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Abstract

In comparison to traditional sensor networks, wirelesssenetworks have a num-
ber of strengths such as distributed operation, parafieliedundancy, and com-
paratively high cost-effectiveness due to lack of wires. ta other hand, their
tininess, need for long-term operation, and dependencyatiaries impose severe
restrictions on the system. Hence, services provided issaretworks need to be
lightweight in terms of memory and processing power and lshoat require high
communication costs. In our own work we have developed antawenitoring
architecture that provides energy-efficient medium acaasstopology control on
the lower layers. On the application layer functionalityd&tect, track and classify
occurring events in a lightweight and distributed mannegresvided. The devel-
oped system has been used in an office access monitoringatppi, where illegal
office access has been detected and reported.
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Summary

In this thesis the development and implementation of anggreificient, fault-
tolerant and fully distributed event detection system msspnted. Long-term de-
ployments must be supported, while satisfying the dete@azuracy requirements
of the application. On the one hand energy-efficient medmasiare required to
support long-term operation. While on the other hand, ateuevent detection
and classification methods are needed to satisfy the QualiBervice (QoS) re-
quirements of the application. Current event detectiotiesys are barely able to
optimize the trade-off between QoS and long-term operafideny existing event
detection systems are designed for short-term deploynfpatsonal security, dis-
aster management). In such systems energy savings anmfessdnt. The deploy-
ment of a persistent surveillance system is desirable. 8sgistem is not useful if
sensor node batteries have to be replaced frequently.

To provide a useful accurate event detection system forterrg surveillance,
an integration of application-specific requirements isdeeleon different layers in
the network stack. In our work we have proposed an archite¢hat implements
a fully functional network stack designed to meet theseiagipbn goals.

Medium access has been optimized to support long-term vieelots. The
synchronization messages used by synchronized contevdiged MAC protocols
have been exploited to setup a routing backbone. Non-baekbodes turn their
radios temporarily off to save additional energy. The ma@rm requires no spe-
cific control traffic for routing. A simple clock synchronizan scheme has been
developed to decrease the duty cycle of backbone nodes. Ugtection of an
event, all nodes become active and provide networking iomality to the applica-
tion software. Thus, medium access and routing are contplegasparent to the
application layer. A mobility support module has been pdedi. The developed
medium access and routing mechanisms have provided googlyer@nsumption
distributions in the network. The lifetime of nodes couldex¢ended.

On top of the medium access and networking services thecapipli-specific
functionality has been implemented. Event tracking granesdynamically estab-
lished and maintained upon detection of an event. The tngalioup organization
is lightweight and effective. Arbitrary events are detdcéad tracked with nearly
optimal signaling load. The tracking group further prowdbe event localization
and classification software running at the group leader mattethe needed infor-
mation to perform these tasks. Hence, event localizati@ssification and filter-
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ing are performed in the network. Thus, considerable remptoad can be saved,
discharging sensor node along the paths to the base statiendistributed local-

ization and classification features have shown efficientantdirate performance.
The event detection system has been used in an buildingiotr@pplication that
reports illegal office occupancy. The office monitoring systrequires moderate
communication and computation, hides the identity of of§itadf, and satisfies de-
tection requirements. The system has proven to filter nooffi@e occupancy in

the network. Communication costs of approximately 90% a@dod saved. Every
office intrusion has been detected and reported by the sysiém prevention of

false alarms has shown good performance.
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Chapter 1

Introduction

Wireless sensor networks are composed of large numbersisélyedeployed sen-
sor nodes. These sensor nodes are located in the proximibye anvironmental
phenomenon of interest. Due to limited sensing capabifith@implemented sen-
sors, which is caused by miniaturization, low-power opergtand low cost pro-
duction, accuracy is achieved by massive parallelism.rEnone sensor nodes and
their inaccessibility due to remote installation requidelifional redundancy in or-
der to provide reliable, unattended long-term operatioccokding to these charac-
teristics, wireless sensor networks offer the monitorihg physical phenomenon
of interest from proximity with large numbers of cheap amy ensor nodes. On
the other hand, the same characteristics require selfimatzon, coordination and
distributed operation. Moreover, if the sensor nodes attetyapowered, which is
commonly the case, energy-efficiency is a major criteria too

The subject of this thesis is the development of a distribeteent monitoring
system for the detection and processing of events occuaregpectedly in wire-
less sensor networks. We are in particular interested irnréttke-off between de-
tection accuracy and energy savings. The wireless senswors that we deploy
are battery powered and intended for long-term operationcofdingly, energy
savings are a key issue in system design. On the other haant @stection and
classification are useless if accuracy requirements cammeatisfied. In this the-
sis the trade-off between detection and accuracy is imyegstil in event detection
applications of unattended long-term monitoring. An edfiti event monitoring
system requires distributed and tailored protocols orerbffit layers of the net-
work stack. At the application-layer, event detection pahaes that satisfy given
accuracy requirements, while saving as much energy asbdeare needed. Net-
work lifetime can further be extended by providing the ewdgtection system with
energy-efficient routing and medium access.

In event detection and monitoring systems, sensor netwareksised to detect,
track and classify suddenly evolving, often unexpecte@&nts: Event monitor-
ing systems can be used by many applications, ranging frgmersdetection over
building surveillance to object tracking and early warngygtems. All these tasks
require several system features in the application layeco/dingly, specific event



detection, tracking and classification methods are pravidethis thesis. There
is a fast and efficient event detection and tracking algarjtAn event localization
and signal strength estimation method, and two classif@rthée classification of
discrete events and the detection of abnormal behavigoectisely. In order to
minimize communication costs these algorithms should fopeed distributed
rather than static.

Finally, the deployment of the event monitoring system iofiice access mon-
itoring application is provided. Current building surlailce systems mainly de-
ploy video surveillance systems. These kinds of systemsguensive and un-
pleasant to the working staff. On the other hand, buildirigugion by thieves must
be monitored in many systems. Therefore, we have investigdie development
of a low price building monitoring system that hides the ititgrof the office staff.

In addition to the application-specific tasks, a set of méshihat provide and
optimize energy-efficient medium access and routing haea Ipeoposed. Thus,
the lifetime of the monitoring system can be further extehdesimple clock syn-
chronization scheme that minimizes overhead and energguogption in synchro-
nized contention-based MAC protocols is provided. Furtt@e, synchronization
messages exchanged on the MAC layer are used to setup arbatikbone on the
MAC layer. In order to support node mobility an additionatkiaone mechanism
has been implemented on the routing layer. All backbonetoact®on mechanisms
shut the radios of non-backbone nodes down temporarilyvi® additional energy.

In the remainder of this chapter, we first introduce the motd that are ad-
dressed in this thesis. Then, the general system archigeypresented. The
remaining sections correspond to the main chapters, whimViges more details
about the research carried out for this thesis. The workdsegmnted in ascending
order according to the network stack beginning at the MA@HayThe last two
sections contain a short summary of the main contributidreaiowork and give a
brief overview over the structure of the thesis.

1.1 Problem Statement

Even though event detection systems have been researchedarous projects,
there is no system that provides lightweight, accurate pansistent building mon-
itoring. Current systems are very application-specific ead hardly be adapted
to different monitoring tasks. Long-term deployment is gpatly not in the scope
of existing systems. On the other hand, systems that migigestilong-term de-
ployments often lack accuracy. The detection of suspic{@bsiormal) behavior
has barely been addressed yet. However, anomaly detectiplifies the classifi-
cation problem and can contribute to a lightweight suraaitle system. With our
system we aim at developing a lightweight building suresitle system.

Current solutions either typically address mainly sulitegr provide very spe-
cific solutions that are hardly applicable to more generatesy designs. We clas-
sify current event detection systems into the followingeéhcategories:
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e Non-permanent systems The main characteristic of such a system is the
subordination of long-term deployment, because accun&tenation is only
temporarily required. A typical application is a sniperetgion system (see
Section 3.5.6). Such a system is temporarily installedhBehergy savings
and communication minimization are relinquished in oraeacthieve very
accurate localization, e.g., of a sniper. Finally, the eenstwork is deployed
according to detailed installation plans and the sensoe medundancy is
low. Such systems are not applicable to more general seas@ork systems
that aim at long-term operation.

e Accurate systems The main goals of many event detection systems, which
are often also addressed by non-permanent systems, afizdtioa and
classification accuracy optimization. Research mainlyises on collabo-
rative signal processing (CSP). The approaches requireduipnmunication
and computation load. Networking issues such as eventitgckfficient
medium access control, topology control, and communinadigtimization
are hardly considered. Typical representatives of suctesys have been
developed in the Sensilt project (see Sections 3.5.8 and)3.6.

e Efficient systems On the other hand, there are event detection and tracking
algorithms that barely address localization and classificaasks. Such sys-
tems are able to detect and track an occurring event fastfaciértly. They
do not provide sufficient sensor data to make reasonablens¢ats about
the observed event, though. Such systems are dedicatedoibterved event
or phenomena is well known. However, if the sensor systeeif ishould
make conclusions about the kind of observed event, sucaragsteed to be
enhanced with other features. A typical system of this ki#&nviroTrack,
which is discussed in Section 3.4.5.

The current state of the art work is either tailored to vergcsiic applications
requiring short-term deployment, focusing mainly on thérozation of classifi-
cation accuracy, or optimizes event detection and tracKimghis thesis we aim at
providing an energy-efficient system that provides the ireguevent detection and
tracking accuracy in long-term deployments. The requirgsien our system can
be defined as follows:

e Detection accuracy Our system must be able to satisfy event detection re-
qguirements of the application. In our building monitoringtm this means
that building intrusion must be signaled, while false alarshould be pre-
vented.

e Long-term deployment Our system is intended for persistent monitoring.
Hence, the algorithms should be lightweight. Whenever iptessenergy
should be saved by the system.



Each of the algorithms proposed in this thesis aims at acigeese goals.
The solutions on the MAC and routing layer provide enerdicieiht medium ac-
cess control and routing to extend network lifetime. Theliappon layer divides
event detection and tracking into three subproblems. ,Eirstdetection of events
and the management of tracking groups is addressed by aatkdljorotocol. This
protocol also covers the collection of event-relevant datahe tracking group
leader. Second, the collected data is processed at the leadie to estimate event
characteristics such as emitted signal strength(s) ofitbeter its location. Third,
events are classified at the leader node, optionally bast#tea@vent characteristics
computed in the previous step or on raw data that has beexctadl The resulting
system has been applied to office monitoring.

1.2 System Architecture
In the following the architecture of our event detectiontegsand a typical deploy-

ment scenario are illustrated. The network stack of the gésgstem architecture
is shown in Fig 1.1.
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Figure 1.1: General system architecture.

Synchronization, medium access and routing support fomality is imple-
mented on the MAC layer, i.e., on the lower layers in Figude This layer focuses
on providing the event detection system with energy-efficraedium access and
routing support. Above the MAC layer is the networking lay@ihis layer pro-
vides simple routing based on the backbone provided by th€ Miaddition, the
mobility support module can be used if the network topologgrges frequently
(e.g., in mobile networks). Finally, all functionality eslant for event detection is
implemented on the application layer, which is shown in Fegl.1. This layer
contains the detection and tracking algorithm, the loaéilim and signal strength
estimation procedures and the classification and anomgdgtittn modules. Every
sensor node implements a network stack containing theideddiunctionality and
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modules. The system components are introduced in the netidrse
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Figure 1.2: Typical deployment scenario.

A typical application of our event monitoring system is $itcated in Figure 1.2.
A simple office monitoring example is depicted. The office mmtored by a num-
ber of sensor nodes (the circles in Figure 1.2). Upon ocnue®f an event, e.g., a
person enters the room, the surrounding sensors form drigagkoup, collecting
and processing local sensor measurements. Event reporiif@ng position or
classification results) are computed at the group leadez aad are forwarded to
the base station, which has access to the Internet. If ttspavas moving to the
workplace on the left, the tracking group would be reorgeaiiZT he idle nodes on
the left in Fig 1.2 would participate in the newly establisheacking group.

1.3 System Evaluation

The event detection system has been evaluated both in siomg@and in real-world

experiments. All simulations throughout the whole thesigehbeen implemented
and performed in the OMNeT++ [144] network simulator. Far thal-world tests
two common sensor network platforms have been consideredhe $arts have
been implemented and tested only on the Embedded SensaB&8B) platform

(see Section 3.8.1). Some functionality has been re-imghted on TmoteSky
sensor nodes (see Section 3.8.2). The relevant differegtweebn both platforms
for our experiments is the implemented radio. Thereforejeséunctionality has

been re-implemented on the TmoteSky platform to investigesrformance with
more powerful and more reliable radio communication.
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1.4 Medium Access and Routing

Chapters 4 and 5 present the functionality on the lower twerkof our archi-
tecture (see Figure 1.1). The goal of our work in medium accestrol has been
to provide our event monitoring system with energy-effitieredium access and
topology control. The wireless sensor network we envisieplays large numbers
of typically static sensor nodes. To provide essential nmadaccess, synchronized
contention-based MAC protocols have been used. Thesecpistimplement low
duty cycles. To maintain connectivity, the duty cycles né&zdbe synchronized.
Therefore, synchronization messages are periodicallgaamged among the sensor
nodes.

The synchronization of duty cycles maintained in wirelemsssr networks is
addressed in Chapter 4. We introduce a simple algorithmwioaverges towards
the usage of a common duty cycle for all wireless sensor nddesalgorithm does
not need any additional control traffic, but solely explogtations in the number
of transmitted synchronization messages. Moreover, we kaploited the infor-
mation intrinsically provided by the synchronization maism to conserve addi-
tional energy on the MAC layer as well as to provide routin@hapter 5. We have
used the neighborhood information, which is intrinsicglipvided by the synchro-
nization messages, to implement two routing backbone nmésina that are based
on connected dominating sets (CDS) directly on the MAC layéus, no specific
routing control traffic is generated. Implementing a rogiirackbone on the MAC
layer introduces some setup delays and prevents local pgaftations and repair
mechanisms. Therefore, no node mobility is supported bgettmechanisms. In
order to compensate for this drawback, an additional CDsedbdackbone mecha-
nism has been implemented on the routing layer. The algonittquires extra traf-
fic, but supports more dynamic networks. All backbone cowsion mechanisms
turn non-backbone nodes temporarily off to save energy. mam outcomes of
this part can be briefly summarized as follows:

e A common duty-cycle of nodes running synchronized contertiased MAC
protocols is achieved by exploiting the number of synclration messages
sent by clusters of sensor nodes.

e The content of the synchronization messages is used to fingpierouting
directly on the MAC layer. Thus, no additional control trafi required.

e To account for more dynamic network topologies, an additidrackbone
construction mechanism is proposed on the network layes michanism
requires specific control messages, though.

1.5 Event Detection and Tracking

Chapter 6 addresses the detection and tracking of movirgrishji.e., function-
ality of the first application module in Figure 1.1. A fast aadergy-efficient
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distributed event localization and tracking algorithm (OB) is proposed. The

algorithm detects and tracks moving objects accordingdallsensor readings. A
distributed leader election and group maintenance mestmisiprovided. The dis-
tributed communication and management scheme avoids ldegayraffic towards

the base station, which disburdens nodes close to the batsensand prevents
early network fragmentation due to drain of central sensmtes. In addition to

tracking group formation and maintenance, the leader nederther responsible
for leader handover, data collection and processing, aedtegporting. The basic
functionality, i.e., event detection, tracking group fation, data collection and
processing, and event reporting are illustrated in Figu2e Upon appearance of
an event (the person has entered the room), the sensor nibdinevhighest sensor
readings is elected as leader (the black node in FigureTti)leader immediately
starts requesting sensor readings from its neighbors (ingogmembers in Fig-

ure 1.2). With this mechanism the group members are inforaiedit the leader
and further provide the leader with event-relevant dataleedor localization and

classification tasks.

Tracking is performed by handing over the group leader statgitrary sensing
ranges can be supported due to an optimized state diss@nipabcedure. Two-
hop neighbors of the leader are intrinsically informed dtiba tracking group by
overhearing the response messages of the group membersadktirg group state
can optionally be distributed deeper into the network by @imtzed broadcasting
technique. Thus, the appearance of concurrently presachkiig groups can be
prevented. This is important because the existence of pleittiacking groups im-
plies communication overhead. Multiple tracking groupsuldaresult in multiple
event reports, which would excessively charge nodes clo$ieet base station by
having to forward all those reports. On the other hand, timensonication costs of
the state dissemination process also increase with hignesirgy ranges. However,
this cannot be avoided if the appearance of concurrentitrgagoups has to be
prevented. The trade-off can be estimated, though. Finadljnmunication costs
are well distributed with DELTA.

DELTA has been designed to run on tiny sensor nodes. Siroolatnd real-
world experiment results are presented. The evaluatiowslioat the algorithm
works efficiently, minimizing the amount of communicatiamile providing suf-
ficient information to make meaningful statements abouatioo and type of the
observed event. DELTA provides the following main features

o Efficient formation and maintenance of tracking groups dasesensor read-
ings.

e Concurrently present tracking groups are avoided.

e The required sensor data to perform fine-grained locatimadind classifica-
tion is collected in a distributed manner.

e Arbitrary sensing ranges are supported.
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e Communication load is minimized.

1.6 Event Localization and Signal Strength Estimation

The localization and signal strength estimation module (Sgure 1.1) is intro-
duced in Chapter 7. The DELTA algorithm proposed in this ih@sovides the
leader node with event-relevant sensor readings. Thisislagguired for the com-
putation of event characteristics such as the signal stiés)gemitted by an event
or its location. Furthermore, any subsequent classificatem be based on these
estimated event characteristics. Only the computed estgrae reported to the
base station. Thus, considerable communication load caavesl.

The computation of event position and emitted signal sttgsy) of the event
is based on local sensor readings. In order to compute tiséiggagions, a feasible
signal propagation model is required. In our work we use arnonly applied sen-
sor model, which assumes isotropic signal attenuation.r@teved signal strength
on a sensor node decreases thereby inversely proportioriaktdistance to the
event source. The sensor model is used to formulate theidattah and signal
strength estimation problems as a nonlinear objectivetiomc In order to solve
this function, at a minimunmm sensor readings are needed, wherehig bigger
than the problem dimensionality. The collection of datdlisirated by the infor-
mation exchange between the group leader and the group memkegure 1.2.
Thereby, the group leader collects the data required t@perthe localization and
signal strength computation tasks. The objective funcitsosolved by applying
nonlinear optimization methods. The problem can furthelirsarized and solved
with linear least square methods. In this case, additioeass readings are re-
quired. The availability of redundant information cannbvays be guaranteed in
wireless sensor networks, though.

Both, simulated events as well as real-world events hava bealuated. The
results show accurate localization and event parametenagins. We have eval-
uated nonlinear and linearized solutions. Nonlinear gmtst have shown to be
superior. In particular, they provide useful estimatiomsrewhen only a minimum
amount of data is available, which might frequently be theeda wireless sensor
networks due to error-proneness or energy (communicatiet) constraints. The
main findings of this part can be summarized as follows:

Localization and parameter estimation problems are faatedlas nonlinear
optimization problem based on collected sensor readings.

Nonlinear solutions outperform the according linearizesthods.

Reporting traffic is minimized.

The classification of events based on event characterstiimates is facili-
tated.



1.7 Event Classification

Finally, event classification methods have been investtgat Chapter 8. Two
different classification methods have been developed. Tsienfiethod addresses
the classification of discrete events and is presented iiddeg.2, while the sec-
ond method concerns the detection and reporting of abndvetavior. The first
method aims to classify events which are present as disengitées in time (Mod-
ule 3 in Figure 1.1). With this method a certain number of vdelfined time-
discrete event types can be distinguished. The time-des@&eent classification
procedure learns and classifies specific event patternperngsed from collected
data. Learning from data has the advantage that no expentlédge is required.
Thus, the application of the algorithm is simplified and dadilaws due to poor
data abstractions can be prevented. Moreover, the systepoids false-alarm fil-
tering, which can save costs in terms of energy and moneyclessifier assigns a
confidence degree to each classification and filters eveaitslthnot satisfy a given
threshold requirement. Obviously, filtering has an impacteporting delays. The
trade-off between false-alarm prevention and introduegzbnting latency is in-
vestigated. Regular alarms, commonly detected with higifidence, must not
be filtered, but reported with low latency. The main outcoroithis part can be
briefly summarized as follows:

e Discrete event classes are learned and classified in anem&er manner.

e Classifications are rated with a certain confidence. BasdHtismonfidence
false alarms are prevented.

e Regular alarms are reported with short delays.

e The classifier is configured offline based on collected déate. classification
itself is lightweight and is performed on the leader nodeedasn current
sensor data.

1.8 Anomaly Detection

The classifier for discrete events cannot be extended to Inseerts which evolve
over time. To address these kinds of events, which are oftesept in surveil-
lance and tracking applications, dedicated lightweighthoes are required. The
classification of continuously evolving events is very exgiee in terms of com-
munication and storage. On the other hand, our event detestistem mainly
requires anomaly detection. This poses less burden on #ternsy Surveillance
applications are more interested in detecting abnormaibehthan determining
specific event characteristics. The method is proposed ctidpe8.3. Anomaly
detection is covered by the fourth application module inanghitecture (see Fig-
ure 1.1). The approach implements an adaptive memory oretisos nodes that
is able to remember event patterns. Abnormal behavior igtifted by unknown
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event patterns. The adaptive memory approach is implemastshort term mem-
ory based on an aging mechanism. Thereby, stored eventrzatiat rarely occur
become older. Knowledge that exceeds a given age is replacedw, currently
unknown event patterns. Based on a rather small memory itapad the aging
mechanism, currently unknown events are detected, repastanomaly, temporar-
ily known and replaced by new, unknown event patterns. The firalings of this
part can be summarized as follows:

e Abnormal behavior is detected and reported with an adaptigenory ap-
proach.

e Known event patterns are filtered on the nodes. Communicéisaved.
e Based on the aging mechanism, learning capability is coatisly provided.

e Anomaly detection can be implemented in a lightweight afidieht manner
by adding aging functionality.

1.9 Office Monitoring Application

The event detection system has been used in an office mowgjtapplication,
where unauthorized office occupancy is detected and repoftee application of
our event detection system is presented in Chapter 9. Thealpaletection soft-
ware and the DELTA event detection and tracking functidpalie used. A typical
monitoring scenario is illustrated in Figure 1.2. Diffeta@ffice occupancy or of-
fice access patterns need to be distinguished. The accésspatre composed of
a series of measurements of some phenomena that are mbliéextgorocessed on
the sensor nodes. In order to meet storage requirementdfitee monitoring has
been restricted to anomaly detection, i.e., no classi@inaif present event patterns
is performed. Anomaly detection conceals the identity aspes occupying the
office in a normal state, because only abnormal behaviorperted. Thus, the
system provides privacy to the office staff. Due to energyscosradio transmis-
sions, it is not possible to transmit the observed evenepatunprocessed to a
fusion center. Therefore, the office monitoring system anpnts a two-layered
approach. Local event patterns are periodically monitdikered and compressed
on the sensor nodes. The compressed event report is theto sefusion center,
i.e., a DELTA leader node, where the system-wide anomalsatien is performed.
The main outcomes of Chapter 9 can be briefly summarized lasvil

e Unauthorized office access is reliably detected. Normatefticcupancy
triggers no alarms.

e Unauthorized office access is reported efficiently and imglatWeight fash-
ion.

e The office monitoring system provides privacy to the officdfst
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1.10 Contributions

The main contributions of this thesis can be summarized ks

e A simple synchronization method for synchronized contenbbased MAC
protocols has been developed. The method prevents cogxidtity cycles
and saves additional energy on the MAC layer.

e Synchronization messages have been used to implememigautithe MAC
layer. Thus, additional control traffic is saved. Additibeaergy is saved by
temporarily turning off the radios of nodes that are not iegfufor routing.

e Network lifetime has been extended by tailored medium acaaed routing.

e Tracking groups are efficiently established and maintaii2LTA outper-
forms similar approaches in communication overhead miration.

e An energy efficient event detection architecture that stigdong-term de-
ployments has been developed. The system provides lomgremitoring
without need for battery replacements, which has not yent Ipgevided by
other event detection systems.

e The trade-off between long-term operation and detecticuracy has been
optimized, while previous work mainly focuses on accuraggimization.

e Discrete event classes are efficiently and unsupervisagifitd.

e Lightweight and accurate anomaly detection is performedabyadaptive
memory approach.

e The event detection system has been applied to office momgtof he sys-
tem works efficiently and reliably.

e Office intrusion by thieves is detected and reported refiablormal office
occupancy is filtered in the network, decreasing commuioicatosts. Pri-
vacy is provided to office staff.

1.11 Thesis Outline

In Chapter 2 an introduction to wireless sensor networksvieng The focus is
on relevant characteristics for this thesis. The netwaaklstayers of interest are
introduced and discussed in some more detail.

In Chapter 3 we give a comprehensive overview of related wvottke topics of
medium access control, event detection, tracking groupdition and maintenance,
event localization, and event classification for wirele=mss®r networks.

A simple protocol to achieve local clock synchronizatioplissented in Chap-
ter 4. The method is used to synchronize duty cycles of semsdes running
synchronized contention-based MAC protocols.
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Energy efficient protocols that provide our event detecsigstem with medium
access and routing are presented in Chapter 5. The protexpglsit the informa-
tion exchanged by synchronization messages. Based omftbisniation routing
backbones are implemented directly on the MAC layer. To saldtional energy,
non-backbone nodes temporarily turn off their radios.

The remainder of the thesis discusses the different apiglicéevel tasks. Chap-
ter 6 addresses event detection and the formation and nraeagef tracking
groups. These operations are performed by the DELTA atyariDELTA is evalu-
ated in terms of tracking performance and communicatiomhmaed minimization.

A method to estimate location and signal strength(s) of evisnpresented in
Chapter 7. The method is based on nonlinear function opditioiz and is imple-
mented as a feature of DELTA.

Event classification procedures are provided in Chapteh8.pfocedures con-
tain a classifier based on Fuzzy Logic concepts that learaist @lasses unsuper-
vised and classifies unknown events quickly and efficierfiiyrthermore, a clas-
sifier that performs anomaly detection by monitoring caminsly present event
patterns is provided.

The event detection system has been deployed in an officeeniogi applica-
tion. Deployment and performance details are presentedhapt@r 9.

Chapter 10 summarizes the main outcomes of this thesis amductes the
performed work.

Finally, some further improvements and possible futuredions of research
are presented in Chapter 11.
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Chapter 2

Wireless Sensor Networks

In this chapter a general introduction to wireless senstwarks (WSN) is given.
Focus is on topics that are relevant for this work. Wirelessser networks are
sometimes considered as a special kind of mobile ad-hownetWMANET) [109].
However, the two networks differ considerably. Wirelesssee networks are de-
ployed to monitor and interact with physical environmenbheneas MANETS have
been developed to interconnect mobile computers in an adthd infrastructure-
less manner. Moreover, miniaturization, long-term deplent, difficulty in phys-
ical access and high redundancy impose very different reougéints to wireless
sensor networks compared to MANET.

2.1 Introduction

Recent advances in wireless communication technology laadlévelopment of
low cost, low power, multifunctional sensor nodes have ledhe development
of wireless sensor networks. The tiny sensor nodes consetnainimum of a
processing unit, some memory, a radio module to exchangeasat an array of
sensors to measure physical phenomena. In addition, sendes are generally
equipped with batteries. Consequently, the ability to saergy in order to extend
node lifetime is a critical evaluation factor in most apgtions. Sensor nodes can
optionally be provided with actuators to interact with thg/gical environment.

Wireless sensor networks are a significant improvement traditional (nor-
mally wired) sensor systems, which provide solutions tdfams in the following
two contexts [3]:

e Large powerful sensors are positioned far from the actugdiphl process of
interest. In this approach few heavily-equipped highdwggm sensors are
deployed, which provide complex technigues to measure #ed fhysical
phenomena.

e The physical phenomenon is observed by several sensorpdtiatm only
sensing and transmit the observed raw time series of measuats to a cen-
tral fusion center, where the streams of sensor readings fre different
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sensors are stored and processed. In-network data progdssnot sup-
ported. The positions of the sensors and the network togategd to be
engineered carefully. Moreover, if the sensor needs to bedwhigh deploy-
ment costs are a consequence.

In contrast wireless sensor networks are composed of a higiber of densely
deployed nodes that are located close to the monitored gadlyshenomenon. The
sensor nodes are often assumed to be randomly deployedsimgsthat are difficult
to access, e.g., in remote areas or in disaster areas. Tirosluoes flexibility,
but this also imposes complexity. Wireless sensor netwbek® to provide self-
organizing capabilities. Moreover, remote access anchfgpoation functionality
as well as redundancy to compensate for node failures anéeelq

In order to fulfill an application-level task, sensor nodes@mmonly required
to operate cooperatively. Because sensor nodes are eduifibea processing unit
and some storage, raw sensor data can be processed indetworode-level or
iteratively at dedicated sensor nodes. These dedicategsnmh be determined
based on negotiation procedures, by other simple electiethads, or by topology
control mechanisms. Thus, the transmission of huge amaiesy sensor data
to a central fusion center can be avoided. This saves conwation costs and
accordingly energy.

" Area of interest
Figure 2.1: Wireless sensor network with in-network processing.

A typical example of a wireless sensor network is depictelligure 2.1. The
network is connected to the Internet over a base station.giA humber of sensor
nodes are connected and build a multi-hop wireless netwbrla given area of
interest sensor data is collected, aggregated and finallgdao the base station
for further processing. In Figure 2.1, the five sensor nodeatéd in the area of
interest are organized in a tree structure. Thus, by applgggregation along the
tree, only one report, containing the aggregated data fribfiva sensor nodes,
is sent to the base station. This sensor network exampléresgeollaboration,
routing support and aggregation functionality.
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Many researchers are engaged in developing algorithmstithiess these re-
quirements. More recently, the focus has changed from nhe@¢tical work and
simulations towards real-world implementations and gyges. Good introduc-
tions to wireless sensor networks, some of its specific $p@ad its applications
have been provided by [3], [2], [34], [35] and [112]. Befonegenting the work
done in this thesis, some concepts and properties of wirskssor networks that
are in particular relevant for this thesis are discussedarerdetail. The spectrum
of sensors implemented on sensor nodes is listed in SecRorn@pacts of energy
constraints and other influencing factors on sensor nesvankl their applications
are discussed in Section 2.3. Section 2.4 addresses cowatianiin wireless sen-
sor networks. Focus is on medium access, routing and on tiieaion layer.

2.2 Sensing Capabilities and Sensors

In the following the spectrum of sensors typically implert@ghon sensor nodes
is presented. Sensor networks can consist of many difféypat of sensors such
as acoustic, light, thermal, accelerometer, infraredsnsigi and visual. The im-
plementation and combination of these kinds of sensorsastgpthe monitoring
of a wide variety of ambient conditions that include, but act limited to, the
following [36]:

e Temperature,

e Humidity,

e Movement and velocity,

e Light condition,

e Pressure,

e Soil conditions,

e Noise levels,

e The presence or absence of certain kinds of objects,

e Mechanical stress levels on attached objects, and

e Temporary characteristics such as speed, direction, aacbfan object.

Due to harsh constraints in power supply and usage, therseades and the
sensors implemented on them are comparatively cheap,derdiited accuracy
and mainly support proximity sensing. On the other handsedeateployment and
massive parallelism, which are offered by the cheap costidless technology,
balance these drawbacks. The sensor nodes can be usedifodetestion, contin-
uous monitoring, event ID handling, localization and dfésation, and the control
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of actuators to feedback to the environment. The introdwmettept of parallel
micro-sensing together with wireless communications rmakany new applica-
tion areas accessible (see Section 2.4.5).

2.3 Factors Influencing Sensor Network Design

The design of a sensor network has to consider many factgyscal system as-
pects are hardware design, low power operation, manutactsts and the trans-
mission medium. System aspects are discussed in Sectidh 2rBaddition to
system aspects networking requirements influence therdesigensor networks.
Typical networking issues are sensor network topologyiabdéay and fault toler-
ance. The factors are discussed in Section 2.3.2. Finalysamental factors are
discussed in Section 2.3.3. In order to develop practica@enetwork solutions
all factors have to be considered together. These factoksda a guideline for the
design of hardware, protocols and algorithms for sensaverés. Moreover, they
can be used for the comparison of different solutions.

2.3.1 System Issues

In the following the impact of sensor system aspects on tisggdeand develop-
ment of wireless sensor nodes and networks is discussecde Taetors mutually
influence each other.

Hardware Design

A sensor node consists of four basic components, hamelysingeunit, a process-
ing unit with some storage, a transceiver unit and a poweplgumit. Additional
units such as a location service or a mobilizer might be impleted too. The ana-
log signals captured by the sensing unit are typically cdedeto a digital output.
All these units need to be fitted into a matchbox-sized mofif¢ In addition to
size, some other constraints have to be considered in tevhee design [3]:

Energy consumption should be as low as possible.

The nodes must operate at high volumetric densities.

The components must be cheap and individual nodes must frendizble.
e Autonomous and unattended operation is required.
e The nodes must be adaptive in respect to the environment.

Because sensor nodes are often inaccessible and/or de:jphoyery large num-
bers, the lifetime of a sensor network depends on the lietfithe power supply
unit. The developers of the ESB sensor nodes (see Sectidl) Ba/e estimated
a sensor node lifetime of 17 years if 25 bytes are sent evesy{90 The rest of
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the time the sensor node is in very low power mode, in whicts#mesors, the ra-
dio and the processing unit are shut down. If synchroninatMAC and routing
support, and other mechanisms are required, the lifetimstidally reduces, rang-
ing from several months to a few years. The kind of transceivét used has a
major impact on the sensor network design. In general radmuency (RF) with
bandwidths of up to few hundred kbits is used. Transmissamge and reliabil-
ity of the transceiver commonly vary considerably over tiamel are dependent on
the node. Therefore, calibration might be required. Fnadlie storage capacity
of sensors nodes is limited. Implementing additional menferg., EEPROM) is
possible, but writing to that memory is expensive in termsroérgy. Accordingly,
sensor network applications and protocols are assumecetasubttle memory as
possible.

Low Power Operation

Probably the most important constraint on sensor netwarkla requirement of
low power operation. Sensor nodes are in general equippédieovi power bat-
teries. Due to the paradigm of unattended operation, thaieries are often not
replaceable, or only with high costs. Therefore, wirelesser networks focus on
the optimization of the trade-off between quality of seev{QoS) and energy con-
servation. Considering routing, the trade-off is the aptad prolonging network
lifetime at the cost of increased delays and/or lower thinpug In localization
and classification, the trade-off is normally between sa@nergy and increasing
accuracy. Depending on the application QoS cannot be lahiererder to save
energy, though.

Nevertheless, any application has to work within the poveerstraints of the
used sensor nodes. Wireless sensor nodes can only be edjuipipdimited power
supply. According to [3] currents of up to 0.5 Ah can be supgubr Moreover,
the sensor nodes are typically powered with up to three 1.attébes, which re-
sults in a total power supply of 4.5 V. In specific applicaidhe batteries can be
recharged, whereas in most applications this is not the ddmsefore, the lifetime
of a sensor network is strongly dependent on the lifetiménefdupplied batteries.
If the batteries of critical nodes deplete, network conimégtcan be affected and
routing can become impossible. Accordingly, the applaratinight no longer be
able to perform its tasks. To prevent this, the developmépbwer-aware algo-
rithms is one of the primary design factors for wireless eemetworks. Power
consumption can be divided into three domains: sensingpoamication, and data
processing. The frequency of sensing is application-§pedievertheless, to re-
duce energy consumption the trade-off between samplingércy and minimum
required resolution is optimized. With regards to commatian and data process
ing it has been shown that the communication of a bit in gém@sts much more
than processing a bit [171]. Accordingly, energy can be eoresl by processing
and aggregating sensed data within the network.
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Manufacture Costs

Wireless sensor nodes are comparatively cheap, but deploylarge quantities.
In summary, the costs of a sensor network may not exceed #ie cbdeploying
traditional sensors to address the problem at hand. In tvaeake the deployment
of a large sensor network feasible, the costs of a singleosergle should be less
than $1 [117].

Transmission Media

Communication in a multi-hop sensor network is achieved bgless communi-

cation. The wireless medium can be radio, infrared or optloanost applications

radio is used. The medium should be available worldwide fpstt global op-

eration. Often the license-free industrial, scientific aneldical (ISM) bands are
used. Due to constraints in power usage and size, the ranggpbable carrier

frequency is limited to the ultrahigh frequency range. €ntlly used transceivers
mainly work in the 868 MHz or the 2.4 GHz spectrum [127], [128]he used

license-free frequencies are also often used by othercapipins. Accordingly,

inter-application interferences will arise and have to ealdwith.

2.3.2 Networking Issues

The following aspects concern networking issues. The dggdesensor network
topology, the required network size and needs of faultréoleoperation influence
the design of wireless sensor networks.

Sensor Network Topology

The high number of densely deployed nodes in a sensor netwakes topology

maintenance a challenging task. The maintenance of topalag be mainly di-

vided into two phases, namely the pre-deployment and dem@ay phase as well
as the actual post-deployment maintenance phase. Theydegibof sensor nodes
can be done randomly by throwing them out of planes or by gaoétar in a more

controlled way by placing them in factory and/or manuallyhHoynans or robots in
the target environment. The kind of deployment depends @apiplication. In any

case, cost expenditure in planning and installation hastodmsidered. Even if
the sensor network is statically deployed, the topologyatemge due to node fail-
ures, energy depletions, or jamming attacks after deplaymdoreover, varying

battery levels among the network nodes might require regements. In mobile
scenarios or in the presence of node failures the need foldgy maintenance
is obvious. However, application-specific changes mightire topology adapta-
tions too. Finally, additional nodes might be deployed,chithave to be integrated.
The handling of topology changes is in general addressetleondtwork layer by

dedicated routing and topology control protocols.
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Scalability

Depending on the kind of phenomenon that has to be monitoréthe paradigm of
massive parallelism to compensate for rather local sengieghumber of deployed
sensor nodes for studying the phenomenon is quickly on tther @f hundreds and
thousands. Depending on the application, the number migit eeach an extreme
value of millions [3]. In addition, the density has a largepewt and can vary from
a few nodes in a region up to thousands. The network density a particular
region A can be computed according to [14]:

wheren is the number of nodes deployed in a region anthe radio transmis-
sion range. The number of nodes in a region is used to indiwade density.
The computed network density is based on the unit disk md#gl [Hence, the
estimated network density is very idealistic and does nosicter irregular trans-
mission ranges. Nevertheless, in order to get an approximat the real network
density, this simplistic model is commonly used.

Fault Tolerance

Sensor nodes are known to become completely or temporardyailable due to
physical damage, lack of power or environmental interfeesn The (temporary)
failure of nodes should not affect the overall performanidd® sensor network. In
particular the satisfaction of the global task of the semswork may not be cor-
rupted. Accordingly, fault tolerance issues go hand in haitid system reliability.
An introduction into the design of fault-tolerant sensotwerk systems has been
provided by [53]. The deployment environment has a big imibeéeon reliability.
In a battlefield sensor nodes might be damaged much moreefnégihan in a
building surveillance application.

2.3.3 Environment

The phenomenon of interest is observed by densely deplogesbss which are
located in proximity to the monitored phenomenon. Sincepiirenomenon of in-
terest is often located in remote or inaccessible geograguieias, the sensor nodes
have to work unattended.

Harsh conditions that the sensor nodes may face includeanitdals and other
moving objects, harsh environments such as glaciers dames or oceans, interiors
of machinery, biological or chemical contaminated fieldsd @o on. All these
different kinds of environments pose challenges to theldpweent of sensor nodes
and networks.
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2.4 Communication in Wireless Sensor Networks

In this section some communication issues in wireless semstwvorks are dis-
cussed. In order to operate a WSN, different functionalitydferent layers of the
network stack is required.

Application

Transport

Networking

Medium Access Control

Figure 2.2: Network stack implemented by sensor nodes.

A typical network stack implemented on a sensor node is tegim Figure
2.2. It provides similar layers as the stack known from therimet. The layers
that are of particular relevance for this thesis are colg®ey in Figure 2.2. The
transport layer provides functionality for reliable emdend communication. This
issue is less considered in our work. Also, flow control andgestion control
have not been in the scope of this thesis. Therefore, thediogofunctionalities
are not introduced in the following. Nevertheless, tramspanctionality and/or
congestion and flow control could be integrated into ouresyst

Medium access control and routing are functionalities évaty wireless sen-
sor network has to provide. First, to distinguish Wireleeas®dr Networks (WSN)
from Mobile Ad Hoc Networks (MANET), we classify communigat require-
ments of WSNs with respect to the communication requiresmentMANETS.
Then we introduce and motivate the usage of multi-hop comeations in sen-
sor networks. The focus is on aspects of medium access atidgowhich are
needed by our system. Finally, some typical applicationdssare discussed.

2.4.1 Requirements

The realization of sensor network applications requireeless ad-hoc networking
techniques (see also Figure 2.1). Although, many protduale been presented in
the context of MANETS, they do not meet the specific featufewiteless sen-
sor networks. In the following a list of the basic differeadeetween WSNs and
MANETSs [109] is given according to [3]:
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e The number of sensor nodes in a sensor network might be sevdeas of
magnitude higher than the number of nodes in an ad hoc network

e Sensor nodes are often densely deployed, which requiresogpp control
mechanisms.

e Sensor nodes are error-prone, which requires redundancy.

e The topology of a sensor network can frequently change. Mewyé¢his is
less of an issue to the kind of event-detection systems ssiellen this work.

e Sensor nodes are limited in power, computational capaaitg, memory.
Nonetheless, in most applications they must provide l@engytoperation.

e In some applications, sensor nodes are not addressed bgl glemtifiers
(IDs) due to the large number of sensors and overhead. [Rataicccommu-
nication might be more adequate for such applications.

