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Abstract

In comparison to traditional sensor networks, wireless sensor networks have a num-
ber of strengths such as distributed operation, parallelism, redundancy, and com-
paratively high cost-effectiveness due to lack of wires. Onthe other hand, their
tininess, need for long-term operation, and dependency on batteries impose severe
restrictions on the system. Hence, services provided in sensor networks need to be
lightweight in terms of memory and processing power and should not require high
communication costs. In our own work we have developed an event monitoring
architecture that provides energy-efficient medium accessand topology control on
the lower layers. On the application layer functionality todetect, track and classify
occurring events in a lightweight and distributed manner isprovided. The devel-
oped system has been used in an office access monitoring application, where illegal
office access has been detected and reported.
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Summary

In this thesis the development and implementation of an energy-efficient, fault-
tolerant and fully distributed event detection system is presented. Long-term de-
ployments must be supported, while satisfying the detection accuracy requirements
of the application. On the one hand energy-efficient mechanisms are required to
support long-term operation. While on the other hand, accurate event detection
and classification methods are needed to satisfy the Qualityof Service (QoS) re-
quirements of the application. Current event detection systems are barely able to
optimize the trade-off between QoS and long-term operation. Many existing event
detection systems are designed for short-term deployments(personal security, dis-
aster management). In such systems energy savings are less important. The deploy-
ment of a persistent surveillance system is desirable. Sucha system is not useful if
sensor node batteries have to be replaced frequently.

To provide a useful accurate event detection system for long-term surveillance,
an integration of application-specific requirements is needed on different layers in
the network stack. In our work we have proposed an architecture that implements
a fully functional network stack designed to meet these application goals.

Medium access has been optimized to support long-term deployments. The
synchronization messages used by synchronized contention-based MAC protocols
have been exploited to setup a routing backbone. Non-backbone nodes turn their
radios temporarily off to save additional energy. The mechanism requires no spe-
cific control traffic for routing. A simple clock synchronization scheme has been
developed to decrease the duty cycle of backbone nodes. Upondetection of an
event, all nodes become active and provide networking functionality to the applica-
tion software. Thus, medium access and routing are completely transparent to the
application layer. A mobility support module has been provided. The developed
medium access and routing mechanisms have provided good energy consumption
distributions in the network. The lifetime of nodes could beextended.

On top of the medium access and networking services the application-specific
functionality has been implemented. Event tracking groupsare dynamically estab-
lished and maintained upon detection of an event. The tracking group organization
is lightweight and effective. Arbitrary events are detected and tracked with nearly
optimal signaling load. The tracking group further provides the event localization
and classification software running at the group leader nodewith the needed infor-
mation to perform these tasks. Hence, event localization, classification and filter-
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ing are performed in the network. Thus, considerable reporting load can be saved,
discharging sensor node along the paths to the base station.The distributed local-
ization and classification features have shown efficient andaccurate performance.
The event detection system has been used in an building intrusion application that
reports illegal office occupancy. The office monitoring system requires moderate
communication and computation, hides the identity of officestaff, and satisfies de-
tection requirements. The system has proven to filter normaloffice occupancy in
the network. Communication costs of approximately 90% could be saved. Every
office intrusion has been detected and reported by the system. The prevention of
false alarms has shown good performance.

xiv



Chapter 1

Introduction

Wireless sensor networks are composed of large numbers of densely deployed sen-
sor nodes. These sensor nodes are located in the proximity ofthe environmental
phenomenon of interest. Due to limited sensing capability of the implemented sen-
sors, which is caused by miniaturization, low-power operation, and low cost pro-
duction, accuracy is achieved by massive parallelism. Error-prone sensor nodes and
their inaccessibility due to remote installation require additional redundancy in or-
der to provide reliable, unattended long-term operation. According to these charac-
teristics, wireless sensor networks offer the monitoring of a physical phenomenon
of interest from proximity with large numbers of cheap and tiny sensor nodes. On
the other hand, the same characteristics require self-organization, coordination and
distributed operation. Moreover, if the sensor nodes are battery-powered, which is
commonly the case, energy-efficiency is a major criteria too.

The subject of this thesis is the development of a distributed event monitoring
system for the detection and processing of events occurringunexpectedly in wire-
less sensor networks. We are in particular interested in thetrade-off between de-
tection accuracy and energy savings. The wireless sensor networks that we deploy
are battery powered and intended for long-term operation. Accordingly, energy
savings are a key issue in system design. On the other hand, event detection and
classification are useless if accuracy requirements cannotbe satisfied. In this the-
sis the trade-off between detection and accuracy is investigated in event detection
applications of unattended long-term monitoring. An efficient event monitoring
system requires distributed and tailored protocols on different layers of the net-
work stack. At the application-layer, event detection procedures that satisfy given
accuracy requirements, while saving as much energy as tolerable are needed. Net-
work lifetime can further be extended by providing the eventdetection system with
energy-efficient routing and medium access.

In event detection and monitoring systems, sensor networksare used to detect,
track and classify suddenly evolving, often unexpected, events. Event monitor-
ing systems can be used by many applications, ranging from sniper detection over
building surveillance to object tracking and early warningsystems. All these tasks
require several system features in the application layer. Accordingly, specific event
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detection, tracking and classification methods are provided in this thesis. There
is a fast and efficient event detection and tracking algorithm, an event localization
and signal strength estimation method, and two classifiers for the classification of
discrete events and the detection of abnormal behavior, respectively. In order to
minimize communication costs these algorithms should be performed distributed
rather than static.

Finally, the deployment of the event monitoring system in anoffice access mon-
itoring application is provided. Current building surveillance systems mainly de-
ploy video surveillance systems. These kinds of systems areexpensive and un-
pleasant to the working staff. On the other hand, building intrusion by thieves must
be monitored in many systems. Therefore, we have investigated the development
of a low price building monitoring system that hides the identity of the office staff.

In addition to the application-specific tasks, a set of methods that provide and
optimize energy-efficient medium access and routing have been proposed. Thus,
the lifetime of the monitoring system can be further extended. A simple clock syn-
chronization scheme that minimizes overhead and energy consumption in synchro-
nized contention-based MAC protocols is provided. Furthermore, synchronization
messages exchanged on the MAC layer are used to setup a routing backbone on the
MAC layer. In order to support node mobility an additional backbone mechanism
has been implemented on the routing layer. All backbone construction mechanisms
shut the radios of non-backbone nodes down temporarily to save additional energy.

In the remainder of this chapter, we first introduce the problems that are ad-
dressed in this thesis. Then, the general system architecture is presented. The
remaining sections correspond to the main chapters, which provides more details
about the research carried out for this thesis. The work is presented in ascending
order according to the network stack beginning at the MAC layer. The last two
sections contain a short summary of the main contributions of our work and give a
brief overview over the structure of the thesis.

1.1 Problem Statement

Even though event detection systems have been researched innumerous projects,
there is no system that provides lightweight, accurate, andpersistent building mon-
itoring. Current systems are very application-specific andcan hardly be adapted
to different monitoring tasks. Long-term deployment is generally not in the scope
of existing systems. On the other hand, systems that might support long-term de-
ployments often lack accuracy. The detection of suspicious(abnormal) behavior
has barely been addressed yet. However, anomaly detection simplifies the classifi-
cation problem and can contribute to a lightweight surveillance system. With our
system we aim at developing a lightweight building surveillance system.

Current solutions either typically address mainly subtopics or provide very spe-
cific solutions that are hardly applicable to more general system designs. We clas-
sify current event detection systems into the following three categories:
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• Non-permanent systems: The main characteristic of such a system is the
subordination of long-term deployment, because accurate information is only
temporarily required. A typical application is a sniper detection system (see
Section 3.5.6). Such a system is temporarily installed. Both, energy savings
and communication minimization are relinquished in order to achieve very
accurate localization, e.g., of a sniper. Finally, the sensor network is deployed
according to detailed installation plans and the sensor node redundancy is
low. Such systems are not applicable to more general sensor network systems
that aim at long-term operation.

• Accurate systems: The main goals of many event detection systems, which
are often also addressed by non-permanent systems, are localization and
classification accuracy optimization. Research mainly focuses on collabo-
rative signal processing (CSP). The approaches require high communication
and computation load. Networking issues such as event tracking, efficient
medium access control, topology control, and communication optimization
are hardly considered. Typical representatives of such systems have been
developed in the SensIt project (see Sections 3.5.8 and 3.6.7).

• Efficient systems: On the other hand, there are event detection and tracking
algorithms that barely address localization and classification tasks. Such sys-
tems are able to detect and track an occurring event fast and efficiently. They
do not provide sufficient sensor data to make reasonable statements about
the observed event, though. Such systems are dedicated if the observed event
or phenomena is well known. However, if the sensor system itself should
make conclusions about the kind of observed event, such systems need to be
enhanced with other features. A typical system of this kind is EnviroTrack,
which is discussed in Section 3.4.5.

The current state of the art work is either tailored to very specific applications
requiring short-term deployment, focusing mainly on the optimization of classifi-
cation accuracy, or optimizes event detection and tracking. In this thesis we aim at
providing an energy-efficient system that provides the required event detection and
tracking accuracy in long-term deployments. The requirements on our system can
be defined as follows:

• Detection accuracy: Our system must be able to satisfy event detection re-
quirements of the application. In our building monitoring system this means
that building intrusion must be signaled, while false alarms should be pre-
vented.

• Long-term deployment: Our system is intended for persistent monitoring.
Hence, the algorithms should be lightweight. Whenever possible, energy
should be saved by the system.
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Each of the algorithms proposed in this thesis aims at achieving these goals.
The solutions on the MAC and routing layer provide energy-efficient medium ac-
cess control and routing to extend network lifetime. The application layer divides
event detection and tracking into three subproblems. First, the detection of events
and the management of tracking groups is addressed by a dedicated protocol. This
protocol also covers the collection of event-relevant databy the tracking group
leader. Second, the collected data is processed at the leader node to estimate event
characteristics such as emitted signal strength(s) of the event or its location. Third,
events are classified at the leader node, optionally based onthe event characteristics
computed in the previous step or on raw data that has been collected. The resulting
system has been applied to office monitoring.

1.2 System Architecture

In the following the architecture of our event detection system and a typical deploy-
ment scenario are illustrated. The network stack of the general system architecture
is shown in Fig 1.1.

Figure 1.1: General system architecture.

Synchronization, medium access and routing support functionality is imple-
mented on the MAC layer, i.e., on the lower layers in Figure 1.1. This layer focuses
on providing the event detection system with energy-efficient medium access and
routing support. Above the MAC layer is the networking layer. This layer pro-
vides simple routing based on the backbone provided by the MAC. In addition, the
mobility support module can be used if the network topology changes frequently
(e.g., in mobile networks). Finally, all functionality relevant for event detection is
implemented on the application layer, which is shown in Figure 1.1. This layer
contains the detection and tracking algorithm, the localization and signal strength
estimation procedures and the classification and anomaly detection modules. Every
sensor node implements a network stack containing the described functionality and
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modules. The system components are introduced in the next sections.

Figure 1.2: Typical deployment scenario.

A typical application of our event monitoring system is illustrated in Figure 1.2.
A simple office monitoring example is depicted. The office is monitored by a num-
ber of sensor nodes (the circles in Figure 1.2). Upon occurrence of an event, e.g., a
person enters the room, the surrounding sensors form a tracking group, collecting
and processing local sensor measurements. Event reports (containing position or
classification results) are computed at the group leader node and are forwarded to
the base station, which has access to the Internet. If the person was moving to the
workplace on the left, the tracking group would be reorganized. The idle nodes on
the left in Fig 1.2 would participate in the newly established tracking group.

1.3 System Evaluation

The event detection system has been evaluated both in simulations and in real-world
experiments. All simulations throughout the whole thesis have been implemented
and performed in the OMNeT++ [144] network simulator. For the real-world tests
two common sensor network platforms have been considered. Some parts have
been implemented and tested only on the Embedded Sensor Boards (ESB) platform
(see Section 3.8.1). Some functionality has been re-implemented on TmoteSky
sensor nodes (see Section 3.8.2). The relevant difference between both platforms
for our experiments is the implemented radio. Therefore, some functionality has
been re-implemented on the TmoteSky platform to investigate performance with
more powerful and more reliable radio communication.
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1.4 Medium Access and Routing

Chapters 4 and 5 present the functionality on the lower two layers of our archi-
tecture (see Figure 1.1). The goal of our work in medium access control has been
to provide our event monitoring system with energy-efficient medium access and
topology control. The wireless sensor network we envision deploys large numbers
of typically static sensor nodes. To provide essential medium access, synchronized
contention-based MAC protocols have been used. These protocols implement low
duty cycles. To maintain connectivity, the duty cycles needto be synchronized.
Therefore, synchronization messages are periodically exchanged among the sensor
nodes.

The synchronization of duty cycles maintained in wireless sensor networks is
addressed in Chapter 4. We introduce a simple algorithm which converges towards
the usage of a common duty cycle for all wireless sensor nodes. The algorithm does
not need any additional control traffic, but solely exploitsrelations in the number
of transmitted synchronization messages. Moreover, we have exploited the infor-
mation intrinsically provided by the synchronization mechanism to conserve addi-
tional energy on the MAC layer as well as to provide routing inChapter 5. We have
used the neighborhood information, which is intrinsicallyprovided by the synchro-
nization messages, to implement two routing backbone mechanisms that are based
on connected dominating sets (CDS) directly on the MAC layer. Thus, no specific
routing control traffic is generated. Implementing a routing backbone on the MAC
layer introduces some setup delays and prevents local path adaptations and repair
mechanisms. Therefore, no node mobility is supported by these mechanisms. In
order to compensate for this drawback, an additional CDS-based backbone mecha-
nism has been implemented on the routing layer. The algorithm requires extra traf-
fic, but supports more dynamic networks. All backbone construction mechanisms
turn non-backbone nodes temporarily off to save energy. Themain outcomes of
this part can be briefly summarized as follows:

• A common duty-cycle of nodes running synchronized contention-based MAC
protocols is achieved by exploiting the number of synchronization messages
sent by clusters of sensor nodes.

• The content of the synchronization messages is used to implement routing
directly on the MAC layer. Thus, no additional control traffic is required.

• To account for more dynamic network topologies, an additional backbone
construction mechanism is proposed on the network layer. This mechanism
requires specific control messages, though.

1.5 Event Detection and Tracking

Chapter 6 addresses the detection and tracking of moving objects, i.e., function-
ality of the first application module in Figure 1.1. A fast andenergy-efficient
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distributed event localization and tracking algorithm (DELTA) is proposed. The
algorithm detects and tracks moving objects according to local sensor readings. A
distributed leader election and group maintenance mechanism is provided. The dis-
tributed communication and management scheme avoids heavydata traffic towards
the base station, which disburdens nodes close to the base station and prevents
early network fragmentation due to drain of central sensor nodes. In addition to
tracking group formation and maintenance, the leader node is further responsible
for leader handover, data collection and processing, and event reporting. The basic
functionality, i.e., event detection, tracking group formation, data collection and
processing, and event reporting are illustrated in Figure 1.2. Upon appearance of
an event (the person has entered the room), the sensor node with the highest sensor
readings is elected as leader (the black node in Figure 1.2).The leader immediately
starts requesting sensor readings from its neighbors (the group members in Fig-
ure 1.2). With this mechanism the group members are informedabout the leader
and further provide the leader with event-relevant data needed for localization and
classification tasks.

Tracking is performed by handing over the group leader state. Arbitrary sensing
ranges can be supported due to an optimized state dissemination procedure. Two-
hop neighbors of the leader are intrinsically informed about the tracking group by
overhearing the response messages of the group members. Thetracking group state
can optionally be distributed deeper into the network by an optimized broadcasting
technique. Thus, the appearance of concurrently present tracking groups can be
prevented. This is important because the existence of multiple tracking groups im-
plies communication overhead. Multiple tracking groups would result in multiple
event reports, which would excessively charge nodes close to the base station by
having to forward all those reports. On the other hand, the communication costs of
the state dissemination process also increase with higher sensing ranges. However,
this cannot be avoided if the appearance of concurrent tracking groups has to be
prevented. The trade-off can be estimated, though. Finally, communication costs
are well distributed with DELTA.

DELTA has been designed to run on tiny sensor nodes. Simulation and real-
world experiment results are presented. The evaluation shows that the algorithm
works efficiently, minimizing the amount of communication,while providing suf-
ficient information to make meaningful statements about location and type of the
observed event. DELTA provides the following main features:

• Efficient formation and maintenance of tracking groups based on sensor read-
ings.

• Concurrently present tracking groups are avoided.

• The required sensor data to perform fine-grained localization and classifica-
tion is collected in a distributed manner.

• Arbitrary sensing ranges are supported.
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• Communication load is minimized.

1.6 Event Localization and Signal Strength Estimation

The localization and signal strength estimation module (see Figure 1.1) is intro-
duced in Chapter 7. The DELTA algorithm proposed in this thesis provides the
leader node with event-relevant sensor readings. This datais required for the com-
putation of event characteristics such as the signal strength(s) emitted by an event
or its location. Furthermore, any subsequent classification can be based on these
estimated event characteristics. Only the computed estimates are reported to the
base station. Thus, considerable communication load can besaved.

The computation of event position and emitted signal strength(s) of the event
is based on local sensor readings. In order to compute these estimations, a feasible
signal propagation model is required. In our work we use a commonly applied sen-
sor model, which assumes isotropic signal attenuation. Thereceived signal strength
on a sensor node decreases thereby inversely proportional to the distance to the
event source. The sensor model is used to formulate the localization and signal
strength estimation problems as a nonlinear objective function. In order to solve
this function, at a minimumn sensor readings are needed, wherebyn is bigger
than the problem dimensionality. The collection of data is illustrated by the infor-
mation exchange between the group leader and the group members in Figure 1.2.
Thereby, the group leader collects the data required to perform the localization and
signal strength computation tasks. The objective functionis solved by applying
nonlinear optimization methods. The problem can further belinearized and solved
with linear least square methods. In this case, additional sensor readings are re-
quired. The availability of redundant information cannot always be guaranteed in
wireless sensor networks, though.

Both, simulated events as well as real-world events have been evaluated. The
results show accurate localization and event parameter estimations. We have eval-
uated nonlinear and linearized solutions. Nonlinear solutions have shown to be
superior. In particular, they provide useful estimations even when only a minimum
amount of data is available, which might frequently be the case in wireless sensor
networks due to error-proneness or energy (communication cost) constraints. The
main findings of this part can be summarized as follows:

• Localization and parameter estimation problems are formulated as nonlinear
optimization problem based on collected sensor readings.

• Nonlinear solutions outperform the according linearized methods.

• Reporting traffic is minimized.

• The classification of events based on event characteristic estimates is facili-
tated.
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1.7 Event Classification

Finally, event classification methods have been investigated in Chapter 8. Two
different classification methods have been developed. The first method addresses
the classification of discrete events and is presented in Section 8.2, while the sec-
ond method concerns the detection and reporting of abnormalbehavior. The first
method aims to classify events which are present as discreteentities in time (Mod-
ule 3 in Figure 1.1). With this method a certain number of well-defined time-
discrete event types can be distinguished. The time-discrete event classification
procedure learns and classifies specific event patterns unsupervised from collected
data. Learning from data has the advantage that no expert knowledge is required.
Thus, the application of the algorithm is simplified and design flaws due to poor
data abstractions can be prevented. Moreover, the system supports false-alarm fil-
tering, which can save costs in terms of energy and money. Theclassifier assigns a
confidence degree to each classification and filters events that do not satisfy a given
threshold requirement. Obviously, filtering has an impact on reporting delays. The
trade-off between false-alarm prevention and introduced reporting latency is in-
vestigated. Regular alarms, commonly detected with high confidence, must not
be filtered, but reported with low latency. The main outcomesof this part can be
briefly summarized as follows:

• Discrete event classes are learned and classified in an unsupervised manner.

• Classifications are rated with a certain confidence. Based onthis confidence
false alarms are prevented.

• Regular alarms are reported with short delays.

• The classifier is configured offline based on collected data. The classification
itself is lightweight and is performed on the leader node based on current
sensor data.

1.8 Anomaly Detection

The classifier for discrete events cannot be extended to model events which evolve
over time. To address these kinds of events, which are often present in surveil-
lance and tracking applications, dedicated lightweight methods are required. The
classification of continuously evolving events is very expensive in terms of com-
munication and storage. On the other hand, our event detection system mainly
requires anomaly detection. This poses less burden on the system. Surveillance
applications are more interested in detecting abnormal behavior than determining
specific event characteristics. The method is proposed in Section 8.3. Anomaly
detection is covered by the fourth application module in ourarchitecture (see Fig-
ure 1.1). The approach implements an adaptive memory on the sensor nodes that
is able to remember event patterns. Abnormal behavior is identified by unknown
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event patterns. The adaptive memory approach is implemented as short term mem-
ory based on an aging mechanism. Thereby, stored event patterns that rarely occur
become older. Knowledge that exceeds a given age is replacedby new, currently
unknown event patterns. Based on a rather small memory capacity and the aging
mechanism, currently unknown events are detected, reported as anomaly, temporar-
ily known and replaced by new, unknown event patterns. The main findings of this
part can be summarized as follows:

• Abnormal behavior is detected and reported with an adaptivememory ap-
proach.

• Known event patterns are filtered on the nodes. Communication is saved.

• Based on the aging mechanism, learning capability is continuously provided.

• Anomaly detection can be implemented in a lightweight and efficient manner
by adding aging functionality.

1.9 Office Monitoring Application

The event detection system has been used in an office monitoring application,
where unauthorized office occupancy is detected and reported. The application of
our event detection system is presented in Chapter 9. The anomaly detection soft-
ware and the DELTA event detection and tracking functionality are used. A typical
monitoring scenario is illustrated in Figure 1.2. Different office occupancy or of-
fice access patterns need to be distinguished. The access patterns are composed of
a series of measurements of some phenomena that are collected and processed on
the sensor nodes. In order to meet storage requirements the office monitoring has
been restricted to anomaly detection, i.e., no classification of present event patterns
is performed. Anomaly detection conceals the identity of persons occupying the
office in a normal state, because only abnormal behavior is reported. Thus, the
system provides privacy to the office staff. Due to energy costs of radio transmis-
sions, it is not possible to transmit the observed event patterns unprocessed to a
fusion center. Therefore, the office monitoring system implements a two-layered
approach. Local event patterns are periodically monitored, filtered and compressed
on the sensor nodes. The compressed event report is then sentto a fusion center,
i.e., a DELTA leader node, where the system-wide anomaly detection is performed.
The main outcomes of Chapter 9 can be briefly summarized as follows:

• Unauthorized office access is reliably detected. Normal office occupancy
triggers no alarms.

• Unauthorized office access is reported efficiently and in a lightweight fash-
ion.

• The office monitoring system provides privacy to the office staff.
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1.10 Contributions

The main contributions of this thesis can be summarized as follows:

• A simple synchronization method for synchronized contention-based MAC
protocols has been developed. The method prevents coexisting duty cycles
and saves additional energy on the MAC layer.

• Synchronization messages have been used to implement routing on the MAC
layer. Thus, additional control traffic is saved. Additional energy is saved by
temporarily turning off the radios of nodes that are not required for routing.

• Network lifetime has been extended by tailored medium access and routing.

• Tracking groups are efficiently established and maintained. DELTA outper-
forms similar approaches in communication overhead minimization.

• An energy efficient event detection architecture that supports long-term de-
ployments has been developed. The system provides long-term monitoring
without need for battery replacements, which has not yet been provided by
other event detection systems.

• The trade-off between long-term operation and detection accuracy has been
optimized, while previous work mainly focuses on accuracy optimization.

• Discrete event classes are efficiently and unsupervised classified.

• Lightweight and accurate anomaly detection is performed byan adaptive
memory approach.

• The event detection system has been applied to office monitoring. The sys-
tem works efficiently and reliably.

• Office intrusion by thieves is detected and reported reliably. Normal office
occupancy is filtered in the network, decreasing communication costs. Pri-
vacy is provided to office staff.

1.11 Thesis Outline

In Chapter 2 an introduction to wireless sensor networks is given. The focus is
on relevant characteristics for this thesis. The network stack layers of interest are
introduced and discussed in some more detail.

In Chapter 3 we give a comprehensive overview of related workin the topics of
medium access control, event detection, tracking group formation and maintenance,
event localization, and event classification for wireless sensor networks.

A simple protocol to achieve local clock synchronization ispresented in Chap-
ter 4. The method is used to synchronize duty cycles of sensornodes running
synchronized contention-based MAC protocols.
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Energy efficient protocols that provide our event detectionsystem with medium
access and routing are presented in Chapter 5. The protocolsexploit the informa-
tion exchanged by synchronization messages. Based on this information routing
backbones are implemented directly on the MAC layer. To saveadditional energy,
non-backbone nodes temporarily turn off their radios.

The remainder of the thesis discusses the different application-level tasks. Chap-
ter 6 addresses event detection and the formation and management of tracking
groups. These operations are performed by the DELTA algorithm. DELTA is evalu-
ated in terms of tracking performance and communication overhead minimization.

A method to estimate location and signal strength(s) of events is presented in
Chapter 7. The method is based on nonlinear function optimization and is imple-
mented as a feature of DELTA.

Event classification procedures are provided in Chapter 8. The procedures con-
tain a classifier based on Fuzzy Logic concepts that learns event classes unsuper-
vised and classifies unknown events quickly and efficiently.Furthermore, a clas-
sifier that performs anomaly detection by monitoring continuously present event
patterns is provided.

The event detection system has been deployed in an office monitoring applica-
tion. Deployment and performance details are presented in Chapter 9.

Chapter 10 summarizes the main outcomes of this thesis and concludes the
performed work.

Finally, some further improvements and possible future directions of research
are presented in Chapter 11.
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Chapter 2

Wireless Sensor Networks

In this chapter a general introduction to wireless sensor networks (WSN) is given.
Focus is on topics that are relevant for this work. Wireless sensor networks are
sometimes considered as a special kind of mobile ad-hoc networks (MANET) [109].
However, the two networks differ considerably. Wireless sensor networks are de-
ployed to monitor and interact with physical environment, whereas MANETs have
been developed to interconnect mobile computers in an ad-hoc and infrastructure-
less manner. Moreover, miniaturization, long-term deployment, difficulty in phys-
ical access and high redundancy impose very different requirements to wireless
sensor networks compared to MANET.

2.1 Introduction

Recent advances in wireless communication technology and the development of
low cost, low power, multifunctional sensor nodes have led to the development
of wireless sensor networks. The tiny sensor nodes consist at a minimum of a
processing unit, some memory, a radio module to exchange data and an array of
sensors to measure physical phenomena. In addition, sensornodes are generally
equipped with batteries. Consequently, the ability to saveenergy in order to extend
node lifetime is a critical evaluation factor in most applications. Sensor nodes can
optionally be provided with actuators to interact with the physical environment.

Wireless sensor networks are a significant improvement fromtraditional (nor-
mally wired) sensor systems, which provide solutions to problems in the following
two contexts [3]:

• Large powerful sensors are positioned far from the actual physical process of
interest. In this approach few heavily-equipped high-resolution sensors are
deployed, which provide complex techniques to measure and filter physical
phenomena.

• The physical phenomenon is observed by several sensors thatperform only
sensing and transmit the observed raw time series of measurements to a cen-
tral fusion center, where the streams of sensor readings from the different
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sensors are stored and processed. In-network data processing is not sup-
ported. The positions of the sensors and the network topology need to be
engineered carefully. Moreover, if the sensor needs to be wired, high deploy-
ment costs are a consequence.

In contrast wireless sensor networks are composed of a high number of densely
deployed nodes that are located close to the monitored physical phenomenon. The
sensor nodes are often assumed to be randomly deployed in terrains that are difficult
to access, e.g., in remote areas or in disaster areas. This introduces flexibility,
but this also imposes complexity. Wireless sensor networkshave to provide self-
organizing capabilities. Moreover, remote access and reconfiguration functionality
as well as redundancy to compensate for node failures are required.

In order to fulfill an application-level task, sensor nodes are commonly required
to operate cooperatively. Because sensor nodes are equipped with a processing unit
and some storage, raw sensor data can be processed in-network, on node-level or
iteratively at dedicated sensor nodes. These dedicated nodes can be determined
based on negotiation procedures, by other simple election methods, or by topology
control mechanisms. Thus, the transmission of huge amountsof raw sensor data
to a central fusion center can be avoided. This saves communication costs and
accordingly energy.

Figure 2.1: Wireless sensor network with in-network processing.

