

document. For the sake of completeness here the added field:

• Error code contains a predefined code for indication of a certain error. If the occurred

error does not belong to a predefined code, a standard code is used instead.

54

5.4 CAHN CORE

Summarizing the requirements specification, the CAHN core must be an application, which

implements the server part of CAHN as well as the client part. A server typically is a service, which

is running in the background of the operating system waiting for requests. The server then handles

the request and can perform actions to fulfill a request. When needed, a server can also give back a

response. A client on the other hand is an application, which contacts a server to send a request to.

When needed the client can get a response and handle this response. In the case of CAHN the

application has to provide both of these entities, the client and the server. Which role the

application will execute depends on the situation.

As the application must provide a CAHN server implementation the design suggests to make the

CAHN application running in the background, waiting for requests. As on every CAHN enabled

device thus a server is running, the client part of the CAHN application is able to contact the local

server to hand over requests. Whether the request has to be handled locally or on a remote device

will be decided by the server, which therefore must be able to either handle the request locally or to

relay the request to a remote server, which can handle the request. When a request is relayed to a

remote device, the local CAHN server plays the role of a client, and must therefore provide a mean

for receiving responses, which have to be handed back to the request originator. The state diagram

presented in Figure 5.5 illustrates the different states of the CAHN application.

In this sketch three different states are presented which divide the application in three logical parts:

1. The CAHN Communication Manager (waits for and handles requests)

2. The CAHN Connector (manages the access technology related issues)

3. The CAHN Adapter (provides an interface to the used cellular network for the CCM)

Figure 5.4 shows the different Core components. In the following chapters the components are

explained to justify the chosen design.

55

Figure 5.4 : The CAHN Core components

5.4.1 CAHN COMMUNICATION MANAGER (CCM)

This part of the application is responsible to wait for incoming requests, to handle those accurately

and to provide a response. A request will be analyzed and the decision is made, whether the request

has to be handled locally or relayed to a remote device. If the request has to be handled locally, it is

further analyzed, to which access technology the request belongs to. To do so, this component

must also provide the CAHN protocol definition, as the PDU_ID is used to identify the packet

type. As the request handling procedure can depend on the access technology concerned in the

request, a separate component for each access technology is proposed for the request handling.

This design makes it possible to easily add new components for additional access technologies. This

component is called the CAHN connector.

GSM UMTS Bluetooth WLAN

Cellular Network / Signalling Plane Broadband Network / Data Plane

CCM

CAHN ADAPTER CAHN Connector

CAHN Core Components

56

Figure 5.5: State Diagram for the CAHN protocol implementation

5.4.2 CAHN CONNECTOR

As mentioned before, the CAHN connector is responsible to handle requests belonging to the

access technology it is responsible for. For each access technology a separate CAHN connector is

used. Besides this the CAHN connector has to manage the access interface. This means, that it is

responsible to setup the access interface according to the request. After the completion of the

request handling, the CAHN connector returns a response to the CCM which will be responsible

to delegate this response to the request initiator.

In the case of this diploma work, only a CAHN connector for the Bluetooth technology is defined.

Figure 5.6 shows the actions a CAHN connector for Bluetooth has to perform to handle a request.

57

Figure 5.6: Flow chart of the CAHN connector for Bluetooth

5.4.3 CAHN ADAPTER

If a request is handed to the CAHN adapter the request must be handled remotely and thus

forwarded over the cellular network. The CAHN adapter is responsible to take CAHN requests,

transform them into cellular messages and send these cellular messages over the cellular network.

When the response has been generated and arrives from the remote host, the CAHN adapter has

to convert the cellular response message back into a CAHN response and to give it over to the

CCM. The CAHN adapter can also get requests over the cellular network and must does be

running continuously to be ready to receive remote requests. Remote cellular request messages are

converted in CAHN request and handed to the CCM. The CCM will then give back a response to

the CAHN adapter which will convert the response into a cellular message and send it back to the

request initiating node.

In order to provide a standard interface to the cellular network for the CCM, the CAHN adapter

provides a socket interface. The CCM uses that interface, when a request has to be relayed to a

58

remote interface. The CAHN adapter converts the message, sends it over the cellular network,

waits for the response, and gives this response to the CCM. Figure 5.7 below illustrates the message

flow between the CCM and the CAHN adapter for the relaying.

Figure 5.7: Relaying of a remote request

The problem with this approach is that the connection between the CCM and the CAHN adapter

is open until the response arrives. This blocks the CCM in the “wait for response” state. Therefore

the CCM will not be able to treat further requests, until a response arrives. To prevent this blocking

of the CCM the connection must be torn down when the request is sent, and re-established, when

the response arrives. Then the CCM would not be blocked anymore. This is presented in figure 5.8.

59

Figure 5.8: Relaying of a remote request without blocking cahnd

This indeed prevents the CCM from blocking, but with this solution, the context between the

connection and the response will be lost. When the CAHN adapter gets the response, it can

establish a connection to the CCM and hand over the response, but the CCM will not be able to

distinguish to which request the response belongs to. Therefore every request that is sent from the

CCM to the CAHN adapter is subsequently numbered. This sequence number is given to the

adapter, who appends it to the packet, and is thus sent to the remote host, who includes it in the

response. Once the response arrives at the CAHN adapter, the context to the request can be re-

established. To send responses to the CCM the CAHN adapter has to use an interface, that is

provided by the CCM. The UNIX socket interface that has been created on the CCM for incoming

requests can not be used, as it was strictly defined as an interface for requests. Therefore another

interface for incoming responses has to be created by the CCM. To provide those interface, the

CCM create for each outgoing request a UNIX socket interface, with the name of the sequence

number. So the CAHN adapter can connect to the socket indicated by the sequence number of the

received response, and send the response to the CCM. The CCM can now handle that packet and

send back a response to the request initiator. Like this, the problem of the blocking CCM can be

solved, without losing the context between a certain request and its appropriate response.

60

This issue was rather related to the design of the CCM than to the implementation of the CAHN

adapter. But those design decisions also have an impact on the design of the CAHN adapter and

were therefore presented in this chapter. The fact that the CCM does not block and is thus able to

handle different independent requests force the implementation of the CAHN adapter to supervise

two interfaces at the same time: the interface for incoming CAHN messages originating from the

CCM and the interface for incoming cellular messages. This is not possible in the present design, as

cellular message reception is treated different from incoming packets over a socket interface. To

cope with this issue, the CAHN adapter is split up in two parts, the CAHN adapter and the CAHN

SMS adapter. The CAHN adapter is responsible for the surveillance of the UNIX socket interface

provided for the CCM and the CAHN SMS adapter is responsible to handle incoming cellular

messages. This has the advantage, that incoming cellular messages can be converted in the CAHN

SMS adapter and sent to the same socket interface of the CAHN adapter that is provided for the

CCM. So the CAHN adapter is only responsible for one interface, which is a UNIX socket

interface.

5.4.4 CAHN SMS ADAPTER

The CAHN SMS adapter is a single stand-alone program that is invoked by the upon cellular

message reception. The cellular message is received as a parameter by the CAHN SMS adapter,

which first checks, whether the cellular message is a CAHN message. If not, the CAHN SMS

adapter writes the message back on the cellular device. If the message is CAHN related, the CAHN

SMS adapter first checks what kind of message it is and treats it accordingly. If the message is a

request, the CAHN SMS adapter converts the message in a CAHN Bluetooth Service Request and

sends it to the CAHN Adapter. If the message is an error message or a response, the message is

converted into a CAHN Error respectively into a CAHN Bluetooth Service Response and sent to

the appropriate response socket of the CCM. Figure 5.9 illustrates the performed actions in a flow

chart.

61

Figure 5.9: Cellular message processing in CAHN SMS adapter

5.5 THE GUI

For the user interaction with the tool, a GUI has to be provided. As the CCM does offer a standard

socket interface, the GUI can reuse this interface for GUI interaction with the CAHN core

components. Therefore no further programming interface for possible user interfaces is provided.

More details on the implemented GUI will follow in the implementation part of this document.

62

5.6 MESSAGE FLOW

To present the message flow among the different components, a diagram is provided. This diagram

is split in to parts, the client and the server.