2.4.2 Multi-Hop Communication

Wireless sensor networks generally perform multi-hop cemication. This is
mainly for three reasons. First, large numbers of senscesiatk densely deployed
and neighboring nodes are accordingly located very clossatd other. Tradi-
tional single-hop communication which would cover manye®uh such scenarios,
would lead to unnecessary overhearing and therefore aasiiadtwaste of energy.
Hence, multi-hop communication is expected to consumeelessyy in sensor net-
works. Secondly, according to the dense deployment of sesgtes, transmission
power levels can be kept low, which saves a lot of energy. llyinaith multi-
hop communication some signal propagation problems knoam fong-distance
wireless communication can be overcome.

2.4.3 Medium Access

The objective of Medium Access Control (MAC) is to coordmdlhe times when
a number of nodes access a shared communication medium.ditioado the
common task of organizing the medium access by mutual ercusechanisms
or assigning fixed transmission slots, MAC protocols foralgss sensor networks
need to be energy-efficient. Basically, there are five ssus€energy waste, which
have to be considered in protocol design [30]:

e Collisions: Interference between concurrently sending nodes neets to
avoided, else the transmitted packets might be damagededver, the en-
ergy used for transmission and reception of these packetasted and the
packets need to be retransmitted.

e Overhearing: Since air is a shared medium, nodes receive packets that are

not destined for them. The energy used for receiving andgssiog these
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packets is wasted. Nodes that do not take part in commuaicatuld pre-
serve much more energy in a sleep state.

e Overhead MAC protocols need control messages for protocol taskls agc
synchronization, medium allocation, etc. These packetsaiaontain ap-
plication data. Accordingly, these packets are overhea the application
point of view. The number of them should be minimized.

e |dle listening: The wireless medium is continuously sensed in order tactiete
pending transmissions from a node. Typically, idle listgntonsumes nearly
as much energy as receiving.

e Overemitting: This is caused by the transmission of packets to a receiver
when the receiver is not ready. This is obviously a waste efrgnand
requires retransmissions.

Apart form facing the sources of energy waste presentedeals®nsor net-
works need to shut down the radios of the nodes as often aiblgosssave extra
energy. The goal is to minimize the duty cycle of the node, tlee amount of
time the node is awake. The temporary shut down of radios ith@erde done in
a synchronous or asynchronous manner. Low duty cyclindesiggs the satisfac-
tion of traditional performance measurements such as @ldyhroughput. Some
protocols minimize duty cycles, while trying to meet apation-specific delay and
throughput goals. A classification of MAC protocols for waes sensor networks
and a number of representatives are presented in Section 3.2

2.4.4 Networking Layer

In this section we review some requirements and featuresgpioldgy control and
routing. Both tasks are commonly performed at the netwgrkayer (see Fig-
ure 2.2). Topology control is needed to manage conneciiniggensely deployed
sensor networks. Without topology control interferenced high redundancy in
routing options might decrease performance. On the othret, lvauting is required
to forward data to a destination in a multi-hop network.

Topology Control

In order to provide redundancy and to support accurate rsgnsensor nodes are
densely deployed in wireless sensor networks. Consegueethsor nodes have
many neighboring nodes. Besides the advantage of reduydhigposes severe
burdens on MAC and routing protocols. With a rise in netwoekglty, interfer-
ences and topology changes increase. Moreover, additrongihg options are
possible, which makes routing management more complex.

To overcome these problems, the application of topologyrobmechanisms
has been proposed. The idea is to optimize the number of Hetvaales that are
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required to guarantee connectivity. Basically, this caadi@eved by two kinds of
approaches [60]:

¢ Identifying redundant nodes. Redundant nodes are identified and tempo-
rary liberated from any communication need. These nodegeraporarily
turn off their radios, which further conserves energy. Raan periodically
be changed. Thus, changing energy level distributions eandnsidered,
which helps to further extend the network lifetime.

e Transmission power controt The number of neighboring nodes can be re-
duced by transmission power control. In addition to the @néhon of inter-
ferences and congestion, energy can again be preservedthBuaverage
number of hops between source and destination nodes iesteas

Routing

In multi-hop networks routing data from a source to one ortiplél destinations
is needed. Intermediate nodes along a path have to decideith weighbor they
will forward a given data packet. Routing tables can be cdegbin advance or
on-demand. Furthermore, they can contain informationirgnfjom local neigh-
borhood knowledge to global knowledge. If position infotroa about the sensor
nodes is available, this can be incorporated into routing to

Two network properties are particularly relevant for ragtin the context of
this thesis: Network dynamics and the used communicatittenpa The degree of
network dynamics has a high impact on the design of topolagyrol and routing
mechanisms. If few topology changes are expected and coroatiom is mainly
from source to sink, a routing tree instantiated at the srddiequate. On the other
hand, if frequent topology changes occur or if multi-hop cammication among
network nodes is required, these approaches face difésuttile to their central-
ized nature. Accordingly, in these cases unrestricteg fliitributed mechanisms
are required. Distributed mechanisms provide the requinedns at the cost of
additional communication and complexity. The state of ttiéretopology control
and routing for wireless sensor networks is discussed itiG3e8.3.

Another property of sensor networks is that the addressihgrae is typically
changed from ID-based, e.g., used in MANETS, to data-aerlnstead of address-
ing individual nodes, the sensed data is of main interesinté may be routed
based on the kind of data, or data is stored distributed im#teork according
to the kind of data and the location where it has been sensedrder to access
this data, publish/subscribe methods and distributed tetdle approaches have
been proposed [37], [26], [121]. In order to organize tragkjroups efficiently we
have used an ID-based approach in our system design. Hqovgésleal identifiers
are not necessary, because individually addressing amecong nodes separately
from tracking group formation is not required.
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2.4.5 Application Layer

In this section the top layer in the network stack is addiégsee Figure 2.2).
As mentioned above sensor networks are used to monitor dwhalty interact
with the physical environment. Thereby two general clagsgnsor systems are
of interest: stream-oriented systems and event-oriengstbrss. Steam-oriented
systems observe some physical phenomenon continuouslyheQsther hand, in
event-oriented systems sensor nodes are programmed tméewive upon pres-
ence of an event. Both approaches are introduced below.

Stream-Oriented Systems

Stream-oriented systems implement concepts of distdbdégta base systems. The
focus is on long-term monitoring and data collection. Tgpi@pplications are en-
vironmental monitoring systems such as glacier and aiupioh monitoring, or all
kinds of agricultural and animal monitoring systems. Streaiented systems are
well tailored to applications where a specific physical smwinent is continuously
monitored. The networks are typically rather static andithplemented queries
are periodically executed. The query syntax is similar ® shintax of SQL. A
typical query might look as follows [93]:

SQL-like Query:

SELECT AVG (noise_level), roonFROM sensors;
WHERE floor=5;

GROUP BY room;

HAVING AVG (noise_levely> threshold;
SAMPLE INTERVAL 90s;

Stream-oriented systems support the generation and dad/ologqueries such
as the one listed above onto the sensor nodes. These querig®e@ periodically
executed on the sensor nodes that are matched by the quéng érample above
reports containing the average noise level in the roomdddoan the fifth floor of
a building would be generated every 90 seconds.

Stream-oriented systems typically deploy routing treeth@sensor network.
The trees are constructed according to the sensing task. ghevies are down-
loaded onto the sensor nodes over these trees and the seadioigs (reports) are
routed to the base station over these trees. In-networlepsoty and aggregation
are optionally applied at tree nodes to reduce communitcébad (aggregation is
done in the example in Figure 2.1).

Stream-oriented systems have an intrinsic advantage diqtireg system state
and network load. Due to periodic sensing and the implenderdeting tree, the
network load is constant and can thus easily be monitoreccantolled. More-
over, the query language provides aggregation primitivdgch can be applied
in-network at tree nodes without additional managemeriscd3ollaboration and
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arbitrary communication among the network nodes is baredyired in stream-
oriented applications due to the implemented routing t@@ethe other hand, ran-
domly occurring, unexpected events are difficult to be idetiinto stream-oriented
systems.

Event-Oriented Systems

Unlike stream-oriented systems, event-oriented systemsiseful if unexpected
sporadic environmental events have to be detected andgsexte Typical appli-
cations are surveillance (e.g., building, disaster), sgcuand military. In such
applications periodic sensing is an overhead. MoreoveFast-oriented applica-
tions might not be able to deal with abruptly evolving eventa timely manner.
In contrast, event-oriented systems are designed to meefpircific event detec-
tion requirements. In event-oriented applications evargggenerally detected and
monitored on-demand and fully distributed. Because of &do& bf a fixed infras-
tructure, energy can be saved as long as no critical phermmisrdetected. On
the other hand, the lack of an infrastructure requires bolation and negotiation,
which provides flexibility but also imposes complexity. Aljlstem functionality is
implemented according to the specific application requaneis

Event-oriented task:

if event detected
Negotiatestatewith neighbors;
if state== LEADER
Request event information from neighbors;
Generate event report based on collected dlata;
else ifstate== MEMBER
Report requested information to leader;
end
end

A task executed by sensor nodes of an event-oriented syste@scribed in
pseudo code above. Upon detection of an event, sensor nadegs@ucted to or-
ganize themselves. Therefore, negotiation among the seades is required. This
is not required in streaming-oriented systems. As soonesdlles are assigned to
the sensor nodes, the nodes perform their respective task.

Because events occur infrequently in event-oriented egidins, communi-
cation occurs burst-like and is more difficult to predict @ntol. Any kind of
aggregation is application-specific and needs to be impiéedeby the system de-
signer. Because events and their handling are modeled ftosich, no common
aggregation functionality is provided.
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2.5 Conclusions

In this chapter a general overview of wireless sensor nétsydheir benefits, their
challenges, and their applications has been given. The foaus was on topics
which are also relevant for the work done in this thesis. stleen shown that wire-
less sensor networks extend conventional sensor systeprs\aging the means to
monitor a phenomenon of interest directly, close to thetlonaof incident. More-
over, no cables are needed, which lowers deployment cossdsrably. These
properties open a new range of applications such as gladsitoning that would
be difficult to address with conventional systems. On themtiand, wireless sen-
sor networks impose a number of challenges such as erroepess, accuracy,
self-organization and energy consumption. The need teepresnergy is prob-
ably the most limiting factor in wireless sensor networksige. In particular if
long-term operation is required, energy-efficient aldons are mandatory.

In our own work we focus on the detection and processing okpeaed
events. This context poses severe constraints on delayequides real-time pro-
cessing and reporting. Accordingly, distributed storafsemsed data and stream-
oriented mechanisms are not best suited. In contrast, -eviemtted distributed
tasking such as monitoring group formation, on-demand dgtgegation and re-
porting are required. Our event detection system has besigrael in order to
meet the requirements discussed in this chapter. Partitadas has been on the
trade-off optimization between needed accuracy and ersagngs.

The next chapter discussed related work relevant for th& merformed in this
thesis.
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Chapter 3

Related Work

In this chapter we give an overview of related work that is am@nt for the in-

vestigations carried out in this thesis. The sections agarored according to the
chronology of the subsequent chapters. An event monitdrangework requires
functionality on different network layers. Accordinglyoth related work and chap-
ters are organized in a bottom-up manner starting at the Mé&@rl The protocol

stack is traversed up to the application layer.

3.1 Introduction

The related work discussed in this chapter is shortly sunazeein the following.
Current state-of-the art in medium access control is ptegdn Section 3.2. Focus
is on energy-efficient contention-based MAC protocols.sBemode synchroniza-
tion and coordinated sleeping on the MAC layer are furtheenaaldressed.

On the network layer topology control and routing are adslrds Relevant re-
lated work is presented in Section 3.3. The focus is on cdedetominating sets
used to establish routing backbones. State-of-the artiligts of connected dom-
inating sets mainly try to minimize the number of backbondaso However, be-
cause the backbone guarantees routing, nodes that arecietinto the backbone
can shut-down their radios as long as no events are predews, gonsiderable en-
ergy can be saved in wireless sensor networks.

The state-of-the art for the application layer is discuss#ti respect to the
application-specific features of our system (see Figurg Rélated work in event
detection and tracking is presented in Section 3.4. Cérgchbhnd more distributed
algorithms are discussed. The state-of-the art for everdlilation and signal
strength estimation is presented in Section 3.5. Diffeeseint classification and
anomaly detection mechanisms are presented in SectionTBé.classifiers and
anomaly detectors include simple threshold-based apipesaand more complex
algorithms based on statistics and/or reasoning. Theifitat®n of both, discrete
and continuously present events is addressed. A numbepicatyevent monitor-
ing applications are presented in Section 3.7. FinallytiSed.8 presents the two
sensor node platforms that have been used during the devefdpmf this thesis.
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3.2 Medium Access Control

In this section different relevant medium access contrd\@lapproaches are pre-
sented. MAC protocols can mainly be divided into contertiased protocols and
protocols which divide the medium access into contentree-time slots that are
assigned to the network nodes [142]. These time-divisesed MAC protocols
impose complex slot handling and scale worse than contebtised protocols.
Moreover, they are more dependent on very precise synaatiom. For these rea-
sons we focus on contention-based protocols in our worktébion-based MAC
protocols can be further divided into synchronous and deymous MAC proto-
cols [140]. Synchronized contention-based MAC protocoiplement low duty
cycles that need to be synchronized. On the other hand, lagmaus contention-
based MAC protocols implement a type of preamble sampling.

3.2.1 Synchronized Contention-Based Medium Access

Different synchronized contention-based MAC protocolgehbeen proposed for
usage in wireless sensor networks. In order to preserveynew duty cycles are
implemented. This means network nodes follow periodi@fisleep cycles. In
the listen periods they wake up, synchronize with neighloatels and take part in
communication in case some data is pending for transmis$io data traffic is

indicated, the nodes fall back to sleep after the listerogleri

Medium Access Control with Coordinated Adaptive Sleeping (S-MAC)

S-MAC [173], [172] is an energy-efficient contention-badd&C protocol for
wireless sensor networks. It is based on low duty-cyclesragdires the exchange
of synchronization (SYNC) messages to synchronize thenlisteep schedules of
the nodes. Every node maintains its own listen/sleep stébe@ibese schedules are
synchronized whenever possible in order to reduce comtfficd overhead. Nodes
maintaining the same listen/sleep schedule build virtluedters. New sensor nodes
listen to the wireless medium for a certain amount of timeverbear and adapt
existing schedules. If no SYNC message has been receivatgdbis period, a
node chooses its own schedule. Any subsequently overhdtecedt schedule is
adapted too. Thus, virtual clusters are interconnectedlinfdrconnecting nodes
follow multiple schedules, i.e., the schedule of each eludiey are a member of,
and accordingly consume much more energy than normal clustes. Apart from
virtual clustering, the SYNC messages are also used totadpek drifts between
network nodes.

In addition to virtual clustering and normal RTS/CTS prases, S-MAC im-
plements adaptive listening and message passing. Evasntiied RTS/CTS mes-
sage is extended with a network allocation vector (NAV) ealat indicates the
duration of the following data transmission. Thus, all reodéich do not take part
in the current communication are enabled to turn off thetlicauntil the ongo-
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ing communication is finished. The transmission of long da&ssages imposes
increased error rates. Therefore, such messages are freggimén message pass-
ing all resulting fragments are transmitted in a burst, waithy one exchange of
RTS/CTS in the beginning. Thus, the transmission of RTS/@ddkets for every

single fragment can be avoided.

An Adaptive Energy-Efficient MAC Protocol (T-MAC)

T-MAC [142] is a traffic-adaptive energy-efficient MAC prat for wireless sen-
sor networks. Like S-MAC, it implements virtual clusteringd an RTS/CTS pro-
cedure. Unlike S-MAC, T-MAC supports the adjustment oflisperiods in depen-
dence of the pending data traffic. This adaptive listenirgpisicted in Figure 3.1.
The gray bars indicate active radios.

——

Figure 3.1: Adaptive listening in T-MAC.

T-MAC introduces an activation time TA that covers the syoclization period
and the transmission of one RTS/CTS exchange. TA deterntireesninimum
amount of idle listening. If for the duration of the TA no RTE@TS has been
overheard by a node, e.g., node D in Figure 3.1, the node (Bigitiately goes to
sleep. Nodes A and B stay awake because of the data tranesmithilike S-MAC,
node C performs no adaptive listening in T-MAC. Thus, thiqugf is improved. In
any case, due to its traffic-aware operation, T-MAC wouldhdess from adaptive
listening than S-MAC. The duration of the TA has been designespan over some
short contention period, the transmission of one RTS/CTchaxge period and a
random backoff. The TA of T-MAC is considerably shorter thha static listen
period implemented in S-MAC. Accordingly, T-MAC performargicularly well in
scenarios with little and irregular traffic.

To increase throughput, T-MAC provides a future requestimgFRTS) mech-
anism. With FRTS, nodes that lose contention can infornr theighbors about
pending transmissions. If node C in Figure 3.1 had a messagdiny for node D,
it would inform node D about its pending data transmissioith(\@ FRTS), before
waiting the data exchange between nodes A and B. Of courdesndand B wait
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for a possible FRTS from node D before starting data exchardgeing overheard
the FRTS, node D would abstain from going to sleep.

Traffic Aware Energy Efficient MAC Protocol (TEEM)

The Traffic Aware Energy Efficient MAC (TEEM) protocol [138} enother op-
timization of S-MAC. TEEM again reduces the overhead inucetl by the fixed
length listen schedules in S-MAC. In TEEM, both SYNC and RT&ssages are
combined into a single message, which is sent prioritizedata is pending for
transmission. Therefore, the listen period is divided iat8 YNC_DATA and a
SYNC_NODATA part. If some data is pending for transmissitme respective
nodes inform their neighbors about those transmissionkarStYNC_DATA pe-

riod. SYNC packets are used in the SYNC_DATA period to infangighbors

about an upcoming data transmission in a RTS-like way as agelio synchro-
nize network nodes. The receiver of the control message diatedy responds
with a CTS message and the data transmission can be stameithe @ther hand,
if no data is pending for transmission, the SYNC_DATA per@sgires without

any transmission of a control message and all network nodlet®red to transmit
their synchronization message, which has no RTS funciiyniis time, in the

SYNC_NODATA period.

With the proposed mechanism the listen period of S-MAC careldaced and
energy can be saved. Unlike T-MAC, TEEM does not provide aryré request
to send mechanism. TEEM introduces higher delays and sntlatteughput com-
pared to S-MAC and T-MAC.

Demand-Wakeup MAC

Demand-Wakeup MAC (DW-MAC) [139] is a recent synchronizezhtention-
based MAC protocol that is based on low duty-cycles and traffiaptive wake-up
periods. Like the other approaches DW-MAC organizes ne&ighy nodes into
virtual clusters. Accordingly, the synchronization meuken has not been altered
compared to S-MAC, T-MAC, and so on. However, unlike othgerapches DW-
MAC does not use RTS/CTS to allocate the channel, but impisre on-demand
scheduling mechanism. Nodes negotiate subsequent dadanissions in the listen
period. Fix data transmission slots are assigned to receoaes. Thus, overhear-
ing and collisions can be avoided while minimizing the dutgle. With DW-MAC,
channel allocation and channel usage have been shown to fegeefficient com-
pared to previous protocols.

Pattern MAC

In Pattern MAC (P-MAC) [176] listen/sleep schedules areedatned adaptively.
Thus, drawbacks of fixed cycles, of algorithmically limitdatoughput and of in-
creased energy consumption under light network load arengihed. The sched-
ules are determined based on the own traffic of a node as weliths traffic of its
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neighbors. Local traffic patterns are learned from commnaiitos observed by a
node. These traffic patterns are used to determine the cluiaftthe sleep period of
anode. The pattern is represented as a string of bits whiliteites the listen/sleep
plan for several cycles. The sleep time is exponentiallyeased in presence of
low traffic. The mechanism is somewhat similar to the slowtsteechanism of
TCP. Accordingly, if no traffic is indicated in the neighbodd of a node, the node
can go to sleep for a long time.

P-MAC has been tested with constant bit rate communicationgaa single
path. This scenario is tailored to P-MAC. The performance ataptivity under
variable traffic patterns remains to be shown. A key probléfMAC is that all
nodes that are not located along a path are in a long-sle&p wtiaich introduces
high delays. The design of PMAC is tailored to unicast traffic

Synchronization of Listen/Sleep Schedules

Nodes that run a synchronized contention-based MAC profoltow periodic lis-
ten/sleep schedules. Nodes sharing the same scheduletagdlyiorganized into
clusters. In a sensor network multiple clusters might exolho support communi-
cation between these clusters, border nodes that intezcbittmem are required.

The problem of virtual clustering, i.e., of coexisting sdbkes, has been ad-
dressed in [85]. Experiments have shown that already in &b network con-
sisting of 50 nodes, which run S-MAC, up to four differenttval clusters have
evolved. Moreover, it has been shown that border nodes haden to up to three
different schedules. Thus, border nodes have higher avemagrgy consumption
than normal cluster nodes. Because the synchronizatiareguoe is similar for all
synchronized contention-based MAC protocols, all theséoppls would share the
behavior of S-MAC. Virtual clustering is illustrated in Fige 3.2.

O Oneslot
@ Two slots
@ Three slots

............. o O:';/Virtual cluster

Figure 3.2: Drawback of virtual clustering.
The gray and black nodes in Figure 3.2 operate as border r{gdésvays)

between the clusters and have to listen to multiple schedudecordingly, these
nodes sleep less and their batteries deplete sooner. Ihdpigens, network con-
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nectivity might be broken and the network might be out of gréen though
sufficiently many working network nodes might still existhérefore, it is desir-
able to avoid virtual clustering. In [85] it has been showat thurprisingly many
nodes follow multiple schedules. Mainly the temporary wilability of commu-
nication links and the presence of gray regions [175] inc@dimmunications, i.e.,
of effects due to strongly varying radio ranges, have beentified as reasons.

In [85] an additional schedule age has been introduced t@ gbk problem.
The authors motivate that different schedules must havereshtthe network at
different time points and thus have different ages. Thedualeeage is announced
in the SYNC message. Over time all nodes converge towardsdest schedule in
the network. To prevent network partitions all other scheslneed to be temporary
stored too. The maintenance and distribution of the scleeatlyg requires additional
information. In our own work we will show that no schedule &gpeeded because
local schedule consistency is sufficient.

3.2.2 Asynchronous Contention-Based Medium Access

A second group of protocols provides asynchronous comefitased medium ac-
cess. Most of these protocols implement preamble samplingke the protocols

proposed so far, they do not require any synchronizationsénd long preambles
in order to reach neighboring nodes, which might be asleép.rinimum size of

the preamble is determined by the maximum length of the sigele. An example

of preamble sampling is shown in Figure 3.3.

[—— Preamble | DATA | |
s

A

\4

I.
N e — | | ACK]

Figure 3.3: Preamble sampling and data transmission.

\4

Both, sender S and destination D periodically wake up toesehs carrier.
Upon arrival of a message, S starts to send a preamble witméissage attached
to it. D overhears this preamble, stays awake and receieeséssage. The trans-
mission is confirmed with an acknowledgment message by D.

WiseMAC [33] is a contention-based MAC scheme based on pdrEasam-
pling. Each node periodically wakes up for a very short geroorder to listen
if some preamble is being sent. To determine whether a preaislbeing sent
or not, the received signal strength indicator (RSSI) issuezd. The sampling is
periodic with a fixed length sampling interval. If the mediisroccupied, any ob-
serving node remains awake until the data packet is tratesiniOtherwise, every
node goes immediately back to sleep after the sampling ghetioa node is not
addressed in the data packet, it switches to sleep stat&hegpreamble length can
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be minimized by learning the sampling schedules of the teigh This informa-
tion is included into acknowledgment messages. With th@\adge a sender is
able to predict the wake up time of a neighbor node and thexéfdnows when
to start sending the preamble. In Figure 3.3 node S wouldrdogly start to send
its preamble close to the next sampling period of node D. Timnmum length of
the preamble i§'p, whereTp = min(4-© - L, Tw). Tw is the sampling period,
O is the tolerated frequency and L is the predicted time pdiftamsmission.

B-MAC [111] is another contention-based MAC protocol thaes adaptive
preamble sampling to reduce duty cycles and to minimizeligiiening. B-MAC
is a lightweight asynchronous MAC protocol. It uses a Clelaaithel Assessment
(CCA) to determine whether the channel is clear or not. Thé& @&Csimilar to
the RSSI measurements done by WiseMAC. B-MAC achieves lay dgcles by
periodic channel sampling, which is called Low Power Ligtgr{LPL) in B-MAC.
The preamble length is chosen to be equal to the samplingahtd he duration of
the preamble length has not been minimized in B-MAC. B-MAG\ides minimal
services and is therefore highly configurable. RTS/CTSqutapes can for example
be implemented as a system service. Thus, solutions cangbenmanted which are
tailored to specific applications. The protocol overheashigll.

X-MAC [13] is another protocol based on preamble samplirag tiptimizes the
preamble length. X-MAC introduces a preamble exchangenselvehich transmits
a series of short preambles. Each of these preambles comémmation about
a receiver. The proposed mechanism minimizes overheaosty @t non-target
receivers.

In RI-MAC [140] receiver nodes announce their availabilty beacon mes-
sages. Based on the reception of such a beacon, a senderaririts its pending
data to the receiver. Accordingly, RI-MAC substitutes tkader-initiated pream-
ble transmission with receiver-initiated beacon messagésvIAC has shown to
outperform preamble-based MAC protocols in a wide rangeadfi¢ loads.

All asynchronous MAC protocols achieve low duty cycles. Hwoer, they
require the exchange of preambles or beacons and suppaddast operations
poorly. In addition to broadcast support, periodic synoiration messages can be
further used to learn neighborhood information withoutiiddal control traffic.

3.2.3 Time Division Multiple Access

Time Division Multiple Access (TDMA) based MAC protocolssalrequire the ex-

change of periodic SYNC messages in order to operate. Haowewie contention-
based protocols, the operation of TDMA-based protocolaset on the concept of
clusters. In general they require a cluster leader whiatates slots to its cluster
members. Thus, contention-free medium access can be ¢erdain every slot.

On the other hand, TDMA-based MAC protocols require compi@nagement,

very precise time synchronization and do not scale well. r@floee, contention-

based protocols have been considered for our work.
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Lightweight MAC Protocol (LMAC)

LMAC [143] is a TDMA-based protocol, where each node possgexactly one
slot in a frame. A frame is divided into 32 equal slots, whi@n de spatially
reused. Within a slot the owner node can communicate anlliiee. All sensor
nodes shortly awake in each slot to overhear the synchromizenessage of the
slot owner. This message furthermore advertises the déstinaddress of a data
packet. A node that is not listed as a receiver of a data messag immediately
go to sleep for the rest of its current slot. In LMAC a node canupy exactly
one slot. The spatial reusage of time slots is organized thathcollisions are
prevented, i.e., such that the slot-occupying nodes cantesfere. If more nodes
have to be supported, more slots are needed. Thus, the fesgth Igrows, which
leads to longer delays, because nodes can only communictteir slots. Based
on these requirements, the local two-hop neighborhood oACNE restricted to
32 nodes.

A MAC Protocol for Long-Term Applications

A-MAC [88] is a recent hybrid MAC protocol that is based on TBMt uses an
advertisement mechanism to avoid collisions and to miremizerhearing and idle
listening. Unlike LMAC, A-MAC implements the notificatiorf éuture data trans-
missions. Thus, throughput and delay can be optimized. tApan this notifica-
tion of future data transmissions, A-MAC operates simitat MAC. In addition,
the protocol provides two modes that consume differentggnr better support
application-specific requirements.

Traffic Adaptive Medium Access Protocol (TRAMA)

TRAMA [119] is a collision-free MAC protocol that uses a dibtted election
scheme to determine time slots. TRAMA distinguishes betwamtention-based
random access slots which are used for signaling, and sigiedacess periods
that are used for collision-free data exchange. TRAMA cstesdf three compo-
nents: The Neighbor Protocol (NP), the Schedule Exchang®é&ul (SEP), and
the Adaptive Election Algorithm (AEA). NP propagates oragsmeighborhood in-
formation to the signaling slots. Thus, the local two-hojghborhood can be
learned. With the SEP protocol traffic-based schedule mm&bion is maintained
among neighbors. SEP packets are exchanged during theusethextcess peri-
ods. AEA selects transmitters and receivers accordingetanfiormation obtained
from NP and SEP. TRAMA supports multicast communication sing a bit-mask
vector which contains the one-hop neighborhood infornmativhenever nodes are
not scheduled by the AEA protocol, they switch to sleep stBRAMA introduces
high delays. On the other hand, good throughputs can bevachie
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3.3 Routing and Topology Control

In this section we give an overview of the state of the art iatirg and topol-
ogy control. Topology control mechanisms have been inteduo provide net-
work connectivity, while trying to minimize the number oftae network nodes.
Thus, energy can be saved. Moreover, congestion and oallisian be prevented.
The focus is this section is on connected dominating setsS{CBecause they can
be implemented fully distributed, impose manageable cerifyl and can provide
both routing and topology control.

3.3.1 Routing Protocols for Wireless Sensor Networks

In this section we give a brief overview of the state of theomouting in ad-hoc
and wireless sensor networks. Numerous routing proto@ie heen proposed for
mobile ad-hoc networks (MANET). Some of these protocolssHaeen adapted to
wireless sensor networks too. The protocols can mainly Wideti into proactive
protocols, where routing paths are computed in advance asi€DLSR [25] and
DSDV [110], and in reactive protocols such as AODV [108] arsRD)[59], where
routing paths are computed on demand only if some data isipgfol transmis-
sion. Finally, there are location-based protocols, e.§$S& [61], BLR [49], which
presume knowledge of position information in their routdegisions. In particular
location-based routing protocols have also gained a lottefion in wireless sen-
sor networks. This is not surprising, because knowledgeadtion information
eases routing considerably and is often per se requireceicdhtext of wireless
sensor networks.

With the development of wireless sensor networks a new pirppolved
which has a high impact on the design of routing protocolsyelg the paradigm
of data-centric operation. In MANET network nodes are tgflicaddressed by
address identifiers such as an IP. On the other hand, IDs sbs@&odes are in
general less important than the physical context of the siod@ich depends on
their geographic location. Accordingly, the addressingesge in sensor networks
has changed from ID-based to data-centric. This means #tkefs are no longer
routed according to a destination 1D, but according to thetexd of the searched
data. The search direction is either determined by queribg oegotiation. Typi-
cal query-based approaches are Directed Diffusion [5@], Fumor Routing [10]
and GHT [121]. A typical negotiation-based routing protoisoSPIN [48]. The
discussed routing protocols support node-to-node contation, whereas our ap-
plication only needs source-to-sink communication.

3.3.2 Topology Control in Wireless Sensor Networks

Connected dominating sets, which will be discussed in thx¢ sexction, establish
connected network backbones that can be used for routingraogology control.
In this section we give a short overview of alternative st#téhe art in topology
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control. As mentioned before, topology control has beemihiced to save energy
in densely deployed sensor networks, either by tempordrdgonnecting nodes
that are not required to guarantee routing, or by transomspower control. In
general it is desirable to change the roles of the nodes firmmtb time to achieve
a uniform energy load distribution in a network over time.

The local identification of redundant nodes, i.e., of nodied &re temporarily
not required to guarantee connectivity, in a network gréphas been addressed
by computing the Gabriel Graph (GG) [40] 6T A similar approach computes the
Relative Neighborhood Graph (RNG) [141] 6f A third approach to minimize
the number of nodes in a graph is by using Delaunay Triariguld29]. More
approaches that generate subgraphs have been propos&j am¢ig82]. In [80],
[84] and [62] the computation of distributed Minimum SparmiTrees (MST) has
been proposed in order to identify and temporary turn oftineint nodes. In the
cone-based topology control [136] nodes determine a subsetighbor nodes as
communication partners by beacon transmissions withtietg increasing trans-
mission power. Nodes that are not elected by the mechanisnga#o sleep. In
COMPOW [102] topology control has been addressed by usifiigreint routing
protocols operating on different power levels.

3.3.3 Connected Dominating Sets

Connected dominating sets can be established in a digidlmanner by exploiting
neighborhood information. As presented in the introductice exploit the syn-
chronization messages exchanged by synchronized canmtdrdsed MAC proto-
cols to learn neighborhood information. Accordingly, atmog backbone based on
connected dominating sets can be implemented directly @MiiC layer. Thus,
no additional control traffic is required. Apart from rowgisupport, additional
energy can be saved by temporarily turning of the non-baskbwdes. This is
possible because routing and thus network connectivityasanteed by the back-
bone. Relevant related work in connected dominating setreh is discussed in
the following. First some preliminaries are presented. Anaxted dominating sets
(CDS) is characterized as follows: A dominating set (DS) gfaphG = (V, E)

is a subseV’ C V, where each node il — V' is adjacent to some node .

A CDS is a dominating set which builds a connected subgragh. ofwo simple
examples of a DS and a CDS, respectively, are depicted irré-igd. The gray
nodes are members of the respective dominating set.

To minimize the number of backbone nodes it is desirable td &nmmini-
mum connected dominating set (MCDS)®f Finding an MCDS is however NP-
complete [24]. Consequently, heuristics are applied. Inveark we propose two
fully distributed approaches. In Figure 3.4 the CDS on tghktrside also builds an
MCDS. If any of the remaining white nodes were colored grag,&DS would still
be a CDS, but it would no longer be an MCDS. As mentioned alkibeecomputa-
tion of the MCDS is in general very cost intensive and requgkbal knowledge
and small network sizes.
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(a) Dominating Set (DS). (b) Connected Dominating Set
(CDS).

Figure 3.4: Examples of a DS and a CDS.

The main goal of our approach is to extend network lifetiménenthan to
minimize the CDS. Therefore, the energy level of a node isl uisdghe election
procedure too. However, first some related work that maiotp$es on the min-
imization of the CDS is presented. Most work is from reseancimobile ad-hoc
networks (MANET), where energy is a less important perfarogacriterion than
in wireless sensor networks.

CDS Based on Pruning Rules

The algorithm proposed in [167] first determines a CDS caéngiof all nodes
that have at least two non-adjacent neighbors. This if@@E is reduced by ap-
plying two pruning rules. The resulting connected domimgets are depicted in
Figure 3.5. The initial CDS that contains all nodes with uneected neighbors is
shown on the left (black nodes). On the right the CDS afteirtgpapplied both
pruning rules is shown (the remaining two black nodes).

u \ w X u \' w X

Figure 3.5: CDS with pruning rules.

The first rule removes nodes from the set which are completeWered by
other nodes in the CDS. Node u is removed by this rule. Thenseade removes
nodes that are fully covered by the neighbor sets of two meighodes. Node w is
removed from the CDS according to the second rule. The afgonmeeds two-hop
neighborhood information and can perform poorly in speciétworks [159].

In [166] the pruning rules have been adapted to considerribegg levels of
the nodes in the setup phase. Instead of taking the link degte consideration in
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the pruning process, the authors propose to use the enerly & the nodes. The
algorithm is thus able to consider energy distributionametwork.

Connecting a Maximum Independent Set

With the algorithm proposed in [159] as a first step a maximodependent set
(MIS) is constructed. This is a dominating set which corganly nodes that are
two-hops away from each other. In a second step the MIS nodesbanected by
electing a set of appropriate intermediate nodes. The ifumatity is depicted in

Figure 3.6.

)
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Figure 3.6: Connecting a maximum independent set.

The two black nodes in Figure 3.6 build a maximum independent To
achieve connectivity this MIS needs to be connected. In][838euristic is pro-
posed which chooses the connecting nodes effectively, by minimizing the
number of resulting nodes in the backbone. In Figure 3.6 dribeotwo gray
nodes would be chosen into the final CDS. The algorithm isratbmplex, time-
consuming and static.

A Simple Timer-based CDS Construction Mechanism

A simple greedy procedure to establish a CDS has been pbpo§E77]. Again,
each node knows its local neighborhood by the exchange ebbsaThe decision
whether to join the CDS or not is done by a simple greedy praeethat evaluates
the number of remaining uncovered nodes when a timer expiites algorithm is
initialized by a dedicated node. Each node entering the OQbD&dgasts a message
containing its list of neighbors. The beacon messages ofE&R&E802.11 MAC
protocol are used. Each receiver marks the common neiglasodeminated and
sets a timer according to the number of remaining unmarkéaghbers:

1
(number of uncovered neighbofs

AT = Tmax :

The parametery weights the impact of the number of uncovered neighbors.
Large values ofv cause very short time outs for nodes that have many uncovered
neighbors. If the timer expires, the node enters the CDS0Ags as a node has no
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unmarked neighbors left, it terminates the timer and ergaren-backbone state.
The timer is reset whenever a message is received. Thethlgois simple and

fast, but approximates the MCDS rather poorly. Moreoveergy levels have not
yet been considered in the decision process.

3.3.4 Multipoint Relaying Protocol

In our work we propose mechanisms to construct connectednddimy sets. Two
of them are related to the Multipoint Relaying protocol (MPR16], which is
used for efficient broadcast in the Optimized Link State Rgu(OLSR) [25] pro-
tocol. MPR requires knowledge of two-hop neighborhood rimfation. Based on
this information, subsets of one-hop neighbors are foroedlroadcast given data
packets. These forwarding nodes are called Multipoint Y&ela

Since a Multipoint Relay knows its local two-hop neighbartipit can choose
its most efficient one-hop neighbors as subsequent MufiifRelays. The set of all
Multipoint Relays establishes CDS. The Multipoint Relayafea given Multipoint
Relayz is calculated according to the following algorithm:

Selecting the Set of Multipoint Relays

1. For each neighbar of x calculate the numbdp(y) of two-hop neighbor
z that are connected toovery.

o

2. Add to the Multipoint Relay set thogethat provide exactly one link to|a
two-hop neighbor. Remove allz that are now covered overfrom the
two-hop neighbor list.

3. While two-hop neighbors exist that are not yet covered Iop@e in the
Multipoint Relay set repeat:

3.1. Compute the coverage of eagli.e., compute the number of remajn-
ing two-hop neighbors connected ovey that are not yet covered by
a node in the Multipoint Relay set.

3.2. Select they as Multipoint Relay that provides the largest coverage.
If multiple y show the same coverage, select the node with highest
D(y). Remove allz that are now covered from the two-hop neigh-
borhood list.

An energy-efficient coordination algorithm for topology control (Span)

Span [20] is a distributed algorithm where nodes make logaisibns whether they
join a forwarding backbone as a coordinator or if they areraquired to support
routing and accordingly can go to sleep. The resulting bawckls a connected
dominating set. The decision process requires knowledgheofocal three-hop
neighborhood information, which is collected by exchaggime one- and part of
the two-hop neighborhood information of each node in itgwig. Considering the
two-hop information, only the exchange of the accordingrd@tor information

is required.
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The algorithm supports efficient routing and elects rednhdades effectively.
On the other hand, the requirements in terms of storage aridotonessage com-
munication are high. This makes the algorithm less appkctbsensor networks.

Geography-informed Energy Conservation for Ad-hoc Routing

In GAF [169] nodes form virtual clusters, where redundardew i.e., nodes not
required for routing, are temporarily disconnected from tietwork. The virtual

clusters are determined based on geographical informafioa network is divided

into a grid of cells. GAF ensures that within each cell atlease active sensor
node is always present. This active node is needed to gearand provide rout-
ing. Accordingly, GAF also establishes a connected dorimgatet. GAF utilizes

geographic location information, and divides the netwato ifixed square cells.
Each node in GAF has to provide a location service (e.g., GA®) algorithm is

efficient and simple. However, location information is pn@&d, which can be a
limiting factor. GPS for example is not available indoorsl ather solutions might
lack accuracy.

Low Power Media Access (ASCENT)

ASCENT [18] determines redundant nodes by local negotigtimcedures. Each
node makes its decision whether to stay active or not onlgdas local connectiv-
ity information and measured packet loss. In ASCENT activéas are adaptively
selected among all nodes in the network. Active nodes ar&exalathe time and
guarantee multi-hop packet routing. All other nodes aresipasand turn off their
radio. They only wake up periodically to check whether thegudd become active
or not.

ASCENT requires high node density. Initially only some nodee active.
These nodes route all data traffic. Upon detection of poornsonication links,
i.e., high packet loss is indicated, the according activée®) start to send help
messages. Passive nodes overhearing these help messages laetive and help
in forwarding the data traffic. This procedure continues!tiné number of active
nodes is stable, i.e., no poor communication links are atdit anymore. ASCENT
provides no mechanism to release active nodes from their fidius, the number
of active nodes grows over time. Moreover, because actidesicannot be re-
placed, the active nodes will run out of energy much fastan thassive nodes.
Accordingly, no energy load distribution mechanism is wled. The active nodes
in ASCENT build a connected dominating set.

3.4 Event Detection and Tracking
In this section the state of the art in efficient source deieraind tracking is dis-

cussed. The contributions are mainly from the networking) distributed commu-
nications research field. Methods for tracking group foramaand maintenance
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are proposed. The focus is on efficiency, network lifetimeé @mmmunication load
minimization. In most cases, tracking groups are dynairyiestablished. Such
local group organization keeps the communication costs Tdwe downside is that
accurate event localization and classification, which ypeally based on collab-
orative signal processing (CSP) and require detailed nmétion to formulate and
solve the according problems, are given less insight.