A typical example of a wireless sensor network is depicted inFigure 2.1. The
network is connected to the Internet over a base station. A high number of sensor
nodes are connected and build a multi-hop wireless network.In a given area of
interest sensor data is collected, aggregated and finally routed to the base station
for further processing. In Figure 2.1, the five sensor nodes located in the area of
interest are organized in a tree structure. Thus, by applying aggregation along the
tree, only one report, containing the aggregated data from all five sensor nodes,
is sent to the base station. This sensor network example requires collaboration,
routing support and aggregation functionality.
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Many researchers are engaged in developing algorithms thataddress these re-
quirements. More recently, the focus has changed from more theoretical work and
simulations towards real-world implementations and prototypes. Good introduc-
tions to wireless sensor networks, some of its specific topics, and its applications
have been provided by [3], [2], [34], [35] and [112]. Before presenting the work
done in this thesis, some concepts and properties of wireless sensor networks that
are in particular relevant for this thesis are discussed in more detail. The spectrum
of sensors implemented on sensor nodes is listed in Section 2.2. Impacts of energy
constraints and other influencing factors on sensor networks and their applications
are discussed in Section 2.3. Section 2.4 addresses communication in wireless sen-
sor networks. Focus is on medium access, routing and on the application layer.

2.2 Sensing Capabilities and Sensors

In the following the spectrum of sensors typically implemented on sensor nodes
is presented. Sensor networks can consist of many differenttypes of sensors such
as acoustic, light, thermal, accelerometer, infrared, seismic and visual. The im-
plementation and combination of these kinds of sensors supports the monitoring
of a wide variety of ambient conditions that include, but arenot limited to, the
following [36]:

• Temperature,

• Humidity,

• Movement and velocity,

• Light condition,

• Pressure,

• Soil conditions,

• Noise levels,

• The presence or absence of certain kinds of objects,

• Mechanical stress levels on attached objects, and

• Temporary characteristics such as speed, direction, and size of an object.

Due to harsh constraints in power supply and usage, the sensor nodes and the
sensors implemented on them are comparatively cheap, provide limited accuracy
and mainly support proximity sensing. On the other hand, dense deployment and
massive parallelism, which are offered by the cheap cost of wireless technology,
balance these drawbacks. The sensor nodes can be used for event detection, contin-
uous monitoring, event ID handling, localization and classification, and the control
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of actuators to feedback to the environment. The introducedconcept of parallel
micro-sensing together with wireless communications makes many new applica-
tion areas accessible (see Section 2.4.5).

2.3 Factors Influencing Sensor Network Design

The design of a sensor network has to consider many factors. Typical system as-
pects are hardware design, low power operation, manufacture costs and the trans-
mission medium. System aspects are discussed in Section 2.3.1. In addition to
system aspects networking requirements influence the design of sensor networks.
Typical networking issues are sensor network topology, scalability and fault toler-
ance. The factors are discussed in Section 2.3.2. Finally, environmental factors are
discussed in Section 2.3.3. In order to develop practical sensor network solutions
all factors have to be considered together. These factors provide a guideline for the
design of hardware, protocols and algorithms for sensor networks. Moreover, they
can be used for the comparison of different solutions.

2.3.1 System Issues

In the following the impact of sensor system aspects on the design and develop-
ment of wireless sensor nodes and networks is discussed. These factors mutually
influence each other.

Hardware Design

A sensor node consists of four basic components, namely a sensing unit, a process-
ing unit with some storage, a transceiver unit and a power supply unit. Additional
units such as a location service or a mobilizer might be implemented too. The ana-
log signals captured by the sensing unit are typically converted to a digital output.
All these units need to be fitted into a matchbox-sized module[56]. In addition to
size, some other constraints have to be considered in the hardware design [3]:

• Energy consumption should be as low as possible.

• The nodes must operate at high volumetric densities.

• The components must be cheap and individual nodes must be dispensable.

• Autonomous and unattended operation is required.

• The nodes must be adaptive in respect to the environment.

Because sensor nodes are often inaccessible and/or deployed in very large num-
bers, the lifetime of a sensor network depends on the lifetime of the power supply
unit. The developers of the ESB sensor nodes (see Section 3.8.1) have estimated
a sensor node lifetime of 17 years if 25 bytes are sent every 20s [9]. The rest of
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the time the sensor node is in very low power mode, in which thesensors, the ra-
dio and the processing unit are shut down. If synchronization, MAC and routing
support, and other mechanisms are required, the lifetime drastically reduces, rang-
ing from several months to a few years. The kind of transceiver unit used has a
major impact on the sensor network design. In general radio frequency (RF) with
bandwidths of up to few hundred kbits is used. Transmission range and reliabil-
ity of the transceiver commonly vary considerably over timeand are dependent on
the node. Therefore, calibration might be required. Finally, the storage capacity
of sensors nodes is limited. Implementing additional memory (e.g., EEPROM) is
possible, but writing to that memory is expensive in terms ofenergy. Accordingly,
sensor network applications and protocols are assumed to use as little memory as
possible.

Low Power Operation

Probably the most important constraint on sensor networks is the requirement of
low power operation. Sensor nodes are in general equipped with low power bat-
teries. Due to the paradigm of unattended operation, these batteries are often not
replaceable, or only with high costs. Therefore, wireless sensor networks focus on
the optimization of the trade-off between quality of service (QoS) and energy con-
servation. Considering routing, the trade-off is the option of prolonging network
lifetime at the cost of increased delays and/or lower throughput. In localization
and classification, the trade-off is normally between saving energy and increasing
accuracy. Depending on the application QoS cannot be lowered in order to save
energy, though.

Nevertheless, any application has to work within the power constraints of the
used sensor nodes. Wireless sensor nodes can only be equipped with limited power
supply. According to [3] currents of up to 0.5 Ah can be supported. Moreover,
the sensor nodes are typically powered with up to three 1.5 V batteries, which re-
sults in a total power supply of 4.5 V. In specific applications the batteries can be
recharged, whereas in most applications this is not the case. Therefore, the lifetime
of a sensor network is strongly dependent on the lifetime of the supplied batteries.
If the batteries of critical nodes deplete, network connectivity can be affected and
routing can become impossible. Accordingly, the application might no longer be
able to perform its tasks. To prevent this, the development of power-aware algo-
rithms is one of the primary design factors for wireless sensor networks. Power
consumption can be divided into three domains: sensing, communication, and data
processing. The frequency of sensing is application-specific. Nevertheless, to re-
duce energy consumption the trade-off between sampling frequency and minimum
required resolution is optimized. With regards to communication and data process-
ing it has been shown that the communication of a bit in general costs much more
than processing a bit [171]. Accordingly, energy can be conserved by processing
and aggregating sensed data within the network.
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Manufacture Costs

Wireless sensor nodes are comparatively cheap, but deployed in large quantities.
In summary, the costs of a sensor network may not exceed the costs of deploying
traditional sensors to address the problem at hand. In orderto make the deployment
of a large sensor network feasible, the costs of a single sensor node should be less
than $1 [117].

Transmission Media

Communication in a multi-hop sensor network is achieved by wireless communi-
cation. The wireless medium can be radio, infrared or optical. In most applications
radio is used. The medium should be available worldwide to support global op-
eration. Often the license-free industrial, scientific andmedical (ISM) bands are
used. Due to constraints in power usage and size, the range ofapplicable carrier
frequency is limited to the ultrahigh frequency range. Currently used transceivers
mainly work in the 868 MHz or the 2.4 GHz spectrum [127], [128]. The used
license-free frequencies are also often used by other applications. Accordingly,
inter-application interferences will arise and have to be dealt with.

2.3.2 Networking Issues

The following aspects concern networking issues. The expected sensor network
topology, the required network size and needs of fault-tolerant operation influence
the design of wireless sensor networks.

Sensor Network Topology

The high number of densely deployed nodes in a sensor networkmakes topology
maintenance a challenging task. The maintenance of topology can be mainly di-
vided into two phases, namely the pre-deployment and deployment phase as well
as the actual post-deployment maintenance phase. The deployment of sensor nodes
can be done randomly by throwing them out of planes or by a catapult, or in a more
controlled way by placing them in factory and/or manually byhumans or robots in
the target environment. The kind of deployment depends on the application. In any
case, cost expenditure in planning and installation has to be considered. Even if
the sensor network is statically deployed, the topology canchange due to node fail-
ures, energy depletions, or jamming attacks after deployment. Moreover, varying
battery levels among the network nodes might require rearrangements. In mobile
scenarios or in the presence of node failures the need for topology maintenance
is obvious. However, application-specific changes might require topology adapta-
tions too. Finally, additional nodes might be deployed, which have to be integrated.
The handling of topology changes is in general addressed on the network layer by
dedicated routing and topology control protocols.
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Scalability

Depending on the kind of phenomenon that has to be monitored and the paradigm of
massive parallelism to compensate for rather local sensing, the number of deployed
sensor nodes for studying the phenomenon is quickly on the order of hundreds and
thousands. Depending on the application, the number might even reach an extreme
value of millions [3]. In addition, the density has a large impact and can vary from
a few nodes in a region up to thousands. The network densitym in a particular
regionA can be computed according to [14]:

m =
n · r2 · π

A

wheren is the number of nodes deployed in a region andr the radio transmis-
sion range. The number of nodes in a region is used to indicatenode density.
The computed network density is based on the unit disk model [24]. Hence, the
estimated network density is very idealistic and does not consider irregular trans-
mission ranges. Nevertheless, in order to get an approximation of the real network
density, this simplistic model is commonly used.

Fault Tolerance

Sensor nodes are known to become completely or temporarily unavailable due to
physical damage, lack of power or environmental interferences. The (temporary)
failure of nodes should not affect the overall performance of the sensor network. In
particular the satisfaction of the global task of the sensornetwork may not be cor-
rupted. Accordingly, fault tolerance issues go hand in handwith system reliability.
An introduction into the design of fault-tolerant sensor network systems has been
provided by [53]. The deployment environment has a big influence on reliability.
In a battlefield sensor nodes might be damaged much more frequently than in a
building surveillance application.

2.3.3 Environment

The phenomenon of interest is observed by densely deployed sensors which are
located in proximity to the monitored phenomenon. Since thephenomenon of in-
terest is often located in remote or inaccessible geographic areas, the sensor nodes
have to work unattended.

Harsh conditions that the sensor nodes may face include wildanimals and other
moving objects, harsh environments such as glaciers, hurricanes or oceans, interiors
of machinery, biological or chemical contaminated fields, and so on. All these
different kinds of environments pose challenges to the development of sensor nodes
and networks.
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2.4 Communication in Wireless Sensor Networks

In this section some communication issues in wireless sensor networks are dis-
cussed. In order to operate a WSN, different functionality on different layers of the
network stack is required.

Figure 2.2: Network stack implemented by sensor nodes.

A typical network stack implemented on a sensor node is depicted in Figure
2.2. It provides similar layers as the stack known from the Internet. The layers
that are of particular relevance for this thesis are coloredgray in Figure 2.2. The
transport layer provides functionality for reliable end-to-end communication. This
issue is less considered in our work. Also, flow control and congestion control
have not been in the scope of this thesis. Therefore, the according functionalities
are not introduced in the following. Nevertheless, transport functionality and/or
congestion and flow control could be integrated into our system.

Medium access control and routing are functionalities thatevery wireless sen-
sor network has to provide. First, to distinguish Wireless Sensor Networks (WSN)
from Mobile Ad Hoc Networks (MANET), we classify communication require-
ments of WSNs with respect to the communication requirements of MANETs.
Then we introduce and motivate the usage of multi-hop communications in sen-
sor networks. The focus is on aspects of medium access and routing, which are
needed by our system. Finally, some typical application issues are discussed.

2.4.1 Requirements

The realization of sensor network applications requires wireless ad-hoc networking
techniques (see also Figure 2.1). Although, many protocolshave been presented in
the context of MANETs, they do not meet the specific features of wireless sen-
sor networks. In the following a list of the basic differences between WSNs and
MANETs [109] is given according to [3]:
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• The number of sensor nodes in a sensor network might be several orders of
magnitude higher than the number of nodes in an ad hoc network.

• Sensor nodes are often densely deployed, which requires topology control
mechanisms.

• Sensor nodes are error-prone, which requires redundancy.

• The topology of a sensor network can frequently change. However, this is
less of an issue to the kind of event-detection systems addressed in this work.

• Sensor nodes are limited in power, computational capacity,and memory.
Nonetheless, in most applications they must provide long-term operation.

• In some applications, sensor nodes are not addressed by global identifiers
(IDs) due to the large number of sensors and overhead. Data-centric commu-
nication might be more adequate for such applications.

2.4.2 Multi-Hop Communication

Wireless sensor networks generally perform multi-hop communication. This is
mainly for three reasons. First, large numbers of sensor nodes are densely deployed
and neighboring nodes are accordingly located very close toeach other. Tradi-
tional single-hop communication which would cover many nodes in such scenarios,
would lead to unnecessary overhearing and therefore a substantial waste of energy.
Hence, multi-hop communication is expected to consume lessenergy in sensor net-
works. Secondly, according to the dense deployment of sensor nodes, transmission
power levels can be kept low, which saves a lot of energy. Finally, with multi-
hop communication some signal propagation problems known from long-distance
wireless communication can be overcome.

2.4.3 Medium Access

The objective of Medium Access Control (MAC) is to coordinate the times when
a number of nodes access a shared communication medium. In addition to the
common task of organizing the medium access by mutual exclusion mechanisms
or assigning fixed transmission slots, MAC protocols for wireless sensor networks
need to be energy-efficient. Basically, there are five sources of energy waste, which
have to be considered in protocol design [30]:

• Collisions: Interference between concurrently sending nodes needs tobe
avoided, else the transmitted packets might be damaged. Moreover, the en-
ergy used for transmission and reception of these packets iswasted and the
packets need to be retransmitted.

• Overhearing: Since air is a shared medium, nodes receive packets that are
not destined for them. The energy used for receiving and processing these
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packets is wasted. Nodes that do not take part in communication could pre-
serve much more energy in a sleep state.

• Overhead: MAC protocols need control messages for protocol tasks such as
synchronization, medium allocation, etc. These packets donot contain ap-
plication data. Accordingly, these packets are overhead from the application
point of view. The number of them should be minimized.

• Idle listening: The wireless medium is continuously sensed in order to detect
pending transmissions from a node. Typically, idle listening consumes nearly
as much energy as receiving.

• Overemitting: This is caused by the transmission of packets to a receiver
when the receiver is not ready. This is obviously a waste of energy and
requires retransmissions.

Apart form facing the sources of energy waste presented above, sensor net-
works need to shut down the radios of the nodes as often as possible to save extra
energy. The goal is to minimize the duty cycle of the node, i.e., the amount of
time the node is awake. The temporary shut down of radios can either be done in
a synchronous or asynchronous manner. Low duty cycling challenges the satisfac-
tion of traditional performance measurements such as delayand throughput. Some
protocols minimize duty cycles, while trying to meet application-specific delay and
throughput goals. A classification of MAC protocols for wireless sensor networks
and a number of representatives are presented in Section 3.2.

2.4.4 Networking Layer

In this section we review some requirements and features in topology control and
routing. Both tasks are commonly performed at the networking layer (see Fig-
ure 2.2). Topology control is needed to manage connectivityin densely deployed
sensor networks. Without topology control interferences and high redundancy in
routing options might decrease performance. On the other hand, routing is required
to forward data to a destination in a multi-hop network.

Topology Control

In order to provide redundancy and to support accurate sensing, sensor nodes are
densely deployed in wireless sensor networks. Consequently, sensor nodes have
many neighboring nodes. Besides the advantage of redundancy, this poses severe
burdens on MAC and routing protocols. With a rise in network density, interfer-
ences and topology changes increase. Moreover, additionalrouting options are
possible, which makes routing management more complex.

To overcome these problems, the application of topology control mechanisms
has been proposed. The idea is to optimize the number of network nodes that are
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required to guarantee connectivity. Basically, this can beachieved by two kinds of
approaches [60]:

• Identifying redundant nodes: Redundant nodes are identified and tempo-
rary liberated from any communication need. These nodes cantemporarily
turn off their radios, which further conserves energy. Roles can periodically
be changed. Thus, changing energy level distributions can be considered,
which helps to further extend the network lifetime.

• Transmission power control: The number of neighboring nodes can be re-
duced by transmission power control. In addition to the prevention of inter-
ferences and congestion, energy can again be preserved. But, the average
number of hops between source and destination nodes increases.

Routing

In multi-hop networks routing data from a source to one or multiple destinations
is needed. Intermediate nodes along a path have to decide to which neighbor they
will forward a given data packet. Routing tables can be computed in advance or
on-demand. Furthermore, they can contain information ranging from local neigh-
borhood knowledge to global knowledge. If position information about the sensor
nodes is available, this can be incorporated into routing too.

Two network properties are particularly relevant for routing in the context of
this thesis: Network dynamics and the used communication pattern. The degree of
network dynamics has a high impact on the design of topology control and routing
mechanisms. If few topology changes are expected and communication is mainly
from source to sink, a routing tree instantiated at the sink is adequate. On the other
hand, if frequent topology changes occur or if multi-hop communication among
network nodes is required, these approaches face difficulties due to their central-
ized nature. Accordingly, in these cases unrestricted fully distributed mechanisms
are required. Distributed mechanisms provide the requiredmeans at the cost of
additional communication and complexity. The state of the art in topology control
and routing for wireless sensor networks is discussed in Section 3.3.

Another property of sensor networks is that the addressing scheme is typically
changed from ID-based, e.g., used in MANETs, to data-centric. Instead of address-
ing individual nodes, the sensed data is of main interest. Content may be routed
based on the kind of data, or data is stored distributed in thenetwork according
to the kind of data and the location where it has been sensed. In order to access
this data, publish/subscribe methods and distributed hashtable approaches have
been proposed [37], [26], [121]. In order to organize tracking groups efficiently we
have used an ID-based approach in our system design. However, global identifiers
are not necessary, because individually addressing and connecting nodes separately
from tracking group formation is not required.
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2.4.5 Application Layer

In this section the top layer in the network stack is addressed (see Figure 2.2).
As mentioned above sensor networks are used to monitor and optionally interact
with the physical environment. Thereby two general classesof sensor systems are
of interest: stream-oriented systems and event-oriented systems. Steam-oriented
systems observe some physical phenomenon continuously. Onthe other hand, in
event-oriented systems sensor nodes are programmed to become active upon pres-
ence of an event. Both approaches are introduced below.

Stream-Oriented Systems

Stream-oriented systems implement concepts of distributed data base systems. The
focus is on long-term monitoring and data collection. Typical applications are en-
vironmental monitoring systems such as glacier and air pollution monitoring, or all
kinds of agricultural and animal monitoring systems. Stream-oriented systems are
well tailored to applications where a specific physical environment is continuously
monitored. The networks are typically rather static and theimplemented queries
are periodically executed. The query syntax is similar to the syntax of SQL. A
typical query might look as follows [93]:

SQL-like Query:

SELECT AVG (noise_level), roomFROM sensors;
WHERE floor=5;
GROUP BY room;
HAVING AVG (noise_level)> threshold;
SAMPLE INTERVAL 90s;

Stream-oriented systems support the generation and download of queries such
as the one listed above onto the sensor nodes. These queries are then periodically
executed on the sensor nodes that are matched by the query. Inthe example above
reports containing the average noise level in the rooms located on the fifth floor of
a building would be generated every 90 seconds.

Stream-oriented systems typically deploy routing trees inthe sensor network.
The trees are constructed according to the sensing task. Newqueries are down-
loaded onto the sensor nodes over these trees and the sensor readings (reports) are
routed to the base station over these trees. In-network processing and aggregation
are optionally applied at tree nodes to reduce communication load (aggregation is
done in the example in Figure 2.1).

Stream-oriented systems have an intrinsic advantage in predicting system state
and network load. Due to periodic sensing and the implemented routing tree, the
network load is constant and can thus easily be monitored andcontrolled. More-
over, the query language provides aggregation primitives,which can be applied
in-network at tree nodes without additional management costs. Collaboration and
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arbitrary communication among the network nodes is barely required in stream-
oriented applications due to the implemented routing tree.On the other hand, ran-
domly occurring, unexpected events are difficult to be included into stream-oriented
systems.

Event-Oriented Systems

Unlike stream-oriented systems, event-oriented systems are useful if unexpected
sporadic environmental events have to be detected and processed. Typical appli-
cations are surveillance (e.g., building, disaster), security, and military. In such
applications periodic sensing is an overhead. Moreover, stream-oriented applica-
tions might not be able to deal with abruptly evolving eventsin a timely manner.
In contrast, event-oriented systems are designed to meet the specific event detec-
tion requirements. In event-oriented applications eventsare generally detected and
monitored on-demand and fully distributed. Because of the lack of a fixed infras-
tructure, energy can be saved as long as no critical phenomenon is detected. On
the other hand, the lack of an infrastructure requires collaboration and negotiation,
which provides flexibility but also imposes complexity. Allsystem functionality is
implemented according to the specific application requirements.

Event-oriented task:

if event detected
Negotiatestatewith neighbors;
if state== LEADER

Request event information from neighbors;
Generate event report based on collected data;

else ifstate== MEMBER
Report requested information to leader;

end
end

A task executed by sensor nodes of an event-oriented system is described in
pseudo code above. Upon detection of an event, sensor nodes are instructed to or-
ganize themselves. Therefore, negotiation among the sensor nodes is required. This
is not required in streaming-oriented systems. As soon as the roles are assigned to
the sensor nodes, the nodes perform their respective task.

Because events occur infrequently in event-oriented applications, communi-
cation occurs burst-like and is more difficult to predict or control. Any kind of
aggregation is application-specific and needs to be implemented by the system de-
signer. Because events and their handling are modeled from scratch, no common
aggregation functionality is provided.
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2.5 Conclusions

In this chapter a general overview of wireless sensor networks, their benefits, their
challenges, and their applications has been given. The mainfocus was on topics
which are also relevant for the work done in this thesis. It has been shown that wire-
less sensor networks extend conventional sensor systems byproviding the means to
monitor a phenomenon of interest directly, close to the location of incident. More-
over, no cables are needed, which lowers deployment costs considerably. These
properties open a new range of applications such as glacier monitoring that would
be difficult to address with conventional systems. On the other hand, wireless sen-
sor networks impose a number of challenges such as error-proneness, accuracy,
self-organization and energy consumption. The need to preserve energy is prob-
ably the most limiting factor in wireless sensor networks design. In particular if
long-term operation is required, energy-efficient algorithms are mandatory.

In our own work we focus on the detection and processing of unexpected
events. This context poses severe constraints on delays andrequires real-time pro-
cessing and reporting. Accordingly, distributed storage of sensed data and stream-
oriented mechanisms are not best suited. In contrast, event-oriented distributed
tasking such as monitoring group formation, on-demand dataaggregation and re-
porting are required. Our event detection system has been designed in order to
meet the requirements discussed in this chapter. Particular focus has been on the
trade-off optimization between needed accuracy and energysavings.

The next chapter discussed related work relevant for the work performed in this
thesis.
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Chapter 3

Related Work

In this chapter we give an overview of related work that is important for the in-
vestigations carried out in this thesis. The sections are organized according to the
chronology of the subsequent chapters. An event monitoringframework requires
functionality on different network layers. Accordingly, both related work and chap-
ters are organized in a bottom-up manner starting at the MAC layer. The protocol
stack is traversed up to the application layer.

3.1 Introduction

The related work discussed in this chapter is shortly summarized in the following.
Current state-of-the art in medium access control is presented in Section 3.2. Focus
is on energy-efficient contention-based MAC protocols. Sensor node synchroniza-
tion and coordinated sleeping on the MAC layer are furthermore addressed.

On the network layer topology control and routing are addressed. Relevant re-
lated work is presented in Section 3.3. The focus is on connected dominating sets
used to establish routing backbones. State-of-the art algorithms of connected dom-
inating sets mainly try to minimize the number of backbone nodes. However, be-
cause the backbone guarantees routing, nodes that are not elected into the backbone
can shut-down their radios as long as no events are present. Thus, considerable en-
ergy can be saved in wireless sensor networks.

The state-of-the art for the application layer is discussedwith respect to the
application-specific features of our system (see Figure 1.1). Related work in event
detection and tracking is presented in Section 3.4. Centralized and more distributed
algorithms are discussed. The state-of-the art for event localization and signal
strength estimation is presented in Section 3.5. Differentevent classification and
anomaly detection mechanisms are presented in Section 3.6.The classifiers and
anomaly detectors include simple threshold-based approaches and more complex
algorithms based on statistics and/or reasoning. The classification of both, discrete
and continuously present events is addressed. A number of typical event monitor-
ing applications are presented in Section 3.7. Finally, Section 3.8 presents the two
sensor node platforms that have been used during the development of this thesis.
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3.2 Medium Access Control

In this section different relevant medium access control (MAC) approaches are pre-
sented. MAC protocols can mainly be divided into contention-based protocols and
protocols which divide the medium access into contention-free time slots that are
assigned to the network nodes [142]. These time-division-based MAC protocols
impose complex slot handling and scale worse than contention-based protocols.
Moreover, they are more dependent on very precise synchronization. For these rea-
sons we focus on contention-based protocols in our work. Contention-based MAC
protocols can be further divided into synchronous and asynchronous MAC proto-
cols [140]. Synchronized contention-based MAC protocols implement low duty
cycles that need to be synchronized. On the other hand, asynchronous contention-
based MAC protocols implement a type of preamble sampling.

3.2.1 Synchronized Contention-Based Medium Access

Different synchronized contention-based MAC protocols have been proposed for
usage in wireless sensor networks. In order to preserve energy, low duty cycles are
implemented. This means network nodes follow periodic listen/sleep cycles. In
the listen periods they wake up, synchronize with neighbor nodes and take part in
communication in case some data is pending for transmission. If no data traffic is
indicated, the nodes fall back to sleep after the listen period.

Medium Access Control with Coordinated Adaptive Sleeping (S-MAC)

S-MAC [173], [172] is an energy-efficient contention-basedMAC protocol for
wireless sensor networks. It is based on low duty-cycles andrequires the exchange
of synchronization (SYNC) messages to synchronize the listen/sleep schedules of
the nodes. Every node maintains its own listen/sleep schedule. These schedules are
synchronized whenever possible in order to reduce control traffic overhead. Nodes
maintaining the same listen/sleep schedule build virtual clusters. New sensor nodes
listen to the wireless medium for a certain amount of time to overhear and adapt
existing schedules. If no SYNC message has been received during this period, a
node chooses its own schedule. Any subsequently overheard different schedule is
adapted too. Thus, virtual clusters are interconnected. All interconnecting nodes
follow multiple schedules, i.e., the schedule of each cluster they are a member of,
and accordingly consume much more energy than normal cluster nodes. Apart from
virtual clustering, the SYNC messages are also used to adjust clock drifts between
network nodes.

In addition to virtual clustering and normal RTS/CTS procedures, S-MAC im-
plements adaptive listening and message passing. Every transmitted RTS/CTS mes-
sage is extended with a network allocation vector (NAV) value that indicates the
duration of the following data transmission. Thus, all nodes which do not take part
in the current communication are enabled to turn off their radio until the ongo-

28



ing communication is finished. The transmission of long datamessages imposes
increased error rates. Therefore, such messages are fragmented. In message pass-
ing all resulting fragments are transmitted in a burst, withonly one exchange of
RTS/CTS in the beginning. Thus, the transmission of RTS/CTSpackets for every
single fragment can be avoided.

An Adaptive Energy-Efficient MAC Protocol (T-MAC)

T-MAC [142] is a traffic-adaptive energy-efficient MAC protocol for wireless sen-
sor networks. Like S-MAC, it implements virtual clusteringand an RTS/CTS pro-
cedure. Unlike S-MAC, T-MAC supports the adjustment of listen periods in depen-
dence of the pending data traffic. This adaptive listening isdepicted in Figure 3.1.
The gray bars indicate active radios.

Figure 3.1: Adaptive listening in T-MAC.

T-MAC introduces an activation time TA that covers the synchronization period
and the transmission of one RTS/CTS exchange. TA determinesthe minimum
amount of idle listening. If for the duration of the TA no RTS or CTS has been
overheard by a node, e.g., node D in Figure 3.1, the node (D) immediately goes to
sleep. Nodes A and B stay awake because of the data transmission. Unlike S-MAC,
node C performs no adaptive listening in T-MAC. Thus, throughput is improved. In
any case, due to its traffic-aware operation, T-MAC would gain less from adaptive
listening than S-MAC. The duration of the TA has been designed to span over some
short contention period, the transmission of one RTS/CTS exchange period and a
random backoff. The TA of T-MAC is considerably shorter thanthe static listen
period implemented in S-MAC. Accordingly, T-MAC performs particularly well in
scenarios with little and irregular traffic.

To increase throughput, T-MAC provides a future request to send (FRTS) mech-
anism. With FRTS, nodes that lose contention can inform their neighbors about
pending transmissions. If node C in Figure 3.1 had a message pending for node D,
it would inform node D about its pending data transmission (with a FRTS), before
waiting the data exchange between nodes A and B. Of course, nodes A and B wait
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for a possible FRTS from node D before starting data exchange. Having overheard
the FRTS, node D would abstain from going to sleep.