5.6.1 CLIENT SIDE

Figure 5.10: Message flow on client side

63

5.6.2 SERVER SIDE

Figure 5.11: Message flow on server side

64

6 IMPLEMENTATION

6.1 INTEGRATION OF THE CAHN BLUETOOTH SERVICE AND

THE CAHN BLUETOOTH SERVICE ATTRIBUTE IN THE

BLUETOOTH SDP IMPLEMENTATION

6.1.1 USED BLUETOOTH IMPLEMENTATION

The platform, where the implementation is developed is a GNU/Linux system. The operating

system is Red Hat 9.0. This choice has also influenced the decision of the Bluetooth stack that is

used for this implementation. The Bluetooth stack implementation providing the needed hardware

drivers, the necessary protocols and the profile implementations to realize the application is the

Bluez stack [26]. Bluez was initially developed at Qualcomm but has moved to Open Source. Since

kernel version 2.4.6 of GNU/Linux the Bluez device drivers are a fixed component of the kernel.

This made Bluez become the de-facto standard Bluetooth stack of GNU/Linux and therefore the

stack is integrated into the Red Hat 9.0 distribution. Besides the device drivers, the basic layers,

namely the Bluetooth baseband, HCI and L2CAP are integrated in kernel space. Further the Bluez

protocol stack provides user space implementations of different Bluetooth profiles and command-

line tools for user interaction with the stack. Amongst others, Bluez offers implementations of the

Bluetooth SDP and the PAN profile. And last but not least the Bluez protocol stack provides

standard UNIX socket interfaces to all the implemented Bluetooth stack layers.

Figure 6.1 shows a detected NAP service represented on a Bluez client. The Service Record Handle

(AttributeID: 0x0) of the NAP service is in this example 0x804ccf0. The human readable

representation in the picture has been added by the Bluetooth SDP client and is not exchanged

within Bluetooth SDP messages. The Service Class ID List (AttributeID: 0x1) contains only one

Service Class with the ID 0x1116, which is the ID for the NAP Service Class. The Protocol

Descriptor List (AttributeID: 0x4) contains two protocols, which are needed for the NAP service,

namely L2CAP (UUID: 0x0100) and BNEP (UUID: 0x000f). Additional information on the

specific use of the protocols can also be added, i.e. the used port number for an IP service. The

Browse Group List (AttributeID: 0x5) is used to configure the reactions of the Bluetooth SDP

server on service browse requests and service search operations and is not interesting for our

purpose. The Bluetooth Profile Descriptor List (AttributeID: 0x9) contains a list of the attributes

and their respective values, which have additionally defined for that service. In this case it only

contains the UUID that has been defined for the NAP service. Finally the Human Readable String

(AttributeID: 0x100) contains the human readable description of the given service.

65

Figure 5.2: Detected NAP service

Figure 6.1: Detected NAP service

6.1.2 BLUETOOTH SDP MODIFICATIONS

To integrate the defined CAHN Bluetooth service and the CAHN Bluetooth service attribute,

modifications to the existing implementation of the Bluetooth SDP provided by the Bluez

Bluetooth stack have to be made. For that purpose the relevant parts of the implementation are

identified:

• sdp.h

In this file the IDs of the Services Classes, the Bluetooth profiles and of the Attributes are

allocated. The adoptions are outlined in red color in figure 6.2

Attribute Identifier : 0x0 - ServiceRecordHandle
 Integer : 0x804ccf0
Attribute Identifier : 0x1 - ServiceClassIDList
 Data Sequence
 UUID16 : 0x1116 - NAP (PAN/BNEP)
Attribute Identifier : 0x4 - ProtocolDescriptorList
 Data Sequence
 Data Sequence
 UUID16 : 0x0100 - L2CAP
 Channel/Port (Integer) : 0xf
 Data Sequence
 UUID16 : 0x000f - BNEP (PAN/BNEP)
 Channel/Port (Integer) : 0x100
 Data Sequence
 Protocol (Integer) : 0x10
 Channel/Port (Integer) : 0x20
 Version (Integer) : 0x30
 Integer : 0x40
Attribute Identifier : 0x5 - BrowseGroupList
 Data Sequence
 UUID16 : 0x1002 - PublicBrowseGroup (SDP)
Attribute Identifier : 0x9 - BluetoothProfileDescriptorList
 Data Sequence
 Data Sequence
 UUID16 : 0x1116 - NAP (PAN/BNEP)
 Version (Integer) : 0x100
Attribute Identifier : 0x100
 Text : "Network Access Point Service"

66

Figure 6.2: Modifications to sdp.h

[..]
/*
 * Service class identifiers of standard services and service
groups
 */
#define SDP_SERVER_SVCLASS_ID 0x1000
#define BROWSE_GRP_DESC_SVCLASS_ID 0x1001

[..]

#define GENERIC_AUDIO_SVCLASS_ID 0x1203
#define GENERIC_TELEPHONY_SVCLASS_ID 0x1204

// Added for CAHN Service Class ID
#define CAHN_SVCLASS_ID 0x1220

/*
 * Standard profile descriptor identifiers; note these
 * may be identical to some of the service classes defined
above
 */
#define SERIAL_PORT_PROFILE_ID 0x1101
#define LAN_ACCESS_PROFILE_ID 0x1102

[..]

#define HID_PROFILE_ID 0x1124
#define CIP_PROFILE_ID 0x1128

// Added for CAHN Profile ID
#define CAHN_PROFILE_ID 0x1220

/*
 * Possible values for attribute-id are listed below.
 * See SDP Spec, section "Service Attribute Definitions" for
more details.
 */
#define SDP_ATTR_RECORD_HANDLE 0x0000

[..]

#define SDP_ATTR_IP6_SUBNET 0x030E

// Added for CAHN MSISDN attribute and CAHN service attribute
#define SDP_ATTR_CAHN_MSISDN 0x0400
#define SDP_ATTR_CAHN_ENABLED_SERVICE 0x0401

[..]

67

• uuid.c

As seen in Figure 6.1, the Bluez Bluetooth SDP client implementation adds human readable

descriptions to Service Class IDs and the Profile ID. This description is defined in uuid.c.

Changes to this file are highlighted in red again.

Figure 6.3: Modifications to uuid.c

• sdptool.c and listattr.c

These files are part of a command line tool to perform Bluetooth SDP operations. It does

not directly influence the functionality of the Bluetooth SDP and is therefore not necessary

to be changed. Nevertheless the tool was modified to provide the operations also for the

CAHN service and the CAHN attribute. But the changes will not be further mentioned

hereafter. The changed code is supplied as add-on.

[..]

static struct tupla ServiceClass[] = {
 { SDP_SERVER_SVCLASS_ID, "SDP Server" },
 { BROWSE_GRP_DESC_SVCLASS_ID, "Browse Group Descriptor" },

[..]

 { GN_SVCLASS_ID, "PAN group network" },
 { CAHN_SVCLASS_ID, "CAHN enabled device" },
 { 0 }
};

static struct tupla Profile[] = {
 { SERIAL_PORT_PROFILE_ID, "Serial Port" },
 { LAN_ACCESS_PROFILE_ID, "LAN Access Using PPP" },

[..]

 { NAP_PROFILE_ID, "PAN access point" },
 { GN_PROFILE_ID, "PAN group network" },
 { CAHN_PROFILE_ID, "CAHN enabled device" },
 { 0 }
};

[..]

68

With the help of the previous modifications to the different files of the bluez_sdp package, the

CAHN service and the CAHN service attribute can now be added as a Service Record respectively

as an additional service attribute to an existing Service Record to the Bluetooth SDP server. Like

this the device can indicate the CAHN capability and the Bluetooth services that are enabled for

CAHN. It is important to get straight that these same modifications have to done on every client

device to recognize the new service and the new service attribute. To deal with this a profile must

be defined, which has to be standardized through the Bluetooth SIG. Once the profile makes part

of the Bluetooth standard, it is likely to be integrated in future implementations and would make

changes to the source code unnecessary. Figure 6.4 and figure 6.5 illustrate a detected CAHN

service respectively a NAP service enabled for CAHN.

Figure 6.4: CAHN service detected

Figure 6.5: CAHN enabled NAP service detected

Attribute Identifier : 0x0 - ServiceRecordHandle
 Integer : 0x804d250
Attribute Identifier : 0x1 - ServiceClassIDList
 Data Sequence
 UUID16 : 0x1220 - CAHN enabled Device
Attribute Identifier : 0x5 - BrowseGroupList
 Data Sequence
 UUID16 : 0x1002 - PublicBrowseGroup (SDP)
Attribute Identifier : 0x9 - BluetoothProfileDescriptorList
 Data Sequence
 Data Sequence
 UUID16 : 0x1220 - CAHN enabled Device
 Version (Integer) : 0x100
Attribute Identifier : 0x100
 Text : "CAHN enabled device"

Attribute Identifier : 0x0 - ServiceRecordHandle
 Integer : 0x804ccf0

[..]