3.4.1 Target Localization in Distributed Sensor Networks

In [179] a sensor node deployment and target localizatiaméwork has been
proposed. After deployment, all network nodes are orgahnia® local clusters,
which remain static. Upon detection of an event, a clustadhetects a subset of
cluster members to provide it with detailed information atothe event.

The target tracking application consists of a two-step comigation protocol.
Upon detection of a target (an event), the respective detesensor node notifies
its cluster head about the target by a very short control agesdn this message the
presence of an event is indicated by only one bit. The clirgtad thereafter queries
a subset of its cluster members to obtain more detailednrdtion about the target.
The subset of nodes that have to be queried is determined basa score-based
ranking algorithm. The score-based ranking algorithnifitsdased on a detection
probability table, which is maintained by the cluster head eontains a detection
probability for each cluster member. The goal of this messaghange procedure
is to minimize communication costs.

The static cluster formation is inflexible. The probabilititarget detection by
multiple clusters is increased close to cluster boundarexordingly, either the
number of reporting clusters could become high or additioegotiation among
the cluster heads is required. Both effects increase nktload. Localization
and classification algorithms have not been addressed. Vowiney could be
supported depending on the kind of information requesteth&gluster heads.

3.4.2 Senslt: Region-Based Detection and Tracking of Targets

In [78], [120] the authors propose region-based CSP foetadgtection, tracking
and classification. The regions are dynamically createddateted by a location-
centric application programming interface (API). The ABImotivated by the
message-passing interface standard [101]. The sensoonkeismdivided into dy-
namically established cells. The diameter of the cells ddp®n the target veloc-
ity. Each cell contains numerous nodes, whereof at leashode is leader. The
leader node collects and processes the data received fewthbr nodes in the
cell. Subsequent cells are initialized if the moving tarigetves the current cell.
The monitoring and tracking of a single target is illustcate Figure 3.7.

The target enters initial cell A. The leader node(s) in cefiradict the tracking
path of the moving target based on statistical methodselfaiget moves towards
the boundary of the active cell, adjacent cells (regions)aamtivated according to
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Figure 3.7: Grid creation and handover in Sensit.

the estimated moving direction. As soon as the target eatsigated cell X, X
becomes active. Active regions become inactive when notéwasibeen present
for a given amount of time. The message passing scheme @s/oather high
communication costs. Moreover, the handover procedureaittavates all cells
adjacent to an active cell is expensive too.

Similar approaches have been proposed in [12], [11]. Heeeatuthors have
proposed a distributed cooperation framework instead efdbation-centric API
for the target tracking. The work is also part of the Sendlfgut. The observa-
tion area is again divided into grids. Publish/subscribelmaisms are used for
communication within the grids. One member of the grid iss&mas leader and
aggregates the observations from the members and repertseghlting informa-
tion. Cell handover is performed similar to [78].

3.4.3 Event Detection and Tracking with Consensus

In [71] the self-organization of event observing groupsdisntified as key prob-
lem of distributed event detection and tracking. The maialge to avoid the
establishment and maintenance of multiple tracking grdapshe handling of a
single spatially-restricted event. Single groups arebdisteed based on consen-
sus. Consensus itself is based on a quorum mechanism. Teuspéxistence of
event tracking groups can be prevented. Hence, only onlnigagroup reports to
the base station. Coexisting events are supported as lotigesire sufficiently
disjointed in space.

To achieve consensus, the protocol requires multi-steptiaign among the
event observing nodes. As soon as an event has been obseaotdconcerned
sensor node sends a consensus request in a PROPOSE messighé@oNnodes
answer this message with an ACK message that includes tesos readings.
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Based on all collected sensor readings, a simple majoritjsid® is performed.
Thus, the most relevant sensor node is determined in atldiséd way among all
event observing nodes. The node with highest ranking maiessngjority deci-
sion. The winning node informs all other nodes about itsesteth a DECIDE
message. The communication costs of the protocol are rhitjer Moreover, the
protocol requires the sensing range to be at most half themeoritation range.
Otherwise, the negotiation costs increase considerabbalse two- and more hop
communication would be required.

3.4.4 Event Detection Using Data Service Middleware

Another approach that supports distributed event deteatiavireless sensor net-
works is DSWare [81]. DSWare supports data-centric stolggepplying hash-
ing functions to map data to physical nodes. To provide rolass, the data is
replicated in multiple physical nodes which are mapped tmgles logical node.
Moreover, queried data is often cached on multiple sensdesalong the routing
path. Thus, communication costs can be saved. Apart frozarsing-based data
collection services, DSWare also supports event-basedtaoniog.

With DSWare an application specifies a compound event teciolelevant in-
formation from a certain geographical area. The event §pation consists of a
maximum detection range, a time interval, and a confidencetifan. This confi-
dence function describes how the different measuremesitected from the sensor
nodes in the monitoring area, are weighted and how the catigosf the data is
calculated. If the computed value exceeds a certain thiestiee event detection
is significant and a report is sent to the base station. Thexbaof events is mod-
eled according to Finite State Machines (FSM), which rezguBystem experts to
design particular event-dependent FSMs. An event is mddajethe associated
FSM, which is ultimately downloaded onto the sensor nodeistefest. Similar
approaches have been proposed in [92] and [124]. GADT [3&]etscevents that
are observed with streaming-based systems according tes@auAbstract Data
Types (GADT) in order to compensate for inaccuracies in émsed data.

3.4.5 EnviroTrack: An Environmental Computing Paradigm

EnviroTrack [1], [90] is an object tacking middleware. Tkamy objects are dy-
namically created and logically attached to selected patentities. Localization
and classification cannot be supported without adaptations

As soon as a moving object is detected by some node, trackmgg are dy-
namically established. Group leaders are elected basedmerntion and organize
their tracking group by periodically broadcasting heaatbmessages. Upon sens-
ing of an event, i.e., when the configurable sensing funadioEnviroTrack fires,
each concerned sensor node sets a random timer (contetiien this timer ex-
pires, the respective node appoints itself as leader ancdiately starts to broad-
cast heartbeat messages. Each node that overhears a &ieartissage becomes a
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group member and removes its own random timer if one is s¢tbeddThe group

leader organizes the tracking group, reports tracking ttathe base station and
initializes leader handover when the object leaves itsoregiThe tracking group
organization of EnviroTrack is illustrated in Figure 3.8.
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Figure 3.8: Group organization in EnviroTrack.

Upon occurrance of an event, every event observing nodggvery node in the
sensing range, sets a random timer. The node with the fasteséding timer (i.e.,
the black node in Figure 3.8) becomes the leader node. Thedmally broadcast
heartbeat messages inform all nodes (members and follpimeitse transmission
range (object resolution area) about the leader. BecaugeokErack requires that
the sensing range is smaller than half the transmissiorerahg tracking group
organization can be maintained very efficiently. This systiesign imposes low
communication overhead, prevents the appearance of genturacking groups
and supports efficient leader handover. On the other haedsehsing range is
notably restricted in size. Moreover, the leader node omly local knowledge
about the event. This knowledge is however not sufficientufgpert any event
localization or classification. If such functionality isqueired, collaborative signal
processing among the tracking group nodes is needed.

In our own work we have developed DELTA, which performs saniio Envi-
roTrack, but requires a set of group member nodes to repairtsbnsor readings.
Thus, larger sensing areas can be supported, because ¢thiemegsages cover ad-
ditional area. Moreover, based on the collected sensomgsdevent localization
and classification are possible. In DELTA the leader electimer is not set ran-
domly, but based on current sensor readings. Thus, bets#trquezd nodes evolve
as leaders. Finally, DELTA implements an on-demand TDMA na@ism to op-
timize local communication. EnviroTrack has been impletedras the reference
algorithm to our own solution. Performance values are mteskin Chapter 6.
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3.4.6 Information-Driven Sensor Querying

In [23] an algorithm for energy-efficient information-deiw sensor querying (IDSQ)
has been proposed. It is designed to support a wide rangdlabative signal
processing tasks such as tracking and classification. Toemation content, i.e.,
the sensor readings of interest, is modeled by a probadilisfiormation utility
function. A spatial area of interest is incrementally geéruntil the given utility
function is satisfied. The approach is fully distributed. eTthanagement of the
event observing area has not been considered, though. ifgagioup formation
methods such as the ones described before could be used.

In IDSQ, sensor nodes are incrementally queried to providedicated node
(the leader node) with the required information. This medrsgroup leader node
detects an event, i.e., its amplitude readings are grelader & given threshold,
it incrementally queries group member nodes until the besliate is considered
significant. As soon as the event detection is consideredifisignt, the group
leader generates a report message. On the other hand, ibaf) gnembers have
been queried, but the belief function is still not satisfitte event detection is
discarded. This incremental unicast sensor node querynind leader node is
rather time consuming. Therefore, real-time tracking fadilt to support. In
addition to the long delays, relying on a unicast commuigcascheme might be
too energy consuming in the context of target tracking agdadiprocessing.

3.4.7 Algorithms for Fault-Tolerant Event Region Detection

The detection algorithms discussed so far consider an esignificant if some
threshold requirements have been met. However, sensos moigdét malfunction
and/or (temporarily) provide faulty measurements, whigtld lead to wrong de-
tection alarms. In the work of [64] the prevention of suclséhlarms has been
addressed.

The authors have developed a distributed Bayesian algosithich is able to
detect and correct wrong measurements caused by malfomgfisensors. The
Bayesian decision procedure requires knowledge of theoseaadings collected
in a restricted neighborhood, i.e., in the local event negidhe paper does not
discuss how the event region is managed by the nodes. Thissrgeaup formation
and maintenance have not been considered in this work. Dlilsl tiowever be
achieved with one of the previously introduced algorithnience, the tracking
algorithms presented in this section could be enhanced thisthmechanism to
account for faulty measurements.

3.5 Event Localization and Signal Strength Estimation

In the previous section we have addressed event detectibevant tracking. Hav-
ing detected an event, it might be necessary to estimatéigrosind/or emitted
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signal strength(s) of the event. The computation of theadigtrength(s) emitted
by the event is, in particular, important for classification

Accurate event localization and signal strength estimatice commonly ad-
dressed by collaborative signal processing (CSP). Thesfwcthereby on increas-
ing accuracy by multi-measurement processing. High concation and com-
putation costs are often taken into account. The orgapizaif the network into
tracking groups is less considered. Some approaches arg fan the solution of
localization problems. The state of the art research facosestatistical and nu-
merical solutions to the localization and signal strengitingation problems. The
approaches can be coarsely divided into centralized amdbdi®d approaches. In
centralized approaches the sensor information is routeddentral station (base
station), which has more storage and computation power tloammon sensor
nodes. The main drawback is high communication load, inqadar towards the
base station. On the other hand, distributed computatitam ddcks accuracy and
imposes negotiation complexity. In the next section a sensmlel that is com-
monly used to formulate the event-based localization jgmlik presented. There-
after, two standard nonlinear optimization methods toesslych problems are in-
troduced. A linear solution to the problem is also presentén rest of the section
discusses work related to event and node localization.

3.5.1 Problem Formulation

In order to localize events or to compute their emitted digtrength(s) an appro-
priate sensor model is needed. Related work [135], [23], (i8és a sensor model
based on an isotropic radiation model (e.g., for soundatidm, or light from point
sources). Thereby, the received signaat a sensor nodelocated at positior; is
related to the event positienaccording to the model:

c
pi=r—Fa tw 3.1)
1% — &l

where c represents the amplitude of the emitted signé,the attenuation degree
of the considered signaly is some additional white Gaussian noise, ddis
the Euclidean norm. The model means that the received sigremigth decreases
inversely proportional to the distance with some exponentFor example, for
sound sources is 2 [63].

Having collected a certain number of sensor readingsvhich needs to be
larger than the problem dimensionality, the event locéibraand signal strength
estimation problem can be formulated as a nonlinear lepsirs objective function
[114]:

k

2
fx) =3 (pi - m) (3.2)

=1
Such a function can be solved by nonlinear optimization wdth Alternatively,
the system of equations can be linearized and solved (seé®i$8c5.4). In some
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approaches, the event is not localized based on Equatib)) (®it on other prop-
erties such as binary detection information. In this casgiaion (3.2) needs to be
adapted. Nevertheless, in order to solve the respectivienean function appropri-
ate numerical or statistical techniques are required.

3.5.2  Simplex Downhill

First, the Simplex Downhill (SD) method [103] is presentddhis method solves
a nonlinear optimization problem by searching a minimum mudtidimensional
function space. Considering a problem of dimensirwith N € N, a simplex
is the simplest volume consisting &f + 1 points. If the problem has dimension
2, the simplex is a triangle. Otherwise, if the problem hasatision 3, i.e., there
are three unknowns, the simplex is a tetrahedron. We showglesiexample of
a nonlinear function minimization problem in Figure 3.9.id problem could be
solved analytically, but illustrates the problem well.

%

o X Xz X o) X3 X2 X

Figure 3.9: Simplex Downbhill function minimization.

In this example, the problem dimensionality is 1. Accordimghere is only
one unknown variable and the simplex is a line. Initially, a well-placed simplex
is chosen, i.e., the lingz in Figure 3.9. Then, the objective function is applied on
it. The mapped simpleX(z17z) is then processed with a sequence of simple geo-
metrical operations such that the minimum of the objectinecfion is searched. To
do so, the highest value in the simplex is always chosen andformed to become
the smallest one. In Figure 3.9:4() initially has the highest value. Accordingly, it
is transformed to become the smallest ones(f). A sequence of transformations
is repeated until either a given threshold is under-run emttaximum number of
allowed iterations is reached. The possible geometricatains of a simplex
(tetrahedron in this case) are depicted in Figure 3.10.

The SD method requires no derivations, but only simple foncgvaluations.
On the other hand, the convergence to the searched minimaeds r@n average
more steps than with methods that consider derivationscal iminimum could be
found that depends of the location of the starting simpléer&fore, a well located
starting simplex is crucial. Up to now only heuristics exstavoid local minima,
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Figure 3.10: Geometrical operations of Simplex Downhill.

e.g., Monte Carlo methods, which address this problem. $uethods are very
cost intensive in terms of time and memory, though. Theegfthrey are in general
not applicable to sensor networks.

3.5.3 Conjugate Gradient Method

The Conjugate Gradient [114] method also solves nonlinpimization problems
of dimension N. At a given N-dimensional poiRf not only are the function eval-
uationsf(P) computed, but the gradients of the objective functiofi(P) as well.
The gradientA f(P) is a vector field that has the characteristic of pointinghia t
direction of the largest increase HfP). In its simplest form this optimization prob-
lem can be solved by searching in the negative directidnf(P). This method is
called Steepest Descent. An example with both Conjugatdi@raand Steepest
Descent search is illustrated in Figure 3.11.

— Conjugate Gradient --+ Steepest Descent

Figure 3.11: Conjugate Gradient and Steepest Descent.

In the example, the objective function is a three-dimeraicnone. The function
minimum is indicated by the decreasing ellipses. A stantioigt x is determined.
At this point, the search starts in the negative directiothefgradient, i.e., in the
direction of the arrows in Figure 3.11. As soon as a minimunthat direction
is reached, the search direction is adapted such that i pgants in the negative
direction of the gradient (Steepest Descent). With CG tlniection is slightly
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adjusted such that in general fewer iterations are needeshtd the minimum (2

steps in the example). Commonly, the Steepest Descent thedemls more steps
to terminate (4 steps in the example). Like SD, CG can entegiam which ends in

a local minimum. Therefore, CG faces the same restrictisrSIx The algorithm

again terminates if the termination criterion is satisfiedf the maximum number

of allowed iterations is reached.

3.5.4 Linear Least Square Method

In the previous two sections two nonlinear methods to sobwece-based local-
ization and signal strength estimation problems have beesepted. The problem
can further be linearized and solved with Linear Least Sg(larS) methods [135],
[78], [77]. In [135], [77] acoustic event sources have bemalized. The signal
attenuation coefficient of acoustic sources is 2 (see Section 3.5.1). Accordingly,
Equation (3.1) can be rewritten as:

C
Il® + &)1 = 2x"¢ — — =0 (3.3)
Pi
Given N sensors, N equations (3.3) can be formulated. Thérgtia constraints
on the unknown variable can be removed by subtracting the first (i = 1) equation
from the rest (&£ 1), resulting in a system of N-1 linear equations of the form

1 1
2(61— &) x+c (— - —) — el + el (3.4)
pr P

2

In the following the unknown variables are rearranged in@orex = [x, c|.
By setting

0y {2 (61— &): (pi - piﬂ b= el + el

Equation (3.4) can be simplified t¢f % = b,. Considering all N-1 linear con-
straints, the system can be written in matrix form&s_1x = by _1, which can
be solved with the following closed-form standard lineaskesquare methol =
(AL _JAn_1)71AL_ by_1. Inorder to apply the linear least square method, an
over-determined system is required. This means the nunfisensing nodes needs
to be larger than n + 1, where n is the problem dimensiondlitgensor networks
this requirement can be restrictive.

3.5.5 Tracking a Moving Object with a Binary Sensor Network

A centralized approach for object tracking has been prapwsg!]. Based on a bi-
nary sensor model, the location and direction of a movingdlgre estimated. The
only information a binary model requires is whether an abgmoving towards a
sensor node or away from a sensor node. The binary inform&ioollected at a
central station where a patrticle filter algorithm is appliecestimate location and
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movement direction of the object. A particle filter is a Sttial estimation method
that is based on sequential Monte Carlo simulations. Intaadio the currently
observed measurements, the algorithm also requires peundormation (some
history) about the moving object.

The authors show that the binary model is appropriate if dlimgction infor-
mation about the object is required. However, if positidioimation is needed, an
additional sensor measurement which indicates proximaitgquired. Another lim-
itation of the algorithm is its centralized nature. In adm&ited implementation the
particle filter might be too resource consuming due to theikition-based estima-
tion. To some extent the classification of objects accortinteir velocity might
be possible. If however information such as emitted sigtrehgth estimations of
the objects is needed, the approach is not applicable, beHlits dependency on
only binary information.

3.5.6 PinPtr: Sensor Network-Based Countersniper System

In [134] the authors have proposed a centralized snipercti@iesystem where
each event observing node estimates the distance to a $rd@ped on the time
difference of arrival (TDOA) between two different kinds sijnals. The TDOA
between the arrival of a muzzle blast and an acoustic shaekisaneasured. These
estimates are delivered to a base station, where the positithe sniper is com-
puted by a multidimensional sensor fusion algorithm. THenemn sniper position
and the measurements span a four-dimensional vector sphioh is searched for
the maximal set of consistent measurements by performingn&Kalized Bisection
method [54]. This is a reliable nonlinear optimization nueththat divides the so-
lution space into subregions. The subregions are searghtiek INewton-Raphson
method [114]. The approach is again very resource consuaridgaccordingly
performed at a dedicated base station.

To determine the positions of the sensor nodes an additaei&localization
service is provided. This service performs pair-wise ragdiased on acoustic and
radio signals. All ranging measurements are transmittedo@se station, where an
optimization procedure is performed, which iterativelgg#s the nodes relative to
some known anchor nodes.

Exact time synchronization is required for both, sensorenpdsitioning and
sniper localization. The authors state that the communpitdiurden of transmit-
ting the TDOA measurements of all sensing nodes to a bagerstatacceptable
for their application. In [146] the system has been adapbedperate in mobile
environments. In addition to sniper localization, the sifisation of bullet calibers
and specific weapons is supported. The bullet caliber éilestson is based on the
relation of the shockwave period to the bullet characiessand the missing dis-
tance between the bullet trajectory and a sensing node. €hpan classification
is based on the projectile speed and its caliber.
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3.5.7 Localization with Positive and Negative Constraints

Distributed coarse-grained node and source localizatsbleen proposed in [41],
[44]. No classification of the localized sources is intendgeixtant [44] uses Bézier
regions to represent the locations of both nodes and eventeso The regions
are constructed by gathering positive and negative coitgotonstraints in the
neighborhood. To achieve this, Sextant nodes disseminaiterhonitored network
properties in a restricted area for a predefined number of.hDpawbacks of the
algorithm are rather high delays and limited localizati@ewracy. Classification
might be possible if, in addition to connectivity informati the sensor readings
were disseminated too. The authors of [41] have proposentigasiapproach, but
have used rectangles instead of Bézier regions.

3.5.8 Senslt: Distributed Localization and Signal Processing

Source localization based on the sensor model presenteztiios 3.5.1 has been
investigated in the Sensilt project [78], [76], [77]. In c@dt to PinPtr, which needs
two distinct signals for range estimations, the algoritrdeseloped in the Sensit
project require only one specific signal, e.g., acoustie®rsic.

In [78] the focus has been on the localization and classificaif sources based
on their seismic fingerprint. A seismic signal is modeledoading to Equation
(3.1). Event detection and tracking are performed withexcsgtime regions (cells)
as described in Section 3.4.2. The tracking group leadeo{ict(s) time series of
seismic measurements. The localization of single targepeiformed with over-
determined linearized least-square (LLS) methods (segoBe8.5.4). In subse-
guent research [77] acoustic localization has been peddimstead of seismic lo-
calization. Again a closed-form linearized least-squasthod has been used. As
mentioned before, more data is required, but consideriagtire performance, a
closed-form solution to the localization problem appeans/\attractive. Closed-
form solutions for acoustic localization had been propdsefre, e.g., in [135].
Apart from source localization, linearized least-squaethnds have been widely
used in range-based node positioning, e.g., in [125].

The LLS method requires an overdetermined system to worlrataly. To
overcome this restriction, alternative nonlinear nunarigptimization methods
have been evaluated in [76]. Again, the position of an evadiating signals is
estimated based on collected sensor readings. Two simpte-farce methods,
i.e., Exhaustive Search (ES) and Multi-resolution seaMR) have been evalu-
ated together with the Simplex Downhill algorithm (SD) (S==tion 3.5.2) and the
Conjugate Gradient (CG) descent method (see Section 316.8)der to minimize
the risk of finding a local optimum, the feasible solution @&as been overlaid
by a grid. The respective optimization procedure is perémrat every point in this
grid. The global maximum is chosen as the maximum among silte Overlay-
ing the whole solution space is too complex to be considereddistributed sensor
network application.
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In our own work we use SD and CG too (see Chapter 7). Howeveeve
termine well located starting points to avoid local optinsun®ur method has the
advantage, that meaningful localization results can b&ael even with the min-
imum amount of required data. In wireless sensor networttgnaant sensor data
might often not be available. Moreover, collecting reduridsensor readings im-
poses communication costs.

3.5.9 Robust Localization of Multiple Events

In [19] the localization of single events as well as of muéipoexisting events has
been investigated. Again, the omnidirectional energyagienodel has been used.
The authors show that linearized methods fail in specifievast topologies. In
particular if the sensor nodes are arranged on a line.

The position of single events is computed with two probatidimodels, namely
a Minimum Mean Square Error (MMSE) estimator and a MaximumadstErior
(MAP) estimator. The calculation of the estimates is corapomally expensive.
Therefore, a voting-based approximation procedure is.u$edletermine the lo-
cations of multiple coexistent sources, the authors pm@posise a nonlinear opti-
mization method. A Levenberg-Marquart algorithm [75] tletally performs the
Newton-Raphson method [114] has been used. All proposedtithigns are re-
source consuming and require high communication load. bi&ing issues, such
as how to establish and maintain tracking groups, have rest hddressed.

3.5.10 Distributed Optimization in Sensor Networks

The authors of [118] investigate the feasibility of deriyian estimation distributed
in the network. This avoids the need of sending all data tongrakenode, where
the computation would be performed. The method resembkedsdBQ sensor
querying procedure presented in Section 3.4.6. The ewasgeblocalization of
acoustic sources is investigated as a possible applicaftomlocalization problem
is expressed as an optimization problem, whereby the reariproblem (cost)
function is incrementally fed with new measurements. Addal measurements
are obtained by circulating the cost function in the netwdtlkery receiver of the
cost function updates the function with its own local sensadings, i.e., with its
local acoustic signal strength measurement, until a poecihireshold is reached,
or until the maximum number of allowed search steps is exaskelth each step an
incremental subgradient optimization method, processiadocal data, is applied.

The approach is suitable for estimations problems sucheafotalization or
classification of static sources. However, if moving sosir@ae present, the param-
eter circulation paradigm counteracts the tracking taskclrequires some kind
of tracking group formation. The node terminating the omation could be desig-
nated responsible for the tracking. Nevertheless, thaillaition paradigm implies
delays, which might negatively affect real-time performarin a dynamic event
monitoring context.
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3.5.11 Distributed State Representation for Tracking Problems

In [87] a tracking problem is addressed by decomposing #ukitng problem into
a positioning problem (space) and into an identity problstaté). The state-space
model embodies such a problem. The approach aims at disigg mutually
overlapping events. The basic idea is to decompose the gtate-space of any
event into sub-problems of lower dimensionality. Congiatgtracking, the joint
state-space covers both positioning and identity managenhis joint problem is
decoupled into two sub-problems, namely into identity ngemaent and target po-
sitioning. Both sub-problems are of lower complexity thie joint problem. Each
of the sub-problems is processed locally on the sensor mufdaterest. The sen-
sor nodes of interest are dynamically determined accorirggpplication-specific
state-space requirements.
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Figure 3.12: Decomposition of multi-target tracking.

The decomposition of the tracking problem into localizatand identity man-
agement sub-problems is depicted in Figure 3.12. As longvaddrgets are dis-
jointed, the positioning and identity management sub4erob are addressed indi-
vidually for both targets. As soon as the target trackingsu@verlap, the identity
management problem is abandoned due to complexity. Inskedld targets are
treated as a single target and only joint positioning isqrened. As soon as the tar-
gets are sufficiently disjointed in space again, the sulbpros are again addressed
individually. The localization and identity check proceesiare based on statistical
methods and require knowledge about the history of sensasmements. Thus,
they are rather expensive in terms of storage and commiorcat

3.5.12 Classical Node Positioning Methods

In the following a number of classical node positioning agwhes are discussed.
These methods have not yet been adapted to source localizatd/or classifica-
tion problems, but could be of some relevance in that redpectGood overviews
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over early work in this topic are provided by [73], [105] ar&?]. These papers
discuss approaches such as DV-Hop [106], Cricket [115], smdn, which are
interesting but less relevant in our context.

Multidimensional Scaling (MDS)

In [130] a coarse-grained node localization method, ordyirng connectivity in-
formation, based on multidimensional scaling has beengaegh. A relative map
containing the distances (in hops) between the networkssdgenerated. On this
map multidimensional scaling is applied to derive the nodsitmns which best
fit the distance estimates. The resulting positions areivelto the map. In or-
der to obtain absolute coordinates, landmarks with knowgitipn can be used to
normalize and transform the relative coordinate systerordany to trigonometric
properties. Instead of distance other properties couldskd.uThe high signaling
burden, i.e., all data needs to be collected at a central, modkthe high computa-
tional requirements make the approach less suitable fokiirg and classification
in sensor networks. In a subsequent paper [129], the apgplacbeen distributed
by decomposing the global map into local maps. The local map®e combined if
required. A distributed variant based on Received Sigrreh@th Indicator (RSSI)
measurements has been proposed in [58]. Due to the usagesottirSalgorithm
provides a more fine-grained resolution.

Multilateration for Node Localizations over Multiple Hops

In [126] the multilateration problem is split into two subsplems. Coarse-grained
location information is collected from landmarks which alaced several hops
away. Additionally, neighboring nodes measure their mudistances based on
ultrasonic ranging. In a first step, nodes are organizedgrdaaps such that nodes
with unknown position are over-constraint and a uniquetsmiucan be derived.

Then, coarse-grained initial position estimates are nbthfrom simple geometric
relationships. Finally, a distributed nonlinear gradidescent method is applied
to derive the final fine-grained location estimates. Duegadmmunication re-

quirements this method is only appropriate if infrequeiptyformed. In previous

work [125], [73] standalone multilateration had been used.

Localization Based On a Kernel Method

In the work of [104] the localization problem is formulateslapattern recognition
problem. A signal strength matrix containing the mutual sueaments of each
pair of sensor nodes is required. Furthermore, some landnzae needed. The
classification problem is solved by using support vectorhiree(SVM) and kernel

methods. The localization is divided into a training phagkere the localization

functions are learned from the signal strength matrix wepect to the landmarks.
This is performed centrally at a base station. Afterwardshesensor node with
unknown location performs its positioning locally. The@ilithm does not require
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distance estimations. A drawback is that the preprocesseds to be performed
at a central base station. Moreover, the algorithm requaregh communication
load if the preprocessing has to be performed frequentlychwivould be the case
in a source tracking and localization application. Simitaralization procedures
based on kernel methods have been proposed in [178] and [66].

Localization Considering Non-Line-Of-Sight Measurements

In [145] the node localization problem is addressed in emvitents which con-
sider both, line-of-sight (LOS) and non-line-of-sight (85) measurements. The
resulting system is solved with linear programming. The ML€3timates are con-
sidered if the LOS measurements cannot guarantee accocateétion. The LOS
measurements are used to define the objective functione wtelNLOS measure-
ments add restrictions to the feasible solution space ®litlear program. Mecha-
nisms to deal with NLOS measurements might be of interestince localization
and classification too. The system must be able to distihgogtween LOS and
NLOS measurements.

3.6 Classification and Reasoning

The deployment of wireless environmental monitoring systehat include clas-
sification primitives is still a challenging problem. Fistall, classification soft-

ware consumes a lot of resources in terms of storage, pingessd communica-
tion. Furthermore, sensor networks commonly aim at avgidasource consuming
mechanisms. Thus, there is a trade-off between efficietrillited classification

and the available resources provided by sensor networkporieg all data to a
base station for later data analysis (e.g., [5]) is too comipation intensive in our
context. Such a system design is only appropriate for geam-deployments. On
the other hand, our event detection system aims at long-depioyments. There-
fore, lightweight and efficient, distributed classificatimechanisms are needed.

Before discussing state of the art classification methoadreless sensor net-
works, some basic classification aspects are introducetictar focus is on clas-
sification aspects and features that are relevant for ourapgroach.

Basically, a classification problem is the problem of adsigra present un-
known patternx = {z1,...,xy} to the clas<’; of known patterns it most likely
belongs to.N is the number of features that characterize the pattern.

In our work the event classes are learned unsupervisedihes. are learned
from observed data. A well-known algorithm to learn evemtssks is presented
in the next section. The subsequent three sections inteottwee different basic
classification methods, namely a simple Bayesian class#ietassifier based on
Fuzzy Logic, and a neural network approach. These methodsaaclassifying
patterns that are present as discrete entities in timgthesinput pattern is of form
x. In addition, the theory of ART neural networks is present&tiese kinds of
neural networks are used in our own work to process and flasants that evolve
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over time. Having presented these mechanisms, the focleciscpon related work
in classification and anomaly detection in wireless senstworks.

3.6.1 Learning Event Classes

Event classes are learned from training data. We will usekmawn clustering
mechanisms, namely k-means and fuzzy k-means. Both merhsmirrange sam-
ple patterns into clusters. Therefore, similarity metries, the Euclidean distance
(k-means) and membership degrees (fuzzy k-means), are used

The goal of clustering is to find a decomposition of the (iraah setZ =
{21, ...,z) } into m clusters{C1, ..., C,,}. The basic idea of fuzzy k-means is to
assign each € Z to each cluste€’; with a given membership degree(z). Hard
clustering (k-means) is a special case of fuzzy clusteriit w;(z) € {0,1} for
all j. The fuzzy k-means algorithm requires the computatbrthe membership
degree of a sample pattezrto a clusterC; according to [39]:

1, if z=m;,

1j(z) = 1 —, else (3.5)

K (llz=myl\ BT
Zk:l ( Hz—miH)

where 5 is a parameter controlling the membership gradient [afjds the Eu-
clidean norm. According to (3.5) the membership degree @napde patterrz is
higher, the closexz and a cluster centam; are. The computation of the cluster
centersm; is based on the membership degrees of all patternsZ [39]:

S py(2i) - 2
- (3.6)
TS ()

Having defined these preliminaries, the k-means and theg fkrrzeans algorithms
can be written as:

K-means

input: Training setZ;
K = number of clusters;

ouput: m clusters{C1, ...,Cp, };

begin

chooseX initial cluster centersny, ..., mg;

repeat
assign each,; to the cluster with closest center;;
recompute each cluster center;

until termination criteria satisfied,

end
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Fuzzy k-means

input: Training setZ;
K = number of clusters;
ouput: m clusters{C1, ..., Cp,. };
wi(z;) forl < j < Kandl <i < M,
begin
chooseK initial cluster centersny, ..., mxg;
repeat
computeu;(z;) for 1 < j < K andl < i < M according to (3.5);
update the cluster centetis; for 1 < j < K according to (3.6);
until termination criteria satisfied;
end

The fuzzy k-means algorithm works similar to the k-mean®sdigm. The
main difference is that it does not assign a fixed pattern toistar, but assigns a
pattern to a cluster with a certain membership degree. Tdssalso some impact
on the computation of the cluster centers, because the tngbaadl samples is
considered instead of only the samples that belong to thefspeluster.

Having applied any of the two clustering algorithms on anirag set, the re-
sulting clusters (classes) can be used to configure thefdeasgliscussed in the
next section. Both clustering algorithms can be used aditutbs because both
mechanisms produce similar clusters.

3.6.2 Bayesian Classifier

It is assumed that: different event classes (clustexs) have been learned. Each
patternx of C; is an element o, wheren is the total number of observed phe-
nomena (features).

To implement a Bayesian classifier, first the a priori clagdbabilitiesp(C;)
need to be known. These probabilities represent the freyuehevery class;
over all known patterns. Moreover, the class-specific diitias p(x|C;) are re-
quired. p(x|C;) is the probability to which extend belongs toC;. A Bayesian
classifier implements the following classification rule J[439]:

X € CZ <=>p(X|CZ)p(CZ) > p(X|Cj)p(Cj), Vj = 1, ...,m;j 7& 7

A Bayesian classifier assumes normal distributions of tbeatilitiesp(x|C;).
Normal distributions are analytically easily managealllee parameters, i.e., the
mean valuem and the standard deviatiod§ of each cluster, can easily be esti-
mated from the patterns in the different clustéts The normal distribution im
dimensions, witlm > 2, looks as follows [39]:

pX|Cy) = ——_[3eem K ) (3.7)
(2m) 2 [K;|2
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This function only requires the knowledge of the mean vecta; and the
covariance matriceK; for each clasg’;. The covariance matrix isxax n matrix.
|K;| is the determinant dK;. Instead of using(x|C;)p(C;) as a classification rule
(3.7), a monotone function can be applied to simplify the potation. As done by
other authors [72], [39], a natural algorithm is used:

D;(x) = In[p(x|C;)p(C;)] (3.8)
Thus, the new classification rule is:
x € C; & Di(x) > Dj(x), Vi=1,...,m;j#1i (3.9)

Substituting (3.7) in (3.8) and ignoring the emerging canstermzin(2r) the
computation ofD; looks as follows:

Dy(x) = In[p(Cy)] — %ln|K,'| - %(x —my) K, (x — my) (3.10)

The Bayesian classifier is fully functional as soon as thectvariance matrix
K; and the meam,; of each cluste€’; have been computed. Both can be computed
in a straight forward manner based on the cluster informapimvided by the k-
means algorithm. Having pattergsy, ..., x,/} of a classC;, the parameter¥;
andm; are estimated as follows [39]:

M M
m; = U ij, and K; = ijx;- — mm’
7=1 7=1
A Bayesian classifier is a simple classifier that assumes adaitistribution of
the features in the patterns. If this is not the case, Bagedassifiers intrinsically
lose precision due to their mismatching distribution agstion.

3.6.3 Fuzzy Logic Controller

In this section the basic design of a common Fuzzy Logic @detr (FLC) is
discussed according to [72]. We assume thatifferent event classe§’; have
been learned (see Section 3.6.1). Let= {uy,...,u,} be the universal set. A
fuzzy setd onU is described by the membership function:

pi:U—10,1] (3.11)
wherey ;(u) expresses the membership degree in which the elemiegibngs
in A.
In our work, we have investigated triangular and Gaussiambeeship func-
tions. The functions are depicted in Figure 3.13 and contbateording to:

8

—2. ifx € (a,b],

o o
SIS

_(ccfa,)2
p(r) = , ifxe (b, and p(x)=e 27

, otherwise.

O o
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Triangular Gaussian

a X

Figure 3.13: Membership functions used in fuzzy logics.

Gaussian functions have the general advantage that theéailire space is cov-
ered. Considering a classification problem withe 1" andm event classes, a
fuzzy logic controller consists of a systemseffuzzy if-then rulesk;, of the form
[72]:

Ry : IF ,uAk’l(a:l) A ,ugm(a:g) A A ”Ak,n(;r”) (3.12)
THEN gi(x) > gi(x), Yi=1,...,.m

where A is an arbitrary operator aggregating the fuzzy sets of tieenjzes
and g(x) is an arbitrary function of the consequence. The rule melasthe
degree of significance of the premise is assigned to the usiod. If the premise
of Ry is fulfilled to a high degree, then the consequencé&phas a high degree
of significance also. Considering a sample patterthe degree of significance of
rule Ry should be maximum ik belongs to clasé€’;.

The functiong (x) of the consequence can be an arbitrary function if the FLC
is designed as a Takagi-Sugeno classifier [72]. Takagi+8ugkassifiers have the
advantage that their parameters can be estimated fronmgadata. The premises
are modeled from the patterns in the clustéts Any TSK classifier implements
rules of the general form (3.12) in the following way [72]:

Ry : IF ,u;lk’l(ml) A uAk’Q(IL’g) /AR NAk,n(xn) (3.13)
THEN gi(x) = fr(x)

where fi.(x) is an arbitrary function. Because the functiofi$x) can be cho-
sen arbitrarily, they can be designed to model the learnentelasses’; based on
the patterns in thé€’;. Accordingly, no expert knowledge is required. In our work
we have used a TSK2 classifier that is specified as follows [72]
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TSK2 classifier
oz, €N, k=1,...m, i=1,...m;
e The conjunction (AND) is the product;

e Theith output of TSK2 is

M n
TSK2/\ _ 2 k=1 %k Hj:l HA (x;)
9" (%) = ——=5r (3.14)
Zkz:l Hj:l KA, (Xj)

After having determined the fuzzy sets of the premises,ubeyf consequences
gi(x) can be tuned for the TSK2 classifier (see [72], p. 182). Thiamsdhat
estimates of the;, ; have to be computed.

Even though TSK classifiers can be modeled from data and eneftine trained
unsupervised, most current applications implement thesequences of the rules
according to Mamdani inference [95]. These systems reqxpert knowledge
and are based on minimum/maximum decisions. In particthase systems re-
quire that the consequences of the classification rulesreyeistic variables. This
restricts the application of the system, because lingwistiiables are often difficult
to model and require expert knowledge as mentioned before.

3.6.4 Feedforward Neural Networks

Feedforward Neural networks (FFNN) [39] are bio-inspiregtworks which, in
general, are neither self-documenting nor directly comgnsible for human be-
ings. They consist of simple, mutually connected computimits (neurons), which
support parallel computing, learning, and generalization

Basically, FFNNs consist of an input layer, an output layegl one or more
hidden layers of neurons. The number of input variablespuduariables and
neurons is arbitrary. Again, input is the unknown pattere= {z1,...,xy} that
contains the different event characterizing featuresp@us the clas€’ to which
the pattern most likely belongs. The hidden layer(s) cémsisneurons that process
the inputx according to some weights;. A simple neuron is defined as follows:

f@r, ) =) wiz; (3.15)
i=1

A weightw; is assigned to each input variahle In FFNNs these weights are
learned from training data consisting of input pattexrend the associated output,
i.e., the clas€’; to whichx belongs. The training is based on the backpropagation
method (e.g., [39]), which feedforwards the input trainpegtern throughout the
neural network, analyzes the error by backpropagationlifrear optimization),
and updates the weights. The backpropagation proceduesésiton the Steepest
Descent method, which performs similar to the Conjugatedi@rd method (see
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Section 3.5.3). Once the weights have been learned fromirtcapatterns, the
FFENN operates efficiently since only simple arithmetic @piens are performed.
The determination of the weights can be very resource comgyrthough. In our
own approach we have used a FFNN method too. The weights teerieed
offline at a base station. Only the trained, efficient claesié downloaded onto the
sensor nodes. This is the same for the FLC and the Bayesissifida

3.6.5 Adaptive Resonance Theory

If only little knowledge of the expected kinds of events isitable, the previ-
ously proposed algorithms fail due to their limited onlim&aining capability. In
this section we introduce a lightweight and adaptive menapggroach that learns
and classifies event patterns online. Adaptive Resonaneer¥I{ART) neural net-
works [17] represent a special kind of adaptive memory wauential learning
ability. Any present inpuk = {z1,...,zx} is fed into the ART neural network.
The present input is classified with respect to a number oédtprototypes, which
represent learned classes of input patternf the present input can be classified,
the respective prototype is updated. Otherwise, a new fyp®ds created unless
the whole memory capacity is utilized. ART systems have lgesigned to process
binary input patterns (binary ART) and analog input patgfuzzy ART).

Learned categories, j=1,..., M;

I= (i1,i2 ..... IN)

Figure 3.14: ART neural network architecture.