Traffic Aware Energy Efficient MAC Protocol (TEEM)

The Traffic Aware Energy Efficient MAC (TEEM) protocol [138] is another op-
timization of S-MAC. TEEM again reduces the overhead introduced by the fixed
length listen schedules in S-MAC. In TEEM, both SYNC and RTS messages are
combined into a single message, which is sent prioritized ifdata is pending for
transmission. Therefore, the listen period is divided intoa SYNC_DATA and a
SYNC_NODATA part. If some data is pending for transmission,the respective
nodes inform their neighbors about those transmissions in the SYNC_DATA pe-
riod. SYNC packets are used in the SYNC_DATA period to informneighbors
about an upcoming data transmission in a RTS-like way as wellas to synchro-
nize network nodes. The receiver of the control message immediately responds
with a CTS message and the data transmission can be started. On the other hand,
if no data is pending for transmission, the SYNC_DATA periodexpires without
any transmission of a control message and all network nodes contend to transmit
their synchronization message, which has no RTS functionality this time, in the
SYNC_NODATA period.

With the proposed mechanism the listen period of S-MAC can bereduced and
energy can be saved. Unlike T-MAC, TEEM does not provide any future request
to send mechanism. TEEM introduces higher delays and smaller throughput com-
pared to S-MAC and T-MAC.

Demand-Wakeup MAC

Demand-Wakeup MAC (DW-MAC) [139] is a recent synchronized contention-
based MAC protocol that is based on low duty-cycles and traffic-adaptive wake-up
periods. Like the other approaches DW-MAC organizes neighboring nodes into
virtual clusters. Accordingly, the synchronization mechanism has not been altered
compared to S-MAC, T-MAC, and so on. However, unlike other approaches DW-
MAC does not use RTS/CTS to allocate the channel, but implements an on-demand
scheduling mechanism. Nodes negotiate subsequent data transmissions in the listen
period. Fix data transmission slots are assigned to receiver nodes. Thus, overhear-
ing and collisions can be avoided while minimizing the duty cycle. With DW-MAC,
channel allocation and channel usage have been shown to be more efficient com-
pared to previous protocols.

Pattern MAC

In Pattern MAC (P-MAC) [176] listen/sleep schedules are determined adaptively.
Thus, drawbacks of fixed cycles, of algorithmically limitedthroughput and of in-
creased energy consumption under light network load are diminished. The sched-
ules are determined based on the own traffic of a node as well asof the traffic of its
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neighbors. Local traffic patterns are learned from communications observed by a
node. These traffic patterns are used to determine the duration of the sleep period of
a node. The pattern is represented as a string of bits which indicates the listen/sleep
plan for several cycles. The sleep time is exponentially increased in presence of
low traffic. The mechanism is somewhat similar to the slow start mechanism of
TCP. Accordingly, if no traffic is indicated in the neighborhood of a node, the node
can go to sleep for a long time.

P-MAC has been tested with constant bit rate communication along a single
path. This scenario is tailored to P-MAC. The performance and adaptivity under
variable traffic patterns remains to be shown. A key problem of PMAC is that all
nodes that are not located along a path are in a long-sleep state, which introduces
high delays. The design of PMAC is tailored to unicast traffic.

Synchronization of Listen/Sleep Schedules

Nodes that run a synchronized contention-based MAC protocol follow periodic lis-
ten/sleep schedules. Nodes sharing the same schedule are virtually organized into
clusters. In a sensor network multiple clusters might evolve. To support communi-
cation between these clusters, border nodes that interconnect them are required.

The problem of virtual clustering, i.e., of coexisting schedules, has been ad-
dressed in [85]. Experiments have shown that already in a multi-hop network con-
sisting of 50 nodes, which run S-MAC, up to four different virtual clusters have
evolved. Moreover, it has been shown that border nodes had tolisten to up to three
different schedules. Thus, border nodes have higher average energy consumption
than normal cluster nodes. Because the synchronization procedure is similar for all
synchronized contention-based MAC protocols, all these protocols would share the
behavior of S-MAC. Virtual clustering is illustrated in Figure 3.2.

Figure 3.2: Drawback of virtual clustering.

The gray and black nodes in Figure 3.2 operate as border nodes(gateways)
between the clusters and have to listen to multiple schedules. Accordingly, these
nodes sleep less and their batteries deplete sooner. If thishappens, network con-
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nectivity might be broken and the network might be out of order, even though
sufficiently many working network nodes might still exist. Therefore, it is desir-
able to avoid virtual clustering. In [85] it has been shown that surprisingly many
nodes follow multiple schedules. Mainly the temporary unavailability of commu-
nication links and the presence of gray regions [175] in radio communications, i.e.,
of effects due to strongly varying radio ranges, have been identified as reasons.

In [85] an additional schedule age has been introduced to solve the problem.
The authors motivate that different schedules must have entered the network at
different time points and thus have different ages. The schedule age is announced
in the SYNC message. Over time all nodes converge towards theoldest schedule in
the network. To prevent network partitions all other schedules need to be temporary
stored too. The maintenance and distribution of the schedule age requires additional
information. In our own work we will show that no schedule ageis needed because
local schedule consistency is sufficient.

3.2.2 Asynchronous Contention-Based Medium Access

A second group of protocols provides asynchronous contention-based medium ac-
cess. Most of these protocols implement preamble sampling.Unlike the protocols
proposed so far, they do not require any synchronization, but send long preambles
in order to reach neighboring nodes, which might be asleep. The minimum size of
the preamble is determined by the maximum length of the sleepcycle. An example
of preamble sampling is shown in Figure 3.3.

Figure 3.3: Preamble sampling and data transmission.

Both, sender S and destination D periodically wake up to sense the carrier.
Upon arrival of a message, S starts to send a preamble with themessage attached
to it. D overhears this preamble, stays awake and receives the message. The trans-
mission is confirmed with an acknowledgment message by D.

WiseMAC [33] is a contention-based MAC scheme based on preamble sam-
pling. Each node periodically wakes up for a very short period in order to listen
if some preamble is being sent. To determine whether a preamble is being sent
or not, the received signal strength indicator (RSSI) is measured. The sampling is
periodic with a fixed length sampling interval. If the mediumis occupied, any ob-
serving node remains awake until the data packet is transmitted. Otherwise, every
node goes immediately back to sleep after the sampling period. If a node is not
addressed in the data packet, it switches to sleep state too.The preamble length can
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be minimized by learning the sampling schedules of the neighbors. This informa-
tion is included into acknowledgment messages. With this knowledge a sender is
able to predict the wake up time of a neighbor node and therefore it knows when
to start sending the preamble. In Figure 3.3 node S would accordingly start to send
its preamble close to the next sampling period of node D. The minimum length of
the preamble isTp, whereTp = min(4 · Θ · L, Tw). Tw is the sampling period,
Θ is the tolerated frequency and L is the predicted time point of transmission.

B-MAC [111] is another contention-based MAC protocol that uses adaptive
preamble sampling to reduce duty cycles and to minimize idlelistening. B-MAC
is a lightweight asynchronous MAC protocol. It uses a Clear Channel Assessment
(CCA) to determine whether the channel is clear or not. The CCA is similar to
the RSSI measurements done by WiseMAC. B-MAC achieves low duty cycles by
periodic channel sampling, which is called Low Power Listening (LPL) in B-MAC.
The preamble length is chosen to be equal to the sampling interval. The duration of
the preamble length has not been minimized in B-MAC. B-MAC provides minimal
services and is therefore highly configurable. RTS/CTS procedures can for example
be implemented as a system service. Thus, solutions can be implemented which are
tailored to specific applications. The protocol overhead issmall.

X-MAC [13] is another protocol based on preamble sampling that optimizes the
preamble length. X-MAC introduces a preamble exchange scheme which transmits
a series of short preambles. Each of these preambles contains information about
a receiver. The proposed mechanism minimizes overhearing costs at non-target
receivers.

In RI-MAC [140] receiver nodes announce their availabilityby beacon mes-
sages. Based on the reception of such a beacon, a sender node transmits its pending
data to the receiver. Accordingly, RI-MAC substitutes the sender-initiated pream-
ble transmission with receiver-initiated beacon messages. RI-MAC has shown to
outperform preamble-based MAC protocols in a wide range of traffic loads.

All asynchronous MAC protocols achieve low duty cycles. However, they
require the exchange of preambles or beacons and support broadcast operations
poorly. In addition to broadcast support, periodic synchronization messages can be
further used to learn neighborhood information without additional control traffic.

3.2.3 Time Division Multiple Access

Time Division Multiple Access (TDMA) based MAC protocols also require the ex-
change of periodic SYNC messages in order to operate. However, unlike contention-
based protocols, the operation of TDMA-based protocols is based on the concept of
clusters. In general they require a cluster leader which allocates slots to its cluster
members. Thus, contention-free medium access can be guaranteed in every slot.
On the other hand, TDMA-based MAC protocols require complexmanagement,
very precise time synchronization and do not scale well. Therefore, contention-
based protocols have been considered for our work.
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Lightweight MAC Protocol (LMAC)

LMAC [143] is a TDMA-based protocol, where each node possesses exactly one
slot in a frame. A frame is divided into 32 equal slots, which can be spatially
reused. Within a slot the owner node can communicate collision-free. All sensor
nodes shortly awake in each slot to overhear the synchronization message of the
slot owner. This message furthermore advertises the destination address of a data
packet. A node that is not listed as a receiver of a data message, can immediately
go to sleep for the rest of its current slot. In LMAC a node can occupy exactly
one slot. The spatial reusage of time slots is organized suchthat collisions are
prevented, i.e., such that the slot-occupying nodes cannotinterfere. If more nodes
have to be supported, more slots are needed. Thus, the frame length grows, which
leads to longer delays, because nodes can only communicate in their slots. Based
on these requirements, the local two-hop neighborhood of LMAC is restricted to
32 nodes.

A MAC Protocol for Long-Term Applications

A-MAC [88] is a recent hybrid MAC protocol that is based on TDMA. It uses an
advertisement mechanism to avoid collisions and to minimize overhearing and idle
listening. Unlike LMAC, A-MAC implements the notification of future data trans-
missions. Thus, throughput and delay can be optimized. Apart from this notifica-
tion of future data transmissions, A-MAC operates similar to LMAC. In addition,
the protocol provides two modes that consume different energy to better support
application-specific requirements.

Traffic Adaptive Medium Access Protocol (TRAMA)

TRAMA [119] is a collision-free MAC protocol that uses a distributed election
scheme to determine time slots. TRAMA distinguishes between contention-based
random access slots which are used for signaling, and scheduled access periods
that are used for collision-free data exchange. TRAMA consists of three compo-
nents: The Neighbor Protocol (NP), the Schedule Exchange Protocol (SEP), and
the Adaptive Election Algorithm (AEA). NP propagates one-hop neighborhood in-
formation to the signaling slots. Thus, the local two-hop neighborhood can be
learned. With the SEP protocol traffic-based schedule information is maintained
among neighbors. SEP packets are exchanged during the scheduled access peri-
ods. AEA selects transmitters and receivers according to the information obtained
from NP and SEP. TRAMA supports multicast communication by using a bit-mask
vector which contains the one-hop neighborhood information. Whenever nodes are
not scheduled by the AEA protocol, they switch to sleep state. TRAMA introduces
high delays. On the other hand, good throughputs can be achieved.
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3.3 Routing and Topology Control

In this section we give an overview of the state of the art in routing and topol-
ogy control. Topology control mechanisms have been introduced to provide net-
work connectivity, while trying to minimize the number of active network nodes.
Thus, energy can be saved. Moreover, congestion and collisions can be prevented.
The focus is this section is on connected dominating sets (CDS), because they can
be implemented fully distributed, impose manageable complexity and can provide
both routing and topology control.

3.3.1 Routing Protocols for Wireless Sensor Networks

In this section we give a brief overview of the state of the artof routing in ad-hoc
and wireless sensor networks. Numerous routing protocols have been proposed for
mobile ad-hoc networks (MANET). Some of these protocols have been adapted to
wireless sensor networks too. The protocols can mainly be divided into proactive
protocols, where routing paths are computed in advance suchas OLSR [25] and
DSDV [110], and in reactive protocols such as AODV [108] and DSR [59], where
routing paths are computed on demand only if some data is pending for transmis-
sion. Finally, there are location-based protocols, e.g., GPSR [61], BLR [49], which
presume knowledge of position information in their routingdecisions. In particular
location-based routing protocols have also gained a lot of attention in wireless sen-
sor networks. This is not surprising, because knowledge of location information
eases routing considerably and is often per se required in the context of wireless
sensor networks.

With the development of wireless sensor networks a new property evolved
which has a high impact on the design of routing protocols, namely the paradigm
of data-centric operation. In MANET network nodes are typically addressed by
address identifiers such as an IP. On the other hand, IDs of sensor nodes are in
general less important than the physical context of the nodes, which depends on
their geographic location. Accordingly, the addressing scheme in sensor networks
has changed from ID-based to data-centric. This means that packets are no longer
routed according to a destination ID, but according to the context of the searched
data. The search direction is either determined by queries or by negotiation. Typi-
cal query-based approaches are Directed Diffusion [56], [57], Rumor Routing [10]
and GHT [121]. A typical negotiation-based routing protocol is SPIN [48]. The
discussed routing protocols support node-to-node communication, whereas our ap-
plication only needs source-to-sink communication.

3.3.2 Topology Control in Wireless Sensor Networks

Connected dominating sets, which will be discussed in the next section, establish
connected network backbones that can be used for routing and/or topology control.
In this section we give a short overview of alternative stateof the art in topology
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control. As mentioned before, topology control has been introduced to save energy
in densely deployed sensor networks, either by temporarilydisconnecting nodes
that are not required to guarantee routing, or by transmission power control. In
general it is desirable to change the roles of the nodes from time to time to achieve
a uniform energy load distribution in a network over time.

The local identification of redundant nodes, i.e., of nodes that are temporarily
not required to guarantee connectivity, in a network graphG has been addressed
by computing the Gabriel Graph (GG) [40] ofG. A similar approach computes the
Relative Neighborhood Graph (RNG) [141] ofG. A third approach to minimize
the number of nodes in a graph is by using Delaunay Triangulation [29]. More
approaches that generate subgraphs have been proposed in [83] and [82]. In [80],
[84] and [62] the computation of distributed Minimum Spanning Trees (MST) has
been proposed in order to identify and temporary turn off redundant nodes. In the
cone-based topology control [136] nodes determine a subsetof neighbor nodes as
communication partners by beacon transmissions with iteratively increasing trans-
mission power. Nodes that are not elected by the mechanism can go to sleep. In
COMPOW [102] topology control has been addressed by using different routing
protocols operating on different power levels.

3.3.3 Connected Dominating Sets

Connected dominating sets can be established in a distributed manner by exploiting
neighborhood information. As presented in the introduction we exploit the syn-
chronization messages exchanged by synchronized contention-based MAC proto-
cols to learn neighborhood information. Accordingly, a routing backbone based on
connected dominating sets can be implemented directly on the MAC layer. Thus,
no additional control traffic is required. Apart from routing support, additional
energy can be saved by temporarily turning of the non-backbone nodes. This is
possible because routing and thus network connectivity is guaranteed by the back-
bone. Relevant related work in connected dominating set research is discussed in
the following. First some preliminaries are presented. A connected dominating sets
(CDS) is characterized as follows: A dominating set (DS) of agraphG = (V,E)
is a subsetV ′ ⊂ V , where each node inV − V ′ is adjacent to some node inV ′.
A CDS is a dominating set which builds a connected subgraph ofG. Two simple
examples of a DS and a CDS, respectively, are depicted in Figure 3.4. The gray
nodes are members of the respective dominating set.

To minimize the number of backbone nodes it is desirable to find a mini-
mum connected dominating set (MCDS) ofG. Finding an MCDS is however NP-
complete [24]. Consequently, heuristics are applied. In our work we propose two
fully distributed approaches. In Figure 3.4 the CDS on the right side also builds an
MCDS. If any of the remaining white nodes were colored gray, the CDS would still
be a CDS, but it would no longer be an MCDS. As mentioned above,the computa-
tion of the MCDS is in general very cost intensive and requires global knowledge
and small network sizes.
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(a) Dominating Set (DS). (b) Connected Dominating Set
(CDS).

Figure 3.4: Examples of a DS and a CDS.

The main goal of our approach is to extend network lifetime rather than to
minimize the CDS. Therefore, the energy level of a node is used in the election
procedure too. However, first some related work that mainly focuses on the min-
imization of the CDS is presented. Most work is from researchin mobile ad-hoc
networks (MANET), where energy is a less important performance criterion than
in wireless sensor networks.

CDS Based on Pruning Rules

The algorithm proposed in [167] first determines a CDS consisting of all nodes
that have at least two non-adjacent neighbors. This initialCDS is reduced by ap-
plying two pruning rules. The resulting connected dominating sets are depicted in
Figure 3.5. The initial CDS that contains all nodes with unconnected neighbors is
shown on the left (black nodes). On the right the CDS after having applied both
pruning rules is shown (the remaining two black nodes).

Figure 3.5: CDS with pruning rules.

The first rule removes nodes from the set which are completelycovered by
other nodes in the CDS. Node u is removed by this rule. The second rule removes
nodes that are fully covered by the neighbor sets of two neighbor nodes. Node w is
removed from the CDS according to the second rule. The algorithm needs two-hop
neighborhood information and can perform poorly in specificnetworks [159].

In [166] the pruning rules have been adapted to consider the energy levels of
the nodes in the setup phase. Instead of taking the link degree into consideration in
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the pruning process, the authors propose to use the energy levels of the nodes. The
algorithm is thus able to consider energy distributions in the network.

Connecting a Maximum Independent Set

With the algorithm proposed in [159] as a first step a maximum independent set
(MIS) is constructed. This is a dominating set which contains only nodes that are
two-hops away from each other. In a second step the MIS nodes are connected by
electing a set of appropriate intermediate nodes. The functionality is depicted in
Figure 3.6.

Figure 3.6: Connecting a maximum independent set.

The two black nodes in Figure 3.6 build a maximum independentset. To
achieve connectivity this MIS needs to be connected. In [159] a heuristic is pro-
posed which chooses the connecting nodes effectively, i.e., by minimizing the
number of resulting nodes in the backbone. In Figure 3.6 one of the two gray
nodes would be chosen into the final CDS. The algorithm is rather complex, time-
consuming and static.

A Simple Timer-based CDS Construction Mechanism

A simple greedy procedure to establish a CDS has been proposed in [177]. Again,
each node knows its local neighborhood by the exchange of beacons. The decision
whether to join the CDS or not is done by a simple greedy procedure that evaluates
the number of remaining uncovered nodes when a timer expires. The algorithm is
initialized by a dedicated node. Each node entering the CDS broadcasts a message
containing its list of neighbors. The beacon messages of theIEEE802.11 MAC
protocol are used. Each receiver marks the common neighborsas dominated and
sets a timer according to the number of remaining unmarked neighbors:

∆T = Tmax · 1

(number of uncovered neighbors)α

The parameterα weights the impact of the number of uncovered neighbors.
Large values ofα cause very short time outs for nodes that have many uncovered
neighbors. If the timer expires, the node enters the CDS. As soon as a node has no
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unmarked neighbors left, it terminates the timer and entersa non-backbone state.
The timer is reset whenever a message is received. The algorithm is simple and
fast, but approximates the MCDS rather poorly. Moreover, energy levels have not
yet been considered in the decision process.

3.3.4 Multipoint Relaying Protocol

In our work we propose mechanisms to construct connected dominating sets. Two
of them are related to the Multipoint Relaying protocol (MPR) [116], which is
used for efficient broadcast in the Optimized Link State Routing (OLSR) [25] pro-
tocol. MPR requires knowledge of two-hop neighborhood information. Based on
this information, subsets of one-hop neighbors are forced to rebroadcast given data
packets. These forwarding nodes are called Multipoint Relays.

Since a Multipoint Relay knows its local two-hop neighborhood, it can choose
its most efficient one-hop neighbors as subsequent Multipoint Relays. The set of all
Multipoint Relays establishes CDS. The Multipoint Relay set of a given Multipoint
Relayx is calculated according to the following algorithm:

Selecting the Set of Multipoint Relays

1. For each neighbory of x calculate the numberD(y) of two-hop neighbors
z that are connected tox overy.

2. Add to the Multipoint Relay set thosey that provide exactly one link to a
two-hop neighborz. Remove allz that are now covered overy from the
two-hop neighbor list.

3. While two-hop neighbors exist that are not yet covered by anode in the
Multipoint Relay set repeat:

3.1. Compute the coverage of eachy, i.e., compute the number of remain-
ing two-hop neighborsz connected overy that are not yet covered by
a node in the Multipoint Relay set.

3.2. Select they as Multipoint Relay that provides the largest coverage.
If multiple y show the same coverage, select the node with highest
D(y). Remove allz that are now covered from the two-hop neigh-
borhood list.

An energy-efficient coordination algorithm for topology control (Span)

Span [20] is a distributed algorithm where nodes make local decisions whether they
join a forwarding backbone as a coordinator or if they are notrequired to support
routing and accordingly can go to sleep. The resulting backbone is a connected
dominating set. The decision process requires knowledge ofthe local three-hop
neighborhood information, which is collected by exchanging the one- and part of
the two-hop neighborhood information of each node in its vicinity. Considering the
two-hop information, only the exchange of the according coordinator information
is required.
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The algorithm supports efficient routing and elects redundant nodes effectively.
On the other hand, the requirements in terms of storage and control message com-
munication are high. This makes the algorithm less applicable to sensor networks.

Geography-informed Energy Conservation for Ad-hoc Routing

In GAF [169] nodes form virtual clusters, where redundant nodes, i.e., nodes not
required for routing, are temporarily disconnected from the network. The virtual
clusters are determined based on geographical information. The network is divided
into a grid of cells. GAF ensures that within each cell at least one active sensor
node is always present. This active node is needed to guarantee and provide rout-
ing. Accordingly, GAF also establishes a connected dominating set. GAF utilizes
geographic location information, and divides the network into fixed square cells.
Each node in GAF has to provide a location service (e.g., GPS). The algorithm is
efficient and simple. However, location information is presumed, which can be a
limiting factor. GPS for example is not available indoors and other solutions might
lack accuracy.

Low Power Media Access (ASCENT)

ASCENT [18] determines redundant nodes by local negotiation procedures. Each
node makes its decision whether to stay active or not only based on local connectiv-
ity information and measured packet loss. In ASCENT active nodes are adaptively
selected among all nodes in the network. Active nodes are awake all the time and
guarantee multi-hop packet routing. All other nodes are passive and turn off their
radio. They only wake up periodically to check whether they should become active
or not.

ASCENT requires high node density. Initially only some nodes are active.
These nodes route all data traffic. Upon detection of poor communication links,
i.e., high packet loss is indicated, the according active node(s) start to send help
messages. Passive nodes overhearing these help messages become active and help
in forwarding the data traffic. This procedure continues until the number of active
nodes is stable, i.e., no poor communication links are indicated anymore. ASCENT
provides no mechanism to release active nodes from their role. Thus, the number
of active nodes grows over time. Moreover, because active nodes cannot be re-
placed, the active nodes will run out of energy much faster than passive nodes.
Accordingly, no energy load distribution mechanism is provided. The active nodes
in ASCENT build a connected dominating set.

3.4 Event Detection and Tracking

In this section the state of the art in efficient source detection and tracking is dis-
cussed. The contributions are mainly from the networking and distributed commu-
nications research field. Methods for tracking group formation and maintenance

40



are proposed. The focus is on efficiency, network lifetime and communication load
minimization. In most cases, tracking groups are dynamically established. Such
local group organization keeps the communication costs low. The downside is that
accurate event localization and classification, which are typically based on collab-
orative signal processing (CSP) and require detailed information to formulate and
solve the according problems, are given less insight.

3.4.1 Target Localization in Distributed Sensor Networks

In [179] a sensor node deployment and target localization framework has been
proposed. After deployment, all network nodes are organized into local clusters,
which remain static. Upon detection of an event, a cluster head elects a subset of
cluster members to provide it with detailed information about the event.

The target tracking application consists of a two-step communication protocol.
Upon detection of a target (an event), the respective detecting sensor node notifies
its cluster head about the target by a very short control message. In this message the
presence of an event is indicated by only one bit. The clusterhead thereafter queries
a subset of its cluster members to obtain more detailed information about the target.
The subset of nodes that have to be queried is determined based on a score-based
ranking algorithm. The score-based ranking algorithm itself is based on a detection
probability table, which is maintained by the cluster head and contains a detection
probability for each cluster member. The goal of this message exchange procedure
is to minimize communication costs.

The static cluster formation is inflexible. The probabilityof target detection by
multiple clusters is increased close to cluster boundaries. Accordingly, either the
number of reporting clusters could become high or additional negotiation among
the cluster heads is required. Both effects increase network load. Localization
and classification algorithms have not been addressed. However, they could be
supported depending on the kind of information requested bythe cluster heads.

3.4.2 SensIt: Region-Based Detection and Tracking of Targets

In [78], [120] the authors propose region-based CSP for target detection, tracking
and classification. The regions are dynamically created anddeleted by a location-
centric application programming interface (API). The API is motivated by the
message-passing interface standard [101]. The sensor network is divided into dy-
namically established cells. The diameter of the cells depends on the target veloc-
ity. Each cell contains numerous nodes, whereof at least onenode is leader. The
leader node collects and processes the data received from the other nodes in the
cell. Subsequent cells are initialized if the moving targetleaves the current cell.
The monitoring and tracking of a single target is illustrated in Figure 3.7.

The target enters initial cell A. The leader node(s) in cell Apredict the tracking
path of the moving target based on statistical methods. If the target moves towards
the boundary of the active cell, adjacent cells (regions) are activated according to
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Figure 3.7: Grid creation and handover in SensIt.

the estimated moving direction. As soon as the target entersactivated cell X, X
becomes active. Active regions become inactive when no event has been present
for a given amount of time. The message passing scheme involves rather high
communication costs. Moreover, the handover procedure that activates all cells
adjacent to an active cell is expensive too.

Similar approaches have been proposed in [12], [11]. Here, the authors have
proposed a distributed cooperation framework instead of the location-centric API
for the target tracking. The work is also part of the SensIt project. The observa-
tion area is again divided into grids. Publish/subscribe mechanisms are used for
communication within the grids. One member of the grid is chosen as leader and
aggregates the observations from the members and reports the resulting informa-
tion. Cell handover is performed similar to [78].

3.4.3 Event Detection and Tracking with Consensus

In [71] the self-organization of event observing groups is identified as key prob-
lem of distributed event detection and tracking. The main goal is to avoid the
establishment and maintenance of multiple tracking groupsfor the handling of a
single spatially-restricted event. Single groups are established based on consen-
sus. Consensus itself is based on a quorum mechanism. Thus, the coexistence of
event tracking groups can be prevented. Hence, only one tracking group reports to
the base station. Coexisting events are supported as long asthey are sufficiently
disjointed in space.

To achieve consensus, the protocol requires multi-step negotiation among the
event observing nodes. As soon as an event has been observed,each concerned
sensor node sends a consensus request in a PROPOSE message. Neighbor nodes
answer this message with an ACK message that includes their sensor readings.
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Based on all collected sensor readings, a simple majority decision is performed.
Thus, the most relevant sensor node is determined in a distributed way among all
event observing nodes. The node with highest ranking makes the majority deci-
sion. The winning node informs all other nodes about its state with a DECIDE
message. The communication costs of the protocol are ratherhigh. Moreover, the
protocol requires the sensing range to be at most half the communication range.
Otherwise, the negotiation costs increase considerably, because two- and more hop
communication would be required.

3.4.4 Event Detection Using Data Service Middleware

Another approach that supports distributed event detection in wireless sensor net-
works is DSWare [81]. DSWare supports data-centric storageby applying hash-
ing functions to map data to physical nodes. To provide robustness, the data is
replicated in multiple physical nodes which are mapped to a single logical node.
Moreover, queried data is often cached on multiple sensor nodes along the routing
path. Thus, communication costs can be saved. Apart from streaming-based data
collection services, DSWare also supports event-based monitoring.

With DSWare an application specifies a compound event to collect relevant in-
formation from a certain geographical area. The event specification consists of a
maximum detection range, a time interval, and a confidence function. This confi-
dence function describes how the different measurements, collected from the sensor
nodes in the monitoring area, are weighted and how the composition of the data is
calculated. If the computed value exceeds a certain threshold, the event detection
is significant and a report is sent to the base station. The context of events is mod-
eled according to Finite State Machines (FSM), which requires system experts to
design particular event-dependent FSMs. An event is modeled by the associated
FSM, which is ultimately downloaded onto the sensor nodes ofinterest. Similar
approaches have been proposed in [92] and [124]. GADT [38] models events that
are observed with streaming-based systems according to Gaussian Abstract Data
Types (GADT) in order to compensate for inaccuracies in the sensed data.