Attribute Identifier : 0x100
 Text : "Network Access Point Service"
Attribute Identifier : 0x401
 Text : "CahnEnabledService:0x804ccf0"

69

6.2 CAHN COMMUNICATION MANAGER (CCM)

The CCM is implemented in C. As the GNU/Linux kernel is implemented in C and also the Bluez

Bluetooth stack, the choice of the C programming language will guarantee a high degree of

interoperability. For the same reason the CAHN connector, the CAHN adapter and the CAHN

SMS adapter are also implemented in C.

The CCM is implemented as a standalone program, which switches into background and waits for

connections. As interface for connections a local UNIX socket interface has been chosen. The

name of the application is cahnd which corresponds to the de-facto standard naming scheme used

in GNU/Linux. The program is started with the command:

and needs no further command line options. As the program is running in the background its

output is send to the system log. Programs intending to interact with cahnd need to include the

header file “cahnd_global_functions.h”.

To establish a connection with cahnd, this header file provides a global function:

This function can be called by clients and returns the number of the socket. In case of an error, the

function’s return value is -1. If no error occurred, the socket number can be used to send data to

the CCM. This can be achieved with the global function:

Here “sock” is the number of the socket, “buf” a character pointer to the data that has to be

transferred and “size” indicates the length of the data transmission. The function returns 1, when

sending was successful and -1, in case of errors.

After the successful transmission of data, which will be a CAHN request message, the client has

interest to receive a response. It can read the response from the CCM with help of the global

routine:

Linux# cahnd

int cahnd read response(int sock, char *rsp buf, int rsp buf len)

int cahnd send data(int sock, char* buf, int size)

int cahnd connect()

70

The parameter “sock” again is the socket number. “rsp_buf” is a character pointer, which indicates

the beginning of a previously allocated memory area, where the response will be saved to. After the

execution of the function “rsp_buf_len” will hold the length of the response packet.

As explained in the design, cahnd must provide response sockets, where the adapter can send the

responses to maintain the request-response context. These socket interfaces are also local UNIX

sockets. The adapter can connect and send responses to the CCM with help of:

In this function “data” is the character pointer to the buffer holding the response, “data_length”

represents the size of the response, and “response_socket” is the number of the response socket,

where the response will be sent to.

Besides the global functions, which can be used for the interaction with cahnd, the implementation

of the CCM contains global CAHN definitions for the CAHN protocol. The following lines define

the PDU_IDs for the different CAHN protocol messages:

The lines below specify the packet header

/*
 * CAHN PDU
 */
typedef struct {
 uint8_t pdu_id;
 uint16_t plen;
} __attribute__ ((packed)) cahn_pdu_hdr_t;

/*
 * The PDU identifiers of CAHN packets between client and server
 */
#define CAHN_ERROR_RSP 0x01
#define CAHN_BLT_SVC_REQ 0x02
#define CAHN_BLT_SVC_RSP 0x03

int response socket send data(char* data, int data length, int
response _socket)

71

and those ones the CAHN header:

The messages that are defined for the CAHN protocol concern all Bluetooth related services.

Therefore the definitions of the entire CAHN Bluetooth Service Request and CAHN Bluetooth

Service Response messages will follow in the implementation of the CAHN connector. Error

messages are not necessarily Bluetooth related, and the use of the Bluetooth header is optional.

Thus error messages are also defined here:

In the definition of these error messages an Integer value called “error_code” gives a reference to

the error that occurred. These error codes were assigned as follows:

/*
 * Error codes
 */
#define CAHN_UNKNOWN_PDU_ID 0x01
#define CAHN_INVALID_PDU_SIZE 0x02
#define CAHN_CONNECT_ERROR 0x03
#define CAHN_SEND_ERROR 0x04
#define CAHN_READ_ERROR 0x05
#define CAHN_INTERNAL_SERVER_ERROR 0x06
#define CAHN_DEVICE_NOT_IN_RANGE_ERROR 0x07
#define CAHN_DEVICE_ALREADY_REGISTERED_ERROR 0x08
#define CAHN_ADAPTER_SEND_ERROR 0x09
#define CAHN_ADAPTER_READ_ERROR 0x10
#define CAHN_PROCESS_RSP_ERROR 0x11
#define CAHN_PREPARE_RESPONSE_SOCKET_ERROR 0x12

/*
 * ERROR Packet
 */
typedef struct {
 char src_msisdn[MAX_SIZE_OF_MSISDN];
 char dst_msisdn[MAX_SIZE_OF_MSISDN];
 int error_code;
} cahn_error_packet_t;

/*
 * CAHN MSISDN HEADER
 */
typedef struct {
 char src_msisdn[MAX_SIZE_OF_MSISDN];
 char dst_msisdn[MAX_SIZE_OF_MSISDN];
} cahn_msisdn_hdr_t;

72

Up to now there are definitions for the global CAHN protocol message header with the PDU_ID

and the PLEN fields, with the definitions of the PDU_IDs; for the CAHN header with the

SRC_MSISDN and the DST_MSISDN fields; and for the error messages not related to Bluetooth,

with appropriate error codes. What misses now to complete the definition of the CAHN protocol

are the Bluetooth related parts. These will be topic of the next chapter.

6.3 CAHN CONNECTOR

To complete the description of the CAHN protocol messages, this section about the

implementation of the CAHN connector will start with the CAHN protocol related definitions.

The following struct definitions are used to complete the CAHN Bluetooth Service Request and

the CAHN Bluetooth Service Response message. They make part of cahn_blt.h:

This concludes now the protocol definition. For the sake of completeness the Bluetooth related

error codes are listed, too:

/*
 * CAHN Service Response Record
 */
typedef struct {
 int service_ID;
 bdaddr_t src_bdaddr;
 bdaddr_t dst_bdaddr;
 int pin;
} cahn_blt_svc_rsp_rec_t;

/*
 * CAHN Service Request Record
 */
typedef struct {
 int service_ID;
 bdaddr_t src_bdaddr;
 bdaddr_t dst_bdaddr;
} cahn_blt_svc_req_rec_t;

73

As mentioned in the design, the responsibility to handle a request, which is related to Bluetooth,

has been moved over to the CAHN connector. The responsible request handler function is coded

in the file cahn_blt.c and looks like this:

“req” points to the place, where the request is stored in memory, and “rsp_buf” points to a pre-

allocated memory space which will hold the response generated by the handler function. The

function’s return type is 0 in case of success or is assigned the respective error code (which was just

presented) in case of an error.

The different actions, the function has to perform to handle a Bluetooth Service Request and to

generate an appropriate Bluetooth Service Response message are illustrated in the flow chart in

figure 5.6

For each of the actions shown in figure 5.6 a help function has been implemented in cahn_blt.c. As

these functions are private they are not interesting for any interaction. Therefore, they are just

listed, but not further explained. The interested reader may have a look at the source code.

• int device_service_registered(bdaddr_t *bdaddr, int service)

To check whether a device has already been registered for the service in the PIN database.

• int device_in_range(bdaddr_t *bdaddr_local, bdaddr_t *bdaddr_remote)

To check whether the device from which the request originates is in the range of

Bluetooth radio.

• int generate_pin()

To generate a PIN.

int blt process packet(cahn blt svc req rec t *req, char *rsp buf)

/*
 * CAHN BLT Error Codes
 */
#define CAHN_BLT_PIN_DB_CONNECT_ERROR 0x01
#define CAHN_BLT_PIN_DB_QUERY_ERROR 0x02
#define CAHN_BLT_DEVICE_NOT_IN_RANGE_ERROR 0x03
#define CAHN_BLT_ALREADY_REGISTERED_ERROR 0x04
#define CAHN_BLT_SVC_RSP_REC_PARSE_ERROR 0x05

74

• int test_pin(int pin)

To check whether the PIN does not already exist in the database. This is to prevent

multiple usage of the same PIN.

• int add_rec_to_pinDB(cahn_blt_svc_req_rec_t *rec, int pin)

To add a new record to the PIN database. This function implements the interface to the

PIN database.