The architecture of any ART neural network is shown in Figr&4. Any
ART neural network is an unsupervised learning system. risists of two layers,
a comparison layer F1 withV neurons representing the attributes of a given input
and a recognition layer F2 composed /daf neurons representing the prototypes
(categories). The weight matri¥; ; is the memory of the ART. The sensitivity
thresholdp controls the recognition behavior of the ART neural network

61



ART-based Event Recognition

input: Input vector!’
output: Number representing categojyo which I’ belongs;
begin
Compute similaritys; to each prototype j in F2;
Sort thes; in descending order;
for eachs; do
if S$; > p
Update the weight®. ; = I -a + W.; - (1 — ) ;
return Category number j;
if maximum number of categories is not reached
Commit uncommitted neuromin F2;
return Category number j;
else
replace oldest category in F2;
return -1;
end

The operation of an ART-based event recognizer is desciibdide pseudo-
code above. The weight matrik; ; is the memory of the ART. First, the similarity
s; between every prototypgand the input vectof is determined. The Euclidean
distance is used to determine similarjiybetweenf and any of the stored proto-
types;. The resulting list of similarities is sorted in descendander. The ordering
is necessary, otherwise a prototype might be chosen (sityikpplies), though a
more similar prototype exists. This case could happen ifentiean ones; exceeds
the sensitivity threshold. The resulting list of similarities is evaluated with respe
to p. If an appropriate category is found, the weights of the eting prototype are
updated and the category number is returned as classificaitput. If no category
could be determined, -1 is reported (unknown event pattérhg present inpuf
is stored as new prototype until the memory is full.

The parameters of the ART neural network are explained iriadhewing. If
s; exceeds sensitivity threshojd I is assigned to category j. A high value for
p implies fine-grained memory (many, small categories), esithe input needs to
match a category exactly. On the other hand, low values mearse recognition
(few, large categories). A second parameter that has ancingmathe behavior
of the ART neural network is the learning rate If an inputfis assigned to a
categoryy, the stored prototypg is updated according to the weighted sum/of
andj, ie., W.; = I a+ W.; - (1 — «). Hence, the learning rate defines the
weightsa for the input and'1 — «) for the stored prototype. H is high (e.g., 0.8),
I is weighted 0.8 and the stored prototypés weighted 0.2. Accordingly, high
learning rates reinforce the impact of the current inputaditional ART neural
networks return the category number if a category is detegthfor a given input
I and -1 otherwise. On the other hand, our ART-based evengnégars return 0
(known) if I'is recognized and 1 (unknown) otherwise.
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ART neural networks are lightweight and adaptive. No birfigiof event pat-
terns is needed. Only a small number of prototypes is maietki However, be-
cause event classes are modeled according to weightedypeto the mechanism
cannot achieve the accuracy of an algorithm that storebaéirved event patterns.
We use an adapted ART neural network mechanism for anomégdgtaen. More-
over, we extend common ART neural networks with an aging r@eisim. Thus,
learning capability can be continuously maintained.

3.6.6 Haar Wavelet Transform

On wireless sensor nodes memory capacity is critical. Toerethe sizeN of

the input vector] might be restricted. In order to decrease the size of sefies o
measurements:j to the required sizeV, discrete Haar Wavelet transforms [45]
can be applied on the raw series of measurements. Thetefyst provide the
following property:n = N - 2¥ k € Nj.

The discrete Haar Wavelet transform is very simple and efiichind can easily
be performed on a sensor node. The discrete Haar Wavelsfdranis a digital
filter consisting of a Low Pass Filter (LPF), which models $ignal frequency, and
a High Pass Filter (HPF), which models the noise. For datactezh only the LPF
is considered.

LPF

(0] X (0] X

Figure 3.15: Haar Wavelet transform (LPF).

An example of a Haar Wavelet LPF is depicted in Figure 3.1% ORF simply
goes through a time series and computes the sum of any twecpudrs values and
divides the result by/2. Thus, a data reduction factor of two for each application
of the LPF is achieved. In Figure 3.15, the 10 values of thatirgignal on the
left are reduced to 5 values with the LPF. The LPF keeps low fraguencies of
a signal, while high pass frequencies are removed. Thustaaadanpression is
achieved by keeping the general shape of a signal.

In addition to the needed reduction in sample size, the WWawelnsform also
smoothes the original input signal, which can either berjomeged as a de-noising
of the original signal or as a generalization of the same.
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3.6.7 Classification of Time-Discrete Events

So far, an introduction to classification problems and smhst by focusing on as-
pects and methods considered in our own approach has besm give discussion
of the relevant state of the art in classification with wisslsensor networks starts
with approaches that classify events that are present esetiisentities in time.
Most of these approaches apply statistical methods, btgrpatecognition tech-
niques as well as simple threshold-based mechanisms rsvéed¢n proposed.

Senslt: Classification Functionality

Event classification with wireless sensor nodes has beeressit in the Senslt
project, e.g., in [78], [131], [132], [31], [99]. A wide rapgof statistical methods
has been covered in the Senslt project. Therefore, only atkhas implications
for this thesis is presented from this project here. In [A8]fbcus was on the local-
ization and classification of sources based on their seiingerprint. As described
in Section 3.4.2, the monitoring network is divided into gpdéime regions (grids)
with at least one responsible leader node. Time-seriessshg&emeasurements are
gathered at the leader node(s). The authors propose thferedli classification
algorithms to deal with the concurrent existence of mudtiigrgets. These classi-
fiers are: k-NN, maximum likelihood (MA), and support vecioachines (SVM).
The classifiers operate on the time-series associated agthevent in a time-space
cell. Limitations of the proposed statistical approachestheir rather centralized
nature and their need for a considerable amount of data taderstatistically rel-
evant results. The dependency on time-series implies slelay

Refinements of the proposed statistical methods have beposed in [131],
[132]. Statistical methods that compute the Maximum Liketid (ML) of events
with Expectation Maximization (EM) algorithms are propdsén addition, numer-
ical nonlinear optimization methods, which are based onabiztive Search (ES)
and Multi-Resolution (ML) search, have been proposed. pfiraaches require a
considerable amount of sensor readings to provide acclasués.

Classification Based on Local Binary Decisions

In [160] a fault-tolerant classifier based on local binargidiens has been intro-
duced. Local binary decisions about an event are forwardedl fusion center,
which performs the final classification based on the coltediga. A fault-tolerant
fusion rule (classification) is applied. The classifier hasrbdesigned to consider
faulty event reports. This means a certain number of wrongrlgidecisions are
tolerated by the mechanism. To do so, wrong binary eventtgpoe detected and
corrected by error-correcting codes at the fusion centee. érror-correcting codes
are computed according to the frequencies of occurrenceafe Accordingly, a
priori knowledge of the events and pre-computation of traesads required. Due to
the pre-computation of the codes, the resulting classificatiles are efficient. To
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achieve good results, the fusion center requires a largdeauof binary decisions
from network nodes, which imposes high communication costs

The error-correcting code design is essential for this @ggr. In order to de-
termine good codes, two algorithms have been proposed. Mialgorithm is
a cyclic column replacement approach, which is fast but caverge to a local
optimum. The second approach is based on simulated angeadich is a prob-
abilistic metaheuristic to solve a global optimization lgesn. This mechanism is
very robust as it can avoid local minimums, but imposes hwhpmutation costs.

Dimensionality Reduction Based on Kernel Functions

In [43] the complexity of a classification problem is decezhdy reducing the
problem dimensionality. Thus, communication and comjanatosts can be low-
ered. The dimension reduction is performed similar to gpalccomponent analy-
sis, which is a commonly used regression method. In detelptoblem reduction
is based on kernel linear regression, where the kernel iesepted as a weighted
sum of local basis functions. However, the important propef the system is that
a complex global function (e.g., a classification functioah be decomposed into
tasks of lower dimensionality. The lower dimensionalitgks are then distributed
among the network nodes. Thus, the nodes contribute to dfs@igiunction by pro-
cessing their local measurements. Accordingly, insteawfmunicating all mea-
surements, only local constraints on the model parametersegotiated. Thus, a
dimensionality reduction is achieved, which decreasesnzonication needs and
fastens computations. In order to perform the decompaosiéigain a priori knowl-
edge of the problem is required.

Intrusion Detection and Fence Monitoring

Intrusion detection with wireless sensor networks has lieastigated in [165],
[32], [164]. In [165] initial results of fence monitoring Wi sensor nodes have
been provided. Events such as a person climbing over a ferosofaboratively
detected. Six different event sources have been distihgdibased on their fence
activation fingerprint. Event patterns are detected baseth® activation of the
accelerometer implemented on the sensor nodes. Both,leeeleand collabora-
tive classifications are based on thresholds and majoritisides. In subsequent
work [32], [164] calibration of the sensor nodes and moreaaded pattern recog-
nition techniques has been introduced to improve accuiidoy.node-level classifi-
cation is divided into a learning phase, where event prpegyare learned, and into
an operation phase, where subsequently occurring evenidassified according
to the learned prototypes. The node-level classificatidraged on the Euclidean
distances between the observed event pattern and the staetclass prototypes.
The collaborative event classification is based on conseaswong the involved
sensor nodes, i.e., a majority decision is performed. Owdynetypes determined
in the learning phase can be classified.
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Classification based on Fuzzy ART Neural Networks

Many pattern recognition mechanisms require the centoahge of training data,
which is then used for learning. Due to the availability ofmgalete training data
sets, these algorithms are able to provide high accuracih®uwther hand, they im-
ply high communication and storage costs and require peabre-computations.
Adaptive Resonance Theory (ART) neural networks (see &e8t6.5) avoid these
drawbacks by learning new patterns online. Because naricaihata is locally

stored, ART neural networks are in general not able to peotitk accuracy of
pattern recognition techniques that include training phas

In [68], [67], [69] the application of ART neural networksrfalassification
and dimensionality reduction in sensor networks has beeposed. Events are
observed as feature pattems= {x1, ..., 2y }. Each present pattesais classified
according to the local Fuzzy ART neural network. Only theulsg classification
number is forwarded to a fusion center. Thus, local clasgifios based on Fuzzy
ART reduce the reporting volume froi to 1. The Fuzzy ART systems proposed
in [68], [67], [69] are only used for data reduction by meggimultiple sensor
readings at discrete points in time. However, Fuzzy ART aleugtworks are well-
tailored to anomaly detection problems. In our own work wieed Fuzzy ART
neural networks to detect anomalies in time series of measemts. Moreover, we
implement Fuzzy ART neural networks on node level, but usearp ART neural
network at the fusion center. Thus, anomalies can be effigigietected. High
compression rates on node-level are an appreciated ditd-ef our systems.

3.6.8 Continuous Event Classification and Anomaly Detection

The classification algorithms proposed in the previous@etiave been introduced
to address time-discrete classification problems. In #isien the classification of
events which evolve over time is addressed. These kindseritg\are difficult to

predict and by nature vary in duration of appearance. Thiessification prob-

lems mainly face two restrictions in sensor networks. Fpsbcessing power and
memory are limited. Therefore, complex pattern classificatethods are diffi-

cult to implement at the node level. Second, communicatastscare high, which
prevents the option of forwarding all raw sensor data to sfusenter.

The classification of continuous events has recently gaateshtion in wire-
less sensor network research. An adaptation of the appsgmksented in the last
section is difficult and in some cases not feasible. Aparnfaassification, the
detection of abnormal events also belongs in this cateddnjike general classi-
fication tasks that are interested in specific events, anodekction systems are
mainly interested in identifying behavior that deviatemirexpected behavior. Ac-
cordingly, anomaly detection simplifies the classificaoblem as long as only
the distinction between normal and abnormal events is redquiRelevant related
work is provided in this section.
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Recognition of Bird Species with Neural Networks

The performance of bird species recognition by applyingetaelayed neural net-
works has been studied in [16]. Different preprocessinghous and different sets
of features have been evaluated. A context-aware and neeinabrk architecture
has been designed which considers the dynamic nature a$doigk. The approach
includes a noise reduction algorithm.

The approach requires relearning phases if new bird spegipsar. More-
over, each possible event type requires its own neural mkfwidnich imposes high
storage demands on the sensor nodes. Optionally, the ligoagof specific bird
species could be restricted to responsible sensor nodes, e storage require-
ments could be lowered but more sensor nodes would be relquire

Tracking and Classification with Continuous Transferable Belief Models

The authors of [122] [113] propose the usage of a continucassterable Be-
lief Model (cTBM) to classify continuously evolving evenighich are present to
the system as a sequence of events. The cTBM is similar taapiadiic Hidden
Markov Models, whereby the underlying physical processisrandom. To track
and classify events, cTBM has been combined with a partitée. fEach particle is
used to construct a set of beliefs, which are then fused Weélekisting beliefs for
classification. These new beliefs are fed back to the systempdate the particle
filter. The tracking group formation and the selection of emdhat report event
data has been done according to [163]. Statistical methedssad to optimize the
trade-off between communication cost and the quality ofitf@rmation obtained
by the sensors.

The approach is more robust than a similar Bayesian appro&tbwever,
implementing cTMB together with particle filters and dynarmprogramming for
the tracking group formation imposes high communicatioth @mputation costs,
making the approach not well-suited for tiny wireless semsales.

Intrusion Detection and Security

Intruder detection has gained much attention in the comsateurity community.
Algorithms based on State Vector Machines (SVMs), Fuzzyitdgpntrollers
(FLC), Principal Component Analysis (PCA), Hidden Markowdgls (HMMs),
or Instance-based Learning (IBL), have been introduce@i][@ives an overview
of existing techniques. Due to their complexity most of thakyorithms cannot be
simply adapted to sensor networks, though. Neverthelesse §irst steps in the di-
rection of applying intrusion detection systems (IDS) @iistsensor networks have
been done [123], [27], [65]. In [123] general guidelines aaguirements consid-
ering an integration of IDS in wireless sensor networks aogiged. [27] and [65]
apply rule-based voting schemes to prevent certain kindefork attacks.
Instance Based Learning (IBL) based on observed and stoofitep [46] is
a promising approach for intruder and anomaly detectionwé¥er, the required
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storage of profiles soon exceeds the memory space of tingiseodes. Therefore,

a manageable representation of the profiles is needed, wbidd be achieved

with ART neural networks. Fuzzy Logic Controllers (FLC) lka&lso been con-

sidered for the detection of abnormal behavior, e.qg., if.[ZBese approaches are
very lightweight, but require accurate event modeling byests, which makes the
approaches inflexible.

Intruder Detection in Building Surveillance

Recently the authors of [86] proposed an intruder detedy@tem that combines
Fuzzy ART mechanisms according to [69] with Markov chainlse &pproach com-
bines wireless sensor networks with mobile robots. The haabbot is the leader
of the system. Upon detection of critical behavior, the tabinformed by sensor
nodes to travel to the location of interest. The robot is goed with additional

hardware such as a camera and can provide more detailethatfon than the sen-
sor network. In a learning phase the sensor nodes learn hbehavior, i.e., they
train their Fuzzy ART neural network to identify known belwav Unlike the ap-

proach proposed in [69] event patterns that evolve over emeconsidered. This
is achieved by integrating the Fuzzy ART neural network Widwrkov chains that
model state changes over time.

The proposed approach learns normal behavior and detesramghing that
deviates from that known behavior as an anomaly. After tamiag phase, the op-
eration of the system is static. If new event patterns habe fearned, the learning
phase must be repeated. This makes the algorithm rathedildiegbecause it loses
its online learning capability. In our own work, we allow oeuzzy ART neural
network to refuse rarely used event patterns if the learbirter is full. Thus, new
event patterns can always be learned at the cost of losietyrased knowledge.
Because the detection of anomalies is the main scope of stemy temporarily
discarding sporadically matched event patterns can beatet The goal of [86]
differs largely from our goal. In [86] the Fuzzy ART neuraltwerks implemented
on the sensor nodes learn normal behavior. In operationderttee sensor nodes
aim to recognize learned normal behavior. In our own apgroething is learned
in advance. Sensor nodes have a small short term memory potarity remember
common behavior. Anything uncommon is then reported to a btaion.

Anomaly Detection in Underground Coal Mines

In the work of [161] spatiotemporal anomalies in gas distiidns in underground
coal mines are detected and reported by Bayesian netwosaysian networks are
a generalization of Hidden Markov Models (HMMs), where naotyathe present
and the last system state, dupast system states, whete> 1, are considered for
classifications.

The sensor nodes used in [161] are wired and therefore fach lower com-
munication constraints. The detection of critical eveastsary important because
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non-detection might endanger the miners. Therefore, thgaief communication
and computation intensive Bayesian networks is justifiechweler, such algo-
rithms pose too high of a demand on general wireless sensaorks and are
therefore only applicable to customized applications.

Anomaly Detection Based on Atrtificial Immune Systems

Anomaly detection has furthermore been addressed by Aatiftmune Systems
(AIS) [28], [96], [97]. In [28] an early approach that deteeinomalies in time se-
ries by using ideas from immunology has been proposed. [ [23] these ideas
have been taken up to improve security in mobile ad-hoc mswvoAlS systems
use the paradigm of self/non-self discrimination and pevincremental online
learning ability. Thus, they resemble Fuzzy ART systems.likdnFuzzy ART
neural networks, which implement a positive selection @dlgm, AlS systems im-
plement a negative selection algorithm. Moreover, AlSayst are probabilistic
methods, whereas Fuzzy ART systems are special kinds ahicestbased learning
algorithms. AIS systems are in general less compact thamyFART systems and
accordingly require more memory.

3.6.9 Threshold-based Event Classification

Finally, we introduce some state-of-the art of threshaddul classifiers. Due to
their threshold-based nature, such systems can be applidtt discrete and con-
tinuous event classification. All approaches require eddgsowledge. Therefore,
no unsupervised learning is possible. Sensor nodes cdy kasipdated with new
functionality by writing and downloading new configuratson

Querying Systems

Some querying systems have been adapted to support evectiaie{e.g., TinyDB
[93], [91], [92] and Cougar [171]). Event queries are dovaded and run on the
sensor nodes. A recent query-processing mechanism thatssdd event detection
in specific areas has been proposed in [124]. Event propetiieh as event diame-
ter, expected occurrence time and expected sensor aotigats well as the accord-
ing parameters are defined by a customized declarative dpregyage. For these
definitions and declarations a system expert is require@. apiproach presumes a
priori knowledge of the occurring events and thresholdsdepto determine event
boundaries. This prevents dynamic anomaly detection gtmou

In [170] the problem of exploring relationships betweenssgrdata readings
in specific time windows is addressed. Such specific time avirgdare typical for
querying systems. It is shown that the detection of evengstime window using
the common aggregate or selection queries is difficult. Bineesapplies to classifi-
cation problems. The authors address the problem of priogesgndow self-joins
in order to detect events of interest. The approach mightdbefli to increase
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accuracy and organize the event observing area more eélyctNevertheless, the
definition of events and the according queries still requegpert knowledge.

Lightweight Detection and Classification in Military Environments

A classification algorithm for EnviroSuite [1] has been pysed in [42]. Due to
the project goal of tracking military units, the classificatand differentiation of
three different event types has been investigated, nanfielghicles, persons, and
persons carrying ferrous objects. The classification cdehtree classes is per-
formed efficiently by using a hierarchical classificatioghatrecture that is based
on settable thresholds. Thus, individual classificati@pstare performed at dif-
ferent levels of the system. Signal processing and locasias are done at node
level. Cooperative event decisions are then determindukitracking groups.

The proposed approach is not declared as a typical querystgra. Never-
theless, it is very similar, because thresholds can be setdiog to configuration
contexts that are distributed in the network. Like all quand scripting based
mechanism the expected events have to be modeled by a sygten & he detec-
tion and classification is restricted to three event types.

Classification Based on Decision Trees

In [8] classification problems are addressed by a multeteclassifier based on
decision trees. Decision making is performed by succegsipeerying nodes in the
tree. Sensor nodes are dynamically activated and the sagplie is dynamically
adjusted such that at any given time point only the data nkfmeclassification is
collected. Thus, the trade-off between accuracy and posageaican be optimized.
Patterns of moving persons are classified by a wearable gaitoning system.

The system has shown to provide similar accuracy as a suggeidr machine
(SVM) approach, while requiring less power. The constorctf the decision tree
and the querying of the tree again requires expert knowleddech makes the
approach static and inflexible.

3.7 Monitoring Applications

In this section we give a brief overview of some related warlevent monitor-
ing systems for wireless sensor networks. The section igle@tivinto common
environmental monitoring applications and specific baiddand structural health
monitoring applications, which deploy video surveillarieehnology.

3.7.1 Environmental Monitoring

Many sensor networks have been designed for outdoor momgtpurposes, espe-
cially environmental monitoring and animal monitoring.€lfange of applications
includes but is not limited to seabird habitat monitoring][Sattle control [133],
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zebra herd monitoring [174], the monitoring of coal mine3][T161], water moni-

toring and flood detection [6], volcano monitoring [162] agidcier monitoring [5].

Some of these approaches provide data aggregation withimetfivork while others
route all raw data to a base station for later analysis. Sdrttese works have in-
fluenced the development of our work. However, our eventotiete system differs
from these approaches in many ways. In particular systexoHsp requirements
need to be considered.

3.7.2 Visual Sensor Networks

Building monitoring and structural health control have eeldressed by visual
sensor networks. These networks integrate wireless semgaork technology
with wireless video surveillance. Due to their potentigkual sensor networks
have gained much attention in recent years. Much effort bas put into tailoring
video streaming techniques to the requirements of resaxowstrained systems.
Efficient video coding [47] [74] and reliable routing [21]Vebeen addressed as
well as video calibration and deployment [70]. A dual-caangensor network has
been proposed in [168]. An energy-efficient persistentiyning low resolution
camera triggers a high resolution camera on demand. Sgeumdk privacy issues
concerning the usage of visual sensor networks have beesideoad in [89].

In [7] an event-based triggering system has been used tmtstal health mon-
itoring of bridges. A wireless sensor network is deployed ased for video cam-
era control. If the wireless sensor network detects an abaloevent such as "large
structure tilt detected”, a video camera is activated arahminto the area of in-
terest. The application goal of the system resembles ourom@nHowever, events
are thrown based on thresholds. These thresholds have &tdrenthed by system
experts and work only for the specific deployment. In contrasr system learns
and determines abnormal behavior unsupervised. Moremvegtwork process-
ing is supported due to the usage of adaptive memory. Ouersyst currently
run standalone. However, it would be possible to use ouggreificient anomaly
detection system to trigger a more energy consuming systeim &s a wireless
video surveillance system on demand, i.e., if some sugmc{abnormal) office
occupancy is reported.

3.8 Sensor Node Platforms

This section introduces the two wireless sensor node phatfehat have been used
during the development of our event detection system.
3.8.1 The Embedded Sensor Board

The ESB sensor boards [127] have been used for the expedlhexatiuation of
our event detection system. ESB nodes consist of a TI MSP4&8®@aontroller,
2kB of RAM, a 60kB flash memory, and a low power consuming raiasceiver
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(868MHZz) operating at a bandwidth of 19.2kb/s by default. $&me functionality
such as the communication scheme of DELTA that required gleoiods with high
message load, a bandwidth of 19.2kbps is too small, becaueduces collision
probabilities that are too high. The ESB sensor node softwas therefore been
changed to run with ASK modulation and 76kbps. This settirayipes a good
trade-off between energy efficiency, bandwidth and relitgbi Furthermore, the
sensor nodes are equipped with a number of sensors such a®sity; temper-
ature and vibration. The ESB boards face two main restristid-irst, the band-
width is comparatively low. Second, resources in terms ahiory and processing
power are limited. Both limitations are basically causedh®s miniaturization of
the implemented hardware. The ESB nodes have to work at anmaxiof 3V
DC. Furthermore, as little energy as possible should beuwrned to extend node
lifetime.

Figure 3.16: ESB sensor node.

An ESB sensor node is depicted in Figure 3.16. ESB nodes teperthe 868
MHz frequency band. The transmission range is approxim&elm, whereas the
interference range is approximately 52 m. The data ratet isEL5.2 kbps. The
transmission power of ESB sensor nodes is 0.75 mW and thveesensitivity is
-95dBm. The energy consumption in transmission mode is A2ldie listening
and receiving both require about 4.7 mA, while the radio ardgds A in sleep
mode. The parameters of the sensor nodes in our simulatawestieen configured
according to values from the ESB nodes.

In the real-world experiments of DELTA the TSL245 light senf55] imple-
mented on the ESB sensor nodes has been used. The outpudnitggof the
TSL245 sensor is shown in Figure 3.17. The provided lightsueament software
supports only binary decisions (light on/off) for efficigneasons. For detection
and tracking in our context this is not appropriate, thoubherefore, we have re-
implemented the software. The light sensor is associatddami interrupt-capable
register. On each positive edge of the output frequencyeT®BL245 an interrupt
is thrown. In the interrupt routine a counter is incrementébe costs for this so-
lution increase with the irradiance. Therefore, the maximspectrum is limited
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Figure 3.17: Output of the TAOS TSL245 infrared to frequency convert&j[5

to a frequency of 100 kHz. Each higher output frequency isictamed to be the
maximal brightness. The output frequency of the TSL245 oeskdn a normal
office during the day is approximately 2kHz.

3.8.2 The TmoteSky Platform

TmoteSky sensors consist of a microprocessor, some meamoiEEE 802.15.4
compliant radio, and a number of sensors such as temperhaturadity, and light.

The radio operates in the 2.4GHz frequency and can thereftedere with stan-

dard IEEE 802.11b wireless networks. Data rates of 250 kbitan be achieved
with the radio. Light can be measured with two sensors. TIs light sensor
measures only the photosynthetic active radiation (PAR),the visible light with

a wavelength between 320 and 730 nm. The second light serestsumes the to-
tal solar radiation (TSR), including infrared, rangingrfr&20 to 1100 nm. The
TmoteSky sensor node is depicted in Figure 3.18.

Figure 3.18: TmoteSky sensor node.
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3.9 Conclusions

In this chapter relevant work from the research areas of unediccess, routing
and topology control, event detection and tracking, andeekassification and
anomaly detection have been presented. In the last sectiomber of monitoring
systems have been introduced. Since none of these mogi®ystems is tailored
to office monitoring, none of these systems is optimallyesitio address our ap-
plication requirements, which are the support of long-teleployments and the
satisfaction of event detection requirements (e.g., theired accuracy).

Even though many problems have been solved with existingoaphes, no
event detection architecture that is laid out for long-teyperation on tiny sen-
sor nodes has been presented so far. Numerous classifieaticanomaly detec-
tion procedures have been proposed. However, all theseamisais either solve
problems that are not addressed in our context or they apptihads that are too
resource consuming to support long-term deployments. Mexyva long-term de-
ployment of our event detection system is crucial becausgragous building mon-
itoring is required. Periodic physical battery replacetaeare not an option. Our
event and anomaly detection features implement some @uadify used in re-
lated work too. For example, ART neural networks have beeripusly used in
wireless sensor networks too. However, the common ART heetaork system
design needs to be extended to meet the specific requirewfenis system.

Our system provides a nonlinear localization and sign&nstth estimation
method that optimizes the trade-off between communicatiorimization and lo-
calization accuracy. Current state of the art focuses oy aecurate estimations.
Comparatively high communication load is accepted. Howea@proximate esti-
mations are sufficient to support classification. Our methigherforms the state
of the art in minimizing communication load.

The current state of the art in event detection and tracko®s chot adequately
address communication minimization and detection acguitere are approaches
that either optimize group organization or they optimizéadgon accuracy. Our
DELTA detection and tracking system addresses both regeinés. Thus, DELTA
outperforms previous work in finding an optimal trade-offviaeen network orga-
nization costs and detection accuracy.

Finally, we provide our event detection systems with medaatess and rout-
ing. In particular, we have proposed a mechanism that im@hsnrouting on
the MAC layer without requiring additional control traffichereby, synchronized
contention-based MAC protocols have been integrated waitimected dominating
set theory. Such integration has not been found in relate# wet. In addition to
the routing support, extra energy can be saved becauseaosixdne nodes can be
temporarily turned off.

To meet the requirements of our target application, a &dlavent detection
system has been developed that integrates different netespers. Our approach
gains from results obtained in related work, but also exdgradticular related work.
In addition, novel features and an integrated system desigprovided.
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Chapter 4

Local Clock Synchronization

In this chapter a mechanism to achieve common listen/slgefg<in energy-
efficient synchronized contention-based MAC protocolsrappsed [180], [158].
Synchronized contention-based MAC protocols follow pdiddisten/sleep cycles.
The protocols face the problem of virtual clustering if difint unsynchronized
listen/sleep schedules occur in the network, which has Bhewn to happen in
wireless sensor networks (see Section 3.2.1). To inteeszirthese virtual clusters,
border nodes, which maintain all locally relevant listée#p schedules, are re-
quired. This is a waste of energy if a common schedule candadyodetermined.
To achieve this common schedule, we propose a local synizlaten mechanism
that makes use of gravitation. Clusters represent the iaktethereas synchro-
nization messages sent by each cluster represent theagi@viforce of the ac-
cording cluster. Due to mutual attraction all clusters reergihe synchronization
mechanism itself is not altered. Every sensor node competdsansmission of
synchronization messages as it normally does. Accordimglyoverhead is intro-
duced by our algorithm, but a not yet used property of synaketion mechanisms
is exploited. This local synchronization mechanism is usgtie MAC protocols,
which are implemented to provide our topology control angtirm backbone al-
gorithms with the required medium access functionality.

4.1 Introduction

Synchronized contention-based MAC protocols maintain ¢ty cycles. This
means the sensor nodes follow periodic listen/sleep cytrethe listen cycle the
sensor nodes are able to communicate with neighbor nodesaandrward pend-
ing data. In the sleep cycle they shut down their radio togyxesenergy. In order to
synchronize their listen/sleep cycles with neighboringes SYNC messages are
periodically exchanged. Through this synchronizatiorcpss, nodes which main-
tain the same listen/sleep cycle are organized into ckustéris synchronization of
common listen/sleep cycles is called virtual clusterirgg(Section 3.2.1). To sup-
port communication between different clusters, borderesoghich interconnect
the according clusters are required.
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Figure 4.1: Periodic sleeping and virtual clustering.

The synchronization mechanism implemented in synchrdrepatention-based
MAC protocols is illustrated in Figure 4.1. Node A is membé&nwirtual cluster,
whereas nodes B and C are members of another disjoint votuster. This is in-
dicated by the disjoint listen periods (colored gray) infeg4.1. All nodes could
be in transmission range of each other. However, in the eleaaiove, it is only
required that node A can hear node B and node B can hear bo#s odnd C.
From time to time each node remains awake for an entire fremgth f in order
to scan for present schedules. In Figure 4.1 this is node &iné . In this frame
B learns the cluster of node A, because it overhears the SYR§sage sent by
node A. Only this SYNC transmission is shown in Figure 4.1d&l& becomes a
border node as it interconnects two clusters. This means Boslynchronizes to
both known schedules henceforward, i.e., beginning in é&m

Experiments have shown that four different virtual clusteaive already evolved
in a multi-hop network consisting of 50 nodes running S-MA&e¢tion 3.2.1).
Moreover, it has been shown that border nodes had to listep to three different
schedules. In all four experiments more than 44% of all ngtwodes followed at
least two schedules. In two of the four experiments 34% aesgly 47%, of all
network nodes even had to listen to three virtual clustetsisTthe border nodes
have higher average energy consumption than normal clnstirs. The problem
of virtual clustering has further been illustrated in Fig.3.

While the authors of [85] have used a global mechanism toestile prob-
lem (see again Section 3.2.1), we propose a local adaptek slynchronization
scheme that achieves local synchronization. A global Ewutequires system-
wide synchronization towards one global schedule. Thidieamverhead in terms
of signaling and requires the storage of fallback mechasiisrma., of temporary
valid local schedules. Another possibility to dischargedeo nodes would be to
alter the respective role amongst neighbor nodes. Howsweh a role circulation
would require additional communication and organizatithCAS avoids these
drawbacks. Maintaining a global schedule is unnecessacause of the local-
ity of communication links between network nodes. LACASidsdhe drawback
of virtual clustering and leads to a uniform distributiontbé energy required for
synchronization.
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4.2 Local Adaptive Clock Assimilation Scheme (LACAS)

LACAS implements a mechanism similar to gravitation. Inrterof a virtual clus-
tering problem, this means that larger clusters attractlsmanes more than vice
versa, until the clusters finally merge. In LACAS, the clustedes represent the
mass, and the number of sent SYNC messages representsitatigraforce. Be-
cause all sensor nodes implement the same contention-tvasschission scheme,
large clusters broadcast on average more SYNC messagestiairones and thus
cause more attraction.

LACAS only exploits the information exchanged by syncheaiion messages.
Therefore, no additional control traffic is generated. Mwoeg, the loss of SYNC
messages does not affect the principle of LACAS, but onlypimarily decreases
the gravitation force of a cluster.

Synchronization of LACAS
while true
Compete for SYNC transmission in every listen period;
if scanning ==true /I periodically true in every 32th listéexp cycle

Remain awake for the whole cycle;

Scan for unknown listen schedules;

Span own listen schedule over all learned (known) schefdules
end
if SYNC overheard == true

Adapt the own listen schedule to the schedule of the SYNCesdindc;
end

The LACAS synchronization procedure is described in theigseode above.
Every network node performs the described actions. Thisnméaperiodically
scans for unknown listen/sleep schedules. If any unknosterlisleep schedule is
overheard, the respective sensor node becomes a bordebynaganing its own
listen schedule over all known listen/sleep schedulessTtne node is ensured to
overhear the SYNC messages from all involved clusters. yeeeerheard SYNC
messages causes the adaptation of the own listen schedstarie valuex (e.g.,«
= 5%). The parameter controls the attraction caused by a SYNC message. Only
the border nodes attract clusters directly. According epkeudo code above, in
the first step of a merging process, the schedule of a bora#r iscexpanded and
then it starts to contract again. Over time, all sensor natdeserge towards a
common listen/sleep schedule. This is due to gravitatiocefof clusters.

A merging process is shown in Figure 4.2. The gray bars itelicsten periods.
The white bars describe adaptations. Node C stays awakewbpke listen/sleep
schedule in §. Having detected another schedule, it spans its listeroghever
both known schedules (seg).f This listen period contracts then to the normal
schedule length merging both connected clusters. The gaeam controls the
gravitation force. High values fax lead to high attractions and fast convergence.
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Figure 4.2: Gravitation principle of LACAS: Cluster detection and mieig

Thus, connections between clusters can temporarily beshrokhis affects only
the convergence time of the clusters, though. The gramitatiechanism itself is
not compromised. In the worst case, nodes are successiaglsferred from the
smaller cluster to the larger one. The problem is discussed IThe contraction of
the schedule of node C continues after peripdrid ends in period,f

Initially nodes A and B form cluster 1, while nodes C and D fanother clus-
ter 2 (see frame;fin Figure 4.2). Because T-MAC is used, all nodes periodjcall
stay awake for an entire framgif order to detect other clusters. In Figure 4.2 this
is node C in framesf. Having learned both clusters, C spans its own listen period
over both schedules. Moreover, as it has received two SYN&ages from nodes
A and B from cluster 1, node C moves its listen period fart@wards the listen
period of cluster 1 (frames fand f in Figure 4.2). In framesf, C is able to transmit
its own SYNC message and receives another one from node Bdiugster 1. Ac-
cordingly, the listen period of node C again movesdadowards the listen period
of cluster 1. Having received a SYNC message from node C, Bodeattracted
too (fy in Figure 4.2). In frame4 node C is able to transmit a SYNC message in
both schedules. Accordingly, cluster 1 and node D are &ttlgowards C. C itself
moves towards D as it has received a SYNC message from D (frame~igure
4.2). The merging process continues in Figure 4.2 after érgm After a while,
both clusters will fuse. In the example, cluster 1 transmmitgeneral more SYNC
messages than cluster 2 (it has three members, whereasr @uisas only two).
Thus, both clusters will merge closer to the original schedf cluster 1.

The adaptation parameteris crucial for performance. A smadl implies a
long merging period. On the other hand, a largdéeads to a fast convergence
towards a large cluster, which might disrupt the connedbetween a border node
and its smaller cluster. This disconnection is not a majobja@m, because the
clusters are connected again when a border node remaing &owvakwhole frame,
but it increases merging time. In the worst case, nodes pasgssively from the
smaller cluster to the larger. The convergence of LACAS isdwar not affected.
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In general growing clusters have a growing number of borddes. Thus, their
gravitation force increases too. In the current deploymentave chosen a value
for o of 5%. Thus, all sensor nodes are able to synchronize witfemvaninutes.
Expecting a network lifetime of at least several months,syr&chronization time
seems tolerable. Finally, only the listen periods of theoeding MAC protocol are
optimized. Any subsequent data exchange period is nottaéfdry LACAS.

4.3 Evaluation

LACAS has been evaluated on top of T-MAC in simulations. Adtwork nodes
wake up randomly within the first 30 simulation seconds, anthediately begin
to synchronize. T-MAC enhanced with LACAS has been used a€M#otocol

for the topology control algorithms presented in Secticgh &very simulated net-
work has been synchronized within a few minutes. MoreoWer synchronization
remained stable in all simulations. Because the developwfebhACAS is part

of a cross-layer approach for topology control [157], thefgrenance of LACAS

has been evaluated using a larger scenario. The topologyotomechanism es-
tablishes a routing backbone after a synchronization aighberhood learning
period of 300 s. Two approaches to implement the backbondiscassed in the
next section. Non-backbone nodes disconnect from the metval go to sleep for
a longer period. This has some impact on the convergenceofilt®CAS as fewer

SYNC messages are sent due to the temporal unavailabilittyeofion-backbone
nodes. However, the principle functionality of LACAS is radtected.

4.3.1 Simulation Scenario and Parameters

The parameters of T-MAC have been set according to [142]reddlvant simulation
parameters are listed in Table 4.1. All nodes follow a pecitigten/sleep frame of
610 ms, of which they are awake for at least 13.5 ms, i.e., flata transmission
is pending. This minimum wake-up period consists of the Bymiization period,
which is 7 ms, and the traffic-adaptivity period TA, which équired by T-MAC
and has a duration of 6.5 ms. Each node remains awake for & \fvaate in every
35th frame, i.e., every 21.35 s. This is required in orderdtect neighbor nodes
which follow different listen/sleep cycles.

Three different network sizes of 50, 100 and 200 nodes hage benulated.
The respective simulation areas are 18’000, 36’000 and0r2/%. Consider-
ing the different simulation areas, their respective papaoih, and the transmission
range of approximately 37 m (see Section 3.8.1), an averade density of 12
neighbors is obtained. The network topology was randomhegeed taking net-
work connectivity into account. Any experiment has beereadpd 20 times. The
spectrum of the schedule lengths present at a specific timeipandicated by the
standard deviation. The properties of the sensor nodesafgared according to
values from the Embedded Sensor Board (ESB) platform (set0863.8.1).
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Table 4.1: Parameters of the MAC simulations.

| Parameter | Value
Listen/Sleep Frame 610 ms
SYNC period 7ms
TA 6.5 ms
Periodic wake frame 21.35s
Network size {50, 100, 200}
Simulation Area {18'000, 36’000, 72'000}m>
Network density 12 neighbors
Node deployment random, but guaranteeing connectivity

4.3.2 Convergence of Schedule Length with LACAS

In this section the convergence time of LACAS is investigat&he independent
initial wake up of the network nodes in the first 30 s of the datian leads to mul-
tiple coexisting schedules in the beginning. The evolutbthe schedule length
of each network node has been monitored over the first houp@fation and the
schedule length has been captured every 5 s. The evolutithe ahean common
schedule length in a network consisting of 50 nodes is shoviAigure 4.3.
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(a) Evolution in the first hour (log-scaled). (b) Evolution ignoring the first 100 s.

Figure 4.3: Schedule length convergence in a network consisting of 5@so

Figure 4.3(a) shows the evolution of the schedule length thes whole first
hour of operation. The schedule length converges to a levfgipproximately 13
ms within the first 200 s. Of course, in this convergence peti@ distribution
of the schedule length is high in the network. There are nddgisfollow com-
mon schedules and thus already have a short schedule lebgtthe other hand,
there are numerous nodes interconnecting different séégdwhich results in a
temporarily increased average schedule length.

Figure 4.3(b) shows the evolution of the mean schedule teafier the first
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100 s. The peak at 400 s is due to the backbone scenario agddsabove. This
has two reasons. At 300 s the parametes adapted from 0.05 to 0.5 to achieve
faster convergence. This leads to the temporary peak. Miteadaptation the
performance improves slightly. Sleeping non-backboneeaddad to a smaller
amount of SYNC messages, which further reinforces the eff€be peak is on
the order of a duplication of the schedule length. The adaptaf o could be
implemented in LACAS without cross-layer optimization tache mean schedule
length converges to 13 ms without adaptation and to 10 msaudéptation. The
average schedule length remains stable after 200 s withlaptation and after 450
s with adaptation.
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(a) Network consisting of 100 nodes. (b) Network consisting of 200 nodes.
Figure 4.4: Schedule length evolution in larger networks (log-scaled)

Figure 4.4 shows the impact of the network size. The perfaneaf LACAS
in a network consisting of 100 nodes is depicted in Figuréad.4l he performance
is very similar to the performance in the network consisth§0 nodes. However,
convergence takes longer for the network consisting of 2es (Figure 4.4(b)).
Compared to an intended network lifetime of several monthmare, this delay is
still insignificant. The increased convergence time of LARWith network size is
due to the hop-by-hop impact of the gravitation principléaus, clusters show an
impact similar to the movement of a ripple through water owettiple hops.