3.4.5 EnviroTrack: An Environmental Computing Paradigm

EnviroTrack [1], [90] is an object tacking middleware. Tracking objects are dy-
namically created and logically attached to selected external entities. Localization
and classification cannot be supported without adaptations.

As soon as a moving object is detected by some node, tracking groups are dy-
namically established. Group leaders are elected based on contention and organize
their tracking group by periodically broadcasting heartbeat messages. Upon sens-
ing of an event, i.e., when the configurable sensing functionof EnviroTrack fires,
each concerned sensor node sets a random timer (contention). When this timer ex-
pires, the respective node appoints itself as leader and immediately starts to broad-
cast heartbeat messages. Each node that overhears a heartbeat message becomes a
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group member and removes its own random timer if one is scheduled. The group
leader organizes the tracking group, reports tracking datato the base station and
initializes leader handover when the object leaves its region. The tracking group
organization of EnviroTrack is illustrated in Figure 3.8.

Figure 3.8: Group organization in EnviroTrack.

Upon occurrance of an event, every event observing node, i.e., every node in the
sensing range, sets a random timer. The node with the fastestexceeding timer (i.e.,
the black node in Figure 3.8) becomes the leader node. The periodically broadcast
heartbeat messages inform all nodes (members and followers) in the transmission
range (object resolution area) about the leader. Because EnviroTrack requires that
the sensing range is smaller than half the transmission range, the tracking group
organization can be maintained very efficiently. This system design imposes low
communication overhead, prevents the appearance of concurrent tracking groups
and supports efficient leader handover. On the other hand, the sensing range is
notably restricted in size. Moreover, the leader node only has local knowledge
about the event. This knowledge is however not sufficient to support any event
localization or classification. If such functionality is required, collaborative signal
processing among the tracking group nodes is needed.

In our own work we have developed DELTA, which performs similar to Envi-
roTrack, but requires a set of group member nodes to report their sensor readings.
Thus, larger sensing areas can be supported, because the report messages cover ad-
ditional area. Moreover, based on the collected sensor readings, event localization
and classification are possible. In DELTA the leader election timer is not set ran-
domly, but based on current sensor readings. Thus, better positioned nodes evolve
as leaders. Finally, DELTA implements an on-demand TDMA mechanism to op-
timize local communication. EnviroTrack has been implemented as the reference
algorithm to our own solution. Performance values are presented in Chapter 6.
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3.4.6 Information-Driven Sensor Querying

In [23] an algorithm for energy-efficient information-driven sensor querying (IDSQ)
has been proposed. It is designed to support a wide range of collaborative signal
processing tasks such as tracking and classification. The information content, i.e.,
the sensor readings of interest, is modeled by a probabilistic information utility
function. A spatial area of interest is incrementally queried until the given utility
function is satisfied. The approach is fully distributed. The management of the
event observing area has not been considered, though. Tracking group formation
methods such as the ones described before could be used.

In IDSQ, sensor nodes are incrementally queried to provide adedicated node
(the leader node) with the required information. This means, if a group leader node
detects an event, i.e., its amplitude readings are greater than a given threshold,
it incrementally queries group member nodes until the belief state is considered
significant. As soon as the event detection is considered significant, the group
leader generates a report message. On the other hand, if all group members have
been queried, but the belief function is still not satisfied,the event detection is
discarded. This incremental unicast sensor node querying by the leader node is
rather time consuming. Therefore, real-time tracking is difficult to support. In
addition to the long delays, relying on a unicast communication scheme might be
too energy consuming in the context of target tracking and signal processing.

3.4.7 Algorithms for Fault-Tolerant Event Region Detection

The detection algorithms discussed so far consider an eventsignificant if some
threshold requirements have been met. However, sensor nodes might malfunction
and/or (temporarily) provide faulty measurements, which could lead to wrong de-
tection alarms. In the work of [64] the prevention of such false alarms has been
addressed.

The authors have developed a distributed Bayesian algorithm which is able to
detect and correct wrong measurements caused by malfunctioning sensors. The
Bayesian decision procedure requires knowledge of the sensor readings collected
in a restricted neighborhood, i.e., in the local event region. The paper does not
discuss how the event region is managed by the nodes. This means group formation
and maintenance have not been considered in this work. This could however be
achieved with one of the previously introduced algorithms.Hence, the tracking
algorithms presented in this section could be enhanced withthis mechanism to
account for faulty measurements.

3.5 Event Localization and Signal Strength Estimation

In the previous section we have addressed event detection and event tracking. Hav-
ing detected an event, it might be necessary to estimate position and/or emitted
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signal strength(s) of the event. The computation of the signal strength(s) emitted
by the event is, in particular, important for classification.

Accurate event localization and signal strength estimation are commonly ad-
dressed by collaborative signal processing (CSP). The focus is thereby on increas-
ing accuracy by multi-measurement processing. High communication and com-
putation costs are often taken into account. The organization of the network into
tracking groups is less considered. Some approaches only focus on the solution of
localization problems. The state of the art research focuses on statistical and nu-
merical solutions to the localization and signal strength estimation problems. The
approaches can be coarsely divided into centralized and distributed approaches. In
centralized approaches the sensor information is routed toa central station (base
station), which has more storage and computation power thancommon sensor
nodes. The main drawback is high communication load, in particular towards the
base station. On the other hand, distributed computation often lacks accuracy and
imposes negotiation complexity. In the next section a sensor model that is com-
monly used to formulate the event-based localization problem is presented. There-
after, two standard nonlinear optimization methods to solve such problems are in-
troduced. A linear solution to the problem is also presented. The rest of the section
discusses work related to event and node localization.

3.5.1 Problem Formulation

In order to localize events or to compute their emitted signal strength(s) an appro-
priate sensor model is needed. Related work [135], [23], [77] uses a sensor model
based on an isotropic radiation model (e.g., for sound, vibration, or light from point
sources). Thereby, the received signalρi at a sensor nodei located at positionξi is
related to the event positionx according to the model:

ρi =
c

‖x − ξi‖α + ω (3.1)

where c represents the amplitude of the emitted signal,α is the attenuation degree
of the considered signal,ω is some additional white Gaussian noise, and‖.‖ is
the Euclidean norm. The model means that the received signalstrength decreases
inversely proportional to the distance with some exponentα. For example, for
sound sourcesα is 2 [63].

Having collected a certain number of sensor readingsρi, which needs to be
larger than the problem dimensionality, the event localization and signal strength
estimation problem can be formulated as a nonlinear least-square objective function
[114]:

f(x, c) =
k

∑

i=1

(

ρi −
c

‖x− ξi‖α

)2

(3.2)

Such a function can be solved by nonlinear optimization methods. Alternatively,
the system of equations can be linearized and solved (see Section 3.5.4). In some
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approaches, the event is not localized based on Equation (3.1), but on other prop-
erties such as binary detection information. In this case, Equation (3.2) needs to be
adapted. Nevertheless, in order to solve the respective nonlinear function appropri-
ate numerical or statistical techniques are required.

3.5.2 Simplex Downhill

First, the Simplex Downhill (SD) method [103] is presented.This method solves
a nonlinear optimization problem by searching a minimum in amultidimensional
function space. Considering a problem of dimensionN with N ∈ N, a simplex
is the simplest volume consisting ofN + 1 points. If the problem has dimension
2, the simplex is a triangle. Otherwise, if the problem has dimension 3, i.e., there
are three unknowns, the simplex is a tetrahedron. We show a simple example of
a nonlinear function minimization problem in Figure 3.9. This problem could be
solved analytically, but illustrates the problem well.

Figure 3.9: Simplex Downhill function minimization.

In this example, the problem dimensionality is 1. Accordingly, there is only
one unknown variablex and the simplex is a line. Initially, a well-placed simplex
is chosen, i.e., the linex1x2 in Figure 3.9. Then, the objective function is applied on
it. The mapped simplexf(x1x2) is then processed with a sequence of simple geo-
metrical operations such that the minimum of the objective function is searched. To
do so, the highest value in the simplex is always chosen and transformed to become
the smallest one. In Figure 3.9 f(x1) initially has the highest value. Accordingly, it
is transformed to become the smallest one (f(x3)). A sequence of transformations
is repeated until either a given threshold is under-run or the maximum number of
allowed iterations is reached. The possible geometrical operations of a simplex
(tetrahedron in this case) are depicted in Figure 3.10.

The SD method requires no derivations, but only simple function evaluations.
On the other hand, the convergence to the searched minimum needs on average
more steps than with methods that consider derivations. A local minimum could be
found that depends of the location of the starting simplex. Therefore, a well located
starting simplex is crucial. Up to now only heuristics existto avoid local minima,
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Figure 3.10: Geometrical operations of Simplex Downhill.

e.g., Monte Carlo methods, which address this problem. Suchmethods are very
cost intensive in terms of time and memory, though. Therefore, they are in general
not applicable to sensor networks.

3.5.3 Conjugate Gradient Method

The Conjugate Gradient [114] method also solves nonlinear optimization problems
of dimension N. At a given N-dimensional pointP, not only are the function eval-
uationsf (P) computed, but the gradients of the objective function∆f (P) as well.
The gradient∆f (P) is a vector field that has the characteristic of pointing in the
direction of the largest increase off (P). In its simplest form this optimization prob-
lem can be solved by searching in the negative direction−∆f (P). This method is
called Steepest Descent. An example with both Conjugate Gradient and Steepest
Descent search is illustrated in Figure 3.11.

Figure 3.11:Conjugate Gradient and Steepest Descent.

In the example, the objective function is a three-dimensional cone. The function
minimum is indicated by the decreasing ellipses. A startingpointx0 is determined.
At this point, the search starts in the negative direction ofthe gradient, i.e., in the
direction of the arrows in Figure 3.11. As soon as a minimum inthat direction
is reached, the search direction is adapted such that it again points in the negative
direction of the gradient (Steepest Descent). With CG this direction is slightly
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adjusted such that in general fewer iterations are needed toreach the minimum (2
steps in the example). Commonly, the Steepest Descent method needs more steps
to terminate (4 steps in the example). Like SD, CG can enter a region which ends in
a local minimum. Therefore, CG faces the same restrictions as SD. The algorithm
again terminates if the termination criterion is satisfied or if the maximum number
of allowed iterations is reached.

3.5.4 Linear Least Square Method

In the previous two sections two nonlinear methods to solve source-based local-
ization and signal strength estimation problems have been presented. The problem
can further be linearized and solved with Linear Least Square (LLS) methods [135],
[78], [77]. In [135], [77] acoustic event sources have been localized. The signal
attenuation coefficientα of acoustic sources is 2 (see Section 3.5.1). Accordingly,
Equation (3.1) can be rewritten as:

‖x‖2 + ‖ξi‖2 − 2xT ξi −
c

ρi
= 0 (3.3)

Given N sensors, N equations (3.3) can be formulated. The quadratic constraints
on the unknown variablex can be removed by subtracting the first (i = 1) equation
from the rest (i6= 1), resulting in a system of N-1 linear equations of the form

2 (ξ1 − ξi)
T

x + c

(

1

ρ1
− 1

ρi

)

= ‖ξ1‖2 + ‖ξi‖2 (3.4)

In the following the unknown variables are rearranged in a vector x̂ = [x, c].
By setting

ai =

[

2 (ξ1 − ξi) ;

(

1

ρ1
− 1

ρi

)]

; bi = ‖ξ1‖2 + ‖ξi‖2

Equation (3.4) can be simplified toaT
i x̂ = bi. Considering all N-1 linear con-

straints, the system can be written in matrix form asAN−1x̂ = bN−1, which can
be solved with the following closed-form standard linear least square methodE =
(AT

N−1AN−1)
−1AT

N−1bN−1. In order to apply the linear least square method, an
over-determined system is required. This means the number of sensing nodes needs
to be larger than n + 1, where n is the problem dimensionality.In sensor networks
this requirement can be restrictive.

3.5.5 Tracking a Moving Object with a Binary Sensor Network

A centralized approach for object tracking has been proposed in [4]. Based on a bi-
nary sensor model, the location and direction of a moving object are estimated. The
only information a binary model requires is whether an object is moving towards a
sensor node or away from a sensor node. The binary information is collected at a
central station where a particle filter algorithm is appliedto estimate location and
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movement direction of the object. A particle filter is a statistical estimation method
that is based on sequential Monte Carlo simulations. In addition to the currently
observed measurements, the algorithm also requires previous information (some
history) about the moving object.

The authors show that the binary model is appropriate if onlydirection infor-
mation about the object is required. However, if position information is needed, an
additional sensor measurement which indicates proximity is required. Another lim-
itation of the algorithm is its centralized nature. In a distributed implementation the
particle filter might be too resource consuming due to the simulation-based estima-
tion. To some extent the classification of objects accordingto their velocity might
be possible. If however information such as emitted signal strength estimations of
the objects is needed, the approach is not applicable, because of its dependency on
only binary information.

3.5.6 PinPtr: Sensor Network-Based Countersniper System

In [134] the authors have proposed a centralized sniper detection system where
each event observing node estimates the distance to a sniperbased on the time
difference of arrival (TDOA) between two different kinds ofsignals. The TDOA
between the arrival of a muzzle blast and an acoustic shockwave is measured. These
estimates are delivered to a base station, where the position of the sniper is com-
puted by a multidimensional sensor fusion algorithm. The unknown sniper position
and the measurements span a four-dimensional vector space,which is searched for
the maximal set of consistent measurements by performing a Generalized Bisection
method [54]. This is a reliable nonlinear optimization method that divides the so-
lution space into subregions. The subregions are searched by the Newton-Raphson
method [114]. The approach is again very resource consumingand accordingly
performed at a dedicated base station.

To determine the positions of the sensor nodes an additionalself-localization
service is provided. This service performs pair-wise ranging based on acoustic and
radio signals. All ranging measurements are transmitted toa base station, where an
optimization procedure is performed, which iteratively places the nodes relative to
some known anchor nodes.

Exact time synchronization is required for both, sensor node positioning and
sniper localization. The authors state that the communication burden of transmit-
ting the TDOA measurements of all sensing nodes to a base station is acceptable
for their application. In [146] the system has been adapted to operate in mobile
environments. In addition to sniper localization, the classification of bullet calibers
and specific weapons is supported. The bullet caliber classification is based on the
relation of the shockwave period to the bullet characteristics and the missing dis-
tance between the bullet trajectory and a sensing node. The weapon classification
is based on the projectile speed and its caliber.
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3.5.7 Localization with Positive and Negative Constraints

Distributed coarse-grained node and source localization has been proposed in [41],
[44]. No classification of the localized sources is intended. Sextant [44] uses Bézier
regions to represent the locations of both nodes and event sources. The regions
are constructed by gathering positive and negative connectivity constraints in the
neighborhood. To achieve this, Sextant nodes disseminate their monitored network
properties in a restricted area for a predefined number of hops. Drawbacks of the
algorithm are rather high delays and limited localization accuracy. Classification
might be possible if, in addition to connectivity information, the sensor readings
were disseminated too. The authors of [41] have proposed a similar approach, but
have used rectangles instead of Bézier regions.

3.5.8 SensIt: Distributed Localization and Signal Processing

Source localization based on the sensor model presented in Section 3.5.1 has been
investigated in the SensIt project [78], [76], [77]. In contrast to PinPtr, which needs
two distinct signals for range estimations, the algorithmsdeveloped in the SensIt
project require only one specific signal, e.g., acoustic or seismic.

In [78] the focus has been on the localization and classification of sources based
on their seismic fingerprint. A seismic signal is modeled according to Equation
(3.1). Event detection and tracking are performed within space-time regions (cells)
as described in Section 3.4.2. The tracking group leader(s)collect(s) time series of
seismic measurements. The localization of single targets is performed with over-
determined linearized least-square (LLS) methods (see Section 3.5.4). In subse-
quent research [77] acoustic localization has been performed instead of seismic lo-
calization. Again a closed-form linearized least-square method has been used. As
mentioned before, more data is required, but considering real-time performance, a
closed-form solution to the localization problem appears very attractive. Closed-
form solutions for acoustic localization had been proposedbefore, e.g., in [135].
Apart from source localization, linearized least-square methods have been widely
used in range-based node positioning, e.g., in [125].

The LLS method requires an overdetermined system to work accurately. To
overcome this restriction, alternative nonlinear numerical optimization methods
have been evaluated in [76]. Again, the position of an event radiating signals is
estimated based on collected sensor readings. Two simple brute-force methods,
i.e., Exhaustive Search (ES) and Multi-resolution search (MR), have been evalu-
ated together with the Simplex Downhill algorithm (SD) (seeSection 3.5.2) and the
Conjugate Gradient (CG) descent method (see Section 3.5.3). In order to minimize
the risk of finding a local optimum, the feasible solution space has been overlaid
by a grid. The respective optimization procedure is performed at every point in this
grid. The global maximum is chosen as the maximum among all results. Overlay-
ing the whole solution space is too complex to be considered in a distributed sensor
network application.
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In our own work we use SD and CG too (see Chapter 7). However, wede-
termine well located starting points to avoid local optimums. Our method has the
advantage, that meaningful localization results can be achieved even with the min-
imum amount of required data. In wireless sensor networks redundant sensor data
might often not be available. Moreover, collecting redundant sensor readings im-
poses communication costs.

3.5.9 Robust Localization of Multiple Events

In [19] the localization of single events as well as of multiple coexisting events has
been investigated. Again, the omnidirectional energy-decay model has been used.
The authors show that linearized methods fail in specific network topologies. In
particular if the sensor nodes are arranged on a line.

The position of single events is computed with two probabilistic models, namely
a Minimum Mean Square Error (MMSE) estimator and a Maximum A Posterior
(MAP) estimator. The calculation of the estimates is computationally expensive.
Therefore, a voting-based approximation procedure is used. To determine the lo-
cations of multiple coexistent sources, the authors propose to use a nonlinear opti-
mization method. A Levenberg-Marquart algorithm [75] thatlocally performs the
Newton-Raphson method [114] has been used. All proposed algorithms are re-
source consuming and require high communication load. Networking issues, such
as how to establish and maintain tracking groups, have not been addressed.

3.5.10 Distributed Optimization in Sensor Networks

The authors of [118] investigate the feasibility of deriving an estimation distributed
in the network. This avoids the need of sending all data to a central node, where
the computation would be performed. The method resembles the IDSQ sensor
querying procedure presented in Section 3.4.6. The event-based localization of
acoustic sources is investigated as a possible application. The localization problem
is expressed as an optimization problem, whereby the nonlinear problem (cost)
function is incrementally fed with new measurements. Additional measurements
are obtained by circulating the cost function in the network. Every receiver of the
cost function updates the function with its own local sensorreadings, i.e., with its
local acoustic signal strength measurement, until a precision threshold is reached,
or until the maximum number of allowed search steps is exceeded. In each step an
incremental subgradient optimization method, processingthe local data, is applied.

The approach is suitable for estimations problems such as the localization or
classification of static sources. However, if moving sources are present, the param-
eter circulation paradigm counteracts the tracking task, which requires some kind
of tracking group formation. The node terminating the optimization could be desig-
nated responsible for the tracking. Nevertheless, the circulation paradigm implies
delays, which might negatively affect real-time performance in a dynamic event
monitoring context.
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3.5.11 Distributed State Representation for Tracking Problems

In [87] a tracking problem is addressed by decomposing the tracking problem into
a positioning problem (space) and into an identity problem (state). The state-space
model embodies such a problem. The approach aims at distinguishing mutually
overlapping events. The basic idea is to decompose the jointstate-space of any
event into sub-problems of lower dimensionality. Considering tracking, the joint
state-space covers both positioning and identity management. This joint problem is
decoupled into two sub-problems, namely into identity management and target po-
sitioning. Both sub-problems are of lower complexity than the joint problem. Each
of the sub-problems is processed locally on the sensor nodesof interest. The sen-
sor nodes of interest are dynamically determined accordingto application-specific
state-space requirements.

Figure 3.12: Decomposition of multi-target tracking.

The decomposition of the tracking problem into localization and identity man-
agement sub-problems is depicted in Figure 3.12. As long as two targets are dis-
jointed, the positioning and identity management sub-problems are addressed indi-
vidually for both targets. As soon as the target tracking areas overlap, the identity
management problem is abandoned due to complexity. Instead, both targets are
treated as a single target and only joint positioning is performed. As soon as the tar-
gets are sufficiently disjointed in space again, the sub-problems are again addressed
individually. The localization and identity check procedures are based on statistical
methods and require knowledge about the history of sensor measurements. Thus,
they are rather expensive in terms of storage and communication.

3.5.12 Classical Node Positioning Methods

In the following a number of classical node positioning approaches are discussed.
These methods have not yet been adapted to source localization and/or classifica-
tion problems, but could be of some relevance in that respecttoo. Good overviews

53



over early work in this topic are provided by [73], [105] and [52]. These papers
discuss approaches such as DV-Hop [106], Cricket [115], andso on, which are
interesting but less relevant in our context.

Multidimensional Scaling (MDS)

In [130] a coarse-grained node localization method, only requiring connectivity in-
formation, based on multidimensional scaling has been proposed. A relative map
containing the distances (in hops) between the network nodes is generated. On this
map multidimensional scaling is applied to derive the node positions which best
fit the distance estimates. The resulting positions are relative to the map. In or-
der to obtain absolute coordinates, landmarks with known position can be used to
normalize and transform the relative coordinate system according to trigonometric
properties. Instead of distance other properties could be used. The high signaling
burden, i.e., all data needs to be collected at a central node, and the high computa-
tional requirements make the approach less suitable for tracking and classification
in sensor networks. In a subsequent paper [129], the approach has been distributed
by decomposing the global map into local maps. The local mapscan be combined if
required. A distributed variant based on Received Signal Strength Indicator (RSSI)
measurements has been proposed in [58]. Due to the usage of RSSI this algorithm
provides a more fine-grained resolution.

Multilateration for Node Localizations over Multiple Hops

In [126] the multilateration problem is split into two sub-problems. Coarse-grained
location information is collected from landmarks which areplaced several hops
away. Additionally, neighboring nodes measure their mutual distances based on
ultrasonic ranging. In a first step, nodes are organized intogroups such that nodes
with unknown position are over-constraint and a unique solution can be derived.
Then, coarse-grained initial position estimates are obtained from simple geometric
relationships. Finally, a distributed nonlinear gradientdescent method is applied
to derive the final fine-grained location estimates. Due to its communication re-
quirements this method is only appropriate if infrequentlyperformed. In previous
work [125], [73] standalone multilateration had been used.

Localization Based On a Kernel Method

In the work of [104] the localization problem is formulated as a pattern recognition
problem. A signal strength matrix containing the mutual measurements of each
pair of sensor nodes is required. Furthermore, some landmarks are needed. The
classification problem is solved by using support vector machine (SVM) and kernel
methods. The localization is divided into a training phase,where the localization
functions are learned from the signal strength matrix with respect to the landmarks.
This is performed centrally at a base station. Afterwards, each sensor node with
unknown location performs its positioning locally. The algorithm does not require
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distance estimations. A drawback is that the preprocessingneeds to be performed
at a central base station. Moreover, the algorithm requiresa high communication
load if the preprocessing has to be performed frequently, which would be the case
in a source tracking and localization application. Similarlocalization procedures
based on kernel methods have been proposed in [178] and [66].

Localization Considering Non-Line-Of-Sight Measurements

In [145] the node localization problem is addressed in environments which con-
sider both, line-of-sight (LOS) and non-line-of-sight (NLOS) measurements. The
resulting system is solved with linear programming. The NLOS estimates are con-
sidered if the LOS measurements cannot guarantee accurate localization. The LOS
measurements are used to define the objective function, while the NLOS measure-
ments add restrictions to the feasible solution space for the linear program. Mecha-
nisms to deal with NLOS measurements might be of interest in source localization
and classification too. The system must be able to distinguish between LOS and
NLOS measurements.

3.6 Classification and Reasoning

The deployment of wireless environmental monitoring systems that include clas-
sification primitives is still a challenging problem. Firstof all, classification soft-
ware consumes a lot of resources in terms of storage, processing and communica-
tion. Furthermore, sensor networks commonly aim at avoiding resource consuming
mechanisms. Thus, there is a trade-off between efficient distributed classification
and the available resources provided by sensor networks. Reporting all data to a
base station for later data analysis (e.g., [5]) is too communication intensive in our
context. Such a system design is only appropriate for short-term deployments. On
the other hand, our event detection system aims at long-termdeployments. There-
fore, lightweight and efficient, distributed classification mechanisms are needed.

Before discussing state of the art classification methods inwireless sensor net-
works, some basic classification aspects are introduced. Particular focus is on clas-
sification aspects and features that are relevant for our ownapproach.

Basically, a classification problem is the problem of assigning a present un-
known patternx = {x1, ..., xN} to the classCi of known patterns it most likely
belongs to.N is the number of features that characterize the pattern.

In our work the event classes are learned unsupervised, i.e., they are learned
from observed data. A well-known algorithm to learn event classes is presented
in the next section. The subsequent three sections introduce three different basic
classification methods, namely a simple Bayesian classifier, a classifier based on
Fuzzy Logic, and a neural network approach. These methods aim at classifying
patterns that are present as discrete entities in time, i.e., the input pattern is of form
x. In addition, the theory of ART neural networks is presented. These kinds of
neural networks are used in our own work to process and classify events that evolve
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over time. Having presented these mechanisms, the focus is placed on related work
in classification and anomaly detection in wireless sensor networks.

3.6.1 Learning Event Classes

Event classes are learned from training data. We will use twoknown clustering
mechanisms, namely k-means and fuzzy k-means. Both mechanisms arrange sam-
ple patterns into clusters. Therefore, similarity metrics, i.e., the Euclidean distance
(k-means) and membership degrees (fuzzy k-means), are used.

The goal of clustering is to find a decomposition of the (training) setZ =
{z1, ..., zM} into m clusters{C1, ..., Cm}. The basic idea of fuzzy k-means is to
assign eachz ∈ Z to each clusterCj with a given membership degreeµj(z). Hard
clustering (k-means) is a special case of fuzzy clustering with µj(z) ∈ {0, 1} for
all j. The fuzzy k-means algorithm requires the computationof the membership
degree of a sample patternz to a clusterCj according to [39]:

µj(z) =











1, if z = mj,
1

PK
k=1

„

‖z−mj‖

‖z−mk‖

« 2
β−1

, else. (3.5)

whereβ is a parameter controlling the membership gradient and‖.‖ is the Eu-
clidean norm. According to (3.5) the membership degree of a sample patternz is
higher, the closerz and a cluster centermj are. The computation of the cluster
centersmj is based on the membership degrees of all patternsz ∈ Z [39]:

mj =

∑M
i=1 µj(zi) · zi
∑M

i=1 µj(zi)
(3.6)

Having defined these preliminaries, the k-means and the fuzzy k-means algorithms
can be written as:

K-means

input: Training setZ;
K = number of clusters;

ouput: m clusters{C1, ..., Cm};
begin
chooseK initial cluster centersm1, ..., mK ;
repeat

assign eachzi to the cluster with closest centermj ;
recompute each cluster centermj;

until termination criteria satisfied;
end
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Fuzzy k-means

input: Training setZ;
K = number of clusters;

ouput: m clusters{C1, ..., Cm};
µj(zi) for 1 ≤ j ≤ K and1 ≤ i ≤ M ;

begin
chooseK initial cluster centersm1, ..., mK ;
repeat

computeµj(zi) for 1 ≤ j ≤ K and1 ≤ i ≤ M according to (3.5);
update the cluster centersmj for 1 ≤ j ≤ K according to (3.6);

until termination criteria satisfied;
end

The fuzzy k-means algorithm works similar to the k-means algorithm. The
main difference is that it does not assign a fixed pattern to a cluster, but assigns a
pattern to a cluster with a certain membership degree. This has also some impact
on the computation of the cluster centers, because the impact of all samples is
considered instead of only the samples that belong to the specific cluster.

Having applied any of the two clustering algorithms on a training set, the re-
sulting clusters (classes) can be used to configure the classifiers discussed in the
next section. Both clustering algorithms can be used as substitutes because both
mechanisms produce similar clusters.

3.6.2 Bayesian Classifier

It is assumed thatm different event classes (clusters)Ci have been learned. Each
patternx of Ci is an element ofℜn, wheren is the total number of observed phe-
nomena (features).