The CAHN connecter does not only have to handle local CAHN Bluetooth Requests, but also

remote CAHN Bluetooth Responses. When the CCM receives an answer which would result in

Bluetooth related actions, like storing the Pin obtained by a peer, it will relay the response to the

CAHN connector to perform the needed tasks. The function to handle these responses is called

“rsp” points to the Response, that has to be treated and “rsp_buf_len” contains the length of this

response. This function returns 0 in case of success or the respective error code in case of an error.

The only responsibility of this function is to store the obtained PIN in the PIN database. If already

a record for this service is present on the PIN database, it will be overwritten.

Not all requests arriving to the CCM are intended to be handled locally and must therefore be

relayed to the appropriate client. This relaying is done in the CAHN adapter, which’s

implementation is topic of the following chapter.

6.4 CAHN ADAPTER

The main task of the CAHN adapter is to relay packets that arrive from the CCM to the GSM

network. To do so, the CAHN adapter provides a local UNIX socket interface. The CCM connects

to that interface and hands the packet to the CAHN adapter. The CAHN adapter converts the

packet into an SMS messages and sends it over the GSM network to the receiver MSISDN. If the

packet is a request, the receiving peer will generate a response, which is then sent back over the

GSM network to the CAHN adapter. The CAHN adapter converts the SMS message into a

CAHN message and hands it to the CCM. Figures 5.7 and 5.8 illustrate the process of relaying a

request to a remote node. The CAHN adapter also has the purpose to provide a standardized

interface to the cellular network. In the design was defined, that this interface is a standard UNIX

socket and the cellular network is the GSM network.

int blt process response(char *rsp buf, int rsp buf len)

75

To use this socket interface, the CAHN adapter provides global functions, which are implemented

in cahn_adapter_global_functions.h:

This function is used by the CCM and the CAHN SMS adapter to connect to the CAHN adapter

socket interface. The return value is the number of the socket, or a negative value in case of an

error. To send data to that socket, the following function is implemented,

where “sock” contains the number of the socket data is sent to, “buf” points to the location, where

the data is stored and “size” indicates the amount of data that is sent. The parameter “resp_sock”

now is used, to get the sequence number of a packet from the CCM.

Remember that a function is provided by the implementation of the CCM (cahnd) for the CAHN

adapter to send a response to a response socket with the name of the sequence number:

This function has already been explained in the section about the CCM.

6.5 CELLULAR NETWORK

The attentive reader may already have recognized from the nomenclature in the previous chapter

that the cellular network of choice is the GSM network. The GSM network is in a productive state

at the moment and can therefore be used for testing. As transport mechanism for cellular messages

the Short Message System (SMS) is used. The choice of SMS is reasonable as SMS can be used

without a further setup with the GSM operator.

To access the GSM network, ordinary GSM cell phones are chosen. They are connected either with

a serial cable or with help of a Bluetooth link. For the interaction with the phones, a third party

software named gsmlib is employed.

int response socket send data(char* data, int data length, int
response _socket)

int adapter send data(int sock, char *buf, int size, int
resp_sock)

int adapter connect()

76

6.5.1 GSMLIB

On the homepage of the gsmlib the following description of the tool is available:

„This distribution contains a library to access GSM mobile phones through GSM modems.

Features include:

• modification of phonebooks stored in the mobile phone or on the SIM card

• reading and writing of SMS messages stored in the mobile phone

• sending and reception of SMS messages

Additionally, some simple command line programs are provided to use these functionalities. “

No further details are presented here and just the use of a tool provided by gsmlib is explained. The

tool is called gsmsmsd and is a daemon program. It runs in the background and monitors an

attached GSM phone for incoming messages. Additionally the tool can check in a pre-defined

spool directory for spooled SMS messages and send them. The tool is started with the command

where packet type specifies what kind of SMS messages are monitored. Type can be a combination

of the following

• sms, no_sms (for regular SMS messages)

• cb, no_cb (for Cell Broadcast messages)

• stat, no_stat (for Status messages)

The behaviour of the daemon can be controlled with help of the command parameters. The

parameters of interest are:

• -a command

Invokes the specified command upon SMS reception. In our case the daemon will invoke

the CAHN SMS adapter

Linux# gsmsmsd packet type

77

• --spool spool_dir

The directory it checks for spooled SMS messages

• -L

Messages are sent to syslog

• -S outbox_dir

A directory where a copy of the sent SMS message can be stored. This is optional, but nice

for debugging and cost control

• -d dev

The device where the mobile is connected

So with this information the tool that monitors the SMS interface is already provided and it can be

setup to invoke the CAHN SMS adapter upon SMS reception. The implementation of the

gsmsmsd is already provided by the gsmlib program suite. For the sake of completeness the

command which is used to invoke it:

6.6 CAHN SMS ADAPTER

As defined in the design, the CAHN SMS adapter is a standalone program, which is invoked upon

packet receptions. As soon as an SMS arrives, the daemon, that is used to receive SMS, the

gsmsmsd, will invoke the CAHN SMS adapter with the SMS as command argument:

With the presented components, the CAHN protocol is entirely implemented. All mechanisms for

CAHN protocol message treatment and delivery are now defined and implemented. But before

CAHN protocol messages can move across a CAHN environment, they have to be created

somehow. As CAHN is intended to act on behalf of the user, it is obvious, that a CAHN Service

Request surely originates from the interaction with user. To provide this interaction between the

user and the CAHN architecture a Graphical User Interface (GUI) has been implemented. This

user interface serves as an example and was useful during the test and demonstration phase of the

diploma work. But other user interfaces may be designed and used to control a CAHN

implementation. The programming interface between the User Interface and the CCM is simply a

Linux # gsmsmsd sms no_cb no_stat –a adapter_sms –spool
sms_spool –d device

Linux # adapter_sms sms_text

78

local UNIX socket, where requests can be sent to. The following chapter will present the

implementation of this GUI.

6.7 THE GUI

As the CCM does provide a standard UNIX socket interface for getting requests, the decision is

made to reuse this interface for the GUI. So the GUI can be implemented in any programming

language, which includes support for socket programming.

For that reason, it is proposed to use an object oriented approach. The GUI will be the interface

for the user to control the implementation. Therefore the design must be intuitive and a window

based approach is suggested. Every window treats a separate aspect of the implementation and for

every window a class is modelled.

The main window, the user sees, must offer the three possibilities, to configure CAHN, to control

the involved programs (the CAHN adapter, the CCM and the gsmsmsd) and to use the application.

Therefore three sub-windows are implemented: a configuration window, a status window and a

service window. In the configuration window, the user can enter the MSISDN of the attached

mobile phone and the device address to communicate with the mobile phone. In the control

window, the user can start/stop/restart the CCM, the CAHN adapter and gsmsmsd and in the

service window the user can chose the type of service, he intends to use, i.e. Bluetooth or WLAN.

In this implementation only the Bluetooth service is implemented. Once the user choses the

Bluetooth service, he must be able to configure Bluetooth itself, the service sharing and he must be

able to access to Bluetooth services. Therefore three other windows are used: the configure

window, the sharing window and the access window. In the configure window, the user can chose

the Bluetooth device (if more than one is present) he intends to use for CAHN. Further he can

enable or disable the service sharing for Bluetooth. Enabling and disabling the service sharing

means in the case of Bluetooth to start or stop the Bluetooth SDP implementation and to register

and deregister the CAHN service in the Bluetooth SDP. In the service sharing window the user can

chose to add a Bluetooth service to share (this means register it to the Bluetooth SDP) and enable

or disable it for CAHN, what is nothing else, than to register or deregister the defined CAHN

service attribute to the service. If the user wants to add a shared service, a window will pop up to

give him the possibility to choose a service. In case of Bluetooth the access window is used to scan

the environment for other devices. Once the scan is complete, a list of available devices will be

show in the access window. Now the user can chose the device of interest and begin to scan for

services. A window called service will come up, where the user can invoke a service scan to the

chosen device. When the scan is completed, the user can chose a service and invoke the connection

79

establishment to that service. This means, that a CAHN request is generated and sent to the CCM.

Figure 6.6 contains the class diagram of the design of the GUI.