Figure 4.5: Ripple effect of gravitation over multiple hops.
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The effect is illustrated in Figure 4.5. Clusters of nodeshsas the nodes
in L; attract nodes at the boundaries. The nodessimgain have an impact on
their border nodes, i.e., on the nodes ixn LThe effect causes complex mutual
influences. Moreover, due to the increased time neededdsewtination, clusters
located far away from each other have a longer lasting impa&ach other than
nearby clusters. The probability of presence of such dsigfeows with network
size. Thus, the convergence time increases with netwoekis

LACAS is not able to converge to a short schedule length eefooss-layer
adaptation occurs for a network size of 200 nodes (see Fi4(b)). The cross-
layer impact again leads to a temporary duplication of tte¥aye schedule length,
which in this case is much longer. However, the schedulethecgnverges quickly
to 10 ms after the adaptation. This fast convergence is dtigetaross-layer ap-
proach. Without optimization the convergence would loakikir to Figures 4.3(a)
or 4.4(a) without a peak. It would only require some more time

The average schedule length has converged in all evaluat®drk topolo-
gies and sizes to a length of approximately 10 ms. This is mqirsing, because
the convergence (gravitation) is basically a local procédainly local commu-
nications have an impact on local convergence and any larahwnication is
independent of the network size. On the other hand, due tigple effect it is not
possible to achieve the schedule length of 7 ms of T-MAC. &liethus a trade-
off between avoiding the border nodes and the achievabledsdd length. On the
node level, every border node with disjoint schedules coresumore energy than
any node running LACAS. In terms of the overall energy congstiom, LACAS
preserves energy if the following inequation appliés:(n; € N):

k
ny - Tms 4+ ng - 1dms, +... +ny - k- 7ms > n; - 10ms; an =n; (4.1)
i=1

wheren; is the number of nodes maintaining a given number of schedarld
ny IS the total number of nodes in the network. Inequation (dsBumes that the
different schedules are disjoint. Otherwise, overlayingeslules would need to
be included. Unlike virtual clustering, LACAS achieves aform charging of
the batteries, thereby avoiding quick depletion of spedificder nodes. There-
fore, LACAS might even be favored over virtual clusteringhié average energy
consumption is worse. The expected energy consumptiorrtoiclustering and
LACAS in real-world networks is discussed in the next settio

4.3.3 Analysis of Power Consumption

Unlike the convergence of LACAS, realistic virtual clustey is difficult to sim-
ulate. Virtual clustering mainly occurs due to physical aofs such as commu-
nication gray zones [175] and temporary unavailable comaoation links. These
impacts depend on the used hardware and on the environntag, fhey are diffi-
cult to simulate properly. Approximating those impactsimw@ations might falsify
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the simulations rather than improve them. Finally, theseces have little impact
on the convergence of LACAS due to the robustness of thetgten principle.

In order to assess the power consumption saved by LACAS wgt aefal-world
results obtained from experiments performed in [85]. Irséhexperiments, multi-
ple coexisting virtual clusters have been detected. Theepéage of network nodes
maintaining a certain number of schedules are listed in€Tal#. The costs of T-
MAC and LACAS are computed according to these values andugten (4.1).
The long-sleep impact of non-backbone nodes has not besideoad in this eval-
uation, because it is based on a cross-layer optimizaticrtodingly, all nodes
follow a periodic listen/sleep schedule. The sensor ndéwo[85] consisted of 50
nodes running S-MAC (see also Section 3.2.1).

Table 4.2: Percentage of coexisting schedules (taken from [85]).

Number of Schedules
1 | 2 | 3 | 4
Exp. 1 56% 44% - -
Exp. 2 32% 68% - -
Exp. 3 - 66% 34% -
Exp. 4 9% 44% 47% -

The results would be the same if T-MAC had been used due todémical
synchronization mechanism. As mentioned above, ESB ncelss 47 mA in idle
listening state. We use this value to estimate the powerucopgon of LACAS.
Furthermore, we assume that the different schedules, veviclved in the experi-
ments in [85], are disjoint (see inequation (4.1)). SYNC sages that would have
to be sent in the synchronization periods are not considefedvever, a synchro-
nized contention-based MAC protocol with virtual clusteriwould transmit more
SYNC messages than a similar approach implementing LACAStduhe exis-
tence of border nodes. Table 4.3 shows the power consumetidAMAC and
LACAS to maintain all schedules of all network nodes in orsteli/sleep cycle.
The results apply as soon as the networks are stable, ier. tlaé convergence to
the common schedule length of 10 ms in the case of LACAS, afteirtual clus-
ters have evolved in the case of T-MAC. Therefore, the vailndsble 4.2 can be
used. The power consumptions of T-MAC and LACAS are compatabrding to
inequation (4.1) and the values in Table 4.2.

LACAS maintains only one schedule. Therefore, the expgoteger consump-
tion of LACAS is the same in all four experiments. The estiora in Table 4.3
show that in a network consisting of 50 sensor nodes, depgruh the experi-
ment, more or less power can be saved with LACAS, i.e., betv@e@2 and 1.57
mAs in one listen/sleep cycle of 610 ms. Even though LACASahsigyhtly longer
minimal schedule length than T-MAC, LACAS is estimated tofpen at least as
well as T-MAC in all four experiments. Considering a netwbfi&time of months
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Table 4.3: Power consumption (in mAs) per listen/sleep cycle.

\ H T-MAC \ LACAS \
Exp. 1 2.37
Exp. 2 2.76
Exp. 3 3.85 2.35
Exp. 4 3.92

or more, the possible energy savings are promising. Theastins shown in Ta-
ble 4.3 concern the average energy consumption over alkn@ene listen/sleep
cycle). However, border nodes with disjoint schedules eoresmore energy than
the average and would therefore run out of energy sooneaten network nodes.
On the other hand, LACAS distributes the energy consumgtad more effec-
tively. Therefore, even in the experiments where virtuaktdring consumes on
average only slightly more energy than similar runs with LA&&; network lifetime
might be significantly extended with LACAS. Finally, LACAS very stable and
robust and requires the storage of only one schedule.

4.4 Conclusions

In this chapter a simple local clock synchronization schérag been proposed.
LACAS provides system-wide local clock consistency anddfmre avoids the
drawback of virtual clustering. It has been shown that therlosad of LACAS
is marginal. Moreover, the synchronization procedure eqgyes fast, i.e., within
minutes for the simulated networks and remains stable dftere

The fast convergence of the algorithm has been shown in atroos. LACAS
exploits the information exchanged by SYNC messages. Isages are lost, the
functionality of LACAS is not affected. The concerned ckrstinly shows currently
lower attraction. In related work it has been shown thatatemns in radio range
and temporary unavailability of the radio have a high immarcthe presence of vir-
tual clusters. On the other hand, real-world propertieg hess impact on LACAS,
because the gravitation mechanism is very robust. Therefloe energy consump-
tion of LACAS has been estimated based on real-world reswiséch have been
collected in related work. LACAS has shown to preserve gnergomparison to
virtual clustering. Moreover, the energy load distribatis better with LACAS.
Thus, no nodes are more charged than others which prevesgibgonetwork par-
titions due to nodes being depleted earlier.

To save energy and to prevent the depletion of heavily clldvgeder nodes our
event detection architecture is provided with synchrashigentention-based MAC
protocols that implement LACAS.
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Chapter 5

Backbone Support

This chapter introduces approaches and features to provdevent monitoring
framework with energy-efficient medium access and routitifl], [148], [180]

[157]. All mechanisms are implemented on the MAC and routaygrs as illus-
trated in the system architecture overview in Figure 1.1dégothat are currently
not required for routing are identified and temporarily disgected from the net-
work to save energy. The focus of all developments is on gngagings in the
context of medium access and networking issues.

5.1 Introduction

The event detection system proposed in this thesis has tiregoal of accurate
long-term event monitoring and reporting. This in partcuhvolves appropriate
event detection, tracking and classification mechanism#erapplication layer.
Nevertheless, in order to optimize energy savings, theesysieeds some efficient
medium access and routing functionality. In the last chrapte have provided
a mechanism to optimize synchronized contention-based M@&@cols. In this
chapter we will further exploit such MAC protocols and entethem to support
routing directly on the MAC layer. The synchronization meggss exchanged by
these kinds of MAC protocols are used to learn neighborha@mimation and to
setup a routing backbone based on that information. Thuattiaaal control traffic
can be avoided. Moreover, nodes that are not required foingoaan temporarily
turn off their radio to save extra energy. The integratiomaafting on the MAC
layer supports rather static networks. More dynamic neks/euch as mobile sen-
sor networks cannot be supported on the MAC layer. Thergfeechave imple-
mented an additional routing and topology control mechmarma the network layer
that supports node mobility (see the mobility support medualFigurel.1).
Properties of backbone setup mechanisms in dependance oédu layer of
the network stack are shown in Table 5.1. On the MAC layer back setup and
maintenance information is piggy-backed on SYNC messajass, no additional
control messages are needed. On the other hand, this indeli@gs, since always
the transmission of a SYNC message must be awaited to sigmed sontrol infor-
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Table 5.1: Backbone construction on MAC and networking layer.

\ [ MAC | network |
Control message overheag minimal high
Mobility support and repai no yes

mation. These delays can be tolerated in static networksreviopology changes
occur infrequently. To support mobile networks, an addaioalgorithm on the
networking layer is required. Due to the usage of specifidrobmessages this
algorithm does not face the problems of piggy-backing th@robinformation on
SYNC messages. It introduces overhead, though.

Figure 5.1: Routing backbone in a sensor network.

Routing and topology control are provided by a virtual bamid that is imple-
mented as a connected dominating set (CDS) (see Secti@).3AB example of a
backbone in a sensor network is depicted in Figure 5.1. Bawkimodes are col-
ored gray, while non-backbone nodes are colored white. Qamwation links in
the backbone are illustrated by the bold lines, while otleenmunication links are
indicated by dashed lines. Every non-backbone node in Eiguris adjacent, i.e.,
it possesses a communication link, to some node in the baekldidence, the net-
work is connected and routing can be performed over the leeekliNon-backbone
nodes shut down their radios and go to sleep for a long-sleapdthat lasts for
multiple listen/sleep cycles (see also Chapter 4).

After any long-sleep period the backbone is reestablislyetihdr base station,
taking current network conditions and energy distribugionto account. Nodes
with high battery levels are favored for election into theld@one. Thus, network
lifetime can be extended. Independent of their state, aB@enodes turn on their
radios to organize themselves into event observing an#titrqu@roups upon ob-
servance of an event. The according group organizatiorritiigo (DELTA) is
presented in Chapter 6. Only the leader node uses the bazltbooute its event
reports to the base station. Having finished their monitptasks, all nodes resume
their assigned role in medium access and routing.
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5.2 Routing Backbone on the MAC Layer

In this section we propose a routing backbone constructiechanism that exploits
and uses the synchronization messages exchanged by syzeldracontention-
based MAC protocols such as T-MAC (see Section 3.2.1) or DACNsee Section
3.2.1). Thus, no additional control traffic is required fouting. The routing back-
bone is useful for rather static applications with soueihk communication. By
using the SYNC messages, the routing backbone extendsfeétimé of the net-
work. The base station is always rooting the backbone.

The SYNC messages intrinsically provide all network nodéth weighbor-
hood information. This information is used to constructringting backbone with-
out additional control traffic. Moreover, nodes that areneojuired for routing can
turn off their radio and can go to sleep for a long-sleep pkttat lasts for multiple
listen/sleep periods. In this long sleep period non-backbaodes only wake up
if they have some sensor readings to be reported. If thisigdise, the respective
non-backbone node wakes up, synchronizes to a node in thédeas sends its
sensor readings to the backbone node and goes back to skeptdgnceforward,
the backbone node is responsible to route the sensor reaafitige non-backbone
node to the base station (over the backbone). If a backbahes hres to report some
sensor readings, it does this directly.

Neighborhood Discovery Backbone Construction
[1,3,4]
<T
@42 o @-0.2.4-®
[2 3] [2 3]

Figure 5.2: Neighborhood discovery and backbone construction.

Both steps to setup a backbone are depicted in Figure 5.2oréektablish-
ing a routing backbone all network nodes learn their neighiad from overheard
SYNC messages in the neighborhood discovery period. Fangbea node 3 de-
tects nodes 1, 2 and 4 as neighbors. Because not every nobke ieodransmit
a SYNC in every listen/sleep cycle, the neighborhood disppyperiod covers a
certain number of listen/sleep cycles. The collected rmdmood information is
used in the backbone construction step to determine baekhades (colored gray
in Figure 5.2). Again the SYNC messages are used. Electddbbae nodes (e.g.,
node 1) piggy-back their neighborhood information on SYNE&ssages. The re-
ceivers of such an extended SYNC message determine theiestording to their
own knowledge and the received information. In Figure 5.8en8 would elect
itself as backbone node according to its own information #edinformation it
has received from node 1. Different algorithms to deternbiaekbone nodes are
possible. Two algorithms based on connected dominatirsgset been used.
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5.2.1 Long Sleep on the MAC

The routing backbone has two desirable properties: Fitshogles are able to
route their data over it to the base station. Accordinglyadditional network layer
is required to setup connections to the base station. Set®uduse routing is
guaranteed by the backbone, nodes that are not part of tkbdree can go to sleep
for a long-sleep period, which covers multiple listen/pl@gcles. The concept is
illustrated in Figure 5.3.

SYNC/RTS/CTS/DATA/ACK

\4

e S Sy § Sapy w

A A

: : : : vlvlv : :
'y A A 4 R 4 | | 'y DY

SYNC B

\4

Sensor readfngs to report

Figure 5.3: Operation of backbone node (B) and redundant node (R).

The operations of a backbone node B and a non-backbone nagslRstrated
in Figure 5.3. B periodically synchronizes to neighboriragkibone nodes, i.e., it
periodically exchanges SYNC messages. R only wakes upakislbme data to be
reported. It synchronizes to the backbone, allocates therai with RTS/CTS and
transmits the data (indicated by the burst of arrows). Haveteived a confirma-
tion (ACK) from B, R goes back to sleep again.

In the current evaluation the learning period lasts for 1Qutds. The CDS is
maintained for 50 minutes. During this time, non-backbondas remain asleep
unless they have to report some data. Thus, non-backbores sage additional
energy. Backbone nodes perform the normal listen/sleefe @rd do not waste
more energy than running the unaltered MAC protocol. Theselsmme informa-
tion piggy-backed, but compensate for this by overheamgef SYNCs due to the
temporarily decreased network density. Non-backbone siddenot send SYNC
messages since they are in a long-sleep state. Accordmgiygrotocols save the
transmission of SYNC messages compared to the standalor pviz{ocol.

The batteries of nodes in the backbone have higher chargks ldan the bat-
teries of non-backbone nodes. Accordingly, the backborecsmputed from time
to time (currently every hour), taking the current battezyels of the nodes into
account. In every CDS setup phase nodes with high battegjslare favored. In
the following, two CDS setup algorithms based on the infaromacollected from
SYNC messages are proposed. The first algorithm needs tpaovighborhood
information, whereas the second approach requires onlylkaige of the immedi-
ate neighborhood. The first algorithm is simpler and tertemdaster, but requires
more information.
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5.2.2 CDS Construction Based on Multipoint Relaying

To determine the subset of next hops in the CDS, an algorithmtas to the Mul-
tipoint Relaying Protocol (MPR) (see Section 3.3.4) hasihexed. Any backbone
node (dominator) elects its next-hop dominators such ktegt¢onnect the two-hop
neighbors most effectively.

Neighborhood Discovery

The SYNC messages are slightly modified to discover the toy+eighborhood.

In addition to the current sender, @also the sender, f the last SYNC message
received by sis added to the SYNC message. Thus, each receiver of a SYNC
message learns both, the direct neighborsdad the two-hop neighborssjsover
time. The reliability of the neighborhood discovery peratt the needed accuracy

in neighborhood knowledge are discussed in Section 5.2.4.

In addition to neighbor node,sthe battery level of each sender is added to
the SYNC message. The battery level is needed to accounhéog distribution
changes in the network. Otherwise, the nodes with best otimite would always
be chosen into the backbone, leading to fast battery depktf these nodes.

Backbone Construction

Having exchanged SYNC messages for a period long enougtato lecal one-
and two-hop neighborhood information, the CDS processiigiad by the base
station. The next-hop dominator set of a dominator nodecomputed as follows:

MPR-based dominator election

input: One-hop neighbor lisE; and two-hop neighbor list, of nodex;
ouput: MPR set of next-hop dominators of nodpe

begin
repeat
If 3ay € Ly with exactly one linkto & in L,
addy to MPR;
Remove allz in L, which are now covered;
else
For eachy in L, do
Compute numbef(y) of nodes inL, connected
via y that are not covered by an MPR node;
Select they with highest product of(y) and battery level into the MPR set;
Remove allz in L, which are now covered;
until all two-hop neighbors are covered,;
end

The CDS setup process is started by the base station (S). deantmator
elected by the algorithm is informed about its state by aaredéd SYNC message.
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The procedure continues until all network nodes are covefiedforce success-
ful signaling, the extended SYNC messages are retranshaitieer until passively
confirmed by overheard SYNCs from successors or until themmax number of
retransmissions is reached.

Figure 5.4: Example of dominator election with MPR-based CDS.

An example is shown in Figure 5.4. The base station S is tinengfalominator
(black). The set of next-hop dominators of S is {1, 2}, be@ass the only node
to reach two-hop neighbor 4 and 2 is the only node to reachhiwmneighbor 5.
Nodes 1 and 2 cover all two-hop neighbors of S. S informs thgipidgy-backing
the dominator list {1, 2} to its next SYNC messages. Upon pgioa, both nodes
become black and compute their own set of next-hop domisiatdode 1 imme-
diately terminates its election process because no unedwgro-hop neighbors
remain (nodes 3, 5 and 6 are covered by nodes S and 2). Noderihdets node
7 as last uncovered two-hop neighbor. Because node 7 camtieegt over nodes
5 and 6, step 2 of the algorithm is applied. Both nodes haveséinee number
of uncovered neighbors, i.e},is 1 for both of them. Accordingly, the node with
higher remaining battery level (node 5) is chosen into theSChhe CDS setup
ends when node 5 is informed about its state. All network s@de then covered
by a dominator and the algorithm terminates.

The result is obviously suboptimal. The MCDS would consistarles S, 2 and
5 only. However, the approximation factor is good and thenngaial is to improve
network lifetime rather than optimizing the CDS.

5.2.3 Negotiation-Based CDS

The negotiation-based CDS (N-CDS) computes the CDS wittveorthop neigh-
borhood knowledge. This time, one-hop neighborhood in&diom is sufficient.

Neighborhood Discovery

The N-CDS again learns the neighborhood information fronNEYmessages.
This time no extension of normal SYNC messages is neededglhdnly the ID
of the SYNC sender is required, which is transmitted peruefsVe again assume
that after a given initialization period each node know®ite-hop neighbors.
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Backbone Construction

Base station S is again defined as starting node. The domstatas is determined
based on a negotiation-based CDS building process thaste®n&four steps which
are described in the following:

N-CDS based dominator election

1. Every dominator node broadcasts an extended SYNC messdigel
DOMINATOR. This message contains the neighborhood lishefdomi-
nator.

2. Each receiver becomes dominated and computes a priagtyrding to
its product of battery level and number of remaining uncedawo-hop
neighbors, i.e., of nodes that are not yet dominator or datath

3. The dominated nodes locally exchange their calculatiedifes in a spe
cial SYNC message called DOMINATED.

4. The node with highest priority is elected into the baclkdon

Because the DOMINATOR message contains the neighborhsioaf ihe dom-
inator, every receiver is informed about neighboring dateéd nodes. Consider
node 1 in the example in Figure 5.5. Node 1 is a neighbor of i&deaving re-
ceived the DOMINATOR message from S, which contains nod@sahd 3 in the
neighbor list, node 1 can determine its neighbor node 2 asrdded. The same ap-
plies to every other receiver of a DOMINATOR message. In 8tepll dominated
nodes exchange DOMINATED messages containing the priofitige sender. Be-
cause each dominated node knows the dominated nodes ineisapnneighbor-
hood, the dominated node knows from which nodes it has tiMeBEOMINATED
messages, in order to be able to determine the significanteafn priority (step
4). Accordingly, when a dominated node has learned all pigsrfrom neighboring
dominated nodes, it becomes a dominator if it has the highrestity among the
group. If the priority of a node becomes 0, i.e., it has no weoed neighbors left,
it enters the non-backbone state after having broadcagtiiss in a DOMINATED
message.

Due to contention or packet loss, it might happen that a datathnode cannot
receive a DOMINATOR or DOMINATED message from a neighbor @aa this
mutual negotiation process. The node would then keep waitinthis message.
To prevent this deadlock, each node sets a challenge tirhére hode does not
receive any message from a specific neighbor during thisgetiassigns priority
0 to the respective node. To summarize, the following teatioms of the algorithm
per node are possible:

1. A node determines that all its neighbors are covered. itnddise the node
enters non-backbone state.

2. Atthe moment a node determines that it has the highegitygriib enters the
backbone.
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3. A dominated node still has some uncovered neighbor noties the chal-
lenge timer expires. In this case the node enters the baekioon

The third item is motivated as follows. Consider an uncoderedey that is
only connected over a dominated naddn order to guarantee network connectiv-
ity, nodex must become a dominator. Hence, nadeecomes a dominator when
the challenge timer expires. The challenge timer ofill expire since it has an un-
covered neighboy. An example of the N-CDS algorithm is shown in Figure 5.5.
For simplicity all nodes have the same energy level. Thul; thre node degree
determines the priority of a node.

Figure 5.5: Example of dominator election with N-CDS.

Dominator nodes are colored black. Dominated nodes congelves gray
and uncovered nodes are white. Gateway node S starts the Nagprithm by
broadcasting a DOMINATOR message. Having received thissages neighbors
1, 2 and 3 color themselves gray. Node 2 computes the highestyy because it
has two neighbors (5 and 6) which are not yet covered. Nodesl Bdoth have
only one uncovered neighbor. After having exchanged theripdas via SYNC
messages, node 2 determines the highest priority (becolaels) land broadcasts
the next DOMINATOR message. Receivers 5 and 6 become dosdiniag., they
color themselves gray, and exchange their priorities. Niodas the higher priority
(neighbors 4 and 7 are not yet covered) and becomes domindtales 3, 6 and
7 go to sleep as soon as they have overheard the required DAINIIR messages
from nodes S, 2 and 5. Node 4 goes to sleep if it has overhead@MINATED
message from node 1 and the DOMINATOR message from node % Nédally
goes to sleep if it overhears the DOMINATED message from nrbdlé commu-
nication among some of the nodes was not successful, thkerpaltimer would
expire and some of nodes 1, 3, 4, 6 or 7 might become dominiators

Due to its negotiation character N-CDS requires a longer G&i6p time than
MPR-based CDS. On the other hand, no two-hop neighborho@dmation is
needed. The computed CDS is optimal in the example. In gendRR-based
CDS is expected to perform slightly better due to its two-hejghborhood knowl-
edge, though. We have developed a CDS setup mechanism thaines both
approaches and provides mobility support on the networlaygr (see Section
5.3). It approximates the MPR-based CDS by piggy-backimgrigighbor list of
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the dominator on DOMINATED messages. As N-CDS, the mechamequires
negotiation, leading to the same drawbacks.

5.2.4 Reliability and Backbone Reconstruction

Neighborhood discovery and backbone construction aretiedired by the base
station after every long-sleep period. Thus, the currenneotivity and energy
distributions in the network are considered after evergisleep period. Local path
update strategies could be an alternative. Such appro&eivesnot been further
considered due to their complexity.

The accuracy of the one-hop neighborhood information isemuoitical than
the accuracy of the two-hop neighborhood information. Aataitwo-hop neigh-
borhood knowledge is only needed to optimize performandbeoMPR-based ap-
proach. However, the two-hop neighborhood informationtrhasomplete enough
to ensure that the MPR-based algorithm does not termingteowti covering all
network nodes. Complete coverage has been achieved inswauiation, though.
Collecting neighborhood information by SYNC messages.airiigular collecting
two-hop neighborhood information, is a time-consumindgtaherefore, we have
determined when neighborhood information must be upddfeslnode depletes,
the according neighborhood information of this node bemealid. This has
impact on the backbone construction mechanisms. Two phigsgneed to be
distinguished:

¢ Invalid one-hop neighborhood information: Unavailable dominators could
be elected. This must not happen. Hence, the one-hop nelydibis re-
learned in every neighbor discovery period, i.e., befomrebackbone setup.

e Invalid two-hop neighborhood information: In the worst case a redundant
dominator is elected. This is not desirable but neithercatlit Hence, two-
hop neighborhood information is only deleted if the reléevande has not
been overheard for a certain amount of time.

In all simulations the complete one-hop neighborhood mfation and most

two-hop neighbors were relearned in every neighbor disgophase. Two-hop
neighbors that have not been overheard were still knownalthesttimeout criteria.
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5.3 Routing Backbone on the Network Layer

In this section we provide a CDS mechanism that has been ingpited on the
network layer and supports node mobility. Specific contrelseages, i.e., hello
messages that are optionally extended with CDS setup iafitom are needed.
These hello messages are used to learn neighborhood irfonnaad to setup the
routing backbone. By using hello messages on the routingy,ldlge algorithm is
decoupled from the MAC layer. Thus, node mobility can be suigal, because
control messages can be sent immediately. On the MAC layepiggy-backing
of information onto the SYNC messages saves communicatets cbut leads to
long information dissemination delays (see Section 5.hesE delays prevent the
deployment of path adaptation functionality that are nddde mobility support.

Like in the MAC-based approaches, non-backbone nodestieinradios off
and go to sleep for a certain amount of time. During these-&lagp periods non-
backbone nodes periodically wake up to check network ciomdit After a long
sleep period the backbone is reestablished by the basanst@itie backbone is thus
able to consider the energy load distribution over time. dditoon, backbone re-
pair mechanisms support the detection and correction cé feallires and/or node
mobility. The algorithm shows good approximation of an MCBIger backbone
setup and is able to repair link breaks on demand with shtaydand low message
overhead.

The local one-hop neighborhood information is learned byopecally ex-
changed hello messages (beacons). Two-hop neighborhémuhation is only
exchanged on-demand by piggy-backing one-hop neighbdrimdormation when
the CDS is established. Thus, the algorithm achieves therpeince of MPR-
based CDS, but requires the amount of neighborhood infeomaf N-CDS. Like
N-CDS, the algorithm requires a more complex timer handlihgugh.

The CDS setup information is piggy-backed on the hello ng=saThus, no
additional control traffic is introduced to setup the CDSeiiby, CDS setup or
maintenance tasks interrupt the normal hello message egehly transmitting
the extended hello message prioritized. Thus, smallendss can be achieved.
Whenever no backbone construction or repair mechanisnaistion all hello mes-
sages perform their basic task. The CDS setup is againkdistd. Backbone join-
ing decisions are either based on the link degree or on a c@titn of link degree
and remaining battery power.

5.3.1 Receiver-based Backbone Construction

The Receiver-based CDS (R-CDS) is an approximation of th&M&sed CDS
approach (see Section 5.2.2). Instead of requiring any mm#eaow its two-hop
neighborhood, R-CDS only requires knowledge of two-homlnieorhood infor-
mation on demand, though. This is achieved by piggy-backiegneighborhood
information of a dominator on its hello message and distiriguthe information
two hops into the network. The basic steps of R-CDS are listdlte following:
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R-CDS based dominator election

1. Every dominator node broadcasts extended hello messages called DOM-
INATOR. These messages contain the neighborhood list addin@nator.

2. Each receivey becomes dominated and broadcasts an extended hello mes-
sage called DOMINATED. This message contains again thenbeidnood
list of the dominator.

3. Receivers: of DOMINATED messages compare their own neighborhjood
information with the neighborhood information of the dowmtior. The
sendety is prioritized according to this comparison:

3.1. If y is the only node that connecisand z, y is chosen with high
priority as dominator.

3.2. If there are multiple paths betweenand z, nodey is prioritized
according to its link degree and/or its remaining battemele The
priority must be lower than in [3.1], because nodesith only one
path to the dominator must be connected.

4. Nodez informs nodey about its priority. The algorithm is receiver-based.

With the described mechanism the neighborhood informaifdhe dominator
on demand is disseminated two hops into the network. Thusyeeceiver of a
DOMINATED message is able to decide if it is located two-hapgy from the
dominator. Furthermore, it can determine the number ofgaitthe dominator.
According to this number, the sender of the DOMINATED messagprioritized.
The most relevant step in the Multipoint Relaying Protoselg Section 3.3.4) is to
choose nodes as Multipoint Relays that provide exactly aitle jo a node two hops
away. To do so, the Multipoint Relaying Protocol requires4mwop neighborhood
information. In R-CDS the neighborhood information of ttevdnator is delivered
to its two-hop neighbors. Thus, the two-hop neighbors ate tbdetermine the
number of paths to the dominator. With this mechanism, R-Gpfroximates
Multipoint Relaying, but requires the setup of two-hop fdigrhood information
only on demand.

Figure 5.6: Example of dominator election with R-CDS.

An example of a backbone construction of R-CDS is illusttateFigure 5.6.
The base station (S) broadcasts a DOMINATOR message. Eeelveeof DOM-
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INATOR message (nodes 1, 2 and 3) sends a DOMINATED messag&ingd
received the respective DOMINATED message(s), two-hoghimrs 4, 5 and 6
know the neighbor list [1, 2, 3] of S. Node 4 determines onlg path to S over
node 1. Therefore, node 1 is chosen as dominator. Similde Baletermines also
only one path over 2 to S and elects 2 as dominator. Both nadesnanediately
informed about their status. Node 6 delays its decisionclwhiould also choose
node 2 due to higher link degree, because it has two path2amd 3 to S. Nodes
1 and 2 broadcast DOMINATOR messages. The receivers 3, 4d B ame thus
again instructed to send DOMINATED messages. By analyZisgdOMINATED
messages, node 7, the only remaining uncovered node, ldemmse-hop neigh-
borhood [S, 1, 3, 4, 5, 6] of node 2. Because node 2 determipah to the base
station over nodes 5 and 6, which provide both the same ligkedeof 4, node 7
either elects node 5 or 6. In this example it elects node 6tridigher remaining
battery level of node 6. In order to make this last decisimeyydominated node
attaches its battery level and its link degree to the DOMIERImessage.

The algorithm terminates as soon as no uncovered nodesrrenihis hap-
pens in every connected network, provided that all requinedsages have been
successfully transmitted (see the next section). Two teatians are possible:

() Nodes adjacent to a dominator become dominated.

(i) Any nodey, two hops away from a dominator chooses an up-link nodse
dominator. If nodey is not covered by another dominator in the meantime,
nodez will win the dominator election and inform nodeaccordingly. Node
y will become dominated in both cases accordingj)to

Timer Handling and Reliability

As indicated above the control messages used for the baeldmmstruction are in-
cluded in the hello messages. As soon as a node enters baokiastruction state
it sets a CDS control message retransmission counter to toee hello intervals
and includes its current control info in its hello messaga®ng that time. Accord-
ingly, the respective control information is transmittadee times. With this mech-
anism the algorithm accounts for possible packet loss. &tarrsmissions impose
only minor overhead, because the hello messages, whicldvbeutxchanged any-
way, only have to be extended with some information. Consetlyy only the
packet size is temporarily increased, but no additionatrobmessages are gener-
ated. To decrease CDS setup time and to support the pratigiiz of nodes, the
extended hello messages are transmitted in a prioritizethera

To determine the release time of the extended hello messagemtervals
are defined: a short interval of 100 ms and a long interval of Tl intervals
are chosen according to typical sensor network propertiesur real-world im-
plementation of the R-CDS algorithm (see Section 5.4.3) meslused the ESB
sensor node platform (see Section 3.8.1). ESB sensor negelsld ms to switch
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to send mode, send the packet and switch back to idle moderefohe, a con-
tention period of 100 ms for the short interval is reasonalilee long interval is
needed to delay dominator elections if multiple paths toléise dominator exist.
The timers for the DOMINATOR and the DOMINATED messages avthlran-
domly chosen from the short interval. The timer for the daaton choice message
sent by a two-hop neighbor is chosen from both intervals iidipg on the priority
of the backbone candidate. If only one path to the last dommirexists, the timer is
chosen from the short interval. If multiple paths to the timhinator exist, the long
interval is also considered. As soon as a control message tinset, the periodic
hello sending mechanism is interrupted and the next helchigduled according
to the control message timer. In sensor networks algoritarasconfronted with
high packet loss due to collisions or bit error rates and sbaidwidth. An in-
tegration of the control messages and the hello messagesrefdre helpful as it
scales down the control traffic load and increases the pilitiyadf message deliv-
ery, while avoiding additional RTS/CTS like mechanisms.

The backbone is maintained for a predefined backbone tinter tis time, the
backbone is reestablished, adapting itself to the new mktaanditions. During
backbone time the dominated nodes follow a listen/sleepdidlr. The dominated
nodes wake up periodically and listen to the medium beforegg sleep again.
If a dominated node detects a link break in its vicinity ortitlid not sense any
dominator at all during its listen period, the node stayskawal he details of the
backbone repair mechanisms are explained in the next sectio

Local Path Adaptation and Repair

In order to deal with dynamic network topologies a local pedhptation and repair
mechanism has been implemented. Two different kinds oldielaks might evolve:

(i) abackbone node determines an up-stream link break.

(i) a dominated node detects its isolation from the backbone.

In both cases a link break is detected if a node did not overdmgahello mes-
sage for a certain amount of time, i.e., three times for thie neterval in (i), and
for the duration of the listen period ifii). In the latter case the dominated node
remains awake and tries to connect to a dominator. In botbscde link break
detecting node enters link-break state and starts to basadiok-break notifica-
tions to inform its neighborhood about the link break. Eaokdenoverhearing a
link-break notification enters link-break state too. lteathe address of the node
announcing the link break and starts to propagate the lirktbinformation fur-
ther. As soon as a backbone node with a valid route to the lats@s(BS) receives
a link-break message, it enters the path-update state anddasts its own path to
the BS within its next hello message. Nodes with valid routethe BS neither
detected a link break themselves nor were they informedtabtink break.
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Each node in the link-break state overhearing such a pathtepdessage
adopts the path and rebroadcasts the updated path (inglidiown ID). If the
rebroadcasting node is a dominated node it enters the baekbwl becomes dom-
inator. In general not all dominated nodes in the path regtaile are needed to
repair a path. To keep the number of resulting dominatordlsthe path update
distribution is done under contention. Thus, dominatedesdtiat detect nodes in
repair state renounce their own path repair functionaktg. mentioned above all
affected nodes setup a list of the nodes they received lieklkomessages from.
Accordingly, all nodes overhearing a path-update message d node in their list
of link break reporting nodes, cancel their own path-upgateedure.
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Figure 5.7: Link break repair mechanism.

The message flow to repair a link break that has occurred atnddon 1 is
depicted in Figure 5.7. Dominator 1 detects a link breakdaifi-link dominator
node (not depicted) and broadcasts a link-break messagedaagly. As soon as
there are some neighbors awake (nodes 2 and 3) they entdrréak state and
propagate the link break further. As soon as dominator 4 witfalid route to
the BS overhears an link break message, it responds withhaupaate message.
Dominated node 3 overhears this message, adapts the patmé® a dominator
and finally broadcasts the path update message extendedsagthin ID. Having
overheard the path update message from the new dominatod8,Inknows that
the path is repaired, adopts the new path to the base staibreaumes its normal
functionality. The next hello message sent by 1 informs ridtieat the link break
has been repaired. Accordingly, node 2 can go back to slesip.alm Figure 5.7
only the relevant transmissions are shown.
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5.4 Evaluation

So far, backbone construction mechanisms on the MAC and eméitworking

layer have been proposed. The approaches on the MAC layerdmemtrinsic ad-
vantage in energy saving. On the other hand, the backborstraotion mechanism
on the networking layer supports mobility. Due to their eli#nt goals and imple-
mentations a direct comparison of the algorithms is not nmgg@um. Therefore, the
approaches have been evaluated separately starting onAGdayler.

5.4.1 Simulations on the MAC layer

MPR-based CDS and N-CDS have been evaluated in simulatiofdAC has
been chosen as underlying MAC protocol. For compatibilitd aomparison rea-
sons T-MAC and an optimal pre-configured shortest-pathimgutee have been
implemented according to [142]. Any implementation of atiag algorithm on
top of T-MAC has a different impact depending on the selecteding protocol
and is thus difficult to be evaluated. Therefore, we haveddecio compare our
approaches to optimal benchmarks.

Simulation Scenario and Parameters

The CDS is rebuilt every hour. The long-sleep period lastsbites and the learn-
ing period 10 minutes. Nodes in long-sleep state quicklyemak every minute to
send their sensor readings to the base station (see alseE@). Having suc-
cessfully synchronized to the backbone and transmittad dlaga, they go back to
sleep. The network parameters are similar to those use isitfulations of LA-
CAS. The parameters can be found in Table 4.1. The propeititee sensor nodes
are again configured according to values from the Embeddeso&&oard (ESB)
platform (see Section 3.8.1).

Average Energy Consumption in the Network

In a first evaluation the average remaining energy level efdiditteries in the net-
work has been logged for each protocol. Each node has Ipitieen charged with
335 mWh. 100 hours have been simulated. It has been ensateallthodes have
enough energy so that they do not run out of energy duringlation time. Node
failures were not in the scope of the current evaluation.

Figure 5.8 shows the average remaining energy level foreatetl protocols
and network sizes. Both N-CDS and MPR-based CDS perforrariéan T-MAC.
As expected, MPR-based CDS is slightly more efficient tha@D&. The results
show that the energy savings by non-backbone nodes contpeiosahe piggy-
backing of control data. The network size has some impactenoh average
consumed energy in the network. This increase in energyuoopison is however
due to the higher data traffic load caused by the increased@unf reporting
sensor nodes (every node transmits a data message evenglsetbe backbone
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Figure 5.8: Average remaining energy in the network.

performance is not affected by the network size. In our etadn T-MAC has been
used. Because SYNC messages are used, T-MAC could be stduktity other
synchronized MAC protocols. The benefits of the backboneailghibe the same.
Because T-MAC has been provided with cost-free routing,lémenting routing
on top of T-MAC would additionally strain energy consumptiof T-MAC.

Energy Distribution in the Network

The goals of our work have been to provide routing on the MA@ido save en-
ergy, and to distribute the energy consumption uniformlgrahe network. This
uniform distribution of the energy consumption is more niegful to extend net-
work lifetime than the in-average consumed energy, becthes@robability that
nodes discharge quickly is decreased, which is in partiarltical if irreplaceable
nodes are affected. Figure 5.9 shows the energy distributfche different al-
gorithms in the network consisting of 200 nodes (Figured).8fiows the average
energy consumption). The results for networks of 50 and b@fes are similar.
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Figure 5.9: Number of nodes with a specific energy consumption.

The distribution of nodes with similar energy consumptidifeds significantly
between T-MAC and the CDS-based approaches. In T-MAC alesabnsume
more than 100 mWh in 100 hours simulation time and the peagenbf nodes
with high energy consumption is higher than that of the C2Sell approaches. In
T-MAC there are numerous nodes (about 30) with an energgtouption of about
110 mAh (see Figure 5.9(a)). The other nodes consume evemenergy. On the
other hand, the CDS-based approaches charge many nodes less

The high fraction of nodes with low energy consumption in CiESed ap-
proaches, i.e., the nodes on the left side in Figure 5.9(#)589(c), indicates that
the periodic setup of the CDS leads to a good energy consomgistribution.
However, there are also nodes with high energy consumpfiibase are the nodes
on the right side in Figure 5.9(b) and 5.9(c). Examining tiffeent solutions, nei-
ther N-CDS nor MPR-based CDS increase the number of heavdined nodes
compared to T-MAC. Accordingly, the CDS-based algorithrosndt increase the
number of quickly depleting nodes. The existence of suclescdnnot be avoided,
though. The reason is that such nodes are often or alwayselato the backbone,
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because there are no or few alternatives to route informabicghe base station. To
circumvent this drawback, the node distribution in the mekwvould have to be
considered during deployment.
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Figure 5.10: Cumulative distribution function of energy consumptiom pede.

The cumulative distribution functioredf) of nodes with a specific energy con-
sumption is shown in Figure 5.10. This function shows the@aiage of nodes that
consume a certain amount of energy, and it is used to assedisttibutions in Fig-
ure 5.9. MPR-based CDS and N-CDS both outperform T-MAC. feidul0 shows
that with MPR-based CDS and N-CDS approximately 60% of allasoconsume
less than 100 mWh during the simulation time of 100 hours. l@rother hand, in
T-MAC every node consumes more energy during the same tinsgendt possible
to determine whether MPR-based CDS or N-CDS performs better

To conclude, CDS-based algorithms not only consume lesgeoa average
(see Figure 5.8(c)), but also lead to a better energy consomngistribution. The
probability of network partitions is higher for T-MAC thanrfthe CDS approaches
due to the higher number of heavily strained nodes. Since GYfi¢ssages are
used, T-MAC could be substituted by other synchronized MA@qzols (e.g., by
DW-MAC). The backbone construction would remain the same.

Packet Loss

Finally, the average data packet loss of the different pashas been investigated.
Only data transmissions have been considered.

The results are depicted in Figure 5.11. The optimal routimglemented on
top of T-MAC leads to very good performance. T-MAC introdsic@most no
packet loss in all simulations. On the other hand, both N-GD& MPR-based
CDS lead to packet loss of up to 4%, which is still reasonalieplementing a
routing protocol on top of T-MAC might increase packet lo®s tlue to additional
signaling and suboptimal routing decisions. Neverthel@9dAC could still per-
form better than the CDS approaches, because the CDS msetsaselect many
backbone nodes with poor link quality.

The reason is depicted in Figure 5.12. Since a remote neighlbd x has a
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Figure 5.11: Average packet loss.

Figure 5.12: Area of additional coverage of neighbor nodes: of

larger area of additional coverage (colored gray) than abyeaeighborz, y in
general connects more two-hop neighbors: dfianz. On the other hand, remote
neighborsy have a comparatively low Received Signal Strength IndicER&SI)
and are more exposed to interferences. Accordingly, thedesnhave worse link
quality than nearby neighbors.