To implement a Bayesian classifier, first the a priori class probabilitiesp(Ci)
need to be known. These probabilities represent the frequency of every classCi

over all known patterns. Moreover, the class-specific probabilities p(x|Ci) are re-
quired. p(x|Ci) is the probability to which extendx belongs toCi. A Bayesian
classifier implements the following classification rule [72], [39]:

x ∈ Ci ⇔ p(x|Ci)p(Ci) > p(x|Cj)p(Cj), ∀j = 1, ...,m; j 6= i

A Bayesian classifier assumes normal distributions of the probabilitiesp(x|Ci).
Normal distributions are analytically easily manageable.The parameters, i.e., the
mean valuem and the standard deviationsK of each cluster, can easily be esti-
mated from the patterns in the different clustersCi. The normal distribution inn
dimensions, withn ≥ 2, looks as follows [39]:

p(x|Ci) =
1

(2π)
n
2 |Ki|

1
2

e[−
1
2
(x−mi)′Ki

−1(x−mi)] (3.7)
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This function only requires the knowledge of the mean vectors mi and the
covariance matricesKi for each classCi. The covariance matrix is an×n matrix.
|Ki| is the determinant ofKi. Instead of usingp(x|Ci)p(Ci) as a classification rule
(3.7), a monotone function can be applied to simplify the computation. As done by
other authors [72], [39], a natural algorithm is used:

Di(x) = ln[p(x|Ci)p(Ci)] (3.8)

Thus, the new classification rule is:

x ∈ Ci ⇔ Di(x) > Dj(x), ∀j = 1, ...,m; j 6= i (3.9)

Substituting (3.7) in (3.8) and ignoring the emerging constant termn
2 ln(2π) the

computation ofDi looks as follows:

Di(x) = ln[p(Ci)] −
1

2
ln|Ki| −

1

2
(x − mi)

′Ki
−1(x − mi) (3.10)

The Bayesian classifier is fully functional as soon as the thecovariance matrix
Ki and the meanmi of each clusterCi have been computed. Both can be computed
in a straight forward manner based on the cluster information provided by the k-
means algorithm. Having patterns{x1, ...,xM} of a classCi, the parametersKi

andmi are estimated as follows [39]:

mi =
1

M

M
∑

j=1

xj, and Ki =

M
∑

j=1

xjx
′
j − mm′

A Bayesian classifier is a simple classifier that assumes normal distribution of
the features in the patterns. If this is not the case, Bayesian classifiers intrinsically
lose precision due to their mismatching distribution assumption.

3.6.3 Fuzzy Logic Controller

In this section the basic design of a common Fuzzy Logic Controller (FLC) is
discussed according to [72]. We assume thatm different event classesCi have
been learned (see Section 3.6.1). LetU = {u1, ..., un} be the universal set. A
fuzzy setÃ onU is described by the membership function:

µÃ : U → [0, 1] (3.11)

whereµÃ(u) expresses the membership degree in which the elementu belongs
in Ã.

In our work, we have investigated triangular and Gaussian membership func-
tions. The functions are depicted in Figure 3.13 and computed according to:

µ(x) =











x−a
b−a

, if x ∈ (a, b],
c−x
c−b

, if x ∈ (b, c],

0, otherwise.

and µ(x) = e
− (x−a)2

2σ2
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Figure 3.13: Membership functions used in fuzzy logics.

Gaussian functions have the general advantage that the whole feature space is cov-
ered. Considering a classification problem withx ∈ ℜn andm event classes, a
fuzzy logic controller consists of a system ofm fuzzy if-then rulesRk of the form
[72]:

Rk : IF µÃk,1
(x1) ∧ µÃk,2

(x2) ∧ ... ∧ µÃk,n
(xn) (3.12)

THEN gk(x) > gi(x), ∀i = 1, ...,m

where∧ is an arbitrary operator aggregating the fuzzy sets of the premises
and g(x) is an arbitrary function of the consequence. The rule means that the
degree of significance of the premise is assigned to the conclusion. If the premise
of Rk is fulfilled to a high degree, then the consequence ofRk has a high degree
of significance also. Considering a sample patternx, the degree of significance of
ruleRk should be maximum ifx belongs to classCk.

The functiongk(x) of the consequence can be an arbitrary function if the FLC
is designed as a Takagi-Sugeno classifier [72]. Takagi-Sugeno classifiers have the
advantage that their parameters can be estimated from training data. The premises
are modeled from the patterns in the clustersCi. Any TSK classifier implements
rules of the general form (3.12) in the following way [72]:

Rk : IF µÃk,1
(x1) ∧ µÃk,2

(x2) ∧ ... ∧ µÃk,n
(xn) (3.13)

THEN gk(x) = fk(x)

wherefk(x) is an arbitrary function. Because the functionsfk(x) can be cho-
sen arbitrarily, they can be designed to model the learned event classesCi based on
the patterns in theCi. Accordingly, no expert knowledge is required. In our work
we have used a TSK2 classifier that is specified as follows [72]:
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TSK2 classifier

• zk,i ∈ ℜ, k = 1, ...,m, i = 1, ...,m;

• The conjunction (AND) is the product;

• Theith output of TSK2 is

gTSK2
i (x) =

∑M
k=1 zk,i

∏n
j=1 µÃk,j

(xj)
∑M

k=1

∏n
j=1 µ

Ãk,j
(xj)

(3.14)

After having determined the fuzzy sets of the premises, the fuzzy consequences
gi(x) can be tuned for the TSK2 classifier (see [72], p. 182). This means that
estimates of thezk,i have to be computed.

Even though TSK classifiers can be modeled from data and are therefore trained
unsupervised, most current applications implement the consequences of the rules
according to Mamdani inference [95]. These systems requireexpert knowledge
and are based on minimum/maximum decisions. In particular,these systems re-
quire that the consequences of the classification rules are linguistic variables. This
restricts the application of the system, because linguistic variables are often difficult
to model and require expert knowledge as mentioned before.

3.6.4 Feedforward Neural Networks

Feedforward Neural networks (FFNN) [39] are bio-inspired networks which, in
general, are neither self-documenting nor directly comprehensible for human be-
ings. They consist of simple, mutually connected computingunits (neurons), which
support parallel computing, learning, and generalization.

Basically, FFNNs consist of an input layer, an output layer,and one or more
hidden layers of neurons. The number of input variables, output variables and
neurons is arbitrary. Again, input is the unknown patternx = {x1, ..., xN} that
contains the different event characterizing features. Output is the classC to which
the pattern most likely belongs. The hidden layer(s) consists of neurons that process
the inputx according to some weightswi. A simple neuron is defined as follows:

f(x1, ..., xn) =
n

∑

i=1

wixi (3.15)

A weight wi is assigned to each input variablexi. In FFNNs these weights are
learned from training data consisting of input patternsx and the associated output,
i.e., the classCi to whichx belongs. The training is based on the backpropagation
method (e.g., [39]), which feedforwards the input trainingpattern throughout the
neural network, analyzes the error by backpropagation (nonlinear optimization),
and updates the weights. The backpropagation procedure is based on the Steepest
Descent method, which performs similar to the Conjugate Gradient method (see
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Section 3.5.3). Once the weights have been learned from training patterns, the
FFNN operates efficiently since only simple arithmetic operations are performed.
The determination of the weights can be very resource consuming, though. In our
own approach we have used a FFNN method too. The weights are determined
offline at a base station. Only the trained, efficient classifier is downloaded onto the
sensor nodes. This is the same for the FLC and the Bayesian classifier.

3.6.5 Adaptive Resonance Theory

If only little knowledge of the expected kinds of events is available, the previ-
ously proposed algorithms fail due to their limited online learning capability. In
this section we introduce a lightweight and adaptive memoryapproach that learns
and classifies event patterns online. Adaptive Resonance Theory (ART) neural net-
works [17] represent a special kind of adaptive memory with sequential learning
ability. Any present inputx = {x1, ..., xN} is fed into the ART neural network.
The present input is classified with respect to a number of stored prototypes, which
represent learned classes of input patternsx. If the present input can be classified,
the respective prototype is updated. Otherwise, a new prototype is created unless
the whole memory capacity is utilized. ART systems have beendesigned to process
binary input patterns (binary ART) and analog input patterns (Fuzzy ART).

Figure 3.14: ART neural network architecture.

The architecture of any ART neural network is shown in Figure3.14. Any
ART neural network is an unsupervised learning system. It consists of two layers,
a comparison layer F1 withN neurons representing the attributes of a given input
and a recognition layer F2 composed ofM neurons representing the prototypes
(categories). The weight matrixWi,j is the memory of the ART. The sensitivity
thresholdρ controls the recognition behavior of the ART neural network.
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ART-based Event Recognition

input: Input vector~I;
output: Number representing categoryj to which~I belongs;
begin

Compute similaritysj to each prototype j in F2;
Sort thesj in descending order;
for eachsj do

if sj > ρ

Update the weightsW:,j = ~I · α + W:,j · (1 − α) ;
return Category number j;

if maximum number of categories is not reached
Commit uncommitted neuronn in F2;
return Category number j;

else
replace oldest category in F2;
return -1;

end

The operation of an ART-based event recognizer is describedin the pseudo-
code above. The weight matrixWi,j is the memory of the ART. First, the similarity
sj between every prototypej and the input vector~I is determined. The Euclidean
distance is used to determine similaritysj between~I and any of the stored proto-
typesj. The resulting list of similarities is sorted in descendingorder. The ordering
is necessary, otherwise a prototype might be chosen (similarity applies), though a
more similar prototype exists. This case could happen if more than onesj exceeds
the sensitivity thresholdρ. The resulting list of similarities is evaluated with respect
to ρ. If an appropriate category is found, the weights of the according prototype are
updated and the category number is returned as classification output. If no category
could be determined, -1 is reported (unknown event pattern). The present input~I
is stored as new prototype until the memory is full.

The parameters of the ART neural network are explained in thefollowing. If
sj exceeds sensitivity thresholdρ, ~I is assigned to category j. A high value for
ρ implies fine-grained memory (many, small categories), since the input needs to
match a category exactly. On the other hand, low values mean coarse recognition
(few, large categories). A second parameter that has an impact on the behavior
of the ART neural network is the learning rateα. If an input ~I is assigned to a
categoryj, the stored prototypej is updated according to the weighted sum of~I

and j, i.e., W:,j = ~I · α + W:,j · (1 − α). Hence, the learning rate defines the
weightsα for the input and(1−α) for the stored prototype. Ifα is high (e.g., 0.8),
~I is weighted 0.8 and the stored prototypej is weighted 0.2. Accordingly, high
learning rates reinforce the impact of the current input. Traditional ART neural
networks return the category number if a category is determined for a given input
~I and -1 otherwise. On the other hand, our ART-based event recognizers return 0
(known) if ~I is recognized and 1 (unknown) otherwise.
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ART neural networks are lightweight and adaptive. No buffering of event pat-
terns is needed. Only a small number of prototypes is maintained. However, be-
cause event classes are modeled according to weighted prototypes, the mechanism
cannot achieve the accuracy of an algorithm that stores all observed event patterns.
We use an adapted ART neural network mechanism for anomaly detection. More-
over, we extend common ART neural networks with an aging mechanism. Thus,
learning capability can be continuously maintained.

3.6.6 Haar Wavelet Transform

On wireless sensor nodes memory capacity is critical. Therefore, the sizeN of
the input vector~I might be restricted. In order to decrease the size of series of
measurements (n) to the required sizeN , discrete Haar Wavelet transforms [45]
can be applied on the raw series of measurements. Thereby,n must provide the
following property:n = N · 2k, k ∈ N0.

The discrete Haar Wavelet transform is very simple and efficient and can easily
be performed on a sensor node. The discrete Haar Wavelet transform is a digital
filter consisting of a Low Pass Filter (LPF), which models thesignal frequency, and
a High Pass Filter (HPF), which models the noise. For data reduction only the LPF
is considered.

Figure 3.15: Haar Wavelet transform (LPF).

An example of a Haar Wavelet LPF is depicted in Figure 3.15. The LPF simply
goes through a time series and computes the sum of any two subsequent values and
divides the result by

√
2. Thus, a data reduction factor of two for each application

of the LPF is achieved. In Figure 3.15, the 10 values of the input signal on the
left are reduced to 5 values with the LPF. The LPF keeps low pass frequencies of
a signal, while high pass frequencies are removed. Thus, a data compression is
achieved by keeping the general shape of a signal.

In addition to the needed reduction in sample size, the Wavelet transform also
smoothes the original input signal, which can either be interpreted as a de-noising
of the original signal or as a generalization of the same.
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3.6.7 Classification of Time-Discrete Events

So far, an introduction to classification problems and solutions by focusing on as-
pects and methods considered in our own approach has been given. The discussion
of the relevant state of the art in classification with wireless sensor networks starts
with approaches that classify events that are present as discrete entities in time.
Most of these approaches apply statistical methods, but pattern recognition tech-
niques as well as simple threshold-based mechanisms have also been proposed.

SensIt: Classification Functionality

Event classification with wireless sensor nodes has been addressed in the SensIt
project, e.g., in [78], [131], [132], [31], [99]. A wide range of statistical methods
has been covered in the SensIt project. Therefore, only workthat has implications
for this thesis is presented from this project here. In [78] the focus was on the local-
ization and classification of sources based on their seismicfingerprint. As described
in Section 3.4.2, the monitoring network is divided into space-time regions (grids)
with at least one responsible leader node. Time-series of seismic measurements are
gathered at the leader node(s). The authors propose three different classification
algorithms to deal with the concurrent existence of multiple targets. These classi-
fiers are: k-NN, maximum likelihood (MA), and support vectormachines (SVM).
The classifiers operate on the time-series associated with each event in a time-space
cell. Limitations of the proposed statistical approaches are their rather centralized
nature and their need for a considerable amount of data to provide statistically rel-
evant results. The dependency on time-series implies delays.

Refinements of the proposed statistical methods have been proposed in [131],
[132]. Statistical methods that compute the Maximum Likelihood (ML) of events
with Expectation Maximization (EM) algorithms are proposed. In addition, numer-
ical nonlinear optimization methods, which are based on Exhaustive Search (ES)
and Multi-Resolution (ML) search, have been proposed. All approaches require a
considerable amount of sensor readings to provide accurateresults.

Classification Based on Local Binary Decisions

In [160] a fault-tolerant classifier based on local binary decisions has been intro-
duced. Local binary decisions about an event are forwarded to a fusion center,
which performs the final classification based on the collected data. A fault-tolerant
fusion rule (classification) is applied. The classifier has been designed to consider
faulty event reports. This means a certain number of wrong binary decisions are
tolerated by the mechanism. To do so, wrong binary event reports are detected and
corrected by error-correcting codes at the fusion center. The error-correcting codes
are computed according to the frequencies of occurrence of errors. Accordingly, a
priori knowledge of the events and pre-computation of the codes is required. Due to
the pre-computation of the codes, the resulting classification rules are efficient. To
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achieve good results, the fusion center requires a large number of binary decisions
from network nodes, which imposes high communication costs.

The error-correcting code design is essential for this approach. In order to de-
termine good codes, two algorithms have been proposed. The first algorithm is
a cyclic column replacement approach, which is fast but can converge to a local
optimum. The second approach is based on simulated annealing, which is a prob-
abilistic metaheuristic to solve a global optimization problem. This mechanism is
very robust as it can avoid local minimums, but imposes high computation costs.

Dimensionality Reduction Based on Kernel Functions

In [43] the complexity of a classification problem is decreased by reducing the
problem dimensionality. Thus, communication and computation costs can be low-
ered. The dimension reduction is performed similar to principal component analy-
sis, which is a commonly used regression method. In detail, the problem reduction
is based on kernel linear regression, where the kernel is represented as a weighted
sum of local basis functions. However, the important property of the system is that
a complex global function (e.g., a classification function)can be decomposed into
tasks of lower dimensionality. The lower dimensionality tasks are then distributed
among the network nodes. Thus, the nodes contribute to the global function by pro-
cessing their local measurements. Accordingly, instead ofcommunicating all mea-
surements, only local constraints on the model parameters are negotiated. Thus, a
dimensionality reduction is achieved, which decreases communication needs and
fastens computations. In order to perform the decomposition, again a priori knowl-
edge of the problem is required.

Intrusion Detection and Fence Monitoring

Intrusion detection with wireless sensor networks has beeninvestigated in [165],
[32], [164]. In [165] initial results of fence monitoring with sensor nodes have
been provided. Events such as a person climbing over a fence are collaboratively
detected. Six different event sources have been distinguished based on their fence
activation fingerprint. Event patterns are detected based on the activation of the
accelerometer implemented on the sensor nodes. Both, node-level and collabora-
tive classifications are based on thresholds and majority decisions. In subsequent
work [32], [164] calibration of the sensor nodes and more advanced pattern recog-
nition techniques has been introduced to improve accuracy.The node-level classifi-
cation is divided into a learning phase, where event prototypes are learned, and into
an operation phase, where subsequently occurring events are classified according
to the learned prototypes. The node-level classification isbased on the Euclidean
distances between the observed event pattern and the storedevent class prototypes.
The collaborative event classification is based on consensus among the involved
sensor nodes, i.e., a majority decision is performed. Only event types determined
in the learning phase can be classified.
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Classification based on Fuzzy ART Neural Networks

Many pattern recognition mechanisms require the central storage of training data,
which is then used for learning. Due to the availability of complete training data
sets, these algorithms are able to provide high accuracy. Onthe other hand, they im-
ply high communication and storage costs and require periodical re-computations.
Adaptive Resonance Theory (ART) neural networks (see Section 3.6.5) avoid these
drawbacks by learning new patterns online. Because no training data is locally
stored, ART neural networks are in general not able to provide the accuracy of
pattern recognition techniques that include training phases.

In [68], [67], [69] the application of ART neural networks for classification
and dimensionality reduction in sensor networks has been proposed. Events are
observed as feature patternsx = {x1, ..., xN}. Each present patternx is classified
according to the local Fuzzy ART neural network. Only the resulting classification
number is forwarded to a fusion center. Thus, local classifications based on Fuzzy
ART reduce the reporting volume fromN to 1. The Fuzzy ART systems proposed
in [68], [67], [69] are only used for data reduction by merging multiple sensor
readings at discrete points in time. However, Fuzzy ART neural networks are well-
tailored to anomaly detection problems. In our own work we extend Fuzzy ART
neural networks to detect anomalies in time series of measurements. Moreover, we
implement Fuzzy ART neural networks on node level, but use a binary ART neural
network at the fusion center. Thus, anomalies can be efficiently detected. High
compression rates on node-level are an appreciated side-effect of our systems.

3.6.8 Continuous Event Classification and Anomaly Detection

The classification algorithms proposed in the previous section have been introduced
to address time-discrete classification problems. In this section the classification of
events which evolve over time is addressed. These kinds of events are difficult to
predict and by nature vary in duration of appearance. These classification prob-
lems mainly face two restrictions in sensor networks. First, processing power and
memory are limited. Therefore, complex pattern classification methods are diffi-
cult to implement at the node level. Second, communication costs are high, which
prevents the option of forwarding all raw sensor data to a fusion center.

The classification of continuous events has recently gainedattention in wire-
less sensor network research. An adaptation of the approaches presented in the last
section is difficult and in some cases not feasible. Apart from classification, the
detection of abnormal events also belongs in this category.Unlike general classi-
fication tasks that are interested in specific events, anomaly detection systems are
mainly interested in identifying behavior that deviates from expected behavior. Ac-
cordingly, anomaly detection simplifies the classificationproblem as long as only
the distinction between normal and abnormal events is required. Relevant related
work is provided in this section.
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Recognition of Bird Species with Neural Networks

The performance of bird species recognition by applying time delayed neural net-
works has been studied in [16]. Different preprocessing methods and different sets
of features have been evaluated. A context-aware and neuralnetwork architecture
has been designed which considers the dynamic nature of birdsongs. The approach
includes a noise reduction algorithm.

The approach requires relearning phases if new bird speciesappear. More-
over, each possible event type requires its own neural network, which imposes high
storage demands on the sensor nodes. Optionally, the recognition of specific bird
species could be restricted to responsible sensor nodes. Thus, the storage require-
ments could be lowered but more sensor nodes would be required.

Tracking and Classification with Continuous Transferable Belief Models

The authors of [122] [113] propose the usage of a continuous Transferable Be-
lief Model (cTBM) to classify continuously evolving eventswhich are present to
the system as a sequence of events. The cTBM is similar to probabilistic Hidden
Markov Models, whereby the underlying physical process is not random. To track
and classify events, cTBM has been combined with a particle filter. Each particle is
used to construct a set of beliefs, which are then fused with the existing beliefs for
classification. These new beliefs are fed back to the system to update the particle
filter. The tracking group formation and the selection of nodes that report event
data has been done according to [163]. Statistical methods are used to optimize the
trade-off between communication cost and the quality of theinformation obtained
by the sensors.

The approach is more robust than a similar Bayesian approach. However,
implementing cTMB together with particle filters and dynamic programming for
the tracking group formation imposes high communication and computation costs,
making the approach not well-suited for tiny wireless sensor nodes.

Intrusion Detection and Security

Intruder detection has gained much attention in the computer security community.
Algorithms based on State Vector Machines (SVMs), Fuzzy Logic Controllers
(FLC), Principal Component Analysis (PCA), Hidden Markov Models (HMMs),
or Instance-based Learning (IBL), have been introduced. [107] gives an overview
of existing techniques. Due to their complexity most of these algorithms cannot be
simply adapted to sensor networks, though. Nevertheless, some first steps in the di-
rection of applying intrusion detection systems (IDS) to static sensor networks have
been done [123], [27], [65]. In [123] general guidelines andrequirements consid-
ering an integration of IDS in wireless sensor networks are provided. [27] and [65]
apply rule-based voting schemes to prevent certain kinds ofnetwork attacks.

Instance Based Learning (IBL) based on observed and stored profiles [46] is
a promising approach for intruder and anomaly detection. However, the required
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storage of profiles soon exceeds the memory space of tiny sensor nodes. Therefore,
a manageable representation of the profiles is needed, whichcould be achieved
with ART neural networks. Fuzzy Logic Controllers (FLC) have also been con-
sidered for the detection of abnormal behavior, e.g., in [22]. These approaches are
very lightweight, but require accurate event modeling by experts, which makes the
approaches inflexible.

Intruder Detection in Building Surveillance

Recently the authors of [86] proposed an intruder detectionsystem that combines
Fuzzy ART mechanisms according to [69] with Markov chains. The approach com-
bines wireless sensor networks with mobile robots. The mobile robot is the leader
of the system. Upon detection of critical behavior, the robot is informed by sensor
nodes to travel to the location of interest. The robot is equipped with additional
hardware such as a camera and can provide more detailed information than the sen-
sor network. In a learning phase the sensor nodes learn normal behavior, i.e., they
train their Fuzzy ART neural network to identify known behavior. Unlike the ap-
proach proposed in [69] event patterns that evolve over timeare considered. This
is achieved by integrating the Fuzzy ART neural network withMarkov chains that
model state changes over time.

The proposed approach learns normal behavior and determines anything that
deviates from that known behavior as an anomaly. After the learning phase, the op-
eration of the system is static. If new event patterns have tobe learned, the learning
phase must be repeated. This makes the algorithm rather inflexible, because it loses
its online learning capability. In our own work, we allow ourFuzzy ART neural
network to refuse rarely used event patterns if the learningbuffer is full. Thus, new
event patterns can always be learned at the cost of losing rarely used knowledge.
Because the detection of anomalies is the main scope of our system, temporarily
discarding sporadically matched event patterns can be tolerated. The goal of [86]
differs largely from our goal. In [86] the Fuzzy ART neural networks implemented
on the sensor nodes learn normal behavior. In operational mode the sensor nodes
aim to recognize learned normal behavior. In our own approach nothing is learned
in advance. Sensor nodes have a small short term memory to temporarily remember
common behavior. Anything uncommon is then reported to a base station.

Anomaly Detection in Underground Coal Mines

In the work of [161] spatiotemporal anomalies in gas distributions in underground
coal mines are detected and reported by Bayesian networks. Bayesian networks are
a generalization of Hidden Markov Models (HMMs), where not only the present
and the last system state, butk past system states, wherek > 1, are considered for
classifications.

The sensor nodes used in [161] are wired and therefore face much lower com-
munication constraints. The detection of critical events is very important because
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non-detection might endanger the miners. Therefore, the usage of communication
and computation intensive Bayesian networks is justified. However, such algo-
rithms pose too high of a demand on general wireless sensor networks and are
therefore only applicable to customized applications.

Anomaly Detection Based on Artificial Immune Systems

Anomaly detection has furthermore been addressed by Artificial Immune Systems
(AIS) [28], [96], [97]. In [28] an early approach that detects anomalies in time se-
ries by using ideas from immunology has been proposed. In [97], [28] these ideas
have been taken up to improve security in mobile ad-hoc networks. AIS systems
use the paradigm of self/non-self discrimination and provide incremental online
learning ability. Thus, they resemble Fuzzy ART systems. Unlike Fuzzy ART
neural networks, which implement a positive selection algorithm, AIS systems im-
plement a negative selection algorithm. Moreover, AIS systems are probabilistic
methods, whereas Fuzzy ART systems are special kinds of instance-based learning
algorithms. AIS systems are in general less compact than Fuzzy ART systems and
accordingly require more memory.

3.6.9 Threshold-based Event Classification

Finally, we introduce some state-of-the art of threshold-based classifiers. Due to
their threshold-based nature, such systems can be applied to both discrete and con-
tinuous event classification. All approaches require expert knowledge. Therefore,
no unsupervised learning is possible. Sensor nodes can easily be updated with new
functionality by writing and downloading new configurations.

Querying Systems

Some querying systems have been adapted to support event detection (e.g., TinyDB
[93], [91], [92] and Cougar [171]). Event queries are downloaded and run on the
sensor nodes. A recent query-processing mechanism that addresses event detection
in specific areas has been proposed in [124]. Event properties such as event diame-
ter, expected occurrence time and expected sensor activations as well as the accord-
ing parameters are defined by a customized declarative querylanguage. For these
definitions and declarations a system expert is required. The approach presumes a
priori knowledge of the occurring events and thresholds in order to determine event
boundaries. This prevents dynamic anomaly detection, though.

In [170] the problem of exploring relationships between sensor data readings
in specific time windows is addressed. Such specific time windows are typical for
querying systems. It is shown that the detection of events ina time window using
the common aggregate or selection queries is difficult. The same applies to classifi-
cation problems. The authors address the problem of processing window self-joins
in order to detect events of interest. The approach might be helpful to increase
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accuracy and organize the event observing area more effectively. Nevertheless, the
definition of events and the according queries still requires expert knowledge.

Lightweight Detection and Classification in Military Environments

A classification algorithm for EnviroSuite [1] has been proposed in [42]. Due to
the project goal of tracking military units, the classification and differentiation of
three different event types has been investigated, namely of vehicles, persons, and
persons carrying ferrous objects. The classification of these three classes is per-
formed efficiently by using a hierarchical classification architecture that is based
on settable thresholds. Thus, individual classification steps are performed at dif-
ferent levels of the system. Signal processing and local decisions are done at node
level. Cooperative event decisions are then determined in the tracking groups.

The proposed approach is not declared as a typical querying system. Never-
theless, it is very similar, because thresholds can be set according to configuration
contexts that are distributed in the network. Like all queryand scripting based
mechanism the expected events have to be modeled by a system expert. The detec-
tion and classification is restricted to three event types.

Classification Based on Decision Trees

In [8] classification problems are addressed by a multi-tiered classifier based on
decision trees. Decision making is performed by successively querying nodes in the
tree. Sensor nodes are dynamically activated and the sampling rate is dynamically
adjusted such that at any given time point only the data needed for classification is
collected. Thus, the trade-off between accuracy and power usage can be optimized.
Patterns of moving persons are classified by a wearable gait monitoring system.

The system has shown to provide similar accuracy as a supportvector machine
(SVM) approach, while requiring less power. The construction of the decision tree
and the querying of the tree again requires expert knowledge, which makes the
approach static and inflexible.

3.7 Monitoring Applications

In this section we give a brief overview of some related work in event monitor-
ing systems for wireless sensor networks. The section is divided into common
environmental monitoring applications and specific building and structural health
monitoring applications, which deploy video surveillancetechnology.

3.7.1 Environmental Monitoring

Many sensor networks have been designed for outdoor monitoring purposes, espe-
cially environmental monitoring and animal monitoring. The range of applications
includes but is not limited to seabird habitat monitoring [94], cattle control [133],
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zebra herd monitoring [174], the monitoring of coal mines [79], [161], water moni-
toring and flood detection [6], volcano monitoring [162] andglacier monitoring [5].
Some of these approaches provide data aggregation within the network while others
route all raw data to a base station for later analysis. Some of these works have in-
fluenced the development of our work. However, our event detection system differs
from these approaches in many ways. In particular system-specific requirements
need to be considered.

3.7.2 Visual Sensor Networks

Building monitoring and structural health control have been addressed by visual
sensor networks. These networks integrate wireless sensornetwork technology
with wireless video surveillance. Due to their potential, visual sensor networks
have gained much attention in recent years. Much effort has been put into tailoring
video streaming techniques to the requirements of resource-constrained systems.
Efficient video coding [47] [74] and reliable routing [21] have been addressed as
well as video calibration and deployment [70]. A dual-camera sensor network has
been proposed in [168]. An energy-efficient persistently running low resolution
camera triggers a high resolution camera on demand. Security and privacy issues
concerning the usage of visual sensor networks have been considered in [89].