Figure 6.6: Class diagram of the CAHN GUI

80

As an object oriented approach for the implementation of the GUI is purposed, the GUI is

implemented in C++. The choice of the C++ programming language made it possible to make use

of QtDesigner, a tool to build graphical user interfaces. For each window that is built in

QtDesinger the code for an abstract class is generated. This class includes the definitions of the

methods which are called, when a GUI event (like pressing a button) occurs. These definitions

contain no implementation. The classes are inherited from and the methods implemented, together

with additional methods. For the sake of simplicity the abstract classes are not presented in the

class diagram in figure 6.6

The Cahn_gui class

Figure 6.7: Screenshot Cahn_gui

When the GUI is started, an instance of the “Cahn_gui” class is created. This class is the main

window of the GUI and provides three functions, which are invoked upon a key press event.

is called when CahnConfigureTbt is pressed and creates an instance of Cahn_configuration which

provides a window for the CAHN configuration.

is called when CahnStatusTbt is pressed and creates an instance of Cahn_status which provides a

window to control the status of the involded daemons, namely cahnd, cahn_adapter and gsmsmsd.

virtual void cahnServices()

virtual void cahnStatus()

virtual void cahnConfigure()

CahnConfigureTbt

CahnStatusTbt

CahnServicesTbt

CahnQuit_Tbt

81

is called when CahnServiceTbt is pressed and creates an instance of Cahn_services, which provides

a window to chose a service type.

If CahnQuit_tbt is pressed, a Qt internel function called accept() is executed, which closes the

window.

The Cahn_configure class

Figure 6.8: Cahn_configure screenshot

This window offers the user the possibility to configure CAHN. The values of interest are the

MSISDN and the UNIX device representation (i.e. a serial port) to communicate with the attached

GSM device.

is called when CahnConfigureBtn_test is pressed and sends AT test commands to the specified

attached GSM device for probing for its presence.

is called when CahnConfigureBtn_ok is pressed. It stores the specified MSISDN and the specified

device to a file. This file is read by the CAHN application, which uses these settings.

virtual void cahnConfigureCommit()

virtual void cahnConfigureTest()

CahnConfigureLet

CahnConfigureLet_dev

CahnConfigureBtn_ok

CahnConfigureBtn_test

CahnConfigureBtn_cancel

82

The Cahn_status class

Figure 6.9: Cahn_status screenshot

This window serves to control the status of the involved daemons.

is called when the CahnStatusBtn_refresh is pressed and actualizes the labels CahnStatusLbl_cahnd,

CahnStatusLbl_adapter and CahnStatusLbl_gsmsmsd, which show the current state of the

appropriate daemons. This function is also called after each start, stop or restart process.

are called, when CahnStatusBtn_startcahnd / CahnStatusBtn_stopcahnd /

CahnStatusBtn_restartcahnd is pressed and starts/stops/restarts the cahnd daemon. The functions

perform the same actions for the adapter and the gsmsmsd. When the CahnStatusBtn_close is

pressed, accept() is called and the window is closed.

virtual void cahnStatusStartAdapter()
virtual void cahnStatusStopAdapter ()
virtual void cahnStatusRestartAdapter ()
virtual void cahnStatusStartGsmsmsd()
virtual void cahnStatusStopGsmsmsd ()
virtual void cahnStatusRestartGsmsmsd ()

virtual void cahnStatusStartCahnd()
virtual void cahnStatusStopCahnd()
virtual void cahnStatusRestartCahnd()

virtual void cahnStatusRefresh()

CahnStatusBtn_startcahnd

CahnStatusBtn_startadapter

CahnStatusBtn_restartcahnd

CahnStatusBtn_restartadapter

CahnStatusBtn_restartgsmsmsd

CahnStatusBtn_stopcahnd

CahnStatusBtn_stopadapter

CahnStatusBtn_startgsmsmsd

CahnStatusBtn_stopgsmsmsd
CahnStatusBtn_refresh

CahnStatusBtn_close

CahnStatusLbl_cahnd

CahnStatusLbl_adapter

CahnStatusLbl_gsmsmsd

83

The Cahn_services class

Figure 6.10: Cahn_services screenshot

This window is intended the offer the user the choice of different service classes. In this application

only Bluetooth services are available, and therefore CahnBluetoothTbt is the only choice the user

can make. When this button is pressed, the function

is called, which creates a new instance of the Cahn_bluetooth class and opens a new window.

When the CahnBack_Tbt is pressed, accept() is executed and the window is closed. This brings

back the main window of the CAHN GUI (class Cahn_gui).

The Cahn_bluetooth class

Figure 6.11 Cahn_bluetooth screenshot

virtual void cahnBluetooth()

CahnBluetoothTbt

CahnBack_Tbt

CahnBluetoothConfigTbt

CahnBluetoothShareTbt

CahnBluetoothAccessTbt

CahnBack_Tbt

84

The window showed by class Cahn_bluetooth provides the control of the CAHN Bluetooth

services. The user can configure the Bluetooth related settings, share services and access to shared

services in its proximity. The method

is called, when the CahnBluetoothConfigTbt button is pressed. It creates a new instance of the

Cahn_bluetooth_config class and brings up a window for Bluetooth related configuration settings.

is called when the CahnBluetoothShareTbt button is pressed. This function creates a new instance

of the Cahn_bluetooth_share class, which provides a window to share Bluetooth services.

is the responsive handler function upon a CahnBluetoothAccessTbt pressed event and creates a

new instance of CahnBluetoothAccess. The button CahnBack_tbt again calls accept() which closes

the window and brings up the previous window, which is provided by the class Cahn_services.

The Cahn_bluetooth_config class

Figure 6.12: Cahn_bluetooth_config screenshot

The Cahn_bluetooth_config class is used to control the Bluetooth related parts of CAHN. In this

window the Bluetooth device for CAHN can be chosen (this is useful, when more than one

Bluetooth adapter is present) and the status of service sharing can be controlled.

virtual void cahnBluetoothShare()

virtual void cahnBluetoothShare()

virtual void cahnBluetoothConfig()

CahnBluetoothConfigCmb

CahnBluetoothConfigBtn_disable

CahnBluetoothConfigBtn_refresh

CahnBluetoothConfigBtn_cancel

CahnBluetoothConfigStatusLbl

CahnBluetoothConfigBtn_enable

CahnBluetoothConfigBtn_ok

85

are the functions called, when service sharing is enabled or disabled by clicking the respective

button. Enabling service sharing will start a Bluetooth SDP server process and will register the

CAHN service to this server. Disabling will deregister the CAHN service from the Bluetooth SDP

server.

is used to refresh the CahnBluetoothConfigStatusLbl, showing whether service sharing is enabled

or not. This function is also called, when one of the service sharing control buttons is pressed.

is invoked by pressing the ok button in the window and will store the Bluetooth device address in a

file. This address is used by the CAHN application. Then accept() is executed to close the window.

The Cancel button will only call accept() without saving the Bluetooth device address. Note, if the

state of the service sharing has been changed, it will not be updated, when cancel is pressed!

The Cahn_bluetooth_share and Cahn_bluetooth_share_add classes

Figure 6.13 Cahn_bluetooth_share and Cahn_bluetooth_service_share_add screenshots

The classes Cahn_bluetooth_share and Cahn_bluetooth_share_add and the windows they provide

offer an interface to the local Bluetooth SDP server. The list box in the window of

Cahn_bluetooth_share contains the services that are currently registered at the Bluetooth SDP

virtual void cahnBluetoothConfigOk()

virtual void cahnBluetoothConfigRefresh()

virtual void cahnBluetoothConfigEnable()
virtual void cahnBluetoothConfigDisable()

CahnBluetoothShareBtn_del

CahnBluetoothShareBtn_disable

CahnBluetoothShareBtn_enable

CahnBluetoothShareBtn_add

CahnBluetoothShareBtn_close CahnBluetoothShareAddBtn_ok

CahnBluetoothShareAddCmd

CahnBluetoothShareAddBtn_cancel

CahnBluetoothShareLbx

86

server. In addition to the Service UUID and the human readable representation, the items in the list

box also show whether the service is enabled for CAHN.