The election procedures of both CDS-based approaches pifghbors that
have a high probability to reaching additional nodes, beedoth CDS-based al-
gorithms aim at optimizing additional coverage. Howevggatly these nodes are
the nodes with high probability of poor link quality, becaukey are located at the
border of the parent dominator node. The impact could beredvby monitoring
the RSSI of incoming messages at the nodes. Thus, links withquality could be
avoided in the backbone election procedures. In additipmnsetric links would
be reinforced too.

5.4.2 Simulations on the Network Layer

R-CDS has been evaluated either considering link degreée¥R-LD) or consider-
ing the product of link degree and remaining energy levelmbde (R-CDS-E). In
order to model mobility we have used the Mobility FramewdtR(Q]. The proper-
ties of the sensor nodes are again configured accordingues/élom the Embed-
ded Sensor Board (ESB) platform (see Section 3.8.1). Othpoitant simulation
parameters are listed in Table 5.2.
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Table 5.2: Parameters used in the R-CDS simulations.

| Parameter | Value
Network density {12, 20} neighbors
Node mobility (constant speed) {0.1, 0.5} 2
Network size {50, 100, 200, 400}
Node deployment random, but guaranteeing connectivity
Simulation duration 10 h
Backbone period 30 min
Active period 30s
Sleep period {2,4,8}-30s

We have simulated sparse networks with approximately 1¢hheirs per node
and dense networks with 20 neighbors per node. All nodes geenily move at
a common constant speed of eitherD.low mobility) or 0.5% (high mobility).
Network sizes of 50, 100, 200 and 400 nodes have been sirdula@te did not
simulate static networks, because no link breaks would rocBwenty backbone
periods have been simulated in each run (10 h / 30 min). NokHmne nodes are
periodically active for 30 s. Then they go back to sleep. Eagieriment has been
tested with ten seed values. The 95% confidence intervaks Ib@een computed.
The confidence intervals are only shown if they are relevamly the simulation
results of the simulations with 200 nodes are shown. Sinougtwith the other
network sizes showed similar performance.

In the evaluation we show that both R-CDS-LD and R-CDS-E miré the
number of nodes in the backbone well, i.e., they approxirteevViICDS well. We
furthermore show that the fraction of link breaks that carb®repaired is small
and that the link breaks are repaired fast. Moreover, we dhatvR-CDS-E is
at least as good as R-CDS-LD concerning the average rergagmergy level of
the nodes. Finally, we show that R-CDS-E shows smaller griekgel variations
than R-CDS-LD, which means that the network load is bett&aruzd and that the
overall network lifetime can thus be extended.

Size of the Backbone

In Figure 5.13 the backbone sizes of R-CDS-LD and R-CDS-Eadkas the back-
bone size of the MCDS of the networks, i.e., of the optimura,dapicted. In every
simulation run, 20 backbone periods have occurred. Figur@ $how the average
backbone size evolution over all backbone periods in aluftions. The results
show that the MCDS remains nearly constant in every backperied.

Both CDS-LD and CDS-P approximate the MCDS quite well at tbgifining
(start) of a backbone period, i.e. shortly after the backbbas been built. The
high percentage of nodes in the backbone at the end of a baelgmyiod (end) is
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Figure 5.13: Backbone size evolution for R-CDS-LD/P and MCDS.

linear to the number of link breaks that have occurred. Fohdiak break, nodes
which repair that link break are needed. All these nodes ¢éiméebackbone. In the
current version of the algorithm no mechanism to give up thmidator state has
been foreseen. Thus, an increase in the number of domirdidrgy the backbone
period is obvious. Figure 5.13 shows that the evolving bankbsizes are smaller
in networks with low mobility, where fewer link breaks occiihe same applies for
network density (see Figures 5.13(c) and 5.13(d)). Thi$ c®arse not surprising.
The backbone size would even remain constant in a staticonketwConsidering
mobility, the increasing number of dominators is accegdi#cause link breaks
are repaired. Thus, network connectivity can be guaranéeeldcorrect paths to
the base station are supported. Five and more link breaksreckcin the current
evaluation per long-sleep period, even in the dense and lokility scenarios. In
static networks such a high number of node failures in hati@r would be rather
unrealistic.
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Average Energy Consumption of the Network Nodes

In this section we present the results of average energyoguison in the network
over time (see Figure 5.14). Both R-CDS-LD and R-CDS-E shoeak charging
of batteries and almost the same battery level in all sinarat
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Figure 5.14: Average remaining battery level in the network for R-CDS/BD

Consequently, in terms of average energy consumptionerdRFCDS-LD nor
R-CDE-P shows a significant advantage. In sparse networtks igh mobility
more link breaks occur. This leads to more dominators angdemprently also to
less dominated nodes that are able to go to sleep. Accoyditigd batteries are
more drained. On the other hand, in dense networks with loske moobility the
average remaining battery level is higher. Obviously, grenince increases, the
denser and more static a network is.
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Distribution of the Energy Consumption over the Network Nodes

In contrast to the average battery level, which is almosstme for both R-CDS-
LD and R-CDS-E, the distribution of the battery levels ovex hodes in the net-
work are considerably smaller for R-CDS-E than for R-CDS{kBe Figure 5.15).
Every network node has the same battery level of 55 mAh in éginining of the

simulation. Accordingly, the variation in the battery l&/is small in the beginning
and increases with time.
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Figure 5.15: Variation of energy consumption among the network nodeRf@DS-LD/P.

A balanced energy consumption distribution in the netwaordidates a uni-
form charging of the batteries amongst the network nodes.a¥@nage this will
extend the network lifetime, because fewer nodes might utrobenergy quickly.
Thus, network partitions are prevented. With R-CDS-LD daieifraction of nodes
(those with highest node degrees) are almost always eletttethe backbone. Ac-
cordingly, these nodes will run out of battery soon. In addito the depletion
of (critical) nodes, the resulting smaller node density dagative impact on the
average battery level (see also the last section). Thugrtisbility of network
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partitions is increased. On the other hand, R-CDS-E corssitie current battery
level when electing dominator nodes. Thus, a more uniforerggnconsumption
load can be achieved in the network. Of course, performarareases if more re-
dundant nodes are available, because more dominator edeslidre available for
substitution. In our simulations only the first ten hours pémtion of a network
have been simulated. The ratio between R-CDS-LD and R-C®+Hd increase
over operation time.

Number of Link Breaks and Repair Time

Finally, the number of successful and unsuccessful lidakrepairs as well as the
average time to repair a link break has been evaluated. Timdewof successful
and unsuccessful link-break repairs are shown in the upasrip Figure 5.16,
whereas link-break repair times are shown in the lower gartgparse, d = dense;
2,4 and 8 are the sleep-listen ratios).
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Figure 5.16: Link break repair performance for R-CDS-LD/P.

Figure 5.16 shows that the number of unsuccessful link repaismall in all
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simulations, while the number of link breaks increases ickemably with higher
node mobility. The average time to repair a link break thauoed at a dominator
node was below 5 seconds in all simulations. On the other,ithedaverage time
to repair a link break that occurred at a dominated node isiderably longer and
increases with higher sleep-listen ratios, which is ngbssing. A dominated node
x that detects no connection to the backbone has to wait umdthar dominated
nodey wakes up. Theng has to informy about the link break, beforg searches
for a dominator node itself. This introduces long repaiagsithat increase linearly
with the sleep time of the involved nodes.

5.4.3 Real-World Experiments

R-CDS-E (considering energy level) has been implementetherESB sensor
nodes (see Section 3.8.1). The basic functionality is tineesas in the simula-
tions. However, the required intervals have been adaptedrisider properties of
the ESB nodes in a real deployment. The values are listedale 3.

Table 5.3: Duration / periodicity of the different relevant intervals

Interval / Timer | Duration [s] |
HELLO 2
LISTEN 6
SLEEP 10
LONG SLEEP 1800
CONTENTION WINDOW 0.2
RETRANSMISSION DELAY 1

All networks are static. First, the resulting backbone siZR-CDS-E is evalu-
ated. Second, we tested the repair mechanism by turninghefbbthe dominator
nodes. The CDS setup has been repeated 10 times. Before tBeal@brithm
started, four HELLO messages were exchanged to setup thbhweitables on
each node. Each control message, i.e., each HELLO messtayeled with CDS
relevant information, is retransmitted five times to enget&bility. The experi-
ments are described and discussed in the following.

The network topology for the CDS backbone size experimelejsicted in
Figure 5.17. The MCDS of the network is indicated as gray @enedes in Fig-
ure 5.17. In this experiment the size of the resulting CDStaedduration of the
CDS setup phase have been determined.

The times that elapsed until the last CDS setup control ngesseere sent,
were between 14.7 and 17 s. On average the backbone seteg 146 s un-
til the last control message was sent. This seems to be ratihgr However, it
can be explained as follows: The CDS setup process starts thbdirst HELLO
packet is sent. As mentioned above, four HELLO messagesthdwe exchanged
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Figure 5.17: Network topology and MCDS of the experiment.

to setup the neighbor lists. This resultsdin 2s = 8s. The DOMINATOR and

DOMINATED messages sent by the nodes are delayed on aveya@8d ms (see
Table 5.3). Each retransmission introduces an additioelaydof another second.
Accordingly, on averagéd - (1000ms + 100ms) + 100ms = 4.5s are spent to
support reliable transmission of a control message. OBlypthe last transmitted
control message also requires these 4.5 s. The actual CDS thete is there-

fore the average backbone setup time of 15.6 s minus the lidtsosluced by

the neighborhood learning and reliability support funaélity, i.e., 3.1 s, which is
easily tolerable considering a backbone period of half am.ho

Number of Dominators in the CDS

1 2 3 45 6 7 8 9 10
Experiment Number

Figure 5.18: Number of dominators in the experiments.

On average 3.4 nodes have evolved as dominators in the epes. The re-
sults are shown in Figure 5.18. In the worst case five nodes haen elected
into the backbone, whereas in 70% of the CDS establishmeat8|CDS has been
achieved. Such a good approximation of the MCDS is due to riedl sretwork
size. In larger networks the MCDS could barely be achieveat. the case with
five dominators, an analysis of the network traffic has shdvaih $ome nodes did
not overhear each other, which is a well-known problem ireless sensor net-
works [175].
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In addition we have analyzed the median distance in hops tihemodes to the
BS. According to the topology, nodes 101, 102 and 103 are thops away from
the BS, whereas nodes 201, 202 and 203 have a distance of pgoahd nodes
301, 302 and 303 are adjacent to the BS. In every computed G@fes 101, 102
and 103 are indeed connected to the BS over three hops. Howiegesecond
triple (nodes 201, 202 and 203) is in reality on average 2pélaovay from the BS
instead of the optimum of 2 hops, and even the three nodesemdjto the BS have
an average hop distance of 1.9 hops. This is again due to themgaication holes
caused by radio irregularities and temporal radio failures

In order to evaluate the link repair functionality in a stateéal network, we
have setup a tailored network topology and have turned offdenAn alternative
path existed. The experiment setup is depicted in Figur@ 5.1

Base station Base station
0506 0506

O Dominator
O Dominated

0402

Figure 5.19: Link repair experiment. Node 504 is manually turned off

After the successful setup of the CDS, either node 304 or SQ#anually
turned off, depending on which one has been elected into B®. G Figure 5.19
it is node 504. The link repair results are shown in Figur®5.2
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Figure 5.20: Link break repair time in the different CDS cycles.

In every experiment the link break has been repaired withge®&nds. The
variation is rather high, ranging from 200 ms to 2.7 s. This ba explained by
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the state of the nodes involved. If all nodes are awake, ttkeblieak messages are
forwarded quickly and the link failure is accordingly quigiixed. On the other
hand, if the dominated node (304 or 504) is sleeping whildithebreak occurs,
the repair time is delayed until the dominated node wakesDigpending on the
duration of the listen period and the time point of node fajwa link break could
remain undetected for an unpredictable amount of time,ingnfigom considerably
less than a second to a couple of seconds. In addition to thaldiok repair time,
the time until the last control message reporting about theeat link break has
been sent is shown. The average time until the last contresage has been sent is
14.7 s. Due to retransmissions and the dissemination ofrikditeak, this period
obviously lasts much longer than the actual time to repailitik break. However,
this signaling of the link break state only imposes sometauidil information that
has to be transmitted in the hello messages, but does not &ffzS performance.
In every case the link break messages have been kept on therdeth of the
network. Accordingly, the right branch has never been wvedlin the link repair.

5.5 Conclusions

In this chapter the construction of a routing backbone testtour event detection
framework with routing and medium access has been discu3$edmaintenance
of a routing backbone allows the temporary disconnectiomoofbackbone nodes,
because these nodes are not required for routing. Thudjaddienergy can be
saved. The backbone construction has either been implethentthe MAC layer

or on the networking layer:

e MAC layer: The SYNC messages exchanged by the network noales h
been used to setup a (routing) backbone on the MAC layer. dakbone
nodes have been temporarily sent to sleep for multiplenlisteep cycles if
no events have been present. It has been shown that the pdoplgerithms
(MPR-based CDS and N-CDS) save additional energy on the N&A€r)
while routing is intrinsically supported. No additionagsaling for routing
is required. To account for changing battery levels of theasahe backbone
is periodically reestablished. This further extends nekwifetime. Data
throughput was slightly affected by the virtual backbon&ke increase in
packet loss depends on poor links, which are establishelteilCDS setup
phase. The impact has been identified and could be decrepsednitoring
and avoiding links with poor link quality. The drawback ofdfalgorithm is
a rather long control message dissemination delay. Thesefloe approach
fails if nodes are mobile.

e Network layer: R-CDS has been implemented on the networrlajpue
to the decoupling of the CDS control messages from MAC fometiity,
CDS setup and maintenance relevant information can bendisated faster.
Thus, node mobility can be supported. Two versions of R-CB&been
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evaluated in simulations. The versions are either baseteolink-degree of
nodes (R-CDS-LD) or on the product of link degree and remagimode en-
ergy (R-CDS-E). Both CDS-LD and CDS-P perform efficientlydashow
good approximations of the MCDS of the network in simulasionLink
breaks are repaired quickly with both versions. R-CDS-Bperiorms R-
CDS-LD in terms of energy consumption variations, which etak a better
choice to extend network lifetime. Therefore, R-CDS-E hasrbchosen for
implementation on real sensor hardware. The evaluatiorsiasn that the
R-CDS-E algorithm approximates the MCDS well in real-workdso link
breaks have been repaired quickly in real world experiments

All approaches have shown good performance in simulatidhe. MAC layer
approaches have not been compared to R-CDS. The differaeg gbthe algo-
rithms don’'t make a direct comparison meaningful. R-CDSjgies mobility sup-
port, while N-CDS and MPR-based CDS provide medium acceslby. tbe routing
is common to all three approaches. The backbone electictegure of R-CDS
could be replaced by the functionality of N-CDS or MPR-ba&&s or vice versa.
Mainly, the kind of used messages (HELLO or SYNC) would havbe adapted.
Due to the affinity of MPR-based CDS and N-CDS algorithms t€RS, similar
performance could be expected.

In the remainder of the thesis the lower layers of the netimgrktack are left
and the application-layer features of the event monitosygtem are presented.
The next chapter introduces the event detection and trgckioup formation func-
tionality.
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Chapter 6

Distributed Event Detection and
Tracking

The previous chapters have addressed medium access aimg rouich are re-
quired by our system to perform communication and reportihg this chapter
we start with the first application-specific task of our evéetection system (see
also Figure 1.1). In this chapter the detection and trackinguddenly appearing
events is addressed. The Distributed Event LocalizatiahTaacking Algorithm
(DELTA) is introduced. The chapter is based on work publisime[98], [156] and
[150]. Upon appearance of events, sensor nodes locatee evént sensing area
organize themselves dynamically into tracking groups.a&king group is an orga-
nized group of sensor nodes that are temporarily respensibhonitor, track and
report an event. In DELTA, the dedicated group leader in®itsigroup members
about its leader state, requests event-relevant data feomembers and performs
a leader handover if the event moves away. Subsequentfidassn of the event
is performed based on the collected event information.

6.1 Introduction

The detection and tracking of events has gained much aitemtiwireless sensor
network research. The related work has been presentedtioi$acet. Even though
some related work provides useful functionality, curreatedtion and tracking
methods cannot be adapted to our system. They either impodeigh commu-

nication load or they do not offer the accuracy required bysystem. Therefore,
we have developed our own solution to support the diversein@gents of an ac-
curate long-living event monitoring system. Considerirgedtion and tracking,
our system aims at optimizing the trade-off between comuatimn cost savings
and providing the required accuracy. In order to meet thaired accuracy, suf-
ficient data needs to be collected. Accordingly, DELTA ojitiés communication
load to provide a requested accuracy with minimum overh&hts means, in addi-
tion to the basic detection and tracking functionality, OBLcollects information

to perform localization and classification tasks. In ralaterk these tasks are of-
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ten individually addressed. The approaches either focieffaient detection and
tracking, or on collecting sufficient data to perform actercalization and/or
classification.

In the current implementation and evaluation of the DELT#cking group or-
ganization and maintenance performance, we have usedbglsbrs to detect and
track persons who are equipped with a flashlight. The tangeliaation scenario
is terrain observation during night time. Persons movirguad with flashlights
shall be detected and tracked. Based on its movement padtermlarm must be
triggered if the person is determined to be present withotitaization. Later, we
have further considered Passive Infrared (PIR) and vilmmati the office monitor-
ing application (see Chapter 9). In the current implemémnatDELTA collects
light information emitted by flashlights and processes thia @t a dedicated leader
node. Reports are sent to a management station in a fixed tketwlzere the event
reports can be stored or additional pattern recognitionrtiggies can be applied to
determine whether the person is present legitimately ar not

If movement patterns have to be identified online, the senstwork has to
provide meaningful data in real time. Therefore, a fullytdisited approach has
been used for developing DELTA. This avoids heavy data laath¢ base sta-
tion, which saves communication on the one hand and avoidgestion towards
the base station on the other. The distributed implememtatiso leads to better
communication load distributions, which additionallylalisdens nodes close to the
base station. The basic operations of DELTA are depictedguarg 6.1.

a  Q

Management Station

\ @ LEADER
o O v e @  Next LEADER
- TS,
KN, © MEMBER
P2 -+—> Heartbeat
." o ‘ '. ---- » Response message

— Event report

Sensor stimulated
Figure 6.1: Event detection, tracking and reporting with DELTA.

A measurement-based leader election algorithm deternanesique group
leader (the black node in Figure 6.1) which is responsibtegfoup organization,
group maintenance, event data processing and event reptotihe base station.
The base station is connected to the Internet where theslatared and/or further
processed. The leader election algorithm implements a tivh&ch is set accord-
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ing to the amplitude of the signal(s) measured on the serste.nThe timer of
the sensor node with highest sensor reading(s) expires Tingt respective sensor
node becomes leader and informs its neighbors about its. stdte group mem-
ber nodes (colored in gray in Figure 6.1) report their irglial sensor readings.
Thus, the leader is provided with the information requiregerform localization
and classification tasks. Moreover, all nodes which aretéacwo hops away
from the leader are thus informed about the existence ofteteand are prevented
from establishing concurrent tracking groups. In Figutethis would apply to the
two circled white nodes which are within sensing area, btiwithin transmission
range of the leader.

DELTA has been designed to run on tiny sensor nodes. It hasibggemented
on the ESB sensor node platform (see Section 3.8.1). In thherdumplementation,
DELTA is used to detect and track single events. There aresinictions on the
detection and tracking of multiple events as long as theuoiocspatial sufficiently
disjoint areas. If the event areas overlap, further stegistechniques might be
necessary. Finally, DELTA requires that the sensor nodeg/kheir own location.
This can be achieved by GPS or other location services [13B][ Considering
static networks with a predefined topology (e.g., moniwrai stockrooms), the
node positions could even be set before or while deployment.

6.2 Distributed Group Formation and Maintenance

A key problem of event detection and tracking is the compjeri identifying
and organizing the event relevant sensor nodes in a digdbmanner with as
little communication overhead as possible, while prowgdan satisfactory degree
of accuracy. In many tracking applications the locationtw event occurrence
might not be predictable. Moreover, depending on the ethigieent amplitude a
large event area could result. Also, the event might movie fassibly performing
a sequence of successive shifts in direction. Such pregeatie difficult to predict
and challenge any generic event detection and trackingitidgo

In order to deal with generic and frequently changing caon#, DELTA con-
siders the sensor measurements in the group setup and naaiogetasks. Thus,
tracking groups can be efficiently managed. The common gssamthat the com-
munication range of the sensor nodes is significantly higfesn the sensing range
is overcome with DELTA: As soon as a leader evolves, it infeita local neighbor-
hood about its state with a periodically sent notificatiorsgage. This notification
message is confirmed by the neighbor nodes by feedback nesssag contain
event-relevant sensor readings measured on the neightdes nbhese sensor read-
ings are required for the leader to perform event localizaéind classification. As
a positive side-effect these feedback messages are ovethyeall two-hop neigh-
bors of the leader, which are thus implicitly informed abth& existence of the
leader. If required, the presence of the leader could bemlissted deeper into the
network by rebroadcasting passive heartbeats (see S€ci®).
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6.2.1 Architecture Overview

To localize and track a moving event in a distributed manoenes collaboration

among the network nodes is needed. To achieve this, DELTiyresslifferent

roles to the nodes. The states and state changes of thedimaliviodes and their
roles are depicted in Figure 6.2.

E ...................................... LEADER
: 7}
: Stop sensing light,
Stop sensing light, Hearing new leader
No new leader
MEMBER I :
E 7'y ceen, N
: Stop sensing light, : :
© No new leader : ¢ Winning
: H;:;s:zt Sensing light, node
v : No leader
PASSIVE MEMBER |........... . Heartbeat
'y B rece_ived
Stop sensing light, IREPd : :
No new leader Some méssage Sensing light, received :
received No message received :
IDLE - Start sensing light————{ ELECTION RUNNING

Figure 6.2: State diagram of the node roles of DELTA.

One sensor node is the leader of a tracking group. The leadesponsible for
maintaining group coherence, performing localization eladsification tasks, and
communication with the base station. All direct neighbdr¢he leader are group
members and deliver their relevant tracking and localiradata to the leader. All
other sensors are either passive members or idle. The pas&mber state has
been introduced to inform the neighborhood of an event ingcgroup about a
possibly upcoming event. Moreover, confusion caused kg staitches can thus
be prevented. A node enters leader election state if no conaation is overheard
but an event has been sensed. The node that wins the electioess, i.e., its
timer expires first, becomes leader and informs its neighibbomediately with a
heartbeat message. In DELTA all roles are assigned dynéynidadependent
from their state, all sensor nodes periodically check teemsors to provide an
appearing leader with their information upon request.

The solid black lines in 6.2 show the normal sequence of staémges of a
leader node when an event occurs in its sensing area andrlates away. When
sensing the event, the subsequent leader enters leadéorelstate. Winning the
contention, the node becomes leader and manages the grtlupelevent leaves
its sensing area. The leader optionally initiates a leadadbver and becomes a
member of the subsequent group. In Figure 6.1 the leadenstthbe handed over
to the member node on the left side of the current leader. Ulrent leader node
will likely become a member of this subsequent tracking grdxecause it will still
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be in the event sensing area and it is adjacent to the newrlgsslthe event moves
farther away, the old leader switches from member state ¢siyy@ member state
and finally to idle mode.

6.2.2 Leader Election and Maintenance

All network nodes remain in idle state unless an event isesEn#&\s soon as an
event has been observed, every sensing node switchestiorlemning state and
schedules a timer according to the sensed signal amplgud&pe timer expires
the sooner the stronger the event has been sensed at thetikespede. When the
timer expires, a heartbeat message is broadcast to inf@meighborhood about
the presence of a group leader. All receiving nodes immelgiaancel their own
timer and become group members. An appropriate settingeofitimer is crucial
because it determines the leader node. The current timgp pettly depends on
the applied hardware and is therefore described in det&éution 6.3.

The leader node initializes and maintains several varsalgch are required to
manage a group. The observed event is identified by a tenypanague event tag.
It is used to announce the tracking group to the base stasioveli as to maintain
group coherence. To avoid processing of outdated infoomatiround number is
introduced. The round number is incremented on the leadenewer a heartbeat
message is sent. The current round number is included iy eegitrol message.
Every message with a round number smaller than or equal tauirent round
number is discarded. A TTL field defines the depth, until whioh leader state
is disseminated into the network, i.e., it determines the sf a tracking group in
hops. The leader node is furthermore responsible to supmamtrolled leadership
handover if an event leaves the sensing area of the leadehalfidover is required,
the leader node immediately broadcasts a leader reelaoézsage. Optionally, a
leader node can determine its successive leader nodebhy @mputing the event
location and electing the sensor node closest to this lmtats successor. The
successive leader is also communicated within the leaéération message.

Considering events where the sensing range is larger tleaootimmunication
range, not every node that senses the event is a direct eighthe leader (e.g.,
nodes C and D in Figure 6.3). Accordingly, these nodes arénfmimed by the
heartbeat messages. However, the information respon&ffIRessages, which
are required to report the location and classification eeledata of the group mem-
bers to the leader, inform all nodes two hops away from thédeaode. In most
cases this is sufficient to cover the sensing area compleleven larger sens-
ing ranges are present, a passive heartbeat mechanism Ineigiged to inform
nodes farther away about the existence of an event (e.ge boa Figure 6.3).
Of course, this implies some overhead. Optimized broashtpgtchniques might
be used [50], [155]. With the proposed mechanism the medsageof DELTA
overcomes the restrictioé% <lor even% < % as illustrated in Figure 6.3.

Multiple, concurrently present tracking groups lead tofasion in the network
and communication overhead. In particular into the diceciof the base station
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Figure 6.3: Group communication in a DELTA tracking group.

network nodes are unnecessarily strained by having to fohmedundant event
reports. Concurrent leaders are well prevented by the conuation mechanism
implemented in DELTA, though.

The leader election process aims at quickly determininghgleileader node
which is able to cover a moving event reliably and as long a&sipée. Frequent
leader reelections and leader handover lead to confusidnpariods where no
leader is available. To minimize the number of handover]ebder located closest
to the event position is elected. This is the node with higlkeent sensing am-
plitudes (highest sensor readings). Because the direcfitime event is basically
not known, the node closest to the event is the best choicptimiae monitoring
time. The elected leader node should further have enougainarg battery power
to bear the burden of temporary increased communicatiorcangbutation load.
Finally, the election process needs to be fast to avoid genehen no leader is
present. DELTA has been developed to satisfy these regeiretby implement-
ing the leader election timer based on measured sensongsadi

6.3 Implementation Details

The ESB sensor nodes have been used (see Section 3.8.18 feathworld eval-
uation. Moving persons are detected and tracked accorditigetlight they emit
with flashlights. To sense the emitted signals more acdyyraaa exponentially
weighted moving average filter has been implemerigd= a7y + (1 — o)z
The computation of the average requires only the storage of the past vaiiye
and the actual light measurement Any change in the measured signal that varies
more than a configurable threshold T from the average is derel as significant
and the signal is processed by the sensor. Currently, T itodefd. In addition
to noise filtering the moving average filter supports a sloapéiglity to changing
brightness in the environment. The moving average filtevemes to the current
brightness. Thus, permanent throwing of events in brigliirenments (e.g., dur-
ing the day or during building works) is prevented. Arvalue of 0.9 has been
chosen in the current implementation.

As mentioned in Section 6.2.2, the computation of the leatkmtion timer is
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crucial for the performance of DELTA. On the ESB platform vedcalate the light
irradiance every 200 ms for exactly 100 ms. Because the Tsb@tput frequency
is limited to 100kHz (see Section 3.8.1), the light valuesggefrom O to 10°000.

The timer should be set according to the level of irradianog ia computed as
follows:

1 — I
Aroundms| = round(i) - SAMPLE FREQUENCY
At , At < Around
At = At = At — Around ,else

wherel¢ is the currently measured irradiandgy 4 x is the maximum allowed
irradiance of 10'000. AccordinglyAt computes a delay between 0 and 1 second.
SAMPLE_FREQUENCY is the sensing frequency of 200ms. Thadoariable is
set to 0 when the election is initialized and incrementedacthesubsequent sensing
step. The proposed computation &f supports the filtering of non-continuous
irradiance peaks as long as the value is not too high, i.eheiftimer does not
expire before the next light sensing is performed.

The ESB sensor nodes support transmission power contrsiirission power
control can be used to save energy while restricting comaation to single-hop
communication in specific topologies. In our experimentsighbor nodes are
placed 1.25 meters away from each other. Therefore, thentiasion power has
been adjusted to cover a range of approximately 1.75 melfesigsmission power
control results are shown in Figure 6.4.
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Figure 6.4: Fraction of received messages for varying transmissiorepow

Two distances of 1.25 and 2.5 meters between a sending nddmare receiv-
ing nodes were tested. At each receiver location four receiedes were placed.
The transmitting node was replaced four times with diffessmsor nodes. Each of
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the four transmitting nodes transmitted 100 packets ofei35 bytes. The trans-
mission power was increased from 10 to 20. The maximum tresssom power of

the ESB is 99. The overall fraction of received messagesas/shn Figure 6.4.

From this evaluation we conclude that a transmission powe8 ¢ the best choice
for the current network topology. A high fraction of packetas received at a dis-
tance of 1.25 meters, while only few packets arrived at aadcst of 2.5 meters.
Setting the sending power to a lower level would involve tooch packet loss
at 1.25 meters. On the other hand, higher levels would r@swdio high receive

fractions at a distance of 2.5 meters.

In dense networks the burst of IREP messages is handledtieaffiy by CSMA
with random backoff. Limiting factors are the required 2 mswitch an ESB node
from receive to transmit state and the approximately 14 resle@ to transmit an
IREP message at 76kbps. On the other hand, the leader =aquihg a certain
number of IREP messages to estimate the event position efbiney we have im-
plemented a simple, on-demand time division multiple a&€EBDMA) mechanism
on the nodes: Within the heartbeat message the leader $ebedunost:, with
n < 8, members. The leader learns these members from IREP messdges
received in previous rounds. In any subsequent commuaitatly member node
addressed in the IREP message responds in the time slothekasassigned to by
the leader. Thus, all addressed nodes can send their datlilisioon-free way in
the firstn - 14 ms. As long as not all slots are occupied, all non-addressadbar
nodes use common CSMA with random backoff after the TDMAgqxktD trans-
mit their data. If all slots are occupied, the sending of rages by non-addressed
nodes after the TDMA period can optionally be switched off.cOurse, this op-
timization works only if the event is sufficiently long, i,@ few number of times,
within sensing area of the currently responsible leadeenod

6.4 Evaluation

The DELTA algorithm has been evaluated both in simulationsia real-world ex-

periments. Simulations allow a faster development of tlaf@m-independent
functionality and simplify the evaluation of larger netisr DELTA has been

compared to EnviroTrack (see Section 3.4.5). EnviroTradkiges similar group

maintenance and tracking functionality. EnviroTrack gr®ulo not collect sensor
readings and are thus not able to support localization assitication.

6.4.1 Simulations

The simulation settings have been adopted from the originalroTrack simula-
tion. The goal in [1] was to track T-72 battle tanks movingotigh an off-road
environment. For the simulations a realistic object pa#ither with sharp turns
nor following just a straight line, was used (see Figure.@ELTA has been eval-
uated with a TTL of 1 (only heartbeats are sent like in Enviewk) and a TTL of
2 (reporting event relevant data and informing the two-hejgimborhood about a
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leader). The speed of the target object and the ratio betasgsing range (SR) and
communication range (CR) were varied. Any experiment wpsated eight times.
The mean, minimum and maximum values are shown in the restiie sensor

network consisted of 160 nodes arranged in a grid consisfi®gx 20 nodes. The

distance between any two neighbor nodes was set to 25 mé&tezprevention of

concurrently present leaders is of main interest.
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Figure 6.5: Tracking of small-area events.

Figure 6.5 shows results with the communication range bsiggificantly
higher than the sensing range. Such scenarios are tailoredviroTrack and all
protocols perform equally well. Considering the ratio%lolbetween sensing range
and communication range, it is not surprising that DELTAhatihte TTL set to 1
performs equally well as when the TTL is set to 2. In such sgéesagroups can
easily be organized by the heartbeat mechanism alone. @$eoneither local-
ization nor classification can be performed if only heartheassages are used.
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Figure 6.6: Tracking of large-area events.

Figure 6.6 shows the performance results if the ratio betvgeasing range and
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communication range is larger tha}n Even with a ratio of%, which only slightly
hurts the constraint of EnviroTrack that the sensing raregsla to be smaller than
half the communication range, the number of coexisting gsdacreases consid-
erably for both EnviroTrack and DELTA with the TTL set to 1.i$lshows that in
scenarios with high sensing ranges a passive heartbeaanischalone is not suf-
ficient. Answering heartbeat messages with IREP messabes she problem of
concurrent leaders and supplies the leader with the infiomaeeded to support
localization and classification. The decreasing numbeeadiérs in EnviroTrack
for higher speeds is due to the inability of EnviroTrack tddbgroups in time.
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Figure 6.7: Nodes elected as leader in a specific simulation run.

Figure 6.7 shows two typical runs of DELTA and EnviroTrackhé ratio be-
tween sensing range and communication rang? iShe moving object crosses
the network at a high velocity of 135 km/h. The transmissiamge is 100 meters.
Accordingly, up to four neighbor nodes in one direction canifformed by the
heartbeat message. The figures show the effectiveness leftler election timer.
The random timer set by EnviroTrack is not able to determifeader node (win-
ner node) in time in the beginning, as shown on the left in Fegu7(a). Moreover,
the election of leader nodes is, in respect to the path of théng object, less op-
timal with EnviroTrack than with DELTA. Finally, the leadetection based on the
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sensor readings optimizes the number of required leaderthelnext section the
performance of DELTA and EnviroTrack in a real sensor nekwsinvestigated.

6.4.2 Real-World Experiments

All tests were performed indoor in a darkened room to mine@rexternal influ-
ences. 25 nodes were arranged in a grid consisting of 5 x Ssnedt a spacing
of 1.25 meters between every pair of nodes. The setup istédgit Figure 6.8.

Figure 6.8: Experiment setup with 25 sensor nodes.

The transmission power was reduced to a value of 16 to restmomunication
only to neighboring nodes. Two lamps, common office equigmath a 25 W bulb
and a 40 W bulb, were used as light sources. The lamp was hetdxamately 1.5
m above ground pointing to floor 1.5 m in front of the movinggmer. Thus, the
directly illuminated area was a circle with a diameter ofrappmately 2 m for the
25 W bulb and 4 m for the 40 W bulb, respectively. The persorery a distance
of 7 m, walking at a constant speed of about 0.3 m/s.

O O O O O

@) @) (@) @) @)

Figure 6.9: Event path through the sensor network.

The person walked along a straight line through the sengwronke as illus-
trated in Figure 6.9. Each experiment was repeated five taimes 95% confidence
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interval was applied. To be able to better assess the imp#uet different enhance-
ments of DELTA, a second EnviroTrack version (EnviroTr&dk) enhanced with
a moving average filter (see Section 6.3) was implemented too

Number of Concurrent Leaders

The results of the detection and tracking performance of D¥and EnviroTrack
are shown in Figure 6.10.
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Figure 6.10: Fraction of concurrent leaders in DELTA and EnviroTrack.

If the sensing range increases (40W bulb), DELTA produagsifscantly fewer
concurrent leaders than the original EnviroTrack impletagon. This supports the
simulation results. Concurrent leaders produce unnegessant reports, produc-
ing confusion while wasting energy and bandwidth. The néti@ad towards the
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base station is increased, affecting the overall netwdekirne.

The performance of EnviroTrack enhanced with the movingaye (MA) filter
is nearly as good as the performance of DELTA. The fast cogerere of the MA
filter at nodes close to the border of the sensing area, t.@odes that measure
only small signal magnitudes due to their location, supg@eshem from being
elected as leaders. Nevertheless, EnviroTrack is not aldegport any accurate
localization or classification. Moreover, there is a slighigher fraction of time
when no leader is present. This is due to the random leadeticgletimer that
more often elects poorly located nodes as leader than theuresaent-based timer
implemented at DELTA nodes.

Communication Costs

In the current implementation DELTA supports the local@atand classification
of events in the plane. The according optimization problema a dimensional-
ity of 3 due to unknown position and signal amplitude (seetiSec3.5.1). To

solve the according optimization problem sensor readirys fat minimum three
group members are required (IREP messages). If a nonlipianination method
such as Simplex Downhill is used the minimum amount of infation is sufficient

to get useful estimations (see Chapter 7). For this reasdniranrder to mini-

mize communication costs, the transmission of IREP messags restricted to 3.
Therefore, the on-demand TDMA mechanism proposed in Seéti® was used.
In theory, setting the number of available slots for IREPdses to 3 should be
sufficient. However, due to packet loss, on average 5 respgmdembers were
required to guarantee the reception of 3 IREP messages HSBqiodes.

250

IREPs T——

B Heartbeats m—m—:
200 1 4
150 -
100 |
0
DELTA DELTA ET ET ET ET

MA-25W MA-40W  25W 40W  MA-25W MA-40W

Number of sent messages

Configuration

Figure 6.11: Communication costs of DELTA and EnviroTrack.

Communication costs of DELTA and EnviroTrack are depicteéigure 6.11.
Figure. 6.11 shows that for a higher sensing range the corication costs of
DELTA are similar to those of EnviroTrack. However, DELTA@hdy provides
the leader with the information needed for localization alassification. On the
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other hand, similar functionality would have to be addedn@i®Track to support
localization and classification.

EnviroTrack enhanced with the MA-filter was able to keep thmber or sent
messages small. Accordingly, communication costs for gmaintenance were
decreased. No localization and classification can be stgypget, though. In gen-
eral, DELTA elects leaders located closer to the event thanr&lrack. These
nodes cover the sensing area well. On the other hand, witlrd@mack MA
slightly more concurrent tracking groups occur due to tleeten of poorly lo-
cated leader nodes. This leads to the slightly higher amotisent heartbeats
observed with EnviroTrack MA. Therefore, if neither loealiion nor classification
is required, DELTA with the MA filter but without IREP functiality is the best
choice.

The DELTA results show that on average the desired numberlREP mes-
sages has been received. Accordingly, localization arssifleation methods can
be executed on the leader. Of course, parameters can beeddaptollect more
information about the present event.

6.5 Conclusions

The DELTA algorithm provides an efficient and fast event digde and tracking
algorithm. Tracking groups are efficiently and dynamicaligated. DELTA works
in many cases including smart dust environments with sradibrranges and high
sensing ranges. The leader election procedure of DELTA aptaek, quick and
precise. Using the sensor readings improves both, evesttta®t and tracking per-
formances. The implementation of a moving average filtemalthe suppression
of poorly located sensor nodes. The convergence propertiyedfilter is depen-
dent on the platform and network used and therefore needsd¢orisidered before
deployment.

DELTA provides the event detection system with the requiletection and
tracking functionality. Additionally, DELTA provides theverlaid localization and
classification mechanisms with the necessary informatibhas been shown that
the usage of 5 IREP transmission slots together with the Mérfitas sufficient to
collect the required data and to suppress concurrent leddee Figure 6.10). In
later localization experiments the TmoteSky nodes (se&de8.8.2) were used,
too. With TmoteSky nodes more than 95% of all IREP messages meeeived.
Accordingly, on TmoteSky nodes the number of slots for IRERIgrs (members)
could indeed be decreased to the minimum of 3 to receive 3 $RERverage. To
conclude, DELTA was shown to optimize the desired tradebetiveen required
accuracy and communication cost minimization. In the nbapter the localization
of events based on the information collected by DELTA is gnésd.

128



Chapter 7

Event Localization and Signal
Strength Estimation

This chapter discusses the localization and signal stneegiimation features pro-
vided by DELTA[150], [152]. In the previous section it hasbeshown that events
are observed and tracked by dynamically established grdrglevant sensor data
is collected at appointed nodes (group leaders) which asgnael to perform all
subsequent localization and group organization tasksh,Beent position and the
signal strength(s) of the emitted signal(s) of an event atienated. The emitted
signals and their amplitudes are event-characteristiccande used for classifica-
tion of the respective event sources.

7.1 Introduction

In this chapter DELTA is enhanced with the localization amghal strength esti-
mation logic, which is based on a well-known sensor modek fiodel has been
introduced in Section 3.5.1. The solution of the localmatand signal strength
estimation problems is addressed in Section 7.2. Sect®provides simulation
and real-world performance results.

Existing localization and signal strength estimation apphes mainly focus
on accurate but cost-intensive collaborative signal msiog (CSP) methods. The
related work has been presented in Section 3.5. Energyeeffiperformance and
network organization issues as proposed in our own apprpaesented in the pre-
vious chapter, are barely considered. On the other hanéndamg on the applica-
tion, localization and classification requirements mightdss constrained than in
traditional CSP research fields such as robotics. Thergfomireless sensor net-
works more cost-efficient methods might be sufficient. DEIbF&Iges the gap by
providing satisfying accuracy while keeping the networkda@t a reasonable level.
The performance of the proposed localization and signehgth estimation meth-
ods is evaluated in simulations as well as on real hardwam@edVer, a problem
of closed-form linear least-square solutions is outlined discussed.

Based on the information collected at the leader node, DEET#ble to esti-
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mate both, the location and the characteristics of an eventthe emitted signal

power(s) of the event. There are two restrictions on the &frgignals which can be
used in the localization and classification procedurest,Rine computation of po-
sition and signal emission power requires an attenuatiotefrfor each considered
signal (e.g., sound, vibration, RSSI). Second, to be abttaisify distinct events,

the signal emission power of every specific event needs tchheacteristic, i.e.,

more or less constant. Considering classification, whigddressed in Chapter 8,
an accurate determination of the event position is of litd@ortance. There, the
event location is mainly derived as byproduct in the emittigthal power compu-

tations. For other applications the event location mighthdifferent interest.