In [7] an event-based triggering system has been used for structural health mon-
itoring of bridges. A wireless sensor network is deployed and used for video cam-
era control. If the wireless sensor network detects an abnormal event such as ”large
structure tilt detected”, a video camera is activated and zooms into the area of in-
terest. The application goal of the system resembles our ownone. However, events
are thrown based on thresholds. These thresholds have to be determined by system
experts and work only for the specific deployment. In contrast, our system learns
and determines abnormal behavior unsupervised. Moreover,in-network process-
ing is supported due to the usage of adaptive memory. Our system is currently
run standalone. However, it would be possible to use our energy-efficient anomaly
detection system to trigger a more energy consuming system such as a wireless
video surveillance system on demand, i.e., if some suspicious (abnormal) office
occupancy is reported.

3.8 Sensor Node Platforms

This section introduces the two wireless sensor node platforms that have been used
during the development of our event detection system.

3.8.1 The Embedded Sensor Board

The ESB sensor boards [127] have been used for the experimental evaluation of
our event detection system. ESB nodes consist of a TI MSP430 microcontroller,
2kB of RAM, a 60kB flash memory, and a low power consuming radiotransceiver
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(868MHz) operating at a bandwidth of 19.2kb/s by default. For some functionality
such as the communication scheme of DELTA that requires short periods with high
message load, a bandwidth of 19.2kbps is too small, because it introduces collision
probabilities that are too high. The ESB sensor node software has therefore been
changed to run with ASK modulation and 76kbps. This setting provides a good
trade-off between energy efficiency, bandwidth and reliability. Furthermore, the
sensor nodes are equipped with a number of sensors such as luminosity, temper-
ature and vibration. The ESB boards face two main restrictions. First, the band-
width is comparatively low. Second, resources in terms of memory and processing
power are limited. Both limitations are basically caused bythe miniaturization of
the implemented hardware. The ESB nodes have to work at a maximum of 3V
DC. Furthermore, as little energy as possible should be consumed to extend node
lifetime.

Figure 3.16: ESB sensor node.

An ESB sensor node is depicted in Figure 3.16. ESB nodes operate in the 868
MHz frequency band. The transmission range is approximately 37 m, whereas the
interference range is approximately 52 m. The data rate is set to 115.2 kbps. The
transmission power of ESB sensor nodes is 0.75 mW and the receiver sensitivity is
-95dBm. The energy consumption in transmission mode is 5.2 mA. Idle listening
and receiving both require about 4.7 mA, while the radio onlyneeds 5µA in sleep
mode. The parameters of the sensor nodes in our simulations have been configured
according to values from the ESB nodes.

In the real-world experiments of DELTA the TSL245 light sensor [55] imple-
mented on the ESB sensor nodes has been used. The output frequency of the
TSL245 sensor is shown in Figure 3.17. The provided light measurement software
supports only binary decisions (light on/off) for efficiency reasons. For detection
and tracking in our context this is not appropriate, though.Therefore, we have re-
implemented the software. The light sensor is associated with an interrupt-capable
register. On each positive edge of the output frequency of the TSL245 an interrupt
is thrown. In the interrupt routine a counter is incremented. The costs for this so-
lution increase with the irradiance. Therefore, the maximum spectrum is limited
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Figure 3.17: Output of the TAOS TSL245 infrared to frequency converter [55].

to a frequency of 100 kHz. Each higher output frequency is considered to be the
maximal brightness. The output frequency of the TSL245 on a desk in a normal
office during the day is approximately 2kHz.

3.8.2 The TmoteSky Platform

TmoteSky sensors consist of a microprocessor, some memory,an IEEE 802.15.4
compliant radio, and a number of sensors such as temperature, humidity, and light.
The radio operates in the 2.4GHz frequency and can thereforeinterfere with stan-
dard IEEE 802.11b wireless networks. Data rates of 250 kbit /s can be achieved
with the radio. Light can be measured with two sensors. The first light sensor
measures only the photosynthetic active radiation (PAR), i.e., the visible light with
a wavelength between 320 and 730 nm. The second light sensor measures the to-
tal solar radiation (TSR), including infrared, ranging from 320 to 1100 nm. The
TmoteSky sensor node is depicted in Figure 3.18.

Figure 3.18: TmoteSky sensor node.
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3.9 Conclusions

In this chapter relevant work from the research areas of medium access, routing
and topology control, event detection and tracking, and event classification and
anomaly detection have been presented. In the last section anumber of monitoring
systems have been introduced. Since none of these monitoring systems is tailored
to office monitoring, none of these systems is optimally suited to address our ap-
plication requirements, which are the support of long-termdeployments and the
satisfaction of event detection requirements (e.g., the required accuracy).

Even though many problems have been solved with existing approaches, no
event detection architecture that is laid out for long-termoperation on tiny sen-
sor nodes has been presented so far. Numerous classificationand anomaly detec-
tion procedures have been proposed. However, all these mechanisms either solve
problems that are not addressed in our context or they apply methods that are too
resource consuming to support long-term deployments. However, a long-term de-
ployment of our event detection system is crucial because continuous building mon-
itoring is required. Periodic physical battery replacements are not an option. Our
event and anomaly detection features implement some functionality used in re-
lated work too. For example, ART neural networks have been previously used in
wireless sensor networks too. However, the common ART neural network system
design needs to be extended to meet the specific requirementsof our system.

Our system provides a nonlinear localization and signal strength estimation
method that optimizes the trade-off between communicationminimization and lo-
calization accuracy. Current state of the art focuses on very accurate estimations.
Comparatively high communication load is accepted. However, approximate esti-
mations are sufficient to support classification. Our methodoutperforms the state
of the art in minimizing communication load.

The current state of the art in event detection and tracking does not adequately
address communication minimization and detection accuracy. There are approaches
that either optimize group organization or they optimize detection accuracy. Our
DELTA detection and tracking system addresses both requirements. Thus, DELTA
outperforms previous work in finding an optimal trade-off between network orga-
nization costs and detection accuracy.

Finally, we provide our event detection systems with mediumaccess and rout-
ing. In particular, we have proposed a mechanism that implements routing on
the MAC layer without requiring additional control traffic.Thereby, synchronized
contention-based MAC protocols have been integrated with connected dominating
set theory. Such integration has not been found in related work yet. In addition to
the routing support, extra energy can be saved because non-backbone nodes can be
temporarily turned off.

To meet the requirements of our target application, a tailored event detection
system has been developed that integrates different network layers. Our approach
gains from results obtained in related work, but also extends particular related work.
In addition, novel features and an integrated system designare provided.
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Chapter 4

Local Clock Synchronization

In this chapter a mechanism to achieve common listen/sleep cycles in energy-
efficient synchronized contention-based MAC protocols is proposed [180], [158].
Synchronized contention-based MAC protocols follow periodic listen/sleep cycles.
The protocols face the problem of virtual clustering if different unsynchronized
listen/sleep schedules occur in the network, which has beenshown to happen in
wireless sensor networks (see Section 3.2.1). To interconnect these virtual clusters,
border nodes, which maintain all locally relevant listen/sleep schedules, are re-
quired. This is a waste of energy if a common schedule can be locally determined.
To achieve this common schedule, we propose a local synchronization mechanism
that makes use of gravitation. Clusters represent the material, whereas synchro-
nization messages sent by each cluster represent the gravitation force of the ac-
cording cluster. Due to mutual attraction all clusters merge. The synchronization
mechanism itself is not altered. Every sensor node competesfor transmission of
synchronization messages as it normally does. Accordingly, no overhead is intro-
duced by our algorithm, but a not yet used property of synchronization mechanisms
is exploited. This local synchronization mechanism is usedin the MAC protocols,
which are implemented to provide our topology control and routing backbone al-
gorithms with the required medium access functionality.

4.1 Introduction

Synchronized contention-based MAC protocols maintain lowduty cycles. This
means the sensor nodes follow periodic listen/sleep cycles. In the listen cycle the
sensor nodes are able to communicate with neighbor nodes andcan forward pend-
ing data. In the sleep cycle they shut down their radio to preserve energy. In order to
synchronize their listen/sleep cycles with neighboring nodes, SYNC messages are
periodically exchanged. Through this synchronization process, nodes which main-
tain the same listen/sleep cycle are organized into clusters. This synchronization of
common listen/sleep cycles is called virtual clustering (see Section 3.2.1). To sup-
port communication between different clusters, border nodes which interconnect
the according clusters are required.
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Figure 4.1: Periodic sleeping and virtual clustering.

The synchronization mechanism implemented in synchronized contention-based
MAC protocols is illustrated in Figure 4.1. Node A is member of a virtual cluster,
whereas nodes B and C are members of another disjoint virtualcluster. This is in-
dicated by the disjoint listen periods (colored gray) in Figure 4.1. All nodes could
be in transmission range of each other. However, in the example above, it is only
required that node A can hear node B and node B can hear both nodes A and C.
From time to time each node remains awake for an entire frame length fi in order
to scan for present schedules. In Figure 4.1 this is node B in frame f3. In this frame
B learns the cluster of node A, because it overhears the SYNC message sent by
node A. Only this SYNC transmission is shown in Figure 4.1. Node B becomes a
border node as it interconnects two clusters. This means node B synchronizes to
both known schedules henceforward, i.e., beginning in frame f3.

Experiments have shown that four different virtual clusters have already evolved
in a multi-hop network consisting of 50 nodes running S-MAC (Section 3.2.1).
Moreover, it has been shown that border nodes had to listen toup to three different
schedules. In all four experiments more than 44% of all network nodes followed at
least two schedules. In two of the four experiments 34%, respectively 47%, of all
network nodes even had to listen to three virtual clusters. Thus, the border nodes
have higher average energy consumption than normal clusternodes. The problem
of virtual clustering has further been illustrated in Fig 3.2.

While the authors of [85] have used a global mechanism to solve the prob-
lem (see again Section 3.2.1), we propose a local adaptive clock synchronization
scheme that achieves local synchronization. A global solution requires system-
wide synchronization towards one global schedule. This implies overhead in terms
of signaling and requires the storage of fallback mechanisms, i.e., of temporary
valid local schedules. Another possibility to discharge border nodes would be to
alter the respective role amongst neighbor nodes. However,such a role circulation
would require additional communication and organization.LACAS avoids these
drawbacks. Maintaining a global schedule is unnecessary, because of the local-
ity of communication links between network nodes. LACAS avoids the drawback
of virtual clustering and leads to a uniform distribution ofthe energy required for
synchronization.
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4.2 Local Adaptive Clock Assimilation Scheme (LACAS)

LACAS implements a mechanism similar to gravitation. In terms of a virtual clus-
tering problem, this means that larger clusters attract smaller ones more than vice
versa, until the clusters finally merge. In LACAS, the cluster nodes represent the
mass, and the number of sent SYNC messages represents the gravitation force. Be-
cause all sensor nodes implement the same contention-basedtransmission scheme,
large clusters broadcast on average more SYNC messages thansmall ones and thus
cause more attraction.

LACAS only exploits the information exchanged by synchronization messages.
Therefore, no additional control traffic is generated. Moreover, the loss of SYNC
messages does not affect the principle of LACAS, but only temporarily decreases
the gravitation force of a cluster.

Synchronization of LACAS

while true
Compete for SYNC transmission in every listen period;
if scanning == true // periodically true in every 32th listen/sleep cycle

Remain awake for the whole cycle;
Scan for unknown listen schedules;
Span own listen schedule over all learned (known) schedules;

end
if SYNC overheard == true

Adapt the own listen schedule to the schedule of the SYNC sender forα;
end

The LACAS synchronization procedure is described in the pseudo code above.
Every network node performs the described actions. This means it periodically
scans for unknown listen/sleep schedules. If any unknown listen/sleep schedule is
overheard, the respective sensor node becomes a border nodeby spaning its own
listen schedule over all known listen/sleep schedules. Thus, the node is ensured to
overhear the SYNC messages from all involved clusters. Every overheard SYNC
messages causes the adaptation of the own listen schedule for some valueα (e.g.,α
= 5%). The parameterα controls the attraction caused by a SYNC message. Only
the border nodes attract clusters directly. According to the pseudo code above, in
the first step of a merging process, the schedule of a border node is expanded and
then it starts to contract again. Over time, all sensor nodesconverge towards a
common listen/sleep schedule. This is due to gravitation force of clusters.

A merging process is shown in Figure 4.2. The gray bars indicate listen periods.
The white bars describe adaptations. Node C stays awake for awhole listen/sleep
schedule in f2. Having detected another schedule, it spans its listen period over
both known schedules (see f3). This listen period contracts then to the normal
schedule length merging both connected clusters. The parameter α controls the
gravitation force. High values forα lead to high attractions and fast convergence.
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Figure 4.2: Gravitation principle of LACAS: Cluster detection and merging.

Thus, connections between clusters can temporarily be broken. This affects only
the convergence time of the clusters, though. The gravitation mechanism itself is
not compromised. In the worst case, nodes are successively transferred from the
smaller cluster to the larger one. The problem is discussed later. The contraction of
the schedule of node C continues after period f5 and ends in period fn.

Initially nodes A and B form cluster 1, while nodes C and D formanother clus-
ter 2 (see frame f1 in Figure 4.2). Because T-MAC is used, all nodes periodically
stay awake for an entire frame fi in order to detect other clusters. In Figure 4.2 this
is node C in frame f2. Having learned both clusters, C spans its own listen period
over both schedules. Moreover, as it has received two SYNC messages from nodes
A and B from cluster 1, node C moves its listen period for 2α towards the listen
period of cluster 1 (frames f2 and f3 in Figure 4.2). In frame f3, C is able to transmit
its own SYNC message and receives another one from node B fromcluster 1. Ac-
cordingly, the listen period of node C again moves forα towards the listen period
of cluster 1. Having received a SYNC message from node C, nodeD is attracted
too (f4 in Figure 4.2). In frame f4 node C is able to transmit a SYNC message in
both schedules. Accordingly, cluster 1 and node D are attracted towards C. C itself
moves towards D as it has received a SYNC message from D (framef5 in Figure
4.2). The merging process continues in Figure 4.2 after frame f5. After a while,
both clusters will fuse. In the example, cluster 1 transmitsin general more SYNC
messages than cluster 2 (it has three members, whereas cluster 2 has only two).
Thus, both clusters will merge closer to the original schedule of cluster 1.

The adaptation parameterα is crucial for performance. A smallα implies a
long merging period. On the other hand, a largeα leads to a fast convergence
towards a large cluster, which might disrupt the connectionbetween a border node
and its smaller cluster. This disconnection is not a major problem, because the
clusters are connected again when a border node remains awake for a whole frame,
but it increases merging time. In the worst case, nodes pass successively from the
smaller cluster to the larger. The convergence of LACAS is however not affected.
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In general growing clusters have a growing number of border nodes. Thus, their
gravitation force increases too. In the current deploymentwe have chosen a value
for α of 5%. Thus, all sensor nodes are able to synchronize within afew minutes.
Expecting a network lifetime of at least several months, thesynchronization time
seems tolerable. Finally, only the listen periods of the according MAC protocol are
optimized. Any subsequent data exchange period is not affected by LACAS.

4.3 Evaluation

LACAS has been evaluated on top of T-MAC in simulations. All network nodes
wake up randomly within the first 30 simulation seconds, and immediately begin
to synchronize. T-MAC enhanced with LACAS has been used as MAC protocol
for the topology control algorithms presented in Section 5.2. Every simulated net-
work has been synchronized within a few minutes. Moreover, the synchronization
remained stable in all simulations. Because the development of LACAS is part
of a cross-layer approach for topology control [157], the performance of LACAS
has been evaluated using a larger scenario. The topology control mechanism es-
tablishes a routing backbone after a synchronization and neighborhood learning
period of 300 s. Two approaches to implement the backbone arediscussed in the
next section. Non-backbone nodes disconnect from the network and go to sleep for
a longer period. This has some impact on the convergence timeof LACAS as fewer
SYNC messages are sent due to the temporal unavailability ofthe non-backbone
nodes. However, the principle functionality of LACAS is notaffected.

4.3.1 Simulation Scenario and Parameters

The parameters of T-MAC have been set according to [142]. Allrelevant simulation
parameters are listed in Table 4.1. All nodes follow a periodic listen/sleep frame of
610 ms, of which they are awake for at least 13.5 ms, i.e., if nodata transmission
is pending. This minimum wake-up period consists of the synchronization period,
which is 7 ms, and the traffic-adaptivity period TA, which is required by T-MAC
and has a duration of 6.5 ms. Each node remains awake for a whole frame in every
35th frame, i.e., every 21.35 s. This is required in order to detect neighbor nodes
which follow different listen/sleep cycles.

Three different network sizes of 50, 100 and 200 nodes have been simulated.
The respective simulation areas are 18’000, 36’000 and 72’000 m2. Consider-
ing the different simulation areas, their respective population, and the transmission
range of approximately 37 m (see Section 3.8.1), an average node density of 12
neighbors is obtained. The network topology was randomly generated taking net-
work connectivity into account. Any experiment has been repeated 20 times. The
spectrum of the schedule lengths present at a specific time point is indicated by the
standard deviation. The properties of the sensor nodes are configured according to
values from the Embedded Sensor Board (ESB) platform (see Section 3.8.1).
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Table 4.1: Parameters of the MAC simulations.

Parameter Value

Listen/Sleep Frame 610 ms
SYNC period 7 ms
TA 6.5 ms
Periodic wake frame 21.35 s
Network size {50, 100, 200}
Simulation Area {18’000, 36’000, 72’000}m2

Network density 12 neighbors
Node deployment random, but guaranteeing connectivity

4.3.2 Convergence of Schedule Length with LACAS

In this section the convergence time of LACAS is investigated. The independent
initial wake up of the network nodes in the first 30 s of the simulation leads to mul-
tiple coexisting schedules in the beginning. The evolutionof the schedule length
of each network node has been monitored over the first hour of operation and the
schedule length has been captured every 5 s. The evolution ofthe mean common
schedule length in a network consisting of 50 nodes is shown in Figure 4.3.
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(a) Evolution in the first hour (log-scaled).
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(b) Evolution ignoring the first 100 s.

Figure 4.3: Schedule length convergence in a network consisting of 50 nodes.

Figure 4.3(a) shows the evolution of the schedule length over the whole first
hour of operation. The schedule length converges to a lengthof approximately 13
ms within the first 200 s. Of course, in this convergence period the distribution
of the schedule length is high in the network. There are nodesthat follow com-
mon schedules and thus already have a short schedule length.On the other hand,
there are numerous nodes interconnecting different schedules, which results in a
temporarily increased average schedule length.

Figure 4.3(b) shows the evolution of the mean schedule length after the first
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100 s. The peak at 400 s is due to the backbone scenario as described above. This
has two reasons. At 300 s the parameterα is adapted from 0.05 to 0.5 to achieve
faster convergence. This leads to the temporary peak. Afterthe adaptation the
performance improves slightly. Sleeping non-backbone nodes lead to a smaller
amount of SYNC messages, which further reinforces the effect. The peak is on
the order of a duplication of the schedule length. The adaptation of α could be
implemented in LACAS without cross-layer optimization too. The mean schedule
length converges to 13 ms without adaptation and to 10 ms withadaptation. The
average schedule length remains stable after 200 s without adaptation and after 450
s with adaptation.
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Figure 4.4: Schedule length evolution in larger networks (log-scaled).

Figure 4.4 shows the impact of the network size. The performance of LACAS
in a network consisting of 100 nodes is depicted in Figure 4.4(a). The performance
is very similar to the performance in the network consistingof 50 nodes. However,
convergence takes longer for the network consisting of 200 nodes (Figure 4.4(b)).
Compared to an intended network lifetime of several months or more, this delay is
still insignificant. The increased convergence time of LACAS with network size is
due to the hop-by-hop impact of the gravitation principle. Thus, clusters show an
impact similar to the movement of a ripple through water overmultiple hops.

Figure 4.5: Ripple effect of gravitation over multiple hops.
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The effect is illustrated in Figure 4.5. Clusters of nodes such as the nodes
in L1 attract nodes at the boundaries. The nodes in L2 again have an impact on
their border nodes, i.e., on the nodes in L3. The effect causes complex mutual
influences. Moreover, due to the increased time needed for dissemination, clusters
located far away from each other have a longer lasting impacton each other than
nearby clusters. The probability of presence of such clusters grows with network
size. Thus, the convergence time increases with network size too.

LACAS is not able to converge to a short schedule length before cross-layer
adaptation occurs for a network size of 200 nodes (see Figure4.4(b)). The cross-
layer impact again leads to a temporary duplication of the average schedule length,
which in this case is much longer. However, the schedule length converges quickly
to 10 ms after the adaptation. This fast convergence is due tothe cross-layer ap-
proach. Without optimization the convergence would look similar to Figures 4.3(a)
or 4.4(a) without a peak. It would only require some more time.

The average schedule length has converged in all evaluated network topolo-
gies and sizes to a length of approximately 10 ms. This is not surprising, because
the convergence (gravitation) is basically a local process. Mainly local commu-
nications have an impact on local convergence and any local communication is
independent of the network size. On the other hand, due to theripple effect it is not
possible to achieve the schedule length of 7 ms of T-MAC. There is thus a trade-
off between avoiding the border nodes and the achievable schedule length. On the
node level, every border node with disjoint schedules consumes more energy than
any node running LACAS. In terms of the overall energy consumption, LACAS
preserves energy if the following inequation applies (∀i : ni ∈ N):

n1 · 7ms + n2 · 14ms,+... + nk · k · 7ms > nt · 10ms;

k
∑

i=1

ni = nt (4.1)

whereni is the number of nodes maintaining a given number of schedules and
nt is the total number of nodes in the network. Inequation (4.1)assumes that the
different schedules are disjoint. Otherwise, overlaying schedules would need to
be included. Unlike virtual clustering, LACAS achieves a uniform charging of
the batteries, thereby avoiding quick depletion of specificborder nodes. There-
fore, LACAS might even be favored over virtual clustering ifthe average energy
consumption is worse. The expected energy consumption of virtual clustering and
LACAS in real-world networks is discussed in the next section.

4.3.3 Analysis of Power Consumption

Unlike the convergence of LACAS, realistic virtual clustering is difficult to sim-
ulate. Virtual clustering mainly occurs due to physical impacts such as commu-
nication gray zones [175] and temporary unavailable communication links. These
impacts depend on the used hardware and on the environment. Thus, they are diffi-
cult to simulate properly. Approximating those impacts in simulations might falsify
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the simulations rather than improve them. Finally, these effects have little impact
on the convergence of LACAS due to the robustness of the gravitation principle.

In order to assess the power consumption saved by LACAS we adopt real-world
results obtained from experiments performed in [85]. In these experiments, multi-
ple coexisting virtual clusters have been detected. The percentage of network nodes
maintaining a certain number of schedules are listed in Table 4.2. The costs of T-
MAC and LACAS are computed according to these values and inequation (4.1).
The long-sleep impact of non-backbone nodes has not been considered in this eval-
uation, because it is based on a cross-layer optimization. Accordingly, all nodes
follow a periodic listen/sleep schedule. The sensor network in [85] consisted of 50
nodes running S-MAC (see also Section 3.2.1).

Table 4.2: Percentage of coexisting schedules (taken from [85]).

Number of Schedules
1 2 3 4

Exp. 1 56% 44% - -
Exp. 2 32% 68% - -
Exp. 3 - 66% 34% -
Exp. 4 9% 44% 47% -

The results would be the same if T-MAC had been used due to the identical
synchronization mechanism. As mentioned above, ESB nodes need 4.7 mA in idle
listening state. We use this value to estimate the power consumption of LACAS.
Furthermore, we assume that the different schedules, whichevolved in the experi-
ments in [85], are disjoint (see inequation (4.1)). SYNC messages that would have
to be sent in the synchronization periods are not considered. However, a synchro-
nized contention-based MAC protocol with virtual clustering would transmit more
SYNC messages than a similar approach implementing LACAS due to the exis-
tence of border nodes. Table 4.3 shows the power consumptionof T-MAC and
LACAS to maintain all schedules of all network nodes in one listen/sleep cycle.
The results apply as soon as the networks are stable, i.e., after the convergence to
the common schedule length of 10 ms in the case of LACAS, afterall virtual clus-
ters have evolved in the case of T-MAC. Therefore, the valuesin Table 4.2 can be
used. The power consumptions of T-MAC and LACAS are computedaccording to
inequation (4.1) and the values in Table 4.2.

LACAS maintains only one schedule. Therefore, the expectedpower consump-
tion of LACAS is the same in all four experiments. The estimations in Table 4.3
show that in a network consisting of 50 sensor nodes, depending on the experi-
ment, more or less power can be saved with LACAS, i.e., between 0.02 and 1.57
mAs in one listen/sleep cycle of 610 ms. Even though LACAS hasa slightly longer
minimal schedule length than T-MAC, LACAS is estimated to perform at least as
well as T-MAC in all four experiments. Considering a networklifetime of months
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Table 4.3: Power consumption (in mAs) per listen/sleep cycle.

T-MAC LACAS

Exp. 1 2.37

2.35
Exp. 2 2.76
Exp. 3 3.85
Exp. 4 3.92

or more, the possible energy savings are promising. The estimations shown in Ta-
ble 4.3 concern the average energy consumption over all nodes (in one listen/sleep
cycle). However, border nodes with disjoint schedules consume more energy than
the average and would therefore run out of energy sooner thanother network nodes.
On the other hand, LACAS distributes the energy consumptionload more effec-
tively. Therefore, even in the experiments where virtual clustering consumes on
average only slightly more energy than similar runs with LACAS, network lifetime
might be significantly extended with LACAS. Finally, LACAS is very stable and
robust and requires the storage of only one schedule.

4.4 Conclusions

In this chapter a simple local clock synchronization schemehas been proposed.
LACAS provides system-wide local clock consistency and therefore avoids the
drawback of virtual clustering. It has been shown that the overhead of LACAS
is marginal. Moreover, the synchronization procedure converges fast, i.e., within
minutes for the simulated networks and remains stable thereafter.

The fast convergence of the algorithm has been shown in simulations. LACAS
exploits the information exchanged by SYNC messages. If messages are lost, the
functionality of LACAS is not affected. The concerned cluster only shows currently
lower attraction. In related work it has been shown that variations in radio range
and temporary unavailability of the radio have a high impacton the presence of vir-
tual clusters. On the other hand, real-world properties have less impact on LACAS,
because the gravitation mechanism is very robust. Therefore, the energy consump-
tion of LACAS has been estimated based on real-world results, which have been
collected in related work. LACAS has shown to preserve energy in comparison to
virtual clustering. Moreover, the energy load distribution is better with LACAS.
Thus, no nodes are more charged than others which prevents possible network par-
titions due to nodes being depleted earlier.

To save energy and to prevent the depletion of heavily charged border nodes our
event detection architecture is provided with synchronized contention-based MAC
protocols that implement LACAS.
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Chapter 5

Backbone Support

This chapter introduces approaches and features to provideour event monitoring
framework with energy-efficient medium access and routing [151], [148], [180]
[157]. All mechanisms are implemented on the MAC and routinglayers as illus-
trated in the system architecture overview in Figure 1.1. Nodes that are currently
not required for routing are identified and temporarily disconnected from the net-
work to save energy. The focus of all developments is on energy savings in the
context of medium access and networking issues.

5.1 Introduction

The event detection system proposed in this thesis has the main goal of accurate
long-term event monitoring and reporting. This in particular involves appropriate
event detection, tracking and classification mechanisms onthe application layer.
Nevertheless, in order to optimize energy savings, the system needs some efficient
medium access and routing functionality. In the last chapter we have provided
a mechanism to optimize synchronized contention-based MACprotocols. In this
chapter we will further exploit such MAC protocols and enhance them to support
routing directly on the MAC layer. The synchronization messages exchanged by
these kinds of MAC protocols are used to learn neighborhood information and to
setup a routing backbone based on that information. Thus, additional control traffic
can be avoided. Moreover, nodes that are not required for routing can temporarily
turn off their radio to save extra energy. The integration ofrouting on the MAC
layer supports rather static networks. More dynamic networks such as mobile sen-
sor networks cannot be supported on the MAC layer. Therefore, we have imple-
mented an additional routing and topology control mechanism on the network layer
that supports node mobility (see the mobility support module in Figure1.1).

Properties of backbone setup mechanisms in dependance of the used layer of
the network stack are shown in Table 5.1. On the MAC layer backbone setup and
maintenance information is piggy-backed on SYNC messages.Thus, no additional
control messages are needed. On the other hand, this impliesdelays, since always
the transmission of a SYNC message must be awaited to signal some control infor-
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Table 5.1: Backbone construction on MAC and networking layer.

MAC network

Control message overhead minimal high
Mobility support and repair no yes

mation. These delays can be tolerated in static networks, where topology changes
occur infrequently. To support mobile networks, an additional algorithm on the
networking layer is required. Due to the usage of specific control messages this
algorithm does not face the problems of piggy-backing the control information on
SYNC messages. It introduces overhead, though.