The button CahnBluetoothShareBtn_del can be used to disable service sharing. Therefore the

function

is executed, which deregisters a service on the Bluetooth SDP server. To change the CAHN status

of a service

are used, when the appropriate button is pressed. These functions do nothing else than add or

remove the CAHN Bluetooth service attribute to (from) the chosen Service Record on the local

Bluetooth SDP server. To add a new service to the Bluetooth SDP server, the button add is

pressed, which in turn executes

This function creates an instance of the Cahn_bluetooth_share_add class, whose window can be

seen on the left of figure 6.13. In this window a service can be chosen with help of the combo box

CahnBluetoothShareAddCmb. If the ok button is pressed,

is run, and the service will be added. When cancel is pressed, the window is closed, without adding

the service to the local Bluetooth SDP Server. In order the share services the service sharing must

be enabled before in the Cahn_bluetooth_config window.

The close button in the window of Cahn_bluetooth_share closes the window and returns to the

window of the Cahn_bluetooth class.

virtual void cahnBluetoothShareAddOk()

virtual void cahnBluetoothShareAdd()

virtual void cahnBluetoothShareEnable()
virtual void cahnBluetoothShareDisable()

virtual void cahnBluetoothShareDel()

87

The Cahn_bluetooth_access class

Figure 6.14: Cahn_bluetooth_access screenshot

This class provides a window for the user to easily access the devices. The user can scan for devices

and services on them. The progress bar, CahnBluetoothAccessPbr shows the progress of the

device search. When the user intends to search for devices

is run. This function performs an Inquiry and prints the devices in Bluetooth proximity to the list

box. Additionally the function does request the names of the devices, which answered to the

Inquiry with their Bluetooth address. To search for services, provided by a certain devices, the user

can click on the button “Scan for Services” which invokes

This function does create an instance of the Cahn_bluetooth_services class, which comes up with a

new window. To return to the previous window, the close button can be used.

virtual void cahnBluetoothAccessService()

virtual void cahnBluetoothAccessDevice()

CahnBluetoothAccessPbr

CahnBluetoothAccessLbx

CahnBluetoothAccessBtn_close

CahnBluetoothAccessBtn_service

CahnBluetoothAccessBtn_device

88

The Cahn_bluetooth_access class

Figure 6.15: Cahn_bluetooth_services screenshot

Within this window the user can scan a chosen device for services. To do so, he can press the

button “Scan now”, which calls

which issues a service browse request to the remote Bluetooth SDP server. The services found are

added to the list box with their CAHN status indicated by the presence or the absence of the

CAHN Bluetooth service attribute in the Service Record. The progress bar visualizes the status of

the current service browse request. If CAHN enabled services are found the user can press the

connect button, what will start

This function can now, with help of CAHN, establish the connection for the user. To achieve this,

a CAHN Bluetooth Service Request message is generated, a connection to the cahnd daemon

established and the request sent to the cahnd, which will handle the request and give back the

CAHN Bluetooth Service Response or the CAHN Error message, in case of an error. When the

GUI receives a positive response, the other party accepted the request and sent back the response

including the PIN. This PIN has been extracted by the local CAHN adapter and added to the PIN

database. As both parties now have a common PIN a Bluetooth connection to the chosen service

can be established. This connection establishment is also handled by this function, and the GUI

will show up with a “You are connected” message or with an error message, indicating what went

wrong. The exact procedure to establish a connection to a certain service will depend on the

implementation of the respective Bluetooth profile. A “LAN Access using PPP” connection is

virtual void cahnBluetoothServicesConnect()

virtual void cahnBluetoothServicesSearch()

CahnBluetoothServicesPbr

CahnBluetoothServicesLbx

CahnBluetoothServicesBtn_close

CahnBluetoothServicesBtn_connect

CahnBluetoothServicesBtn_browse

89

established in a different way than a NAP connection and so on. Therefore this function must

provide different mechanisms to handle the different services. Up to now only one service is

implemented, which is the NAP.

90

7 EVALUATION

In this chapter measurements made with the application running on a test-bed are presented. The

out coming of the tests supplies important knowledge about the practical behaviour of the

provided application and further it will help to evaluate the chosen design. After the description of

the test-bed, the connection establishment times of the application will be presented. In a next step

these measurements are analyzed and explained, always using an empirical approach.

7.1 THE TEST BED

On the server side just an ordinary desktop machine was chosen. No special server hardware or

architecture is used at all. This desktop computer is equipped with an AMD Athlon processor

running at 1 GHz. The system has 512 MB of RAM. Further the system provides a 10/100 MBits

Ethernet adapter and USB 1 support. The chosen Bluetooth interface hardware for the

establishment of the PAN connection is a 3Com USB dongle and another 3Com Bluetooth USB

dongle is used for communication with the mobile phone, which is an Ericsson T68i.

On the client side a Toshiba Portégé P4010 Laptop has been made available for this diploma work.

This Laptop has an Intel processor running at 733 MHz and is equipped with 128 MB of RAM.

The Laptop provides a built-in Bluetooth adapter for the establishment of the PAN connection

and a TDK Bluetooth USB dongle for the interaction with the mobile phone, which is also a T68i.

Both computers are running RedHat Linux 9.0, which ships with the Bluez device drivers and

kernel space portions of the Bluez Bluetooth stack. Further the Bluez SDP and the Bluez PAN

Profile implementations are installed on both machines. The server is setup with an Internet

connection and has the needed bridging mechanisms configured, which are necessary to provide

the PAN Profile Network Access Point (NAP) scenario.

The mobile phones are attached via the respective Bluetooth dongles using the RFCOMM profile

provided by Bluez. This profile emulates a RS-232 conform serial connection, which builds the

basis to exchange AT commands the gsmsmsd program uses to send and receive SMS messages.

Additionally, both computers are running a window manager based on the XFree86 X window

system. This is necessary for the GUI provided with the application.

91

7.2 CONNECTION ESTABLISHMENT TIMES

In a first step, the time is measured the implemented application takes for a Bluetooth connection

setup with CAHN integrated. The client has already detected the server with help of an Inquiry and

it knows about the services the server does provide. The service which was used is the access point

service, offered by the PAN profile. Time measurement starts, when the connection setup is

invoked on the client by pressing the connect button in the window implemented by the

Cahn_bluetooth_access class. On the server a ping to the client’s PAN IP address is invoked and as

soon the first ping request is replied, the connection is established and the time measurement stops.

20 measurements were made and figure 7.1 shows the results of these tests.

Measurments for a PAN connection setup using CAHN

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

measurement number

se
co

n
d

s

Figure 7.1 PAN connection establishment times

In the figure can be seen that the times measured for a PAN connection setup range from 32.7

seconds in minimum up to 46.2 in maximum. These values are only the measured values, and they

do not indicate the best respectively the worst case. Best and worst case estimation do not make

sense, as can be seen later in the section about the SMS message exchange delays. The average

connection establishment time is 36.9 seconds. The values presented are quite distributed and a

high variance is observed.

In the following sections, it is tried to detect what precisely influences the connection establishment

times. For that purpose the whole setup procedure is divided in single actions which are treated

92

further to understand what makes the establishment time and what integrates the high insecurity

factor in the connection establishment times.

The whole procedure starts with the GUI creating a CAHN Bluetooth connection request and

sending it to the CCM. The CCM then detects, that the messages has to be relayed to a remote host

and hands the message over to the CAHN adapter. The CAHN adapter converts the message into

an SMS and stores the SMS to a spool, where the gsmsmsd checks periodically for spooled SMS to

be sent over the GSM network using the attached mobile phone. These are the actions on the client

side. The extraction of the client’s system log file presented in figure 7.2 shows that the actions

between connection establishment invocation and the writing of the SMS to the spool directory are

indicated to happen in the same second. These actions are therefore not influencing the total

connection establishment times and are ignored in the further analysis.

Figure 7.2 Extraction of the CAHN client’s system log file

But the time passed from writing the SMS to the spool and actually sending it is interesting. Figure

9.2 shows 6 seconds for that period, which can be interpreted as the time taken by spooling

mechanism of gsmsmsd. The manual of the gsmsmsd tells that the program checks the spool every

5 seconds. It will become clear, why the time in the log file is bigger than these 5 seconds. But the

spooling mechanism has to be taken into account on both sides, the client and the server (for the

response) and the average is 2.5 seconds on every side, which means about 5 seconds for spooling

in total.