7.2 Event-Based Localization and Signal Strength Esti-
mation

Event-based tracking and localization methods use theoseaadings collected
on the sensor nodes. In order to assess the collected informadequate sensor
models for the particular sensors are required. The commes#d sensor model
has been presented in Section 3.5.1. In our work, this maaebleen used too.
The resulting nonlinear optimization problem can eithesbled with nonlinear
methods (see Sections 3.5.2 (Simplex Downhill) and 3.5@j@ate Gradient
method)) or it can be linearized and solved (see Sectiod)3.5.

In the simulation part of this work we will show that the limzation lacks
drastic accuracy if the linear system is not over-deterchin@n the other hand,
over-determination requires additional communicatiomjchy cannot always be
provided in wireless sensor networks. Moreover, even im-degermined systems
linear least square methods are not able to provide theasinhdgree of accuracy
as nonlinear methods.

Accordingly, for DELTA we evaluated the Simplex Downhill gathe Conju-
gate Gradient descent method. Both algorithms are notgieateagainst finding
local minima. Therefore, the determination of a well-phstarting point, respec-
tively simplex, is crucial. Finding the global minimum is badlenging problem.
Moreover, itis very cost-intensive and therefore not flédor our purposes, i.e., it
needs an additional search procedure (e.g., Monte Carlchwinakes it unfeasible
to run on sensor nodes.

7.3 Evaluation

DELTA provides the leader node with the information needelbtalize and clas-
sify events. In a first step, different possible localizatinethods have been eval-
uated in Matlab. The Simplex Downhill (SD) and the Conjugatadients (CG)
methods together with a closed-form linearized least sq{arS) solution have
been considered. The Simplex Downhill method showed thegeetrmance and
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was chosen for subsequent implementation on real senstwaig. Results are
presented in the subsequent sections.

7.3.1 Simulations

In a first evaluation four nodes were arranged in a square avéide length of
125 cm. Thus, all localization methods had to work with th@imum amount of
data that is required to solve a system with three unknowng, (). The linear
least square method was expected to perform poorer tharotiimear methods,
because the system is not over-determined. An event wasmdygblaced within
this square. The localization was performed 200 times witbrdidence interval of
95%. The intervals are very small and thus difficult to obsenvthe figures. Both,
Simplex Downhill and Conjugate Gradient require well l@chstarting points. For
Simplex Downhill the simplex is located at the center of avkthe sensing nodes
and their measurements. For Conjugate Gradient only therceharea is needed.
Optionally, the linear least square method could be appbatetermine the start-
ing point, respectively simplex, of the Simplex Downhillca@onjugate Gradients
methods. Noise in the sensor readings is modeled as Adalitidihite Gaussian
Noise (AWGN). AWGN distorts the received signal accordinghormal distribu-
tions. The AWGN level has been increased in steps of 10% freorb0%.
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Figure 7.1: Localization and Signal Strength Estimation of SD, CG an&LL

The localization and signal strength estimation resukssown in Figure 7.1.
The results show that the linear least square method dodg&nedompute the loca-
tion of the event nor its emitted signal amplitude satisfelyt Almost independent
from the noise level, the position error is always about 4G%he transmission
range (i.e., of the grid length). The signal amplitude ersoeven worse. On the
other hand, both Simplex Downhill and Conjugate Gradiemfqom well even if

131



only the minimum amount of information is available as ind&g7.1. Due to un-
reliability and efficiency reasons this might happen fredlyein sensor networks.
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Figure 7.2: Localization accuracy of SD and LLS.

The distance errors of Simplex Downhill and linear leastasglare shown in
Figure 7.2 for AWGN of 10% (good signal to noise ratio) and 4@(%or signal
to noise ratio), respectively. To improve readability, thstance errors of only
50 out of 200 position estimations are depicted. Only ligifeected by AWGN,
the majority of the linear least square estimations areectosthe center of the
sensing area. The distance errors (lines between the esaattositions and their
estimations in Figure 7.2) are accordingly high. Considgthe Simplex Downhill
method, the noise level has a noticeable impact. Nonethede®n with a noise
level of 40% the accuracy of the estimated event locatiorhiriag sufficient for
most applications. The accuracy of the linear least squatbad can be improved
if the system is over-determined, i.e., if more than fourssemodes are used in the
scenario above. Of course, this implies additional comeatiuon load. Moreover,
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due to increased collision and link failure probabilitiesight become challenging
to collect that information (see also Section 6.4.2).
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Figure 7.3: Accuracy of LLS, SD, and CG in an over-determined system.

In Figure 7.3 results obtained with 6 sensor nodes (ovexrdehed system)
are shown. The two additional nodes were placed at posifiofs 125) and (175,
250). As expected, the performance of linear least squanepioved in the over-
determined system. However, it does still not achieve thopeaance of the non-
linear methods. The distance errors of Simplex Downhill kinelar least square
are shown in Figure 7.4 for noise levels of 10% and 40%, resedc Again only
50 out of 200 position estimations are depicted in order forave readability.

In conclusion, both Simplex Downhill and Conjugate Gratlieatperformed
the linear least square method in all scenarios. Moreovér,axnonlinear solution
it is possible to solve localization and signal strengtimestion problems with the
minimum amount of information required, which implies lessnmunication load
and a higher success probability. The performance of Skrptavnhill shows a
good trade-off between estimation accuracy and commuoicktad to provide the
leader node with the required information.

7.3.2 Real-World Experiments

Based on its good performance in the simulations and itslgityp the Simplex
Downhill algorithm was chosen for experiments on real handw Real-world ex-
periments were performed on two different platforms, ngelESB sensor nodes
(see Section 3.8.1) and on TmoteSky sensor nodes (seerSé@&id). In a first set
of experiments the Simplex Downhill method was implemerdascan add-on to
DELTA on the ESB sensor nodes. In subsequent experimentsausdd only on
localization and signal strength estimation performanue immplemented the ac-
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Figure 7.4: Localization accuracy of SD and LLS in an over-determinesdey.

cording functionality on the TmoteSky nodes. The resulttheflatter experiments
were used for subsequent classifications.

Implementation on ESB Nodes

For the real-world experiments on the ESB nodes the sameriesgtup as for the
simulations was used. The Simplex Downhill algorithm waplemented accord-
ing to [114]. Similar to the experiments performed in theedébn and tracking
evaluation of DELTA in Section 6.4.2, two light sources of B&tt and 40 Watt
were used. Every estimation was repeated for 50 times. Tadization frequency
was two times per second. In contrast to the simulationseteat was not ran-
domly placed in the event area, but at specific positions2%0,(250), P2(250,188),
P3(188,188), and P4(219,219). The sensor node locatiren(l the event loca-
tions () are shown in Figure 7.5.
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Figure 7.5: Arrangement of sensomsand event locations.

The mean distance errorg) and the standard deviations)(of the localization
tests are provided in Table 7.1. Considering the distancd&®6fcm between two
neighbor nodes, a maximum mean location estimation errdt om, at location P1
using the 40 Watt bulb, is acceptable. The Simplex Downhdithod performs best
for locations inside the square. The performance is deeteiishe event position
is very close to a sensor node. The standard deviation wakisratexperiments.
In a large sensor network the sensor nodes observing an wileit general be
located around the event source. Thus, the event positiangdsin most cases lie
within coverage area of the monitoring nodes.

Table 7.1: Distance errors and standard deviatiomson ESB nodes in [cm].

25 Watt 40 Watt
Position g | o o | o
P1 18.43 0.14 20.91 0.23
P2 3.86 0.59 14.94 3.21
P3 6.3 0.85 413 0.11
P4 3.69 1.6 5.04 1.68

Apart from the position, the Simplex Downhill method alsorguutes the emit-
ted signal strength of the event source. For the classificati events this value is
even more important than the event position, as it is assumed characteristic
for the event. Due to the implementation of the light sensoittee ESB sensor
nodes, light intensity is estimated in Hz (see Section 3.8.ie mean emitted sig-
nal strength computed for the 25 Watt buld ig1-10° Hz with a standard deviation
of 0.246 - 10% Hz. On the other hand, the mean amplitude of the 40 Watt bulb is
2.88 - 10° Hz with a standard deviation 6452 - 10° Hz. Obviously, the resulting
spectra of both events are disjoint and can therefore befasethssification.
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Implementation on TmoteSky Nodes

Compared to the ESB platform, the TmoteSky sensor nodesderovore reliable

communication due to the implemented radio (see Sectia)3.Bloreover, they

provide Photosynthetic Active Radiation (PAR) and Totala&adiation (TSR)

light sensors. In subsequent experiments the TSR and thesBA$brs were used
to classify different light sources. For the localizatigignal strength estimation
and classification experiments five different light souydmsbs of 25, 40, 60, 75,
and 100 Watt, were used. The light bulbs were arranged aocptd the setup

depicted in Figure 7.6.
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Figure 7.6: Experiment setup with 15 event positions.

In the experiments the light sources were placed at 15 mtsitiEach exper-
iment was repeated 30 times, which resulted in sample st siz2250 samples.
According to DELTA (see Chapter 6) one of the sensor nodesgur€ 7.6 acted
as leader node and requested the sensor readings fromgtsoeinodes twice
a second. The information collected by the tracking groupiaied in 7.6 pro-
vided the leader node with sufficient information to compenent position and
characteristics in an over-determined system. In the ESRranents the sensor
readings of 4 sensor nodes were considered. AccordingdyE®B results were
computed with the minimum amount of sensor readings. Ontiier dvand, in the
TmoteSky experiments 8 sensor nodes were considered. forerperformance
on the TmoteSky nodes should be better. However, a compassdifficult, be-
cause the sensor nodes implement different light sensdns. EEB sensor node
implements a light sensor that measures only infrared (segdd 3.8.1). On the
other hand, the PAR and TSR sensors implemented on the Thyote$h include
visible light.

Again, the Simplex Downhill algorithm was applied. The piosi of the event
as well as the emitted signal strengths of the PAR and TSResalere computed.
The estimates are reported to a base station, where thetedlldata is used for
classification (see Chapter 8).

In Table 7.2 the mean distance erraysand the standard deviatiomsof the
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Table 7.2: Distance errorss and standard deviatiomson TmoteSky nodes in [cm].

PAR TSR
Bulb (5] | o1 Do | 0]
25W || 5.31 | 3.29 || 9.67 | 5.30
40W || 4.57 | 3.54 || 13.67 | 7.10
60W || 443 | 3.07 || 18.26 | 8.66
75W || 5.03 | 3.35 || 20.94 | 9.54
100 W || 6.48 | 2.63 || 25.00 | 10.31

event position estimations are shown. In all experimergsdilstance estimation
was more reliable with the PAR light sensor. Moreover, it agmed more or less
constant at approximately 5 cm for all tested light bulbsjcihs a feasible ac-
curacy considering the monitored area of 1 square meter.h®mwother hand, the
estimations based on the TSR light sensor showed a largatigarover the dif-

ferent light bulbs. The distance errors varied from 9 to 25 éuacordingly, the

PAR sensor is better suited for event localization purpd$ewever, if accuracy
requirements allow it, the TSR sensor can be used too.

Table 7.3: Signal strength erroi® and standard deviatiomson TmoteSky nodes in Lux.

PAR TSR

Bulb @1 | o1 92 | 09
25W 3.24e* | 0.77¢% 3.16e* | 0.47¢%
40W 5.72¢* | 0.96¢* || 5.23¢* | 0.73¢*
60 W 9.61e* | 1.18¢% 7.94e* | 1.176%
75W || 12.07e* | 1.29¢* 9.54e* | 1.38¢%
100 W || 17.47¢* | 1.89¢* || 12.09¢* | 1.64¢e*

For classification only the emitted light signal strengths ased. Table 7.3
shows the mean emitted signal strengt®9 &nd standard deviationg’) of the
experiments. Considering the PAR sensor, it seems as ifitteeedht light bulbs
should be distinguishable, at least to some extent. This#se mean values
together with the respective standard deviation are mokessrdisjoint. The same
is true for the TSR. However, similar to the distance estiomegrrors, the variations
are again higher for the TSR sensor.

Comparing both sensor platforms in terms of localizatiod signal strength
estimation accuracy was not in the scope of our work. The E®B®& nodes have
been used to develop DELTA and to provide localization agdadistrength esti-
mation results. On the other hand, the TmoteSky platformtinas been used to
evaluate the classifiers. Nevertheless, the PAR sensordpsoglightly better re-
sults than the infrared sensor implemented on the ESB se&ioslas. This might
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partly be due to the different hardware, but is partly alse thuthe usage of ad-
ditional sensor readings in the TmoteSky experiments. TBR $ensor has per-
formed similar to the infrared sensor implemented on the E&Bor nodes.

7.4 Conclusions

The DELTA localization and signal strength estimation fiimzality provides accu-
rate and distributed optimization methods. The evaluatghowed that a nonlinear
algorithm is best suited in terms of communication load aswieacy. Based on the
Simplex Downhill optimization method, estimates of theipos and of the emit-
ted signal strengths of an event can be computed on a leader Mhe accuracy of
the mechanisms is satisfying. In particular with the PARssemmplemented on the
TmoteSky nodes, distance errors were in the order of 5% df#éimnsmission range,
which is sufficiently accurate for many applications. Farthore, the computed
emitted signal strength(s) of the different light sources more or less disjoint.
Thus, classifications based on these estimations are f@s3ibe computed esti-
mates can be transmitted in event reports to the base staims, DELTA avoids
communication overhead in the event observing area andraee@ important on
the paths towards the base station. The classification oit®v& addressed in the
next Chapter.
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Chapter 8

Event Classification and Reasoning

This chapter considers event classification and reasoiugnt reports, collected
and computed in a distributed manner with DELTA, are useddnitar and classify
observed events [152], [153], [154]. In [152] the classtfma of time-discrete
events is considered. The respective training and testwleta collected with
DELTA. In monitoring tasks such as anomaly detection in eficcess, events are
not present as discrete entities, but occur over time. Heneéhods to model and
process such events are required. In [153] a simple Fuzzy @dtifal network
approach is presented. It classifies and compresses othsssmdnuous signals
at the sensor nodes. The compressed output is then sent g& atagion, where
system-wide event classification can be performed. Thidkas implemented in
an office monitoring application [154] and is presented imgibr 9.

8.1 Introduction

Event classification and anomaly detection have gained ratiehtion in wireless
sensor networks as presented in Section 3.6. The propogedagpes cover a
considerable range of applications. Nevertheless, siriglgweight, but still self-
learning algorithms that are based on the information ctdtkin tracking groups
have rarely been considered. In particular, an energyiaificystem for the de-
tection of illegal building intrusion by wireless sensoitwerks has not yet been
provided. Many existing approaches either do not providécgent accuracy or
impose too high demands in terms of communication and stol@a@ddress the
problem. In particular, many systems are tailored to higidgurate, short-term
deployments. Considering building monitoring such an agphn is not applicable,
though. In our application a physical environment has to &enanently mon-
itored. Consequently, frequently loading batteries isfeasible. On the other
hand, simple threshold-based detection systems are ndiléeand require ex-
pert knowledge to determine best-suited thresholds. Fesetlieasons we have
developed problem-specific lightweight solutions thateartop of the networking
functionality provided by DELTA.

Our system provides both, functionality to classify timsedete events and
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means to distinguish abnormal from normal behavior. Botblgms impose dif-
ferent demands on the respective system.

The classification of time-discrete events is addresse@dticéh 8.2. Thereby,
the content of event reports received from DELTA group leade classified ac-
cording to event classes learned from training data. A ifleas®ased on Fuzzy
Logic is proposed. It is compared to a probabilistic classiéind a neural network
approach. The trade-off between classification accuradgefalarm prevention)
and reporting latency is investigated. In the evaluatioe diferent light bulbs are
classified according to their estimated signal strengttssiom (see the implemen-
tation on TmoteSky nodes Section 7.3.2). Light sourceslassified according to
their emitted photosynthetic active radiation (PAR) andlteolar radiation (TSR)
values. With the proposed classifier, classes of event that priori known can be
classified in an unsupervised way.

To deal with continuous events that evolve randomly in aner dime, the
Fuzzy Logic Controller presented in Section 8.2 is not caremt. An accurate
classification of continuous event patterns with respepréwiously learned event
classes is barely implementable due to resource constriaiukistributed wireless
sensor networks if long-term operation is required. This&nly because storage
capacity is limited and because arbitrary, randomly od@egrevents are difficult
to predict. On the other hand, if the classification of evéstsot necessary, but
the detection of anomalies is sufficient, the resultingagercomplexity can be
lowered. This allows the implementation of anomaly detectiunctionality in
wireless sensor networks. An adequate anomaly detectoodmlavel is proposed
in Section 8.3. The algorithm is based on Adaptive Reson&heery (ART). An
ART neural network is a simple kind of neural network whichresents an adap-
tive memory. Thus, a given sensor is able to learn some Jlpcalotypes of event
patterns. With this adaptive memory each sensor node idg@bdport (temporary)
unknown event patterns. Our ART neural networks are extbndéh an aging
mechanism, which allows discarding old, rarely recognieeent patterns to make
space for new unknown event patterns. Therefore, our ARTaheetworks pro-
vide the sensor nodes with a short term memory. Thus, theifgacapability can
be maintained. The ART neural networks have been used totaatd report flash-
light periods. The TmoteSky sensor nodes measuring PARIes® used. Hence,
the ART neural networks process time vecters- {z1, ..., zy }, which describe
the evolution of the PAR light signal over a specific intervethe anomaly detector
is completely self-learning, adaptive, and does not regaity a priori knowledge
of the kinds of events that will occur. Drawbacks are pooceugacy compared to
classifiers that are tuned from training data.

In Section 8.3 the application of ART neural networks fordbdetection and
reporting of flashlight periods is investigated. In subsgquvork, ART neural
networks have been used for building monitoring. Our officnitoring system
based on ART neural networks is presented in Chapter 9. Fioeahonitoring,
passive infrared (PIR) and vibration sensors have been used
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8.2 Classification and Filtering of Time-Discrete Events

In this section the classification of time-discrete evemtsguted on TmoteSky
nodes is investigated [152]. Three different classifiessevaluated: a Bayesian
classifier, our developed Fuzzy Logic Controller (FLC), andeural network ap-
proach. Generic monitoring applications pose an impontagtirement on clas-
sifier design. A priori knowledge of event classes is diffidol obtain. Hence,
events are only observable as collections of raw sensor Gaasequently, event
classes need to be learned from that raw (training) data. @é®aequence, pre-
labeling of the events is not possible. In our work, evenss#s are learned by a
k-means clustering algorithm (see Section 3.6.1). Anyegient classifier train-
ing is based on these extracted event classes. Thus, tHengslassifiers are
completely self-learning. Event classes are modeled doapto training sets of
emitted signal strength estimations collected with DEL$Ad Section 7.3.2). The
resulting event estimates are reported to a base statioerevthe classifiers are
trained. The learned classifier parameters are then dodexoanto the sensor
nodes, where any subsequent classification and filteringrismed.

8.2.1 Introduction

Environmental data is sensed and processed on the sensw. daldiscussed be-
fore, event reports are commonly sent to a base station,entherdata is stored
and/or further processed. Reporting the measurementsdil@ansor nodes to the
base station is expensive. Therefore, the DELTA algorittas Ibeen developed.
With DELTA events are monitored in a distributed manner anly the computed
estimates are reported to the base station. In order to alloewvent detection sys-
tem to respond to collected event reports, classificatioctionality is required.
Classifiers might be implemented at the base station or eveseiosor node level.
By implementing the classifiers on node level, false or relavant event reports
can be filtered in the network. Thus, communication costsbeasaved. The clas-
sification and filtering of event reports requires meansgtradjuish different event
types on one hand and confidences in the classifications atfiee For anomaly
detection a distinction between different event types isnezessary. Thus, our
anomaly detection algorithm proposed in Section 8.3 fadlanother approach.

In our work we consider classifiers which are modeled basedeasured data.
Therefore, the event classes and the parameters of thédielaae learned, respec-
tively estimated, from training data. In many applicatieugh as most monitoring
systems, it would be difficult to predetermine event clasbésreover detailed ex-
pert knowledge would be needed. To avoid these drawbackganssed learning
techniques have been developed. Relevant related worlegemied in Section
3.6. Learning from data has the advantage that no expertlkdge is required.
Thus, the application of the algorithm is simpler and desigws due to poor data
abstractions can be prevented.

Another classifier requirement is the ability to filter suspiis data (e.qg., false
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alarms). To support this task, a classifier based on fuzag tmmcepts has been de-
veloped. A neural network approach that provides the samaitinality has been
evaluated too. Both classifiers assign a confidence degreeety classification.
Thus, itis possible to filter time-discrete events that diosatisfy a given threshold
requirement. Because non-satisfying event reports aeesfilf a periodic reclassi-
fication of events is required. In most applications suchualsling monitoring or
event tracking, a continuous monitoring with periodic teaputations of the event
characteristics is needed per default. Obviously, theifiljeof event reports has an
impact on reporting delays. If more event reports are fittefewer reports arrive at
the base station. This might introduce additional delayd an event is reported.
On the other hand, if reports are processed unfiltered, td&ens might be re-
ported and subsequent actions might arise, which impliesggrcosts and might
lead to financial costs. Therefore, the trade-off betwetsefalarm tolerance and
reporting latency is investigated.

In contrast to classification, which can easily be executedemsor nodes, the
estimation of the classifier parameters, i.e., the clasdifiging, is performed at
a base station. This has two reasons: First, the classifiened from training
data which needs to be collected at a central instance any®eond, the tuning
of the classifier is too expensive to be run on a simple sensde,nbut can be
performed at a base station equipped with more computatiameip Alternatively,
if the event reports are routed to a dedicated station inrtezriet, the classifier
tuning can be performed there, too. Once the parameters ofdbsifier have been
computed, they only need to be downloaded onto the sensesnadhich perform
any subsequent classification.

8.2.2 Fuzzy Logic Controller

In this section our Fuzzy Logic Controller (FLC) is preseht&he basic concepts
of fuzzy logics have been presented in Section 3.6.3. Allpatations are based
on the clusters learned by fuzzy k-means (see Section 3.8/&)assume that
different event classeS; have been extracted. Fuzzy Logic Controllers classify
event patterns according to classification rules. Accglgljirthe premises and con-
sequences of the rules need to be determined. Common Fuggy Controllers
model the premises and consequences based on expert kgewlEis is appro-
priate for systems where the expected event types can betagtdBecause this
is difficult in event detection and monitoring systems, wedeldhe classification
rules from training data. In Section 3.6.3 Takagi Sugeno Thksifiers have been
presented that provide the desired functionality. TSKgifaess have the additional
desired property that each conclusion of a classificatite assigns a given event
pattern with a certain confidence to the specific class thenpats expected to
belong to. This allows the assignment of belief degreesassifications, which
false-alarm filtering. Therefore, we have decided to modelFuzzy Logic con-
troller according to the TSK2 classifier model (see SectiGn33.

In the following we show how the tuning of both the premised dre conse-
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guences is performed in our approach. The idea is to genexatdly one rule for
each event class (represented as cluster). Accordingiy @assification rule is
used to classify samples of one specific event class.

Tuning the premises

The premises are tuned from the clusters learned by fuzzedas Thereby, the
fuzzy sets of the premises are the projections of the clustethe coordinate axes,
where the cluster center has highest membership degreeclUster, actually a

scatterplot of event samples (estimations) belongingthegeis visualized by a

bell in Figure 8.1.

./[.\. ...Sample in cluster
y o\

aq b4 c1 X1

Figure 8.1: Mapping a cluster to the fuzzy seds, ; of the premises ifk2.

The projection of a 2-dimensional cluster, i.e., the sasptasists of two kinds
of phenomena, is shown in Figure 8.1. In Figure 8.1 the alusteodeled accord-
ing to triangular membership functions. The rutg used to classify samples into
the cluster above looks as follows:

Ryt IF ps, (21) Apg, ,(w2) THEN g% (x) (8.1)

Different kinds of membership functioryssﬁkyi, with i = 1,..,n, can be ex-
tracted from a cluster. In our work triangular and Gaussiamivership functions
are used. In order to parameterize a triangular funqti/@kryi, the minimum, mean,
and maximum values of a cluster in dimension i are needed.d&temination of
the parameters of a Gaussian membership funﬁjgvr_l_ requires the mean and the
standard deviation of a cluster in dimension i. The propeiare approximations
and do not necessarily model the samples in the clustersiygxac

Tuning the consequences

In order to model the functiong,{SK2 of the consequences (see Section 3.6.3),
the estimates;, ; have to be computed (see Equation 3.14). These estimates are
computed for each rul&;. Therefore, the degree of satisfaction (significance) of
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the premise of each rulg;, in the following labeled as firing strengthg(z), needs
to be determined (consider also the premise in rule (8.1)):

T(2) = p g, (20) Apg, ,(22) A A, (20) (8.2)

For the TSK2 classifier (see Equation (3.14)) the productéslas aggregation
functionA. In order to obtain the firing strength. ;, of a ruleR;, to a clusteiC;, the
sum of firing strength$, ..., 3,, of all samples belonging to that specific cluster
C; are computed according to [72]:

Bri=>_ Ind(z,Ci)re(z),  Vk=1,..,m; (8.3)
zcZ

wherelnd(z, C;) indicates the clustef; to which the element belongs:

1, if 7(z) is maximum

8.4
0, else 84)

Ind(z,C;) = {

This means that after having determined the clutewith maximum firing
strength as ’'class label'’ of a sampie the firing strengths of with respect to
each ruleRy, is assigned to the according sumgp;. An example illustrates the
procedure. Given the set of samples= {z1, ..., z4 } and four rulesRy, ..., R4, One
for each cluster’y, ..., Cy, the firing strengths-, ..., 74 of each sample to each
rule are:

| Sample|| 71(z) | 72(z) | 73(z) | T4(2) || Class]
A 0.6 0.2 0.1 0.1 Ch
Z9 0.1 0.7 0.1 0.1 Co
Z3 04 0.3 0.1 0.2 Ch
Z4 0.2 0.2 0.5 0.1 Cs

Samplez;, for example, has a firing strength of 0.6 in respeaf’to of 0.2 in
respect ta’y, and of 0.1 in respect t6's andC), respectively. According to Equa-
tion (8.4),z, is therefore assigned t0; (bold in Table 8.2.2). Similar assignments
are obtained for the other samples. By applying EquatioB) (Be matrix3;, ; is

filled as follows:
06+04 0.1 0.2

02403 0.7 0.2
0.14+0.1 0.1 0.5
0.14+02 01 0.1

Bri =

o O oo

In the first columngy, ; of 3 ;, the firing strengths ofz;, z3 }, which belong to
clusterC', are recorded in respect to the according mjg i.e., to the respective
row in 3 ;. In the second column the firing strengthszef which belongs ta’s,
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are recorded. The fourth column gf ; contains no elements as no sample falls in
the according clustef’s. Thez;, ; are finally obtained by normalizing th# ;:

s = B (8.5)

ZT:I B,s
Both, premises and consequences are tuned at a manageatemt, &.g., a
base station, where the training data has been collected.e3tmated member-
ship functionsuAk . and the matrix;, ; are the only information which have to be
downloaded onto the sensor nodes. Any subsequent classificd inputx € R”
can then be performed on the sensor nodes by applying Equati4) .

8.2.3 Classifier Configuration

In the following the classifier configurations are presentacgddition to the FLC,
a simple Bayesian classifier (see Section 3.6.2) and a FegdftbNeural Network
approach (FFNN) (see Section 3.6.4) have been evaluatetihrée classifiers have
been tuned with the same training sets. For the evaluatmgdime test sets have
been used.

The data from the signal strength estimation experimentshenTmoteSky
nodes is classified (see Section 7.3.2), i.e., five diffelight bulbs are classified
according to their emitted Photosynthetic Active RadiatfBAR) and Total Solar
Radiation (TSR). Hence, each pattericonsists of two values that are fed into the
respective classifier. The feature or phenomena spacecquoestty isit?.

The FLC classifier has been evaluated with both Gaussiarriandwlar mem-
bership functions. Gaussian functions have the generaradge that the whole
feature space is covered. This is a nice feature, which tiesithpact in our kind
of application, though. If a pattern cannot be assigned toeng:luster, the sam-
ple is just not classifiable with respect to the given eveassis ( ; = 0). This
is a reasonable property in our context. Hence, the trianguembership function
introduces no drawback in that respect.

The FFNN running on the sensor nodes has been implemented @hidden
neurons. Thus, storage complexity of the FFNN is similahed bf the FLC. The
weights of the FFNN have been computed at the base stationtfre training set.
For classification, only the weights need to be downloaddd the sensor nodes.
Like the FLC method the FFNN method assigns a confidence tteissifications.

Considering the Bayesian classifier, the differéft and m; are again esti-
mated at the base station and then downloaded onto the seotes. Thereafter,
classifications can be performed on a sensor node accoamget(3.7) in Section
3.6.2. The Bayesian classifier does not support any congderits classifications.
A sample is fixedly assigned to the cluster it belongs to wigihést probability.

Before providing classification results of the FLC classifireSection 8.4, the
implementation of ART neural networks for local signal pssing and anomaly
detection is presented in the next section.
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8.3 Local Signal Processing with ART Neural Networks

The previous chapter has introduced techniques to classify-discrete events.
The assumption was made that the expected time-discretéseme either known
or occur frequently. Thus, expected classes of events cdeapeed in specific
learning periods. On the other hand, applications such @i monitoring re-

quire means to distinguish abnormal from normal behaviarnial behavior can
be learned to some extent. However, learning abnormal b@hsvmuch more

difficult and sometimes even impossible. Since modeling«peeted (abnormal)
behavior is commonly not possible and an overall knowledgxpected (normal)
behavior is both difficult to determine and storage-consignihe classification
methods proposed in the last chapter are not tailored todmaly detection.

8.3.1 Introduction

The goal of this implementation has been to detect and repodrmal light sensor
activation patterns (flashlight periods) on a sensor nodevidusly, the DELTA
algorithm was used to detect and track persons equippedanfidshlight. The
goal of this work was to learn and report given light senséivation patterns. The
light sensor activation patterns are composed of signals,dollected time series
of light measurements = {1, ..., zx }, which are monitored on the sensor nodes.
The classification problem faces mainly two restrictionsensor networks. First,
processing power and memory are limited on sensor nodesegoantly, complex
pattern classification methods are difficult to be impleradmin node level. On the
other hand, communication costs are high. Therefore, ibigossible to transmit
the observed signals unprocessed to a fusion center.

Therefore, we propose an adaptive memory approach thatesenline learn-
ing capability on node level. Observed measurement sqrézmdically collected
in predefined intervals, are processed. Consider the foltpgeriesk = [0, 0, 123,
64, 111, 0, 0, 0, 3, 0] of light measurements in Lux sampled Impde in two
seconds. By applying the adaptive memaoryis classified and compressed with
respect to the current memory of the node. This meansisfknown, the classifi-
cation number is returned by the adaptive memory. Othepwisehich represents
a not classifiable or unknown event is reported. Only thissifecation output is
transmitted to a central fusion center, e.g., a DELTA leamtete or a base station.
Thus, event patterns are classified and compressed at nalewvdich reduces
the amount of reporting data considerably. At the fusionteenhe system-wide
classification, of the different local decisions, receivemn the sensor nodes, is
performed. In this section the decision unit which classiied compresses ob-
served signals on node-level is introduced [153]. The systéde decision unit is
presented in Chapter 9.

In our work, the adaptive memory is implemented as a simpleateetwork
based on Adaptive Resonance Theory (ART) (see Section)3®W Fuzzy ART
neural network learns and classifies sequentially preseiib@ input vectors. The
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number of stored event classes (prototypes) can be catralid no buffering of
input vectors is necessary. Moreover, the sequential psoug and learning im-
poses moderate computational complexity, which makes|guitam applicable

to sensor nodes. Any observed input is compared and clasgifib respect to a
maximum number of\/ prototypes, which are learned and continuously updated
by the Fuzzy ART. Consideringy/ prototypes and an input vector of sidethe al-
gorithmic complexity, both in time and memory usage, hasils®wn to be in the
order of O(M N) [15]. The theory of Fuzzy ART neural networks was discussed
in Section 3.6.5. Some adaptations to meet the requirenoéntsreless sensor
nodes are presented in Section 8.3.2. Real-world expetirasults are provided

in Section 8.4.2.

8.3.2 Local Fuzzy ART Neural Network

In Chapter 6 we have introduced the DELTA tracking algorittidelta was used for
terrain monitoring during night. Persons equipped withHiigéits were tracked.
Hence, flashlight periods need to be distinguished from abitlumination pat-

terns. This can be well done with ART neural networks. Adagetof the ART
neural networks is their unsupervised nature and theiriefioy in terms of mem-
ory usage and computation costs.

Traditional ART neural networks provide a long-term memairy/ categories.
When all M neurons in the comparison layer F2 of the ART neural netwoek a
used, the learning capability of the ART neural network ibaaisted. Any new
input pattern, even if it occurs frequently, can no longetdagned. Hence, 1 (un-
known) would be returned for every such input pattern. Ondtieer hand, we
envision a mechanism that recognized frequently present jpatterns, while spo-
radic input patterns shall be classified as unknown. Theggfee have changed the
common ART neural network design to implement short-terrmory. Short term
memory is implemented by an aging mechanism. After everyitoiang cycle,
the age of each prototype that has not been matched is inctedheThus, spo-
radically matched prototypes become older quickly. As sa®the memory of the
ART neural network is full, always the oldest prototype ie themory is replaced
by the current, unknown input pattern. The approach is redde as frequently
matched prototypes (normal input) are hardly affected leyabing mechanism.
Thus, frequent input is recognized and filtered by the ARTralenetwork.

Finally, traditional ART neural networks return the catsgoumber if a cate-
gory is determined for a given input time vectoand -1 otherwise. In contrast, our
ART-based event detector returns 1 (state has changed) éfabsification number
of two subsequent classifications has changed and 0 (nocstatgje) otherwise.
Flashlight periods lead to many classification state chand¢ence, the number
of classification state changes is used as indicator forligggperiods. The ART
neural networks used in the detection of flashlight periadwide the following
features:

e The ART neural networks are very lightweight.
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e Repeated illumination conditions are filtered by the ART raémetwork.
This saves communication costs.

e Flashlight periods lead to many classification state chawegel thus to re-
ports.

e A data compression @V to 1 is achieved, which minimized data volume.

In the implementation light signals are continuously morat in intervals of
2 s. Within this 2 s the light intensity in Lux is sampled 40 ¢isn To decrease
the size of these time series, two discrete Haar Waveletfwens are applied (see
Section 3.6.6). The resulting analog input time vectoof size 10 is fed to the
Fuzzy ART network. The input time vectarrepresents the monitored light signal
over two seconds and might for example look as follows: [0 8892398 0 0 0 0 0]
in Lux. In this example the light sensor would have measuigdtt in the second
half of the first monitoring second. This pattern is thensiked in dependence of
the stored prototypes in the memory of the Fuzzy ART neuralonk.

The recognition (comparison) layer F2 of the Fuzzy ART nenedwork allo-
cates memory for 10 categories. This means, the adaptiveorgeémplemented
on the sensor nodes can store up to ten event pattern presotype resulting stor-
age requirements are in the order of 200 bytes for the FuzZly @dwiral network
(each weight requires 2 bytes). The Fuzzy ART neural netwenkires only com-
parisons and simple arithmetic operations. To save conuation costs, twenty
subsequent Fuzzy ART outputs are stored into a single repotor that is sent
to a fusion center every 40 s. Thus, 800 samples collectedaoperiod of 40 s
are compressed to 20 values. The sensitivity thresholdeoftizzy ART neural
networkp is 0.75 and the learning rate is 0.1.
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8.4 Evaluation

In the following two sections the classification performaraf the Fuzzy Logic
Controller as well as the local signal processing perfomeanf the Fuzzy ART
neural network are shown.

8.4.1 Classification of Time-Discrete Events

The configuration of the classifiers was presented in Se8ti3. TmoteSky nodes
(see Section 3.8.2) were used. Five light bulbs of 25, 40,760and 100 Watt
were classified according to their emitted PAR and TSR valUd®e experiment
is depicted in Figure 7.6. The required training and test sadre generated as
follows: the emitted PAR and TSR values were estimated 3@difor each bulb
at 15 event locations. The resulting training and test setsist of 2050 event
patterns, consisting of PAR and TSR light emission estimalde mean emitted
signal strength error® and the standard deviationsin Lux of the sets computed
on the TmoteSky nodes are provided in Table 7.3 in Chapteh@&sd values only
indicate the distribution of the patterns in the sets. Fasgfication neither the
mean signal strength erro& nor the standard deviatiomsare needed. Two test
sets, namely a training set and a test set have been comfitedraining set was
used at the base station to tune the classifiers, while therpgain the test set were
classified on a sensor node to evaluate the performance m#gpective classifier.

False-Alarm Filtering

The FLC and the FFNN provide a confidence in their classificati The confi-
dence is a value between 0 and 1. A value of 1 means the claswfeperfect
confidence in its classifications. The filtering of eventsaselby rejecting classifi-
cations that do not satisfy a given confidence requirerfigniTable 8.1 shows the
performance of the different classifiers based on the ¢ieason error rate, i.e., of
the rate of wrong classifications (false positives) in deleece of7),.

All classifiers perform almost equally well if no filtering &pplied (), = 0).
Thus, a classification error-rate of approximatélys can be achieved. With FLC
and FFNN arbitrary classification error-rate constrairda be satisfied. If, for
example, the classification error rate needs to be smaler it (marked bold
in Table 8.1), the FLC-Gaussian and the FFNN requifg, af 0.5, while FLC-
Triangular requires ), of 0.4. The Bayesian classifier does not support filtering,
thus its classification error-rate remains constant.

Outlier Filtering and Reporting Latency

The FLC and the FFNN filter events that do not satisfy a gi¥gn As a conse-
guence some reporting delays are introduced. As mention8ddation 7.3.2, clas-
sification is performed at the leader node every 0.5 s. Trssifieation is aborted
in the current implementation i, is not satisfied after 30 computations, i.e., if the
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Table 8.1: Error rates of the classifiers.

Bayesian| FLC-Gaussian| FLC-Triangular|| FFNN
T, || Error %] Error [%)] Error [%)] Error [%)]
0 9.56 10.64 11.07
0.1 9.01 9.68 9.22
0.2 8.56 9.07 7.45
0.3 7.03 6.23 5.92
0.4 9.86 6.35 4.6 5.02
0.5 4.85 2.95 3.34
0.6 3.42 2.61 1.95
0.7 3.34 2.37 0.76
0.8 3.64 0 0.83
0.9 2.9 0

reporting time exceeds 15 seconds. To evaluate the regatélay five character-
istic distribution parameters (in seconds) have been ctedpd he minimum and
maximum, the median, and the lower and upper quartiles.

Table 8.2: Reporting delays of triangular FLC.

Error rate Latency percentiles pin [s]

1, (%] Min | 25-p | Median| 75-p | Max
0 10.64 05| 05 0.5 05 | 05
0.1 9.68 05| 05 0.5 05 | 35
0.2 9.07 05| 05 0.5 1 10
0.3 6.23 05| 05 0.5 1
0.4 4.6 05| 05 1 6
0.5 2.95 05| 05 15 7.5
0.6 2.61 0.5 1 425 | 135 | >15
0.7 2.37 05| 25 10.5
0.8 05| 45 > 15

0.9 0 05115

Table 8.2 shows the reporting latencies if applying thengidar FLC classifier
with varying 7),. The minimum reporting delays to achieve an error-ratewvoelo
5% are marked bold. The results show that i/0f all experiments (median)
event reports are generated within 1 s. Accordingly, thesifization needs to be
performed only twice to generate an event report. 167 all experiments a
report is sent within 6 s. At least in one experiment no repottld be generated
within 15 s. As expected, if}, is increased, the reporting delays increase too.
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Table 8.3: Reporting delays of FFNN.

Error rate Latency percentiles pin [s]

T, (%] Min | 25-p | Median | 75-p | Max
0 11.07 05| 05 0.5 05| 05
0.1 9.22 05| 05 0.5 0.5 1

0.2 7.45 05| 05 0.5 05| 25
0.3 5.92 05| 05 0.5 05| 25
0.4 5.02 05| 05 0.5 1 2.5
0.5 3.34 05| 05 0.5 1 4

0.6 1.95 05| 05 1 15
0.7 0.76 05| 05 1 15
0.8 0.83 05| 15 15 3
0.9 0 05| 15 3 7

> 15

The FFNN outperforms the FLC in terms of reporting delay (Sakle 8.3).
Considering an error-rate lower than 5%, in 50% of all expents (median) a
correct event report is immediately sent. Moreover, evethénworst case a report
is reported within 4 seconds. This is because the neurabmkfiwable to model the
distribution of the event patterns better than the FLC, Whieeds the abstraction of
triangular or Gaussian distributions. On the other hanel kttowledge processing
is hidden by the FFNN. This makes it more difficult to undendtand configure
the classifier. If the initial values are poorly chosen, tl&KN can perform much
worse than the FLC.

8.4.2 Anomaly Detection and Signal Processing on Node Level

In this section the performance of a Fuzzy ART neural networksignal com-
pression and classification on single sensor nodes is igatsti. The TmoteSky
platform was used (see Section 3.8.2). The goal is to detettistinguish flash-
light periods from normal illumination patterns. The Prsytathetic Active Radia-
tion (PAR) sensor has been used. The ART neural network eoafign has been
presented in Section 8.3.2.