Figure 5.1: Routing backbone in a sensor network.

Routing and topology control are provided by a virtual backbone that is imple-
mented as a connected dominating set (CDS) (see Section 3.3.3). An example of a
backbone in a sensor network is depicted in Figure 5.1. Backbone nodes are col-
ored gray, while non-backbone nodes are colored white. Communication links in
the backbone are illustrated by the bold lines, while other communication links are
indicated by dashed lines. Every non-backbone node in Figure 5.1 is adjacent, i.e.,
it possesses a communication link, to some node in the backbone. Hence, the net-
work is connected and routing can be performed over the backbone. Non-backbone
nodes shut down their radios and go to sleep for a long-sleep period that lasts for
multiple listen/sleep cycles (see also Chapter 4).

After any long-sleep period the backbone is reestablished by the base station,
taking current network conditions and energy distributions into account. Nodes
with high battery levels are favored for election into the backbone. Thus, network
lifetime can be extended. Independent of their state, all sensor nodes turn on their
radios to organize themselves into event observing and tracking groups upon ob-
servance of an event. The according group organization algorithm (DELTA) is
presented in Chapter 6. Only the leader node uses the backbone to route its event
reports to the base station. Having finished their monitoring tasks, all nodes resume
their assigned role in medium access and routing.
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5.2 Routing Backbone on the MAC Layer

In this section we propose a routing backbone construction mechanism that exploits
and uses the synchronization messages exchanged by synchronized contention-
based MAC protocols such as T-MAC (see Section 3.2.1) or DW-MAC (see Section
3.2.1). Thus, no additional control traffic is required for routing. The routing back-
bone is useful for rather static applications with source-to-sink communication. By
using the SYNC messages, the routing backbone extends the lifetime of the net-
work. The base station is always rooting the backbone.

The SYNC messages intrinsically provide all network nodes with neighbor-
hood information. This information is used to construct therouting backbone with-
out additional control traffic. Moreover, nodes that are notrequired for routing can
turn off their radio and can go to sleep for a long-sleep period that lasts for multiple
listen/sleep periods. In this long sleep period non-backbone nodes only wake up
if they have some sensor readings to be reported. If this is the case, the respective
non-backbone node wakes up, synchronizes to a node in the backbone, sends its
sensor readings to the backbone node and goes back to sleep again. Henceforward,
the backbone node is responsible to route the sensor readings of the non-backbone
node to the base station (over the backbone). If a backbone node has to report some
sensor readings, it does this directly.

Figure 5.2: Neighborhood discovery and backbone construction.

Both steps to setup a backbone are depicted in Figure 5.2. Before establish-
ing a routing backbone all network nodes learn their neighborhood from overheard
SYNC messages in the neighborhood discovery period. For example, node 3 de-
tects nodes 1, 2 and 4 as neighbors. Because not every node is able to transmit
a SYNC in every listen/sleep cycle, the neighborhood discovery period covers a
certain number of listen/sleep cycles. The collected neighborhood information is
used in the backbone construction step to determine backbone nodes (colored gray
in Figure 5.2). Again the SYNC messages are used. Elected backbone nodes (e.g.,
node 1) piggy-back their neighborhood information on SYNC messages. The re-
ceivers of such an extended SYNC message determine their state according to their
own knowledge and the received information. In Figure 5.2 node 3 would elect
itself as backbone node according to its own information andthe information it
has received from node 1. Different algorithms to determinebackbone nodes are
possible. Two algorithms based on connected dominating sets have been used.
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5.2.1 Long Sleep on the MAC

The routing backbone has two desirable properties: First, all nodes are able to
route their data over it to the base station. Accordingly, noadditional network layer
is required to setup connections to the base station. Second, because routing is
guaranteed by the backbone, nodes that are not part of the backbone can go to sleep
for a long-sleep period, which covers multiple listen/sleep cycles. The concept is
illustrated in Figure 5.3.

Figure 5.3: Operation of backbone node (B) and redundant node (R).

The operations of a backbone node B and a non-backbone node R are illustrated
in Figure 5.3. B periodically synchronizes to neighboring backbone nodes, i.e., it
periodically exchanges SYNC messages. R only wakes up if it has some data to be
reported. It synchronizes to the backbone, allocates the channel with RTS/CTS and
transmits the data (indicated by the burst of arrows). Having received a confirma-
tion (ACK) from B, R goes back to sleep again.

In the current evaluation the learning period lasts for 10 minutes. The CDS is
maintained for 50 minutes. During this time, non-backbone nodes remain asleep
unless they have to report some data. Thus, non-backbone nodes save additional
energy. Backbone nodes perform the normal listen/sleep cycle and do not waste
more energy than running the unaltered MAC protocol. They have some informa-
tion piggy-backed, but compensate for this by overhearing fewer SYNCs due to the
temporarily decreased network density. Non-backbone nodes do not send SYNC
messages since they are in a long-sleep state. Accordingly,our protocols save the
transmission of SYNC messages compared to the standalone MAC protocol.

The batteries of nodes in the backbone have higher charge levels than the bat-
teries of non-backbone nodes. Accordingly, the backbone isrecomputed from time
to time (currently every hour), taking the current battery levels of the nodes into
account. In every CDS setup phase nodes with high battery levels are favored. In
the following, two CDS setup algorithms based on the information collected from
SYNC messages are proposed. The first algorithm needs two-hop neighborhood
information, whereas the second approach requires only knowledge of the immedi-
ate neighborhood. The first algorithm is simpler and terminates faster, but requires
more information.
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5.2.2 CDS Construction Based on Multipoint Relaying

To determine the subset of next hops in the CDS, an algorithm similar to the Mul-
tipoint Relaying Protocol (MPR) (see Section 3.3.4) has been used. Any backbone
node (dominator) elects its next-hop dominators such that they connect the two-hop
neighbors most effectively.

Neighborhood Discovery

The SYNC messages are slightly modified to discover the two-hop neighborhood.
In addition to the current sender s1, also the sender s2 of the last SYNC message
received by s1 is added to the SYNC message. Thus, each receiver of a SYNC
message learns both, the direct neighbors (s1) and the two-hop neighbors (s2) over
time. The reliability of the neighborhood discovery periodand the needed accuracy
in neighborhood knowledge are discussed in Section 5.2.4.

In addition to neighbor node s2, the battery level of each sender is added to
the SYNC message. The battery level is needed to account for energy distribution
changes in the network. Otherwise, the nodes with best connectivity would always
be chosen into the backbone, leading to fast battery depletions of these nodes.

Backbone Construction

Having exchanged SYNC messages for a period long enough to learn local one-
and two-hop neighborhood information, the CDS process is initiated by the base
station. The next-hop dominator set of a dominator nodex is computed as follows:

MPR-based dominator election

input: One-hop neighbor listL1 and two-hop neighbor listL2 of nodex;
ouput: MPR set of next-hop dominators of nodex;

begin
repeat

If ∃ ay ∈ L1 with exactly one link to az in L2

addy to MPR;
Remove allz in L2 which are now covered;

else
For eachy in L1 do

Compute numberδ(y) of nodes inL2 connected
via y that are not covered by an MPR node;

Select they with highest product ofδ(y) and battery level into the MPR set;
Remove allz in L2 which are now covered;

until all two-hop neighbors are covered;
end

The CDS setup process is started by the base station (S). Eachdominator
elected by the algorithm is informed about its state by an extended SYNC message.
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The procedure continues until all network nodes are covered. To force success-
ful signaling, the extended SYNC messages are retransmitted either until passively
confirmed by overheard SYNCs from successors or until the maximum number of
retransmissions is reached.
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Figure 5.4: Example of dominator election with MPR-based CDS.

An example is shown in Figure 5.4. The base station S is the starting dominator
(black). The set of next-hop dominators of S is {1, 2}, because 1 is the only node
to reach two-hop neighbor 4 and 2 is the only node to reach two-hop neighbor 5.
Nodes 1 and 2 cover all two-hop neighbors of S. S informs them by piggy-backing
the dominator list {1, 2} to its next SYNC messages. Upon reception, both nodes
become black and compute their own set of next-hop dominators. Node 1 imme-
diately terminates its election process because no uncovered two-hop neighbors
remain (nodes 3, 5 and 6 are covered by nodes S and 2). Node 2 determines node
7 as last uncovered two-hop neighbor. Because node 7 can be reached over nodes
5 and 6, step 2 of the algorithm is applied. Both nodes have thesame number
of uncovered neighbors, i.e.,δ is 1 for both of them. Accordingly, the node with
higher remaining battery level (node 5) is chosen into the CDS. The CDS setup
ends when node 5 is informed about its state. All network nodes are then covered
by a dominator and the algorithm terminates.

The result is obviously suboptimal. The MCDS would consist of nodes S, 2 and
5 only. However, the approximation factor is good and the main goal is to improve
network lifetime rather than optimizing the CDS.

5.2.3 Negotiation-Based CDS

The negotiation-based CDS (N-CDS) computes the CDS withouttwo-hop neigh-
borhood knowledge. This time, one-hop neighborhood information is sufficient.

Neighborhood Discovery

The N-CDS again learns the neighborhood information from SYNC messages.
This time no extension of normal SYNC messages is needed, though. Only the ID
of the SYNC sender is required, which is transmitted per default. We again assume
that after a given initialization period each node knows itsone-hop neighbors.
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Backbone Construction

Base station S is again defined as starting node. The dominator status is determined
based on a negotiation-based CDS building process that consists of four steps which
are described in the following:

N-CDS based dominator election

1. Every dominator node broadcasts an extended SYNC messagecalled
DOMINATOR. This message contains the neighborhood list of the domi-
nator.

2. Each receiver becomes dominated and computes a priority according to
its product of battery level and number of remaining uncovered two-hop
neighbors, i.e., of nodes that are not yet dominator or dominated.

3. The dominated nodes locally exchange their calculated priorities in a spe-
cial SYNC message called DOMINATED.

4. The node with highest priority is elected into the backbone.

Because the DOMINATOR message contains the neighborhood list of the dom-
inator, every receiver is informed about neighboring dominated nodes. Consider
node 1 in the example in Figure 5.5. Node 1 is a neighbor of nodeS. Having re-
ceived the DOMINATOR message from S, which contains nodes 1,2 and 3 in the
neighbor list, node 1 can determine its neighbor node 2 as dominated. The same ap-
plies to every other receiver of a DOMINATOR message. In step3, all dominated
nodes exchange DOMINATED messages containing the priorityof the sender. Be-
cause each dominated node knows the dominated nodes in its one-hop neighbor-
hood, the dominated node knows from which nodes it has to receive DOMINATED
messages, in order to be able to determine the significance ofits own priority (step
4). Accordingly, when a dominated node has learned all priorities from neighboring
dominated nodes, it becomes a dominator if it has the highestpriority among the
group. If the priority of a node becomes 0, i.e., it has no uncovered neighbors left,
it enters the non-backbone state after having broadcast itsstatus in a DOMINATED
message.

Due to contention or packet loss, it might happen that a dominated node cannot
receive a DOMINATOR or DOMINATED message from a neighbor node in this
mutual negotiation process. The node would then keep waiting for this message.
To prevent this deadlock, each node sets a challenge timer. If the node does not
receive any message from a specific neighbor during this period, it assigns priority
0 to the respective node. To summarize, the following terminations of the algorithm
per node are possible:

1. A node determines that all its neighbors are covered. In this case the node
enters non-backbone state.

2. At the moment a node determines that it has the highest priority, it enters the
backbone.
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3. A dominated node still has some uncovered neighbor nodes when the chal-
lenge timer expires. In this case the node enters the backbone too.

The third item is motivated as follows. Consider an uncovered nodey that is
only connected over a dominated nodex. In order to guarantee network connectiv-
ity, nodex must become a dominator. Hence, nodex becomes a dominator when
the challenge timer expires. The challenge timer ofx will expire since it has an un-
covered neighbory. An example of the N-CDS algorithm is shown in Figure 5.5.
For simplicity all nodes have the same energy level. Thus, only the node degree
determines the priority of a node.
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Figure 5.5: Example of dominator election with N-CDS.

Dominator nodes are colored black. Dominated nodes color themselves gray
and uncovered nodes are white. Gateway node S starts the N-CDS algorithm by
broadcasting a DOMINATOR message. Having received this message, neighbors
1, 2 and 3 color themselves gray. Node 2 computes the highest priority, because it
has two neighbors (5 and 6) which are not yet covered. Nodes 1 and 3 both have
only one uncovered neighbor. After having exchanged the priorities via SYNC
messages, node 2 determines the highest priority (becomes black) and broadcasts
the next DOMINATOR message. Receivers 5 and 6 become dominated, i.e., they
color themselves gray, and exchange their priorities. Node5 has the higher priority
(neighbors 4 and 7 are not yet covered) and becomes dominator. Nodes 3, 6 and
7 go to sleep as soon as they have overheard the required DOMINATOR messages
from nodes S, 2 and 5. Node 4 goes to sleep if it has overheard the DOMINATED
message from node 1 and the DOMINATOR message from node 5. Node 1 finally
goes to sleep if it overhears the DOMINATED message from node4. If commu-
nication among some of the nodes was not successful, the challenge timer would
expire and some of nodes 1, 3, 4, 6 or 7 might become dominatorstoo.

Due to its negotiation character N-CDS requires a longer CDSsetup time than
MPR-based CDS. On the other hand, no two-hop neighborhood information is
needed. The computed CDS is optimal in the example. In general, MPR-based
CDS is expected to perform slightly better due to its two-hopneighborhood knowl-
edge, though. We have developed a CDS setup mechanism that combines both
approaches and provides mobility support on the networkinglayer (see Section
5.3). It approximates the MPR-based CDS by piggy-backing the neighbor list of
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the dominator on DOMINATED messages. As N-CDS, the mechanism requires
negotiation, leading to the same drawbacks.

5.2.4 Reliability and Backbone Reconstruction

Neighborhood discovery and backbone construction are reinitialized by the base
station after every long-sleep period. Thus, the current connectivity and energy
distributions in the network are considered after every long-sleep period. Local path
update strategies could be an alternative. Such approacheshave not been further
considered due to their complexity.

The accuracy of the one-hop neighborhood information is more critical than
the accuracy of the two-hop neighborhood information. Accurate two-hop neigh-
borhood knowledge is only needed to optimize performance ofthe MPR-based ap-
proach. However, the two-hop neighborhood information must be complete enough
to ensure that the MPR-based algorithm does not terminate without covering all
network nodes. Complete coverage has been achieved in everysimulation, though.
Collecting neighborhood information by SYNC messages, in particular collecting
two-hop neighborhood information, is a time-consuming task. Therefore, we have
determined when neighborhood information must be updated.If a node depletes,
the according neighborhood information of this node becomes invalid. This has
impact on the backbone construction mechanisms. Two possibilities need to be
distinguished:

• Invalid one-hop neighborhood information: Unavailable dominators could
be elected. This must not happen. Hence, the one-hop neighborhood is re-
learned in every neighbor discovery period, i.e., before every backbone setup.

• Invalid two-hop neighborhood information : In the worst case a redundant
dominator is elected. This is not desirable but neither critical. Hence, two-
hop neighborhood information is only deleted if the relevant node has not
been overheard for a certain amount of time.

In all simulations the complete one-hop neighborhood information and most
two-hop neighbors were relearned in every neighbor discovery phase. Two-hop
neighbors that have not been overheard were still known due to the timeout criteria.
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5.3 Routing Backbone on the Network Layer

In this section we provide a CDS mechanism that has been implemented on the
network layer and supports node mobility. Specific control messages, i.e., hello
messages that are optionally extended with CDS setup information, are needed.
These hello messages are used to learn neighborhood information and to setup the
routing backbone. By using hello messages on the routing layer, the algorithm is
decoupled from the MAC layer. Thus, node mobility can be supported, because
control messages can be sent immediately. On the MAC layer, the piggy-backing
of information onto the SYNC messages saves communication costs, but leads to
long information dissemination delays (see Section 5.1). These delays prevent the
deployment of path adaptation functionality that are needed for mobility support.

Like in the MAC-based approaches, non-backbone nodes turn their radios off
and go to sleep for a certain amount of time. During these long-sleep periods non-
backbone nodes periodically wake up to check network conditions. After a long
sleep period the backbone is reestablished by the base station. The backbone is thus
able to consider the energy load distribution over time. In addition, backbone re-
pair mechanisms support the detection and correction of node failures and/or node
mobility. The algorithm shows good approximation of an MCDSafter backbone
setup and is able to repair link breaks on demand with short delays and low message
overhead.

The local one-hop neighborhood information is learned by periodically ex-
changed hello messages (beacons). Two-hop neighborhood information is only
exchanged on-demand by piggy-backing one-hop neighborhood information when
the CDS is established. Thus, the algorithm achieves the performance of MPR-
based CDS, but requires the amount of neighborhood information of N-CDS. Like
N-CDS, the algorithm requires a more complex timer handling, though.

The CDS setup information is piggy-backed on the hello messages. Thus, no
additional control traffic is introduced to setup the CDS. Thereby, CDS setup or
maintenance tasks interrupt the normal hello message exchange by transmitting
the extended hello message prioritized. Thus, smaller latencies can be achieved.
Whenever no backbone construction or repair mechanism is inaction all hello mes-
sages perform their basic task. The CDS setup is again distributed. Backbone join-
ing decisions are either based on the link degree or on a combination of link degree
and remaining battery power.

5.3.1 Receiver-based Backbone Construction

The Receiver-based CDS (R-CDS) is an approximation of the MPR-based CDS
approach (see Section 5.2.2). Instead of requiring any nodeto know its two-hop
neighborhood, R-CDS only requires knowledge of two-hop neighborhood infor-
mation on demand, though. This is achieved by piggy-backingthe neighborhood
information of a dominator on its hello message and distributing the information
two hops into the network. The basic steps of R-CDS are listedin the following:
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R-CDS based dominator election

1. Every dominator nodex broadcasts extended hello messages called DOM-
INATOR. These messages contain the neighborhood list of thedominator.

2. Each receivery becomes dominated and broadcasts an extended hello mes-
sage called DOMINATED. This message contains again the neighborhood
list of the dominator.

3. Receiversz of DOMINATED messages compare their own neighborhood
information with the neighborhood information of the dominator. The
sendery is prioritized according to this comparison:

3.1. If y is the only node that connectsx andz, y is chosen with high
priority as dominator.

3.2. If there are multiple paths betweenx and z, nodey is prioritized
according to its link degree and/or its remaining battery level. The
priority must be lower than in [3.1], because nodesz with only one
path to the dominator must be connected.

4. Nodez informs nodey about its priority. The algorithm is receiver-based.

With the described mechanism the neighborhood informationof the dominator
on demand is disseminated two hops into the network. Thus, every receiver of a
DOMINATED message is able to decide if it is located two-hopsaway from the
dominator. Furthermore, it can determine the number of paths to the dominator.
According to this number, the sender of the DOMINATED message is prioritized.
The most relevant step in the Multipoint Relaying Protocol (see Section 3.3.4) is to
choose nodes as Multipoint Relays that provide exactly one path to a node two hops
away. To do so, the Multipoint Relaying Protocol requires two-hop neighborhood
information. In R-CDS the neighborhood information of the dominator is delivered
to its two-hop neighbors. Thus, the two-hop neighbors are able to determine the
number of paths to the dominator. With this mechanism, R-CDSapproximates
Multipoint Relaying, but requires the setup of two-hop neighborhood information
only on demand.

Figure 5.6: Example of dominator election with R-CDS.

An example of a backbone construction of R-CDS is illustrated in Figure 5.6.
The base station (S) broadcasts a DOMINATOR message. Each receiver of DOM-
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INATOR message (nodes 1, 2 and 3) sends a DOMINATED message. Having
received the respective DOMINATED message(s), two-hop neighbors 4, 5 and 6
know the neighbor list [1, 2, 3] of S. Node 4 determines only one path to S over
node 1. Therefore, node 1 is chosen as dominator. Similar, node 5 determines also
only one path over 2 to S and elects 2 as dominator. Both nodes are immediately
informed about their status. Node 6 delays its decision, which would also choose
node 2 due to higher link degree, because it has two paths over2 and 3 to S. Nodes
1 and 2 broadcast DOMINATOR messages. The receivers 3, 4, 5 and 6 are thus
again instructed to send DOMINATED messages. By analyzing the DOMINATED
messages, node 7, the only remaining uncovered node, learnsthe one-hop neigh-
borhood [S, 1, 3, 4, 5, 6] of node 2. Because node 2 determines 2paths to the base
station over nodes 5 and 6, which provide both the same link degree of 4, node 7
either elects node 5 or 6. In this example it elects node 6 due the higher remaining
battery level of node 6. In order to make this last decision, every dominated node
attaches its battery level and its link degree to the DOMINATED message.

The algorithm terminates as soon as no uncovered nodes remain. This hap-
pens in every connected network, provided that all requiredmessages have been
successfully transmitted (see the next section). Two terminations are possible:

(i) Nodes adjacent to a dominator become dominated.

(ii) Any nodey, two hops away from a dominator chooses an up-link nodez as
dominator. If nodey is not covered by another dominator in the meantime,
nodez will win the dominator election and inform nodey accordingly. Node
y will become dominated in both cases according to(i).

Timer Handling and Reliability

As indicated above the control messages used for the backbone construction are in-
cluded in the hello messages. As soon as a node enters backbone construction state
it sets a CDS control message retransmission counter to cover three hello intervals
and includes its current control info in its hello messages during that time. Accord-
ingly, the respective control information is transmitted three times. With this mech-
anism the algorithm accounts for possible packet loss. The retransmissions impose
only minor overhead, because the hello messages, which would be exchanged any-
way, only have to be extended with some information. Consequently, only the
packet size is temporarily increased, but no additional control messages are gener-
ated. To decrease CDS setup time and to support the prioritization of nodes, the
extended hello messages are transmitted in a prioritized manner.

To determine the release time of the extended hello messagestwo intervals
are defined: a short interval of 100 ms and a long interval of 1 s. The intervals
are chosen according to typical sensor network properties.In our real-world im-
plementation of the R-CDS algorithm (see Section 5.4.3) we have used the ESB
sensor node platform (see Section 3.8.1). ESB sensor nodes need 14 ms to switch

96



to send mode, send the packet and switch back to idle mode. Therefore, a con-
tention period of 100 ms for the short interval is reasonable. The long interval is
needed to delay dominator elections if multiple paths to thelast dominator exist.
The timers for the DOMINATOR and the DOMINATED messages are both ran-
domly chosen from the short interval. The timer for the dominator choice message
sent by a two-hop neighbor is chosen from both intervals depending on the priority
of the backbone candidate. If only one path to the last dominator exists, the timer is
chosen from the short interval. If multiple paths to the lastdominator exist, the long
interval is also considered. As soon as a control message timer is set, the periodic
hello sending mechanism is interrupted and the next hello isscheduled according
to the control message timer. In sensor networks algorithmsare confronted with
high packet loss due to collisions or bit error rates and small bandwidth. An in-
tegration of the control messages and the hello messages is therefore helpful as it
scales down the control traffic load and increases the probability of message deliv-
ery, while avoiding additional RTS/CTS like mechanisms.

The backbone is maintained for a predefined backbone time. After this time, the
backbone is reestablished, adapting itself to the new network conditions. During
backbone time the dominated nodes follow a listen/sleep schedule. The dominated
nodes wake up periodically and listen to the medium before going to sleep again.
If a dominated node detects a link break in its vicinity or if it did not sense any
dominator at all during its listen period, the node stays awake. The details of the
backbone repair mechanisms are explained in the next section.

Local Path Adaptation and Repair

In order to deal with dynamic network topologies a local pathadaptation and repair
mechanism has been implemented. Two different kinds of linkbreaks might evolve:

(i) a backbone node determines an up-stream link break.

(ii) a dominated node detects its isolation from the backbone.

In both cases a link break is detected if a node did not overhear any hello mes-
sage for a certain amount of time, i.e., three times for the hello interval in (i), and
for the duration of the listen period in(ii) . In the latter case the dominated node
remains awake and tries to connect to a dominator. In both cases the link break
detecting node enters link-break state and starts to broadcast link-break notifica-
tions to inform its neighborhood about the link break. Each node overhearing a
link-break notification enters link-break state too. It saves the address of the node
announcing the link break and starts to propagate the link-break information fur-
ther. As soon as a backbone node with a valid route to the base station (BS) receives
a link-break message, it enters the path-update state and broadcasts its own path to
the BS within its next hello message. Nodes with valid routesto the BS neither
detected a link break themselves nor were they informed about a link break.
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Each node in the link-break state overhearing such a path update message
adopts the path and rebroadcasts the updated path (including its own ID). If the
rebroadcasting node is a dominated node it enters the backbone and becomes dom-
inator. In general not all dominated nodes in the path repairstate are needed to
repair a path. To keep the number of resulting dominators small, the path update
distribution is done under contention. Thus, dominated nodes that detect nodes in
repair state renounce their own path repair functionality.As mentioned above all
affected nodes setup a list of the nodes they received link-break messages from.
Accordingly, all nodes overhearing a path-update message from a node in their list
of link break reporting nodes, cancel their own path-updateprocedure.

Figure 5.7: Link break repair mechanism.

The message flow to repair a link break that has occurred at dominator 1 is
depicted in Figure 5.7. Dominator 1 detects a link break to its up-link dominator
node (not depicted) and broadcasts a link-break message accordingly. As soon as
there are some neighbors awake (nodes 2 and 3) they enter link-break state and
propagate the link break further. As soon as dominator 4 witha valid route to
the BS overhears an link break message, it responds with a path update message.
Dominated node 3 overhears this message, adapts the path, becomes a dominator
and finally broadcasts the path update message extended withits own ID. Having
overheard the path update message from the new dominator 3, node 1 knows that
the path is repaired, adopts the new path to the base station and resumes its normal
functionality. The next hello message sent by 1 informs node2 that the link break
has been repaired. Accordingly, node 2 can go back to sleep again. In Figure 5.7
only the relevant transmissions are shown.
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5.4 Evaluation

So far, backbone construction mechanisms on the MAC and on the networking
layer have been proposed. The approaches on the MAC layer have an intrinsic ad-
vantage in energy saving. On the other hand, the backbone construction mechanism
on the networking layer supports mobility. Due to their different goals and imple-
mentations a direct comparison of the algorithms is not meaningful. Therefore, the
approaches have been evaluated separately starting on the MAC layer.

5.4.1 Simulations on the MAC layer

MPR-based CDS and N-CDS have been evaluated in simulations.T-MAC has
been chosen as underlying MAC protocol. For compatibility and comparison rea-
sons T-MAC and an optimal pre-configured shortest-path routing tree have been
implemented according to [142]. Any implementation of a routing algorithm on
top of T-MAC has a different impact depending on the selectedrouting protocol
and is thus difficult to be evaluated. Therefore, we have decided to compare our
approaches to optimal benchmarks.

Simulation Scenario and Parameters

The CDS is rebuilt every hour. The long-sleep period lasts 50minutes and the learn-
ing period 10 minutes. Nodes in long-sleep state quickly wake up every minute to
send their sensor readings to the base station (see also Figure 5.3). Having suc-
cessfully synchronized to the backbone and transmitted their data, they go back to
sleep. The network parameters are similar to those used in the simulations of LA-
CAS. The parameters can be found in Table 4.1. The propertiesof the sensor nodes
are again configured according to values from the Embedded Sensor Board (ESB)
platform (see Section 3.8.1).

Average Energy Consumption in the Network

In a first evaluation the average remaining energy level of the batteries in the net-
work has been logged for each protocol. Each node has initially been charged with
335 mWh. 100 hours have been simulated. It has been ensured that all nodes have
enough energy so that they do not run out of energy during simulation time. Node
failures were not in the scope of the current evaluation.

Figure 5.8 shows the average remaining energy level for all tested protocols
and network sizes. Both N-CDS and MPR-based CDS perform better than T-MAC.
As expected, MPR-based CDS is slightly more efficient than N-CDS. The results
show that the energy savings by non-backbone nodes compensate for the piggy-
backing of control data. The network size has some impact on the on average
consumed energy in the network. This increase in energy consumption is however
due to the higher data traffic load caused by the increased number of reporting
sensor nodes (every node transmits a data message every second). The backbone
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(a) Network size of 50 nodes.
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(b) Network size of 100 nodes.
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(c) Network size of 200 nodes.

Figure 5.8: Average remaining energy in the network.

performance is not affected by the network size. In our evaluation T-MAC has been
used. Because SYNC messages are used, T-MAC could be substituted by other
synchronized MAC protocols. The benefits of the backbone should be the same.
Because T-MAC has been provided with cost-free routing, implementing routing
on top of T-MAC would additionally strain energy consumption of T-MAC.