Once the SMS is sent, we have to take the SMS message exchange delays into account. More on

this follows in the next chapter. When the SMS arrives on the server’s mobile phone, the gsmsmsd

invokes the CAHN SMS adapter, which converts the SMS into a CAHN message, which is handed

to the CAHN adapter. The CAHN adapter relays the message to the CCM, which will hand it to

the CAHN connector to handle it. This relaying of the message does not influence the total

Mar 23 10:01:02 MobileNode1 cahnd[4580]: Got a CAHN Bluetooth
Service Request
Mar 23 10:01:02 MobileNode1 cahnd[4580]: Got a remote request for
+41793776746
Mar 23 10:01:02 MobileNode1 cahn_adapter: Response Socket for
cahnd: 0
Mar 23 10:01:02 MobileNode1 cahn_adapter: Got a remote packet for
+41793776746
Mar 23 10:01:02 MobileNode1 cahn_adapter: This is the SMS:
cahn%0%2%68%4374%00:03:7A:02:6D:5B%00:04:76:E1:A9:BF
Mar 23 10:01:08 MobileNode1 gsmsmsd[4610]: sent SMS to
+41793776746 from file /root/sms_spool//message

93

connection establishment times and is ignored. The CAHN connector does perform several actions

to handle the connection request. First it checks the database for a possible existing registration of

the request. Then a random, unique PIN is generated. Next it is checked whether the device is in

range of the Bluetooth radio. What follows is the update of the PIN database and finally a response

is generated and returned to the CCM.

The check for an existing registration, the check whether a generated PIN is unique and the update

of the PIN database are performed with help of SQL queries to a MySQL database. These MySQL

queries are known to perform very fast and are ignorable for the total connection establishment

time as well as random PIN generations. What in contrast matters is the check whether the client is

in the range of the Bluetooth radio. This is done with help of the Bluetooth Inquiring mechanism.

To increase the probability to really hit a client in the vicinity the Inquiry is repeated for a certain

time. It is a trade-off between speed and quality of the Inquiry result. Within the implementation an

Inquiring period of 5 seconds has been chosen. These 5 seconds are relevant for the total

connection establishment times.

After completion of these actions, the CCM has received a response from the CAHN connector,

which is relayed to the CAHN adapter and sent as an SMS back to the client. On the client side, the

gsmsmsd gets the SMS and invokes the CAHN SMS adapter, which converts the SMS to a CAHN

response and sends it to the CAHN adapter, which in turn relays the message to the CCM. The

CCM will then invoke the CAHN connector to handle the response. To do so, the CAHN

Connector updates the PIN database with the PIN included in the CAHN response. Then the

response is handed via the CCM to the requesting GUI, for indication to the user and as the GUI

acts on behalf of the user, to invoke the Bluetooth PAN connection establishment.

Now the four factors, which mainly influence the total connection establishment time, are

identified:

1. Spooling mechanism (can be interpreted as a constant value of 5 seconds for both sides)

2. The Inquiry performed on the server (constant value of 5 seconds)

3. SMS message exchange delays (measurements are necessary and will follow)

4. Bluetooth PAN connection setup (measurements are necessary and will follow)

94

7.3 SMS MESSAGE EXCHANGE DELAYS

Before we come to the results of the measurements of the SMS message exchange delays, it has to

be stated that in the worst case the SMS can be queued for one week in the operator’s network.

This one week is the maximum possible validity duration that can be set for an SMS. Further SMS

as service is not guaranteed, so that it could be possible that SMS messages get lost, even if such a

loss has never been observed within the application development and testing phase. For that

reasons it is really hard, to estimate the average SMS message exchange delay. To cope with this

issue, 20 consecutive measurements were made to gain an idea about the average message exchange

delay. For that purpose, the time was measured from the moment the send button was pushed on

the sending mobile phone until the sound notification about an incoming message occurred on the

receiving mobile phone. Both mobile phones used for this test are Sony Ericsson T68i. While doing

these measurements, it could be observed, that the size of the message has an impact on the

message exchange delay. Figure 7.3 illustrates the outcome of the tests for message sizes of 0, 57

respectively 160 characters.

SMS Message Exchange Delays

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

measurement number

se
co

n
d

s Empty Message

160 Characters

57 Characters

Figure 7.3 SMS message exchange delays

The size of 57 characters has been chosen as it represents the average length of a CAHN SMS.

95

From the values presented in the diagram it can be clearly observed, that the size of the message

has an impact on the average message exchange delay. The average message exchange delays for the

different messages are:

1. Empty message: 6.7 seconds

2. Message containing 57 characters: 8.4 seconds

3. Message containing 160 characters: 10.5 seconds

This result is quite surprising, as the amount of the additional data is rather small. Further analysis

showed that the time for inserting an SMS into the GSM network is changing, depending on the

size of the SMS. This was the reason to assume that the SMS insertion time could be hardware

dependant. Reference measurements with a Nokia 7650 mobile phone confirmed that assumption,

as the average message exchange delay for an SMS with 160 characters sent with this mobile phone

was 14.4 seconds.

This hardware dependant behaviour for SMS sending is also the reason, why the log file excerpt,

presented in figure 7.2, indicates an SMS sending time of 6 seconds, even if the spooling

mechanism consumes at maximum 5 seconds. The additional second is caused by the time it takes

for the mobile phone to upload the message to the GSM network. As soon as the message is

uploaded, the mobile phone indicates this to the gsmsmsd, which generates the log file entry.

Nevertheless we focus on the measurements taken with the Sony Ericsson mobile phones, as these

phones were taken for the measurements of the total connection establishment times. So the

average message exchange delay of an SMS is 8.4 seconds.

7.4 BLUETOOTH PAN CONNECTION ESTABLISHMENT TIMES

As the fourth critical factor for the total connection establishment time, the setup duration for a

PAN connection has been identified. Again it is hard to estimate an upper bound for the time such

a connection establishment takes, as within the tests no timeouts occurred. The source code of the

Bluez PAN implementation has not been further analyzed, so that no definitive statement about

the existence of timeouts can be made. For the estimation of the average PAN connection

establishment time the same approach as for the SMS message exchange delay and the total

connection establishment delay estimations were used. 20 measurements were made from the

moment the client invokes a connection establishment until the moment the first ping from the

server to the client is responded. Figure 7.4 illustrates the results of the tests. Now it can be seen,

96

that the high variance in the total connection setup times is highly dependent on the high variance

of the values measured for the PAN connection setup, even more as the SMS message exchange

delays do not show such a high variance and the other critical parameters are treated as constant

values. Further it could be observed, that the setup of a PAN connection takes less time, if the link

is not encrypted. These values are not interesting for this diploma work, as it clearly focuses on the

establishment of a secured connection. The average time measured for the establishment of a

secured PAN connection is 6.5 seconds.

Bluetooth PAN connection setup times

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

measurement number

se
co

n
d

s

Figure 7.4 Bluetooth PAN connection setup times

97

7.5 PERFORMANCE SUMMARY

To draw conclusions, first the average values of the four critical factors are added up and compared

to the average total connection setup time:

• Spooling mechanism: 5 seconds

• SMS message exchange delay (CAHN request): 8.4 seconds

• Server Inquiry: 5 seconds

• SMS message exchange delay (CAHN reply): 8.4 seconds

• PAN connection establishment: 6.5 seconds

Total: 33.3 seconds

So the sum of the estimated average values is 33.3 seconds. Compared with the average measured

value of 36.9 seconds for the total connection setup, the rest of the implementation consumes

about 3.6 seconds. This is the sum of all the other parameters influencing the duration for a

connection setup. Among these parameters also the ping round trip time has to be mentioned,

which indicated in the tests sometimes values about 2 seconds. So it can be stated that the

application does not add too much overhead to the connection establishment. To validate this

thesis some reference measurements were made, where the CAHN server returned an error

message to the client, and thus the PAN connection was not established. This was done by

measuring the time from the connection establishment invocation until the indication of the error

message in the GUI. The reference values showed an average time of 29.5 seconds with a small

variance. Compared with the above sum of the average values minus the average time of a PAN

connection, an overhead of 2.7 seconds results for the application in case of an error. This further

allows drawing the conclusion, that the real overhead is even smaller and the estimated overhead is

also a result of the measurements inaccuracy.

Nevertheless the total connection establishment time is not satisfying at all and improvements have

to be done in order to make the application useful. The best starting point for future improvements

would be the replacement of SMS messages for the transport of CAHN messages. If we have a

look at the critical factors, the spooling mechanism, which is also a consequence of the use of SMS,

and the SMS message exchange delays make about 22 seconds of the whole connection

establishment, which means about 60%. Further the Inquiry test of the server could be removed,

98

even if this would result in registrations of devices, which are not in range. This would be another

gain of 5 seconds, or 13%. In contrast to those easily changeable factors, the PAN connection

establishment is a factor, which is not simple to influence and still would add a lot of overhead to

the application.