All experiments started during daytime in a bright lectwwem. Two different
light patterns were tested. The first light pattern is shawthé upper part in Figure
8.2. First, the blinds were lowered. Then, the blinds weisethand lowered again,
before two flashlight periods occurred. In the second ligiitgon (in the lower part
in Figure 8.2) the raising and lowering of the blinds was stlted with turning
the room illumination on and off. Moreover, an additionabmoillumination on/off
period was performed between the two flashlight periodsh Baperiments were
repeated three times.

In both patterns two flashlight periods were included. Irséhgeriods, a person
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Figure 8.2: Light pattern | (upper part) and light pattern Il (lower part

equipped with a flashlight entered the room and searchedtim with the flash-
light. Thereby, the sensor node was illuminated from timérne depending on
the searching. Accordingly, the flashlight period invoketkmporarily increased
number of bright/dark switches on the sensor node. Instédldeoclassification
numbers, changes in the classifications (state changesgmreed.

Categories

A 4 A 4 A 4 A 4
Lodofolefofofefolofefefefefefe]r]efr]

State changes

Figure 8.3: Sequence of changes of classification outputs.

An example of a flashlight period is shown in Figure 8.3. In beginning
event patterns of prototype 1 were detected for a couplem@di Thereafter, dif-
ferent prototypes were detected in a short time. This is dtieet many bright/dark
switches imposed by the flashlight period. The changes ssiflaations represent
the frequency in presence of different input patterns. &loee, this measure was
used to detect flashlight periods. In office monitoring (seayer 9) we followed
another approach. It is important to remember that onlyestaanges indicated as
1 are reported by the observing sensor node. Thus, conBidezammunication
can be saved, since often classifications will not changg, #.no flashlight is
present during night time. Moreover, the mechanism is cetepy self-learining
and adaptive.

The results with the first light pattern are shown in Figure & all three exper-
iments the lowering and raising of the sun-blinds did nodl lemany state changes.
Accordingly, the Fuzzy ART anomaly detector is able to adagowly changing
environmental conditions. The adaptation behavior dependarameterization of
the Fuzzy ART network, though. Both flashlight periods arglgadentifiable by
the respective accumulations of state changes in Figurel®.dxperiment 1, the
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Figure 8.4: Occurrence of state changes in experiments 1 to 3.

raising of the sun-blinds in the end invoked one state chamgeh could easily be
filtered by the system.

In contrast to experiments 1 to 3, experiments 4 to 6 contairperiods where
the room illumination was turned on and off. This invoked felarupt illumina-
tion changes shortly before and after the first flashlightoge(see Figure 8.5).
Considering the detection of the flashlight periods, thdgperance is similar to
performance in experiments 1 to 3.

We conclude the evaluation by providing the mean numberaté sthanges in
all twelve flashlight periods which is 24.5, and the standédiation which is in
the order of 2. Accordingly, a person moving with a flashligahh well be dis-
tinguished from 'normal behavior’ by observing at least gaia number of state
changes in a specific interval. The filtering of subsequeahepatterns has lead
to communication savings of approximately 83%, comparea teechanism that
would have reported every ART output. A more detailed anslgspossible com-
munication savings with ART neural networks is providedha odffice monitoring
application in the next chapter.

The algorithm is completely self-learning and does onlyunesginitial param-
eter settings for the number of allowed prototypes, thdamgie parameter and the
learning rate. Depending on the observed signal and the myssnastraints on the
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Figure 8.5: Occurrence of state changes in experiments 4 to 6.

sensor node these values might slightly differ.
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8.5 Conclusions

In this chapter the classification of events has been adstiegdgorithms to clas-
sify time-discrete event patterns have been presentedcin8e3.2. The trade-off
between false-alarm prevention and reporting latency kas Investigated. The
evaluation has shown the trade-off between classificatioor-eate and reporting
latency. Arbitrary error-rates have been achieved with Ib@ FFNN. Error-rate
minimization imposes reporting delays, though. If the agion requires certain
accuracy but can handle some delay, a neural network or a RisSifter is an ap-
propriate choice. The FFNN achieves slightly better lagaesults, but the tuning
of the classifier is more critical. On the other hand, the F&€dsy to understand
and performs well.

The Bayesian classifier has performed similar to FLC and FRMRbut filter-
ing. Even with moderate filtering, the Bayesian classifievugperformed by the
other solutions, though. All three solutions require tirggn Each trained classifier
is performed at a leader node and requires only local nergjiolod information.
Thus, communication and computation overhead is kept small

Considering the detection of unexpected, continuous syt proposed time-
discrete algorithms are not suited. This is mainly, becahbsealgorithms require
the modeling of event classes from training data. Howevexpected (abnormal)
behavior can commonly not be predicted. Modeling evergthimat is expected
(normal) is not feasible either. Therefore, we have impletee an adaptive mem-
ory approach based on Fuzzy ART neural networks that prevatidine learning
and classification capability. Compared to the previoussilieers this approach
achieves lower accuracy due to its sequential operationveMer, storage costs
are much smaller, which makes it a good choice for anomalgctien. The al-
gorithm has been implemented to distinguish flashlightqusrifrom normal room
illumination patterns. The Fuzzy ART neural network hasvjgted good perfor-
mance in terms of detection accuracy and resource savirgamonication costs
of approximately 83% could be saved.

In the next chapter an office monitoring system that uses AdtFal networks
to detect and report abnormal office occupancy is presented.

155






Chapter 9

Office Monitoring Application

In the previous chapters we have presented the differentl@edf our event de-
tection system. The general system architecture has besided in Figure 1.1.
A typical application scenario has been presented in Fijiteln this chapter we
present the deployment of the event detection system infexe @honitoring appli-
cation [154]. A common office room, offering space for two Wiag persons, has
been monitored with ten sensor nodes and a base station.a3keftthe system
is to report suspicious office occupation such as office kgagdy thieves. On
the other hand, normal office occupation should not thrownada In order to save
energy for communication, the system provides all nodds sdtme adaptive short-
term memory. Thus, a set of sensor activation patterns céeniygorarily learned.
The local memory is implemented as an Adaptive ResonancerYi{aRT) neu-
ral network. Unknown event patterns detected on sensor leveé are reported
to the base station, where the system-wide anomaly dateistiperformed. The
anomaly detector is lightweight and completely self-léagn The system can be
run autonomously or it could be used as a triggering systenrioon an additional
high-resolution system on demand. Our building monitosggtem has proven to
work reliably in different evaluated scenarios. Commutigcacosts of up to 90%
could be saved compared to a threshold-based approachuvitical memory.

9.1 Introduction

Subject of this chapter is the detection and reporting obaibal behavior in build-
ing monitoring. Conventional building monitoring systemddress the problem
by deploying video surveillance systems (see Section 8.82ch systems have a
number of drawbacks, though. The system is expensive irstefthardware, stor-
age and communications. In particular if wireless techgpls used, energy for
communication becomes a critical issue. Furthermoregctiig multiple video
streams imposes high demands on storage, online monitandgideo analysis.
For example, the more video screens a security guard hasridandahe higher is
the probability that he misses some relevant informatiomalfy, a permanently
active camera system is unpleasant for the office staff.
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The envisioned system involves numerous research qussi®it possible to
develop an energy-efficient reliable building surveillaisystem? Can the data vol-
ume be reduced while minimizing the probability of losindexant information?
Can privacy of staff be improved? Is the system economic?

Wireless sensor network technology provides means to odevalch a sys-
tem. Sensor networks are economic due to their lack of wiggergy-efficiency
is achieved by parallelism, distributed computing andetarork processing. De-
cisions can be made in the network, decreasing commuriciiad and storage
requirements. Hence, office occupation can be processedili@ned in the net-
work. Because no pictures are taken, the identity of offiaéf san be hidden. For
these reasons, we provide a wireless sensor network fatilgimonitoring. The
system can run standalone or it can be used to trigger a bagiution system such
as a (wireless) video surveillance system. A hybrid systemalevoptimize accu-
racy, while keeping costs low. Unless something criticalesected by the sensor
network, video surveillance is turned off. During this tinenergy and storage
costs are minimal and the identity of the office staff is cahee.

Tininess, resource constraints, need for long-term ojperand dependency on
batteries impose severe restrictions on wireless sensaories. Hence, services
provided in sensor networks need to be lightweight in terimm@mory and pro-
cessing power. Communication costs should be low. We gdtisSe requirements
by filtering normal (i.e., known) building occupation withihe network. Normal
behavior is temporarily learned by short term memory usim@g@ing mechanism.
The memory is implemented as Adaptive Resonance Theory YARUral net-
work. ART neural networks compress observed event patterassingle value
representing the ART decision (knowonknown). Unknown patterns are reported
to the base station. At the base station, the reported lezasidns are fed to a bi-
nary ART neural network that performs the system-wide artpmetection. ART
neural networks are adaptive and learn sequentially. Tégyire low storage and
communication costs. These features are advantageouseftogether with sensor
nodes.

9.2 Office Monitoring

In this section the office monitoring application is intreed. \We have used sensor
nodes for a number of reasons. The system is lightweight;eftective, and easy
to deploy. In particular no wires are required. The systenteals the identity of
persons working in the office. Only sensor activation patteran be determined.
Thus, the system ensures privacy to the office staff. A higbltgion system pro-
viding more detailed information could optionally be treggd. Thus, the appli-
cation of the secondary, high resolution system could beictssd to periods of
abnormal office occupation.

The deployment of the office monitoring system is depicte&igure 9.1. In
the current deployment the ART based anomaly detectionvaoétand the event
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Figure 9.1: Office monitoring deployment.

detection and tracking functionality of DELTA were implented. The medium
access functionality has not yet been ported to the senstasné@ common office
room of approximately 26.52 providing two working places was monitored. The
room contains 5 office cabinets, 4 tables and two file cahinet®tal, 11 wireless
sensor nodes were deployed: 3 nodes measuring Passiveth{RIR), 7 nodes
measuring vibration and one node acting as gateway (basentalhe 3 sensor
nodes that measure PIR were placed such that the two worksigdnd the office
entrance were monitored. The 7 vibration sensors monitacgdation in the office
cabinets and in the file cabinets. The sensor nodes do nat @y sensor read-
ing to the base station. This would be too communicatiomsite. Instead, series
of sensor readings, 10 in the current implementation, dleated and processed on
node level. The resulting local pattern classificationogkm| unknown) are then
sent to the base station, where the system-wide anomalgtidetés performed.

9.2.1 System Design

Our building monitoring system can be summarized as follo§eries of sensor
readings are periodically collected and processed on ned. | In the current
implementation the PIR and vibration sensors are procesgag 2 s. Since series
of ten sensor readings are processed, i.e., the monitagswution on node level
is 20 s, time vectors = {z1,...,x;;¢ = 10} are locally processed by ART neural
networks. As mentioned before, our ART neural networks e@n@nt an adaptive
short term memory, which is based on an aging mechanism. @i&os nodes
can store a certain number of prototype time veciar$rototypesy that are not
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matched by an input become older. When the memory of the ART neural network
is full, the oldest prototype is replaced by the current input vector With this
mechanism learning can be continuously maintainedt. if not recognized in the
ART memory, i.e., the input pattern is unknown, a 1 is sigthdtethe base station.
Otherwise, no report is sent. Itis not necessary to repodlpknown patterns, i.e.,
to signal a 0, because the base station expects the predemkaawn time vector
x if no report has been sent by the according node. Becauseseaslr node
reports for every monitoring interval whether it has logaletected an unknown
time vectorx or not, the base station is able to perform global decisiaset
on the collected reports. Since ten sensor nodes are depldye base station
processes space vectors of the farm {z1, ..., z;; j = 10}, wherez; € {0,1} is
the output of sensor node 1.

An example may clarify the functionality. We assume, a perisosearching
two cabinet drawers that are equipped with vibration senSoand 6. The first
drawer is opened, then the second one, before the first diawdosed, again
followed by the second one. This is all done within a monitgrperiod of 20 s.
Hence, time vectok; containing the sensor readings of sensor node 5 might look
like [0, 24, 12, 0, O, O, 14, 22, 0, 0], whilke; is [0, O, O, 33, 0, 0, O, O, 41, 13].
Numbers of 0 mean no activation of the according sensor (P\fbaation). Both
vectors are locally processed by Fuzzy ART neural netwovds.assume that;
is recognized by the memory of sensor node 5, wkjés not recognized by the
memory of sensor node 6. Since Fuzzy ART neural network® siostotypes,
this recognition behavior is possible. The other sensoesdtve not measured
activation in the current monitoring period, i.e., theyagwize time vector [0, O,
0,0,0,0,0,0, 0, 0] in their memory. In this example, onlys®mode 6 reports
a 1 (unknown time vector). Accordingly, the space veet@rocessed at the base
station is [0, 0, 0, 0, 0, 1, O, 0, O, 0]. The base station implet: a binary ART
neural network to process the binary inputThe output of the binary ART at the
base station is again 1 (unknownkifs not recognized and 0 otherwise.

ART neural networks are predestinated to meet storagel, patgern recogni-
tion, and filtering requirements. The storage costs of an ARral network are
in the order ofO(M N), both in terms of time and memory (see Section 8.3). In
the office monitoring application we have used the ESB semsde platform (see
Section 3.8.1). The available memory on these nodes fol $ogaal processing is
in the order of 300 bytes. Considering the available mentbgyjnput vector size
of 10, and 2 bytes to store floating points, 10 prototypes t@ared in the memory
of our ART neural networks. Finally, traditional ART neuragtworks return the
category number if a category is determined for a given irfpamd -1 otherwise.
In contrast, our ART-based event detector returns 0 (kndﬂ\f])s recognized and
1 (unknown) otherwise. Hence, our ART neural networks mteuthe following
features:

e ART neural networks are very lightweight.

e Known input vectors are filtered by the ART neural network,iclihsaves
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communication costs.

e A data compression @V to 1 is achieved, which reduces data volume.

9.2.2 System-wide Anomaly Detection

In our basic system implementation, ART neural networksirmmemented both
at node level and at the base station. In related work thiéstere often used.
Therefore, we also evaluated simple threshold-basedidesisln these cases, a 1
(unexpected input vector) is reported if the sunx@xceeds a predefined threshold
T, ie., if 1% x; > T. Consideringxs = [0, 0, 0, 33, 0, 0, 0, 0, 41, 13] above,
the sum is 87. Accordingly, if T is smaller than 87, a 1 is répdr Otherwise, no
report is sent (the input is considered as expected or ndrike following four
combinations are possible:

| Local | System-wide |
Fuzzy ART binary ART
oz ART Thresheld-based
Threshold-based binary ART
Thresheld-basad Thresheld-based

In the following evaluation the two crossed-out combinasi@re not consid-
ered: feeding local binary output to a threshold-baseddéect the base station
is not feasible. An example illustrates the correspondirablem. Consider two
binary input vectors at the base statien:=[1, 0, 0, 0, 0, 0, 0, O, O, 0] is an event
that should be reported, whilg =[0, 1, 1, 1, 0, 0, 0, O, O, O] is an event that should
be filtered. This potential case is not manageable with sliold-based decider at
the base station, becausg”,, 21 ; = 1 (should be signaled), whilg 1% zo; = 3
(should be filtered), which conflicts with a threshold-basketision. Next, we
consider a system with threshold-based decisions on nogt dad at the base
station. It is important thap_}°, z; is reported to the base station instead of 1
if z}go x; > T. Otherwise, the problem could be reduced to the previous one
This completely threshold-based approach cannot be p&edamesl such that the
resulting anomaly detection system works reliably.

The designs of the remaining two systems are depicted in&@R2. In every
monitoring period of 20 s, every sensor node j signals a Ilpealknown event
pattern either if the current time vectgr has not been recognized by the memory
of node j (Fuzzy ART, see Figure 9.2(a)) or¥f;’,z; > T (threshold-based,
see Figure 9.2(b)). Hence, the base station collects armkgges space vectors
z = {z1,...,25;j = 10}, where j represents the ID of the respective sensor node
andz € {0, 1}. Thus, if an unknown event pattern (signaled as 1) has beentes
by a specific sensor node j, neuron j in F1 of the binary ART alenetwork is
activated, i.e., 1 is fed to the corresponding neuron. life®.2 this means that 1
is fed to neurons 2, 5 and 10 of the binary ART neural netwdrthd base station
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Figure 9.2: System designs with local memory (left) or local threshoiglht).

did not receive a report from a sensor node, the base statsaumees a recognized
event pattern at the respective node. Hence, the corresgonduron is fed with
0. This mechanism saves a considerable amount of repoustg,decause sensor
nodes do not need to report known event patterns. The megutjiput space vector
z in Figure 9.21is [0, 1, 0,0, 1, 0, 0, O, O, 1]. In Figure 9.2 thiplit vector is not
known by the binary ART memory and a system-wide unknown exgereported,
i.e., the output of the binary ART is 1.

Since single system-wide event reports are not sufficierdcturately sig-
nal anomalies (office intrusions), a significance test detgng accumulations of
system-wide event reports is provided. This test evalihtefequency of anoma-
lies over a certain time period.

Significance Test

Significance® = 0;
Age of last unknown evertvent_age = 0;
while true
Calculate binary ART oupwt € {0, 1};
if E€==1 /I unknown event
if event_age < Tmax_age
O++;
event_age = 0;
else
0 =0;
event_age = 0;
end
else /I known event
event_aget+;
end
if © > Tsignificance
report anomaly;

The significance test is described in the pseudo-code abidwe significance
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test determines an alarm if in a certain time interval 5 systgde unknown events
( © > Tsignificance Tsignificance = 4) have been signaled by the binary ART neural
network. Thereby, the time difference between every sules#gpair of events
must be smaller than 80 ${ax_age= 5, Which implies 4 20 s).

Since five system-wide events are required, at maximum 320 8@ s) can
elapse until an office intrusion is reported. On the othedh#me minimum delay
is 80 s if 5 events are subsequently signaled 20 s). The estimation of the
maximum delay assumes that the office intrusion triggersiowk events. If this
is (temporarily) not the case, the anomaly detection isy@eleor disabled. The
thresholdsTsignificance@Nd Tmax_agehave been determined in simulations. Various
thresholds have been evaluated. The used values havemedavell.

9.3 Anomaly Detection Performance

The last part of this chapter addresses the current depluyamel its evaluation.
As presented before, 10 sensing nodes have been deployedoifice offering
two workplaces.

9.3.1 Office Occupancy Patterns

All experiments lasted between 2 and 4 days. Within theseitorarg periods
either normal office occupation or normal office occupatigterded with specific
hourly office access patterns were monitored. The specitierpa were either
office searching performed by one person in an empty officenroohourly stress
situations where multiple office staff were present, askiagh other to look for
missing items. The office access and occupation patterrdefireed as follows:

e Office searching The office is hourly searched for 2 - 5 minutes. The
searching person enters the room and arbitrarily seardhddferent cabi-
nets and drawers in the office. To avoid systematic seart¢brpaf the office
searching is performed by different persons. This pattepmesents illegal
access or abnormal behavior and is assumed to trigger alarms

e Stress situation In this office occupation pattern two to three persons are
present in the office and are looking for some missing itene)y example
a document might be requested by an entering person and theffive
personnel search and provide the requested informatioent&wf this kind
last between 90 seconds and 3 minutes. This pattern impdsigh astress
level on the system, but should not trigger alarms.

e Normal office occupation Here, no restrictions have been defined. The
office was just monitored for a given amount of time.

As discussed before, the system processes signals (PIRizmatian) in 20 s
intervals on node level. Thus, every 20 s, local and globeikitEns are determined.
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If nothing happens in the office or the activation is locakcagnized, no event
reports are sent to the base station. Hence, the base dtasoimput vectors of
form [0, 0, O, O, O, O, O, O, 0, 0]. Such input vectors do not pizevents at
the base station. On the other hand, if many events occunglaricertain time
interval (office searching), many different unknown-evesports are sent to the
base station. The resulting varying input vectaiannot all be known at the base
station. Hence, the base station signals accumulationgeot&which leads to the
system-wide alarm (anomaly).

9.3.2 Computation at Desktop PC

The system based on Fuzzy ART neural networks at the sendesramd on a bi-
nary ART neural network at the base station has been impledamnd evaluated in
the sensor network. On the other hand, determining the sgipiicable thresholds
for the threshold-based local decider requires repeagipgeriments. This can-
not be provided by real-world experiments. Therefore, iditwh to the running
Fuzzy ART based system, every output of the sensor nodesoNasted at a desk-
top PC, where the threshold-based anomaly detection systsrimplemented.
Thus, the threshold-based decider could be evaluated aidizngd offline with
varying thresholds. To justify this implementation, thezEy ART neural network
based system was re-implemented at the base station, teaeshilts computed at
the base station and at the desktop PC were equal. Hencdliae ahalysis of the
threshold-based decider is justified.

9.3.3 Detection Performance of the Anomaly Detectors

We investigated the number of false positives (false alpm@ns false negatives
(missing alarms) generated by the local Fuzzy ART and tlotddbased (T-based)
anomaly detectors. The threshold-based local anomalyctdetbas been evalu-
ated with the complete range of applicable thresholds. Re@pwe generated if
Zgo x; > T. Since analog input time vectoksare processed and single sensor
readings are in a range from 0 to 50, the resulting threshalduld be in the range
from O to 500. High values are improbable because too mamakigvould be
filtered. Comparatively low values of 16 and 17 for T have sh@wood prevention
of false alarms, while no real alarms have been missed. Adktloffice occupa-
tion scenarios were evaluated: normal office occupationyihmffice searching
and hourly stress situations. The first experiment lasted8dours including two
working days. The two other kinds of experiments lasted folags. In these 4
days, the respective occupation pattern (searchstgess) was performed 8 times
in 8 hours. Accordingly, the latter two experiments prodd#? specific office
occupation patterns (searchihgtress) in each case.

Table 9.1 shows the anomaly detection performance of batimaly detec-
tors. The first important result is that, apart from one failaf the threshold-based
system withT = 16, no false negatives were observed in all experiments. This

164



Table 9.1: False Positives (FP) and False Negatives (FN) of the anodedgctors.

Fuzzy ART || T-based 16|| T-based 17
FP | EN FP | FN FP | FN
Normal office
occupation (48h 1 ) 1 ) 1 )
32 hourly office
searchings (96h)| ) 2 1 2 )
32 hourly stress
situations (96h) 1 ) 2 - 9 )
Total (240h) 2 - 15 1 12 -

system behavior is very important, because false negatiees undetected intru-
sions. The presence of false negatives would question amyaly detection and
alarming system. On the other hand, some false positiesfalse alarms, could
not be prevented. In particular the hourly stress level expants generated false
alarms, whereby the threshold-based system performed made. If no false

positives can be tolerated, the system could be used teetriggecondary high-
resolution system (see also Section 3.7). In such an impl&tien the presence
of false positives is less severe since only the secondatersyis unnecessarily
triggered.

The reporting of false alarms in the hourly stress level grpents is due to
similarity of these experiments and office searching. Theegrments have shown
that Fuzzy ART neural networks are able to recognize and fdeal anomalies,
which leads to the system-wide prevention of false alarmesc@viclude this section
by highlighting that the local event recognition featuretleé Fuzzy ART neural
networks is in particular beneficial in presence of highssttevel without intrusion.
In this case, the system based on Fuzzy ART neural netwathks [efalse alarm in
32 stress situations, whereas the system based on locsthttae reported between
9 and 12 false alarms in the same situations. No false negafimissing alarms)
were encountered by both systems.

9.3.4 Message Load

Only normal office occupation was evaluated to assess cofoation costs. The
other two experiments do not reflect normal behavior. Indtiegusion or stress
situations artificial anomalies are generated, which leademporarily increased
communication load compared to normal daily office occupatiSignaling every
local input vectos with 3°1% z; > 0 as event, i.e., threshold-based local decisions
with T = 0, determines maximum possible communication coBte costs of the
respective anomaly detector have been computed in pegeepnfaethe maximum
possible communication costs.

The communication costs of the Fuzzy ART system and the &ebsgstem are
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Table 9.2: Message load of the anomaly detectors.

Fuzzy ART | T-based 16| T-based 17
11.9% 7.0% 5.9%

Monitoring without
intrusion (48h)

shown in percentage in Table 9.2. The local filtering of theZzyuART neural net-
works leads to communication cost savings of up to 90%. Eetelbresults can be
achieved with the threshold-based filtering . However, ti@Jed system requires
learning and training, i.e., the thresholds need to be aéted. In contrast, Fuzzy
ART neural networks are completely self-learning, i.elyahe memory size and
the vigilance factop need to be defined in advance. Furthermore, results in the las
section have shown that the Fuzzy ART neural network apprgaevents false
alarms in case of stress situations.

Overall, without local filtering 10261 messages were regmbid the base sta-
tion during 48 hours. With the Fuzzy ART system this messagel Icould be
decreased to 1222 messages, which leads in average to 2ageeger hour. Con-
sidering the network size of 10 nodes and the faced office tmamg problem, a
system-wide communication load of 25 messages per hourssageguate.

9.3.5 Reporting and Triggering Delay

The reporting and triggering latency introduced by our aalyndetection system
is investigated in this section. Section 9.2.2 has showirthiescurrent implementa-
tion introduces a minimum reporting delay of 80 s and a marimejporting delay
of 320 s.

Table 9.3: Reporting Latencies [s] until alarm is reported.

Fuzzy ART || T-based 16| T-based 17
7 P 7 P 7 P

148 | 44 | 146| 38 | 150 | 52

Hourly office
searching (32h

The effectively measured average reporting delaymd their standard devi-
ations p are listed in Table 9.3. There is no significant differenceneen the
different implementations. In average approximately 15¢ese needed to detect
and report office searching. The standard deviations vaghtt between 40 and
50 s. Detection latencies longer than 2 minutes seem rather IHowever, this
value depends on the duration of the monitoring period. Fpdi@ation of shorter
monitoring periods could be evaluated. The monitoringqeedannot be reduced
arbitrarily due to the involved communication increaseutih. The minimal re-
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porting delay achievable is further restricted by the mimimamount of time re-
quired to identify abnormal behavior. We assume that ramgptatencies of around
90 seconds might be achievable.

9.3.6 Standalone ART Neural Network Performance

In the previous experiments any local output has been regdot the base station
to support later comparisons, i.e., to make the offline siimhs of the threshold-
based mechanism possible. On the other hand, a real deptoyoald only signal
effectively unknown event patterns to the base station. th®isake of complete-
ness, the Fuzzy ART based monitoring system has been ruesbaie.
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Figure 9.3: Anomaly Detection Performance with ART neural networks.

Two monitoring periods of 8 hours are illustrated in Figur8.9The hourly
office searching pattern has been used. In the first experitneffice was softly
searched by making little noise, i.e., the office cabinetsewmarefully opened,
searched and closed again. In the second experiment the sdfscching was more
intensive. Little care was spent on avoiding noise. Acculyi the sensor activa-
tion amplitudes were higher, which is confirmed in Figure 9 8e intense office
searching experiment signaled more reports of suspiciebavor. In both experi-
ments all hourly office searching have been detected andswdarms have been
generated. The standalone implementation has shown sipa@iformance to the
implementation that has logged additional information.

9.4 Conclusions

A wireless sensor network for building monitoring has bessppsed In this chap-
ter. The system detects and reports abnormal office ocampatin contrast to
conventional video surveillance systems, the system @sidbe identity of the
monitored office staff. Moreover, the deployed system icieffit and lightweight
and produces much less data, decreasing administratiostairzdje cost.
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The system implements either a Fuzzy ART neural network mnple threshold-
based decider on a local level. A binary ART neural netwoikniglemented at the
base station. The proposed system with local Fuzzy ART iecsisvorked well in
all experiments. In particular no false negatives were ent@wed, i.e., no cases of
office searching were missed by the system. In normal officeation with low
stress level the threshold-based approach has perforrmédrsio the Fuzzy ART
neural network. Considering high stress levels, the FuZRy Aeural network pro-
duces considerably fewer false positives than the thrdsbaéed approach, though.
This is due to the local memory maintained by the Fuzzy ARTralenetwork that
provides local recognition and filtering. It has been shohat tommunication
costs could be cut by 90% with the Fuzzy ART-based system.délection delay
is currently approximately 2 minutes and 30 s, but could bthér decreased by
optimizing the monitoring cycles.

Optionally, the proposed system could be used to triggercarsiary, more
detailed system such as a video surveillance system. Aayastof such an in-
tegrated approach would reduction of communication cgeist processing and
storage, because the secondary, more expensive systeihlveoohly sporadically
used. On the other hand, additional information could béured on demand.
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Chapter 10

Conclusions

In this thesis the development of an energy-efficient, faléirant and fully dis-
tributed event detection system has been addressed. Ttemspeeds to meet
application-specific detection accuracy requirementsiditteless, energy-efficient
mechanisms are required to support long-term operatiopiimize the trade-off
between detection accuracy and long-term operation, agate functionality on
different layers of the network stack is required. A smaegnation of the function-
ality on the different layers is furthermore important. féfere, we have suggested
an architecture that implements a networking stack dedigneatisfy the differ-
ent system requirements. The MAC layer provides energgieffi medium access
control. In addition, synchronization messages that aregieally exchanged on
the MAC layer have been used to discover neighborhood irdbaom and setup a
routing backbone based on this information. By integratimgting functionality
into the MAC layer, no additional control traffic to setup ameintain routing is
required. Moreover, additional energy can be saved by teanihoturning off the
radios of non-backbone nodes. Upon detection of an eventpaokbone nodes
wake up and provide networking functionality to the overdgoplication software.
Thus, medium access and routing are completely transpéoethie application
layer. Mobile networks are supported on the networking Hayigh an optional
topology-adaptive routing mechanism. On top of these nmdiacess and rout-
ing services the application-specific functionality hasrbenplemented. Tracking
groups are dynamically established and maintained up@cttiat of an event. The
tracking groups provide the event localization and classibn software executed
at the leader node with the required information to perfdnese tasks. The classi-
fication software provides event classification and anordatgction functionality.
The event detection system has been applied to an office oniigitsystem that de-
termines illegal or suspicious office access and occupdrwyindividual chapters
are summarized in the following.

In Chapter 4 we investigated the virtual clustering effeadwn from synchro-
nized contention-based MAC protocols for wireless senstwaorks. In virtual
clustering, network nodes arrange themselves into groapsr@ing to common
listen/sleep cycles. We have proposed a simple clock sgnctation scheme that
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avoids virtual clustering without introducing additior@ntrol traffic. All network
nodes locally share a common listen/sleep schedule. Thethig has shown fast
and robust convergence. After convergence, no virtuakelshave appeared. It
has been shown that the mechanism extends network lifetntidosvers storage
complexity on the sensor nodes, because no tables withbegigly virtual clusters
have to be stored.

In Chapter 5 the support of a routing backbone and the ternpbra-down
of non-backbone nodes were focused on. We have provided &ekbbne con-
struction methods (MPR-based CDS and N-CDS) that explaedmtent of the
synchronization messages exchanged on the MAC layer tblisstaa CDS. By
exploring the synchronization messages, no additionairabimaffic is generated.
Both approaches have shown good energy load balancing aagbkgormed well
in reducing the current number of active nodes. Conseqguemtwork lifetime
is extended with both approaches. Network connectivitydesen achieved in all
simulations. In addition to the solutions on the MAC layee ave implemented a
CDS-based backbone construction method on the network (Ry€DS). R-CDS
requires the exchange of hello messages to learn local baighod. In terms of
backbone construction, R-CDS performs similar to the smiston the MAC layer.
The advantage of R-CDS is the supply of backbone repair nmésrng. Thus, node
mobility can be supported. On the other hand, R-CDS requaideltional control
traffic, which is waste of energy. Depending on network dyicarone of the ap-
proaches can be chosen.

In Chapter 6 the event detection and tracking functionalft ELTA has been
provided. DELTA detects and tracks events efficiently. Qaersng networking,
DELTA minimizes the number of event tracking groups. DELT&shbeen com-
pared to EnviroTrack. EnviroTrack is an efficient and ligbight event detection
and tracking mechanism. Both algorithms provide a sima#io$ basic operations.
DELTA has outperformed EnviroTrack in detection speed analvbiding concur-
rent tracking groups. DELTA has been able to detect and teaekts with vary-
ing sensing ranges efficiently with a single tracking groumlike EnviroTrack,
DELTA provides the group leader with information neededéoigrm localization
and classification. The message overhead of this data toiietnctionality has
been evaluated in the real-world experiments and has stwhathe least possible.
The data collection functionality further supports largensing ranges.

In Chapter 7 the localization and signal strength estimagierformance of
DELTA has been discussed. Based on event-relevant infammaollected in the
tracking groups, position and emitted signal strengthsvehts have been esti-
mated. The nonlinear Simplex Downhill (SD) method has shtwprovide best
performance considering the given requirements. In centalinearized Least
Square (LLS) methods, which require intrinsically less patation power, the SD
method has proven to work also with the minimum amount ofrimfation needed
to solve the resulting optimization problem. On the otherchahe computational
burden has shown to be acceptable. In wireless sensor matiwanight frequently
happen that only the minimum amount of information about\wenecan be col-
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lected due to packet loss or energy-efficiency reasons. eTbases can only be
covered with nonlinear methods, in our case with the SD nektlibe SD method
achieved good estimation accuracy both in positioning anidted signal strength
estimations. Unlike the position estimations, the sigrni@rgth estimations are
event specific and can be used for event classification.

In Chapter 8 the event classification functionality has beeisented. All clas-
sifier software is performed at the DELTA leader node. Thensoe supports event
classification, i.e., the labeling of unknown events, armhaaly detection. In a first
part the event classification software has been presentad.sdftware addresses
the classification of discrete event types. In experimeifterdnt kinds of light
bulbs have been classified. Our own developed Fuzzy Logit¢r@ler (FLC) has
been compared to a simple Bayesian classifier and a FeedtbNearal Network
(FFNN) approach. The FLC classifier has shown to be lightiategond accurate.
Furthermore, the filtering of false alarms could be preweéntéh arbitrary accu-
racy. However, the more accurate the system is, the longeéharreporting delays
due to filtering of events that do not satisfy the confidencestold. Error rates of
5% could be achieved with low reporting latency. This is acusacy improvement
of 50% compared to the Bayesian classifier. Mainly due toag@®rcomplexity
the presented classifiers are not appropriate for anomagctien. For anomaly
detection the application of ART neural networks has beepgsed. ART neu-
ral networks represent a simple adaptive memory that istaldéore and refine a
certain number of prototypes. With ART neural networks it h@en possible to
compress and classify time series of event observationsmmsos node level. Thus,
communication costs can be kept low. The ART neural netwbekge shown to
be very lightweight and sufficiently accurate. The ART néuaetworks have been
used for office monitoring.

Finally, the office monitoring application has been presénin Chapter 9.
Anomalies, locally determined by Fuzzy ART neural netwdr&se been reported
to a fusion center (the DELTA leader node), where the systéte wecision has
been implemented as a binary ART neural network. The systasable to re-
port abnormal behavior (hourly office searching), whilemar office access and
occupation did not trigger any alarms. The message loadeoptbposed ART-
based anomaly detector has shown to be marginal. In a nofffi monitoring
period of 48 hours approximately 25 messages per hour wanertrtted, which
reflects communication cost savings of 90%. The approachhéas compared
to a threshold-based anomaly detector. Both approachesdmwn similar per-
formance in normal office monitoring and in detecting offiearshing. However,
under higher stress levels, the ART-based anomaly deteaputperformed the
threshold-based approach. This is due to the local filtesamability of ART neu-
ral networks. In conclusion, the ART-based anomaly detdtés shown to work
reliably by introducing low communication costs. The anbndetector can be
used standalone or it can trigger a secondary, high-resolaystem.

The main conclusions of this thesis can be summarized asn®Il Existing
monitoring applications are application-specific and areé dut for short-term de-
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ployments. In contrast, we have proposed a common arahigetdr event detec-
tion that addresses accuracy while conserving energy. grsgvings have been
achieved on different layers of the network stack. Based lagheweight commu-
nication and group organization protocol, events have showbe traceable with
acceptable overhead. Furthermore, the amount of datareegiar classifications
and decision making has been collected efficiently. Fin&dgsible classification
methods have been proposed, which have been used in an offiterimg appli-
cation and have shown good performance, i.e., the systemreeeents in terms of
energy savings and monitoring accuracy have been met.
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Chapter 11

Future Work

In this chapter possible directions for future work are ioed. First, application-

specific system evaluation aspects are discussed. Seawnd,specific, unsolved
problems and possible solutions are presented. Finallyeswew trends and future
directions of research are proposed.

The office monitoring system has been deployed in a smalkk-stice. More-
over, a rather small number of sensor nodes has been usedtuta Wwork larger
scenarios could be tested. The performance of the system apen-plan office
could be investigated. This would impose a higher range ofing event pat-
terns and more fluctuations. We assume that the local memmuigmented on the
sensor nodes should contribute even more in such a scehanart small-scale
environments. Nevertheless, the performance of the systsds to be demon-
strated. Furthermore, different implementations of ARTnaénetworks could be
evaluated. Also, the memory size of the ART neural netwonkctde adjusted
depending on the application. In an open-plan office withghéi number of toler-
able event patterns, the memory of the ART neural networkddvorobably have
to be increased. Depending on the sensor platform usedwthikl also require
some adaptations in the ART design. Finally, other kindsvehe patterns could
be included. Currently, the monitoring application hasrbren based on passive
infrared and vibration events. In addition, noise levelsldde monitored or illu-
mination conditions, and so on.

So far, the different features of our monitoring system hbgen evaluated
rather isolated. While testing DELTA in simulations andl+earld experiments,
the classification functionality of the framework had not lyeen implemented. On
the other hand, the final office monitoring system has impditiésl stress on the
DELTA tracking subsystem, because all sensor nodes weageld@n a single room
within communication range of each other. In future worle, Whole system could
be implemented and evaluated in a large deployment whicersder example a
whole department. In such a scenario, all features of ouritoramy system could
be tested concurrently.

Considering topology control, all proposed CDS approacbetd be evaluated
in comparison to each other. Until now, a detailed real-d/@erformance analy-
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sis of the topology control mechanisms is missing. Only $&ngzenarios have
been tested. This is due to the suboptimal performing ESBosgaiatform in this
context. Accordingly, the most appropriate topology contnechanism could be
implemented on a sensor node platform such as the Tmote&kpph. We as-
sume that on such a platform the mechanisms should perforte all. Finally,
the topology control mechanisms implemented on the MACrlégee shown to
outperform T-MAC, but no comparisons to other protocolsdiaeen performed. In
future work, our protocols could be compared to both topplogntrol and recent
MAC protocols.

The gravity-based local clock synchronization scheme (R&Lhas been im-
plemented as part of a cross-layer approach. Moreoversibbkan evaluated in
simulations only. In the current office monitoring systerhas not been included.
Therefore, LACAS could be implemented on sensor hardwartk exttensively
tested in isolation to prove its benefits. Because the gripased mechanism is
supposed to be very robust, good performance benchmarksecexpected.

We have shortly outlined some directions for future redeamcthe protocols
proposed in this thesis. Many more optimizations and cordigens could be
evaluated. It is a general property of real-world experiteghat they are very
time-consuming and continuously reveal additional cingiéss. In particular large-
scale real-world wireless sensor network experiments giieuit to be done in
a manageable way. On the other hand, simulations allow-kggke evaluations,
but they are often not able to consider key properties oflessesensor networks.
Accordingly, also in this thesis some features have beeluaeal in real-world
experiments, while for others simulations have been peréol.

The development of an accurate long-term-operating evetgction system
has led to some insights and ideas for future directionssgfaech. In many existing
systems networking aspects and application-specific repaints are still consid-
ered exclusively. Considering event detection, few systaddress both, network-
ing issues and detection accuracy. We think that more iatedrapproaches are
needed to provide useful sensor network solutions to endg.ugelot of research
is spent on developing smart communication for wireless@enetworks. On the
other hand, a target application is often not provided. H@rehe consideration
of application-specific requirements is essential to dgvelseful systems. There-
fore, we think that in future emphasize will have to be giveapplications. So far,
privacy has gained little attention in event detection exyst. On the other hand,
wireless sensor networks can be implemented to hide thétiefhmonitored per-
sonnel. We think that this could be a driving factor for thencoercialization of a
wireless sensor network based surveillance system. Tlgeugfawvireless sensor
systems to trigger a high resolution system might be intexgsind useful too.
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Chapter 12

Acronyms
ART Adaptive Resonance Theory
BS Base Station
CDS Connected Dominating Set
CG Conjugate Gradient
CSP Collaborative Signal Processing
DELTA Distributed Event Localization and Tracking Algorithm
DS Dominating Set
ESB Embedded Sensor Board
FFNN Feedforward Neural Network
FSM Finite State Machine
GPS Global Positioning System
HPF High Pass Filter
IBL Instance Based Learning
IDSQ Information Driven Sensor Querying
IREP Information Response
LACAS Local Adaptive Clock Assimilation Scheme
LLS Linear Least Square
LPF Low Pass Filter
MAC Medium Access Control
MANET Mobile Ad Hoc Network
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MCDS
MIS
MPR
NAV
PAR
QoS
RSSI
RTS/CTS
SD
STM
TCP
TSR
TDMA
WSN

Minimum Connected Dominating Set
Maxmimum Independent Set
Multipoint Relay

Network Allocation Vector
Photosynthetically Active Radiation
Quality of Service

Received Signal Strength Indicator
Ready To Send / Clear To Send
Simplex Downbhill

Short Term Memory

Transport Control Protocol

Total Solar Radiation

Time Division Multiple Access

Wireless Sensor Network
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