99

8 CONCLUSIONS

8.1 LESSONS LEARNED

Overall, the work on this diploma work showed the handling problem in today’s networking

technologies, which are caused by the big spectrum of different access technologies and the trend

towards mobile devices. The formation of networks is no longer static and this dynamism brings in

a strong configuration and management issue.

CAHN is a very promising approach to ease the configuration and management of dynamic

networks and can offer a basic authentication, which provides a big accessibility. The reuse of

broadband links for the data transmission enables the combination of a high bandwidth and low

coverage data link with a low bandwidth and high coverage signalling link.

The dynamism of mobile networking has also an impact on the traditional server client role, which

is not applicable on those topologies. The use of service discovery protocols enables the

deployment of dynamic client and server applications for these needs and brings in an easy service

sharing and service accessing mechanism. As mentioned the service discovery protocols have a lack

of security at the present stage.

The marriage of the CAHN approach and service discovery protocol driven environments can

cope with this security problems, as CAHN provides the necessary authentication mechanism,

which is also accessible in spontaneously established networks, with no additional link to the

Internet and therefore no access to many traditional authentication methods. On the other hand,

CAHN profits from the integrated service discovery protocol, as CAHN enabled nodes can be

discovered and their capabilities can be indicated.

These advantages are underlined by the implemented demonstrator, which integrates a basic

CAHN implementation and the Bluetooth SDP. Further the demonstrator serves as a first proof of

the concept to integrate CAHN in service discovery protocols.

This integration would offer the means to ease the configuration and establishment of spontaneous

networks. In addition to the setup related issues, the integration of CAHN and service discovery

protocols can also provide an authentication mechanism as a base for secure service deployment

and access of services. The dynamic client server mechanisms will conclude the integration and

enable participating users to share and easily access services in the network.

100

8.2 FUTURE WORK

The demonstrator application showed the applicability of CAHN in a Bluetooth SDP environment.

As the Bluetooth SDP is a very basic approach of service discovery, no final conclusions on the

value and the behaviour of the integration of CAHN into more sophisticated service discovery

protocols can be drawn. Further investigations in this direction will therefore be necessary to

examine whether the approach scales for networks envisioned by other service discovery

approaches.

It is probable that an integration of CAHN in Jini is not or not easily possible in existing Jini

applications, as they are not open source. Salutation on the other hand can be quite hard as the

specifications of Salutation are voluminous and existing implementations rare. The use of UPnP for

the service sharing and access platform is not suggested, as UPnP clearly targets devices and not

services. Last but nor least it would be a good choice to take SLP as the basis for a future

implementation, as SLP offers a very clear and straight forward definition of service discovery as

well as an Open Source implementation already provided by modern GNU/Linux distributions.

With help of the knowledge gained in this diploma work and the help of further investigations with

the OpenSLP implementation of SLP, it could maybe be possible to adopt the approach for

Salutation driven environments.

Additionally the multicast issue was not occurring in the demonstrator, so that no conclusions can

be drawn from this application about this important issue of service discovery protocols. CAHN

could be used as an alternate communication channel to multicast channels, which could increase

the scalability of service discovery protocols. Implementations based on the former suggested

OpenSLP could help to analyze the applicability of CAHN to cope with the multicast problem.

It is therefore obvious that other service discovery protocols have to be analyzed for a possible

CAHN integration. But not only in the domain of service discovery protocols have to be done

further investigations, but also in the CAHN implementation itself.

Using SMS for the transport of CAHN messages over the cellular network is not a satisfying

solution, as seen in the evaluation of the demonstrator applications. To provide better performing

applications other mechanisms than SMS must be applied. USSD [27] promises to be a better

approach for this task. It also has native support for broadcasting, which could be used for service

discovery protocols multicast messages.

101

Furthermore, the demonstrator application does not provide implementations for the security

procedures between the operator and the CAHN enabled cellular device. These security

mechanisms have to be evaluated with help of the operator, which can provide access to certain

resources, helping to authenticate the user. Fact is, that the existing trust relation between the user

and the operator can serve as the basis for further trust relations, but the mechanisms, how this is

achieved are not clear, yet.

The role of the operator in the global scenario still has to be defined and thus also the degree of

interaction of the operator. It is imaginable, that the operator can serve as lookup service for service

discovery protocols, can provide key management facilities or can serve as a proxy to access further

authentication mechanisms.

To conclude this diploma work it can be stated, that the provided demonstrator application shows

to be promising approach. But no definitive statements about its applicability in practice can be

drawn. More experience in the topic has to be collected, and still a lot of work, which has be

identified above, has to be done to prove the concept.

102

9 REFERENCES

[1] C. Perkins, „IP Mobility Support for IPv4“, August 2002, RFC 3344

[2] Microsoft Corporation, “Virtual Private Networking: An overview”, September 2001, white

paper

[3] M. Danzeisen, “Secured Mobile IP Communication”, May 2001, Diploma work at the

University of Bern

[4] Bluetooth SIG, “Specification of the Bluetooth System”, Version 1.2, November 2003

[5] ANSI/IEEE standard 802.11, “Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications”, 1999

[6] ETSI standard, “European digital cellular telecommunications system (Phase 2)”, March 1999

[7] Sun Microsystems, “Jini Architecture Specification”, December 2001

[8] Sun Microsystems, “Java RMI – Distributed Computing for Java”, white paper

[9] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specifications Version 2”, August 1995,

RFC 1831

[10] Microsoft Corporation, “Understanding Universal Plug and Play: A White Paper”, June 2000,

white paper

[11] J. Cohen, S. Aggarwal, Y. Goland, “General Event Notification Architecture Base: Client to

Arbiter”, September 2000, Internet Draft

[12] W3C, “Soap Version 1.2”, June 2003, Recommendation

[13] W3C, “Extensible Markup Language (XML) 1.0 (Second Edition)”, October 2000,

Recommendation

[14] Y. Goland, T. Cai, P. Leach, Y. Gu and S. Albright, “Simple Service Discovery Protocol”,

October 1999, Draft

103

[15] C. Lee and S. Helal, “Protocols for Service Discovery in Dynamic and Mobile Networks”,

International Journal of Computer Research, Volume 11, Number 1, pp. 1-12 ISSN 1535-6698,

2002

[16] C. Bettstetter and C. Renner, “A Comparision of Service Discovery Protocols and

Implementation of the Service Location Protocol”, Institute of Communication Networks of

the University of Munich, http://wwwtgs.cs.utwente.nl/Docs/eunice/

summerschool/papers/paper5-1.pdf

[17] B. Pascoe, “Salutation-Lite: Find-and-Bind Technologies for Mobile Devices”, Salutation

Consortium, June 1999, white paper

[18] Bluetooth SIG, “Generic Access Profile”, November 2003

[19] Bluetooth SIG, “Service Discovery Application Profile”, November 2003

[20] Bluetooth SIG, “Bluetooth Assigned Numbers – Service Discovery Protocol”, November 2003

[21] B. Miller, “Mapping Salutation Architecture APIs to Bluetooth Service Discovery Layer”, July

1999, Bluetooth Consortium 1.C.118/1.0

[22] IETF SrvLoc, working group

[23] E. Guttman, C. Perkins, J. Veizades, M. Day, “Service Location Protocol, Version 2”, June

1999, RFC 2608

[24] A. Campbell, “The Progress of Dynamic Resource Discovery: Resource Discovery Protocol

vs. Service Location Protocol”, April 2000

[25] M. Danzeisen, R. Rodellar, T. Braun, S. Winiker, „Heterogeneous networking establishment

assisted by cellular operators”, The Fifth IFIP TC6 international conference on mobile wireless

communications (MWCN 2003), Singapore, October 27-29 2003

[26] Bluez website, http://www.bluez.org

[27] GSM Recommendation 02.90, “Unstructured Supplementary Services Data – USSD”

[28] G. Richard, „Service and Device Discovery Protocols and Programming“, ISBN 0-07-137959-2

104

[29] E. Maghsoudi, “CAHN Protokollnachrichten über das GSM Netz“, August 2003,

Informatikprojekt Universität Bern

[30] S. Winiker, „Service Discovery Protocols“, October 2002, Technical Report, Swisscom

Innovations AG