Energy Distribution in the Network

The goals of our work have been to provide routing on the MAC layer to save en-
ergy, and to distribute the energy consumption uniformly over the network. This
uniform distribution of the energy consumption is more meaningful to extend net-
work lifetime than the in-average consumed energy, becausethe probability that
nodes discharge quickly is decreased, which is in particular critical if irreplaceable
nodes are affected. Figure 5.9 shows the energy distribution of the different al-
gorithms in the network consisting of 200 nodes (Figure 5.8(c) shows the average
energy consumption). The results for networks of 50 and 100 nodes are similar.
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Figure 5.9: Number of nodes with a specific energy consumption.

The distribution of nodes with similar energy consumption differs significantly
between T-MAC and the CDS-based approaches. In T-MAC all nodes consume
more than 100 mWh in 100 hours simulation time and the percentage of nodes
with high energy consumption is higher than that of the CDS-based approaches. In
T-MAC there are numerous nodes (about 30) with an energy-consumption of about
110 mAh (see Figure 5.9(a)). The other nodes consume even more energy. On the
other hand, the CDS-based approaches charge many nodes less.

The high fraction of nodes with low energy consumption in CDS-based ap-
proaches, i.e., the nodes on the left side in Figure 5.9(b) and 5.9(c), indicates that
the periodic setup of the CDS leads to a good energy consumption distribution.
However, there are also nodes with high energy consumption.These are the nodes
on the right side in Figure 5.9(b) and 5.9(c). Examining the different solutions, nei-
ther N-CDS nor MPR-based CDS increase the number of heavily strained nodes
compared to T-MAC. Accordingly, the CDS-based algorithms do not increase the
number of quickly depleting nodes. The existence of such nodes cannot be avoided,
though. The reason is that such nodes are often or always elected into the backbone,
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because there are no or few alternatives to route information to the base station. To
circumvent this drawback, the node distribution in the network would have to be
considered during deployment.
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Figure 5.10: Cumulative distribution function of energy consumption per node.

The cumulative distribution function (cdf ) of nodes with a specific energy con-
sumption is shown in Figure 5.10. This function shows the percentage of nodes that
consume a certain amount of energy, and it is used to assess the distributions in Fig-
ure 5.9. MPR-based CDS and N-CDS both outperform T-MAC. Figure 5.10 shows
that with MPR-based CDS and N-CDS approximately 60% of all nodes consume
less than 100 mWh during the simulation time of 100 hours. On the other hand, in
T-MAC every node consumes more energy during the same time. It is not possible
to determine whether MPR-based CDS or N-CDS performs better.

To conclude, CDS-based algorithms not only consume less energy on average
(see Figure 5.8(c)), but also lead to a better energy consumption distribution. The
probability of network partitions is higher for T-MAC than for the CDS approaches
due to the higher number of heavily strained nodes. Since SYNC messages are
used, T-MAC could be substituted by other synchronized MAC protocols (e.g., by
DW-MAC). The backbone construction would remain the same.

Packet Loss

Finally, the average data packet loss of the different protocols has been investigated.
Only data transmissions have been considered.

The results are depicted in Figure 5.11. The optimal routingimplemented on
top of T-MAC leads to very good performance. T-MAC introduces almost no
packet loss in all simulations. On the other hand, both N-CDSand MPR-based
CDS lead to packet loss of up to 4%, which is still reasonable.Implementing a
routing protocol on top of T-MAC might increase packet loss too due to additional
signaling and suboptimal routing decisions. Nevertheless, T-MAC could still per-
form better than the CDS approaches, because the CDS mechanisms select many
backbone nodes with poor link quality.

The reason is depicted in Figure 5.12. Since a remote neighbor y of x has a

102



 0

 2

 4

 6

 8

 10

MPR-based CDSN-CDST-MAC

A
ve

ra
ge

 P
ac

ke
t L

os
s 

[%
]

50 Nodes
100 Nodes
200 Nodes

Figure 5.11:Average packet loss.

Figure 5.12:Area of additional coverage of neighbor nodes ofx.

larger area of additional coverage (colored gray) than a nearby neighborz, y in
general connects more two-hop neighbors ofx thanz. On the other hand, remote
neighborsy have a comparatively low Received Signal Strength Indicator (RSSI)
and are more exposed to interferences. Accordingly, these nodes have worse link
quality than nearby neighbors.

The election procedures of both CDS-based approaches prefer neighbors that
have a high probability to reaching additional nodes, because both CDS-based al-
gorithms aim at optimizing additional coverage. However, exactly these nodes are
the nodes with high probability of poor link quality, because they are located at the
border of the parent dominator node. The impact could be lowered by monitoring
the RSSI of incoming messages at the nodes. Thus, links with poor quality could be
avoided in the backbone election procedures. In addition, symmetric links would
be reinforced too.

5.4.2 Simulations on the Network Layer

R-CDS has been evaluated either considering link degree (R-CDS-LD) or consider-
ing the product of link degree and remaining energy level of anode (R-CDS-E). In
order to model mobility we have used the Mobility Framework [100]. The proper-
ties of the sensor nodes are again configured according to values from the Embed-
ded Sensor Board (ESB) platform (see Section 3.8.1). Other important simulation
parameters are listed in Table 5.2.
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Table 5.2: Parameters used in the R-CDS simulations.

Parameter Value

Network density {12, 20} neighbors
Node mobility (constant speed) {0.1, 0.5} m

s

Network size {50, 100, 200, 400}
Node deployment random, but guaranteeing connectivity
Simulation duration 10 h
Backbone period 30 min
Active period 30 s
Sleep period {2, 4, 8} · 30 s

We have simulated sparse networks with approximately 12 neighbors per node
and dense networks with 20 neighbors per node. All nodes permanently move at
a common constant speed of either 0.1m

s
(low mobility) or 0.5m

s
(high mobility).

Network sizes of 50, 100, 200 and 400 nodes have been simulated. We did not
simulate static networks, because no link breaks would occur. Twenty backbone
periods have been simulated in each run (10 h / 30 min). Non-backbone nodes are
periodically active for 30 s. Then they go back to sleep. Eachexperiment has been
tested with ten seed values. The 95% confidence intervals have been computed.
The confidence intervals are only shown if they are relevant.Only the simulation
results of the simulations with 200 nodes are shown. Simulations with the other
network sizes showed similar performance.

In the evaluation we show that both R-CDS-LD and R-CDS-E minimize the
number of nodes in the backbone well, i.e., they approximatethe MCDS well. We
furthermore show that the fraction of link breaks that cannot be repaired is small
and that the link breaks are repaired fast. Moreover, we showthat R-CDS-E is
at least as good as R-CDS-LD concerning the average remaining energy level of
the nodes. Finally, we show that R-CDS-E shows smaller energy level variations
than R-CDS-LD, which means that the network load is better balanced and that the
overall network lifetime can thus be extended.

Size of the Backbone

In Figure 5.13 the backbone sizes of R-CDS-LD and R-CDS-E as well as the back-
bone size of the MCDS of the networks, i.e., of the optimum, are depicted. In every
simulation run, 20 backbone periods have occurred. Figure 5.13 show the average
backbone size evolution over all backbone periods in all simulations. The results
show that the MCDS remains nearly constant in every backboneperiod.

Both CDS-LD and CDS-P approximate the MCDS quite well at the beginning
(start) of a backbone period, i.e. shortly after the backbone has been built. The
high percentage of nodes in the backbone at the end of a backbone period (end) is
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(c) Dense - low mobility
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Figure 5.13: Backbone size evolution for R-CDS-LD/P and MCDS.

linear to the number of link breaks that have occurred. For each link break, nodes
which repair that link break are needed. All these nodes enter the backbone. In the
current version of the algorithm no mechanism to give up the dominator state has
been foreseen. Thus, an increase in the number of dominatorsduring the backbone
period is obvious. Figure 5.13 shows that the evolving backbone sizes are smaller
in networks with low mobility, where fewer link breaks occur. The same applies for
network density (see Figures 5.13(c) and 5.13(d)). This is of course not surprising.
The backbone size would even remain constant in a static network. Considering
mobility, the increasing number of dominators is acceptable because link breaks
are repaired. Thus, network connectivity can be guaranteedand correct paths to
the base station are supported. Five and more link breaks occurred in the current
evaluation per long-sleep period, even in the dense and low mobility scenarios. In
static networks such a high number of node failures in half anhour would be rather
unrealistic.
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Average Energy Consumption of the Network Nodes

In this section we present the results of average energy consumption in the network
over time (see Figure 5.14). Both R-CDS-LD and R-CDS-E show linear charging
of batteries and almost the same battery level in all simulations.
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(b) Sparse - high mobility
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(c) Dense - low mobility

 0

 50

 100

 150

 200

 250

 300

0.3 1.8 3.3 4.8 6.4 7.9 9.4

A
ve

ra
ge

 E
ne

rg
y 

Le
ve

l [
m

W
h]

Time Point of Scan [h]

R-CDS-LD
R-CDS-E

(d) Dense - high mobility

Figure 5.14:Average remaining battery level in the network for R-CDS-LD/P.

Consequently, in terms of average energy consumption neither R-CDS-LD nor
R-CDE-P shows a significant advantage. In sparse networks with high mobility
more link breaks occur. This leads to more dominators and consequently also to
less dominated nodes that are able to go to sleep. Accordingly, the batteries are
more drained. On the other hand, in dense networks with low node mobility the
average remaining battery level is higher. Obviously, performance increases, the
denser and more static a network is.
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Distribution of the Energy Consumption over the Network Nodes

In contrast to the average battery level, which is almost thesame for both R-CDS-
LD and R-CDS-E, the distribution of the battery levels over the nodes in the net-
work are considerably smaller for R-CDS-E than for R-CDS-LD(see Figure 5.15).
Every network node has the same battery level of 55 mAh in the beginning of the
simulation. Accordingly, the variation in the battery levels is small in the beginning
and increases with time.
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(a) Sparse - low mobility
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(b) Sparse - high mobility
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(c) Dense - low mobility
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Figure 5.15:Variation of energy consumption among the network nodes forR-CDS-LD/P.

A balanced energy consumption distribution in the network indicates a uni-
form charging of the batteries amongst the network nodes. Onaverage this will
extend the network lifetime, because fewer nodes might run out of energy quickly.
Thus, network partitions are prevented. With R-CDS-LD a certain fraction of nodes
(those with highest node degrees) are almost always electedinto the backbone. Ac-
cordingly, these nodes will run out of battery soon. In addition to the depletion
of (critical) nodes, the resulting smaller node density hasa negative impact on the
average battery level (see also the last section). Thus, theprobability of network
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partitions is increased. On the other hand, R-CDS-E considers the current battery
level when electing dominator nodes. Thus, a more uniform energy consumption
load can be achieved in the network. Of course, performance increases if more re-
dundant nodes are available, because more dominator candidates are available for
substitution. In our simulations only the first ten hours of operation of a network
have been simulated. The ratio between R-CDS-LD and R-CDS-Ewould increase
over operation time.

Number of Link Breaks and Repair Time

Finally, the number of successful and unsuccessful link-break repairs as well as the
average time to repair a link break has been evaluated. The number of successful
and unsuccessful link-break repairs are shown in the upper part in Figure 5.16,
whereas link-break repair times are shown in the lower part (s = sparse, d = dense;
2,4 and 8 are the sleep-listen ratios).

 0

 40

 80

 120

 160

 200

s-2 s-4 s-8 d-2 d-4 d-8

N
um

be
r 

of
 L

in
k 

B
re

ak
s

Configuration: Density and Sleep-listen Ratio

R-CDS-LD successful
R-CDS-E successful

R-CDS-LD unsuccessful
R-CDS-E unsuccessful

(a) Low mobility

 0

 100

 200

 300

 400

 500

 600

s-2 s-4 s-8 d-2 d-4 d-8

N
um

be
r 

of
 L

in
k 

B
re

ak
s

Configuration: Density and Sleep-listen Ratio

(b) High mobility

 0

 30

 60

 90

 120

 150

s-2 s-4 s-8 d-2 d-4 d-8

T
im

e 
fo

r 
Li

nk
-b

re
ak

 R
ep

ai
r 

[s
]

Configuration: Density and Sleep-listen Ratio

Repair time dominators
Repair ime dominated

(c) Low mobility

 0

 30

 60

 90

 120

 150

s-2 s-4 s-8 d-2 d-4 d-8

T
im

e 
fo

r 
Li

nk
-b

re
ak

 R
ep

ai
r 

[s
]

Configuration: Density and Sleep-listen Ratio

(d) High mobility

Figure 5.16: Link break repair performance for R-CDS-LD/P.

Figure 5.16 shows that the number of unsuccessful link repairs is small in all
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simulations, while the number of link breaks increases considerably with higher
node mobility. The average time to repair a link break that occurred at a dominator
node was below 5 seconds in all simulations. On the other hand, the average time
to repair a link break that occurred at a dominated node is considerably longer and
increases with higher sleep-listen ratios, which is not surprising. A dominated node
x that detects no connection to the backbone has to wait until another dominated
nodey wakes up. Then,x has to informy about the link break, beforey searches
for a dominator node itself. This introduces long repair delays that increase linearly
with the sleep time of the involved nodes.

5.4.3 Real-World Experiments

R-CDS-E (considering energy level) has been implemented onthe ESB sensor
nodes (see Section 3.8.1). The basic functionality is the same as in the simula-
tions. However, the required intervals have been adapted toconsider properties of
the ESB nodes in a real deployment. The values are listed in Table 5.3.

Table 5.3: Duration / periodicity of the different relevant intervals.

Interval / Timer Duration [s]

HELLO 2
LISTEN 6
SLEEP 10

LONG SLEEP 1800
CONTENTION WINDOW 0.2

RETRANSMISSION DELAY 1

All networks are static. First, the resulting backbone sizeof R-CDS-E is evalu-
ated. Second, we tested the repair mechanism by turning off one of the dominator
nodes. The CDS setup has been repeated 10 times. Before the CDS algorithm
started, four HELLO messages were exchanged to setup the neighbor tables on
each node. Each control message, i.e., each HELLO message extended with CDS
relevant information, is retransmitted five times to ensurereliability. The experi-
ments are described and discussed in the following.

The network topology for the CDS backbone size experiment isdepicted in
Figure 5.17. The MCDS of the network is indicated as gray sensor nodes in Fig-
ure 5.17. In this experiment the size of the resulting CDS andthe duration of the
CDS setup phase have been determined.

The times that elapsed until the last CDS setup control messages were sent,
were between 14.7 and 17 s. On average the backbone setup lasted 15.6 s un-
til the last control message was sent. This seems to be ratherlong. However, it
can be explained as follows: The CDS setup process starts when the first HELLO
packet is sent. As mentioned above, four HELLO messages haveto be exchanged
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Figure 5.17: Network topology and MCDS of the experiment.

to setup the neighbor lists. This results in4 · 2s = 8s. The DOMINATOR and
DOMINATED messages sent by the nodes are delayed on average for 100 ms (see
Table 5.3). Each retransmission introduces an additional delay of another second.
Accordingly, on average4 · (1000ms + 100ms) + 100ms = 4.5s are spent to
support reliable transmission of a control message. Obviously, the last transmitted
control message also requires these 4.5 s. The actual CDS setup time is there-
fore the average backbone setup time of 15.6 s minus the 12.5 sintroduced by
the neighborhood learning and reliability support functionality, i.e., 3.1 s, which is
easily tolerable considering a backbone period of half an hour.
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Figure 5.18: Number of dominators in the experiments.

On average 3.4 nodes have evolved as dominators in the experiments. The re-
sults are shown in Figure 5.18. In the worst case five nodes have been elected
into the backbone, whereas in 70% of the CDS establishments the MCDS has been
achieved. Such a good approximation of the MCDS is due to the small network
size. In larger networks the MCDS could barely be achieved. For the case with
five dominators, an analysis of the network traffic has shown that some nodes did
not overhear each other, which is a well-known problem in wireless sensor net-
works [175].
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In addition we have analyzed the median distance in hops fromthe nodes to the
BS. According to the topology, nodes 101, 102 and 103 are three hops away from
the BS, whereas nodes 201, 202 and 203 have a distance of two hops and nodes
301, 302 and 303 are adjacent to the BS. In every computed CDS,nodes 101, 102
and 103 are indeed connected to the BS over three hops. However, the second
triple (nodes 201, 202 and 203) is in reality on average 2.7 hops away from the BS
instead of the optimum of 2 hops, and even the three nodes adjacent to the BS have
an average hop distance of 1.9 hops. This is again due to the communication holes
caused by radio irregularities and temporal radio failures.

In order to evaluate the link repair functionality in a static real network, we
have setup a tailored network topology and have turned off a node. An alternative
path existed. The experiment setup is depicted in Figure 5.19.

Figure 5.19: Link repair experiment. Node 504 is manually turned off

After the successful setup of the CDS, either node 304 or 504 is manually
turned off, depending on which one has been elected into the CDS. In Figure 5.19
it is node 504. The link repair results are shown in Figure 5.20.
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Figure 5.20: Link break repair time in the different CDS cycles.

In every experiment the link break has been repaired within 3seconds. The
variation is rather high, ranging from 200 ms to 2.7 s. This can be explained by
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the state of the nodes involved. If all nodes are awake, the link break messages are
forwarded quickly and the link failure is accordingly quickly fixed. On the other
hand, if the dominated node (304 or 504) is sleeping while thelink break occurs,
the repair time is delayed until the dominated node wakes up.Depending on the
duration of the listen period and the time point of node failure, a link break could
remain undetected for an unpredictable amount of time, ranging from considerably
less than a second to a couple of seconds. In addition to the actual link repair time,
the time until the last control message reporting about the current link break has
been sent is shown. The average time until the last control message has been sent is
14.7 s. Due to retransmissions and the dissemination of the link break, this period
obviously lasts much longer than the actual time to repair the link break. However,
this signaling of the link break state only imposes some additional information that
has to be transmitted in the hello messages, but does not affect CDS performance.
In every case the link break messages have been kept on the left branch of the
network. Accordingly, the right branch has never been involved in the link repair.

5.5 Conclusions

In this chapter the construction of a routing backbone to support our event detection
framework with routing and medium access has been discussed. The maintenance
of a routing backbone allows the temporary disconnection ofnon-backbone nodes,
because these nodes are not required for routing. Thus, additional energy can be
saved. The backbone construction has either been implemented on the MAC layer
or on the networking layer:

• MAC layer: The SYNC messages exchanged by the network nodes have
been used to setup a (routing) backbone on the MAC layer. Non-backbone
nodes have been temporarily sent to sleep for multiple listen/sleep cycles if
no events have been present. It has been shown that the proposed algorithms
(MPR-based CDS and N-CDS) save additional energy on the MAC layer,
while routing is intrinsically supported. No additional signaling for routing
is required. To account for changing battery levels of the nodes the backbone
is periodically reestablished. This further extends network lifetime. Data
throughput was slightly affected by the virtual backbones.The increase in
packet loss depends on poor links, which are established in the CDS setup
phase. The impact has been identified and could be decreased by monitoring
and avoiding links with poor link quality. The drawback of this algorithm is
a rather long control message dissemination delay. Therefore, the approach
fails if nodes are mobile.

• Network layer: R-CDS has been implemented on the network layer. Due
to the decoupling of the CDS control messages from MAC functionality,
CDS setup and maintenance relevant information can be disseminated faster.
Thus, node mobility can be supported. Two versions of R-CDS have been
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evaluated in simulations. The versions are either based on the link-degree of
nodes (R-CDS-LD) or on the product of link degree and remaining node en-
ergy (R-CDS-E). Both CDS-LD and CDS-P perform efficiently and show
good approximations of the MCDS of the network in simulations. Link
breaks are repaired quickly with both versions. R-CDS-E outperforms R-
CDS-LD in terms of energy consumption variations, which makes it a better
choice to extend network lifetime. Therefore, R-CDS-E has been chosen for
implementation on real sensor hardware. The evaluation hasshown that the
R-CDS-E algorithm approximates the MCDS well in real-world. Also link
breaks have been repaired quickly in real world experiments.

All approaches have shown good performance in simulations.The MAC layer
approaches have not been compared to R-CDS. The different goals of the algo-
rithms don’t make a direct comparison meaningful. R-CDS provides mobility sup-
port, while N-CDS and MPR-based CDS provide medium access. Only the routing
is common to all three approaches. The backbone election procedure of R-CDS
could be replaced by the functionality of N-CDS or MPR-basedCDS or vice versa.
Mainly, the kind of used messages (HELLO or SYNC) would have to be adapted.
Due to the affinity of MPR-based CDS and N-CDS algorithms to R-CDS, similar
performance could be expected.

In the remainder of the thesis the lower layers of the networking stack are left
and the application-layer features of the event monitoringsystem are presented.
The next chapter introduces the event detection and tracking group formation func-
tionality.

113





Chapter 6

Distributed Event Detection and
Tracking

The previous chapters have addressed medium access and routing, which are re-
quired by our system to perform communication and reporting. In this chapter
we start with the first application-specific task of our eventdetection system (see
also Figure 1.1). In this chapter the detection and trackingof suddenly appearing
events is addressed. The Distributed Event Localization and Tracking Algorithm
(DELTA) is introduced. The chapter is based on work published in [98], [156] and
[150]. Upon appearance of events, sensor nodes located in the event sensing area
organize themselves dynamically into tracking groups. A tracking group is an orga-
nized group of sensor nodes that are temporarily responsible to monitor, track and
report an event. In DELTA, the dedicated group leader informs its group members
about its leader state, requests event-relevant data from its members and performs
a leader handover if the event moves away. Subsequent classification of the event
is performed based on the collected event information.

6.1 Introduction

The detection and tracking of events has gained much attention in wireless sensor
network research. The related work has been presented in Section 3.4. Even though
some related work provides useful functionality, current detection and tracking
methods cannot be adapted to our system. They either impose too high commu-
nication load or they do not offer the accuracy required by our system. Therefore,
we have developed our own solution to support the diverse requirements of an ac-
curate long-living event monitoring system. Considering detection and tracking,
our system aims at optimizing the trade-off between communication cost savings
and providing the required accuracy. In order to meet the required accuracy, suf-
ficient data needs to be collected. Accordingly, DELTA optimizes communication
load to provide a requested accuracy with minimum overhead.This means, in addi-
tion to the basic detection and tracking functionality, DELTA collects information
to perform localization and classification tasks. In related work these tasks are of-
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ten individually addressed. The approaches either focus onefficient detection and
tracking, or on collecting sufficient data to perform accurate localization and/or
classification.

In the current implementation and evaluation of the DELTA tracking group or-
ganization and maintenance performance, we have used lightsensors to detect and
track persons who are equipped with a flashlight. The target application scenario
is terrain observation during night time. Persons moving around with flashlights
shall be detected and tracked. Based on its movement pattern, an alarm must be
triggered if the person is determined to be present without authorization. Later, we
have further considered Passive Infrared (PIR) and vibration in the office monitor-
ing application (see Chapter 9). In the current implementation, DELTA collects
light information emitted by flashlights and processes the data at a dedicated leader
node. Reports are sent to a management station in a fixed network, where the event
reports can be stored or additional pattern recognition techniques can be applied to
determine whether the person is present legitimately or not.

If movement patterns have to be identified online, the sensornetwork has to
provide meaningful data in real time. Therefore, a fully distributed approach has
been used for developing DELTA. This avoids heavy data load to the base sta-
tion, which saves communication on the one hand and avoids congestion towards
the base station on the other. The distributed implementation also leads to better
communication load distributions, which additionally disburdens nodes close to the
base station. The basic operations of DELTA are depicted in Figure 6.1.

Figure 6.1: Event detection, tracking and reporting with DELTA.

A measurement-based leader election algorithm determinesa unique group
leader (the black node in Figure 6.1) which is responsible for group organization,
group maintenance, event data processing and event reporting to the base station.
The base station is connected to the Internet where the data is stored and/or further
processed. The leader election algorithm implements a timer which is set accord-
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ing to the amplitude of the signal(s) measured on the sensor node. The timer of
the sensor node with highest sensor reading(s) expires first. The respective sensor
node becomes leader and informs its neighbors about its state. The group mem-
ber nodes (colored in gray in Figure 6.1) report their individual sensor readings.
Thus, the leader is provided with the information required to perform localization
and classification tasks. Moreover, all nodes which are located two hops away
from the leader are thus informed about the existence of a leader and are prevented
from establishing concurrent tracking groups. In Figure 6.1 this would apply to the
two circled white nodes which are within sensing area, but not within transmission
range of the leader.

DELTA has been designed to run on tiny sensor nodes. It has been implemented
on the ESB sensor node platform (see Section 3.8.1). In the current implementation,
DELTA is used to detect and track single events. There are no restrictions on the
detection and tracking of multiple events as long as they occur in spatial sufficiently
disjoint areas. If the event areas overlap, further statistical techniques might be
necessary. Finally, DELTA requires that the sensor nodes know their own location.
This can be achieved by GPS or other location services [73], [125]. Considering
static networks with a predefined topology (e.g., monitoring of stockrooms), the
node positions could even be set before or while deployment.

6.2 Distributed Group Formation and Maintenance

A key problem of event detection and tracking is the complexity of identifying
and organizing the event relevant sensor nodes in a distributed manner with as
little communication overhead as possible, while providing a satisfactory degree
of accuracy. In many tracking applications the location of the event occurrence
might not be predictable. Moreover, depending on the emitted event amplitude a
large event area could result. Also, the event might move fast, possibly performing
a sequence of successive shifts in direction. Such properties are difficult to predict
and challenge any generic event detection and tracking algorithm.

In order to deal with generic and frequently changing conditions, DELTA con-
siders the sensor measurements in the group setup and maintenance tasks. Thus,
tracking groups can be efficiently managed. The common assumption that the com-
munication range of the sensor nodes is significantly higherthan the sensing range
is overcome with DELTA: As soon as a leader evolves, it informs its local neighbor-
hood about its state with a periodically sent notification message. This notification
message is confirmed by the neighbor nodes by feedback messages that contain
event-relevant sensor readings measured on the neighbor nodes. These sensor read-
ings are required for the leader to perform event localization and classification. As
a positive side-effect these feedback messages are overheard by all two-hop neigh-
bors of the leader, which are thus implicitly informed aboutthe existence of the
leader. If required, the presence of the leader could be disseminated deeper into the
network by rebroadcasting passive heartbeats (see Section6.2.2).
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6.2.1 Architecture Overview

To localize and track a moving event in a distributed manner some collaboration
among the network nodes is needed. To achieve this, DELTA assigns different
roles to the nodes. The states and state changes of the individual nodes and their
roles are depicted in Figure 6.2.

Figure 6.2: State diagram of the node roles of DELTA.

One sensor node is the leader of a tracking group. The leader is responsible for
maintaining group coherence, performing localization andclassification tasks, and
communication with the base station. All direct neighbors of the leader are group
members and deliver their relevant tracking and localization data to the leader. All
other sensors are either passive members or idle. The passive member state has
been introduced to inform the neighborhood of an event tracking group about a
possibly upcoming event. Moreover, confusion caused by state switches can thus
be prevented. A node enters leader election state if no communication is overheard
but an event has been sensed. The node that wins the election process, i.e., its
timer expires first, becomes leader and informs its neighbors immediately with a
heartbeat message. In DELTA all roles are assigned dynamically. Independent
from their state, all sensor nodes periodically check theirsensors to provide an
appearing leader with their information upon request.

The solid black lines in 6.2 show the normal sequence of statechanges of a
leader node when an event occurs in its sensing area and latermoves away. When
sensing the event, the subsequent leader enters leader election state. Winning the
contention, the node becomes leader and manages the group until the event leaves
its sensing area. The leader optionally initiates a leader handover and becomes a
member of the subsequent group. In Figure 6.1 the leader state will be handed over
to the member node on the left side of the current leader. The current leader node
will likely become a member of this subsequent tracking group, because it will still
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be in the event sensing area and it is adjacent to the new leader. As the event moves
farther away, the old leader switches from member state to passive member state
and finally to idle mode.

6.2.2 Leader Election and Maintenance

All network nodes remain in idle state unless an event is sensed. As soon as an
event has been observed, every sensing node switches to election running state and
schedules a timer according to the sensed signal amplitude(s). The timer expires
the sooner the stronger the event has been sensed at the respective node. When the
timer expires, a heartbeat message is broadcast to inform the neighborhood about
the presence of a group leader. All receiving nodes immediately cancel their own
timer and become group members. An appropriate setting of the timer is crucial
because it determines the leader node. The current timer setup partly depends on
the applied hardware and is therefore described in detail inSection 6.3.

The leader node initializes and maintains several variables which are required to
manage a group. The observed event is identified by a temporary unique event tag.
It is used to announce the tracking group to the base station as well as to maintain
group coherence. To avoid processing of outdated information a round number is
introduced. The round number is incremented on the leader whenever a heartbeat
message is sent. The current round number is included in every control message.
Every message with a round number smaller than or equal to thecurrent round
number is discarded. A TTL field defines the depth, until whichthe leader state
is disseminated into the network, i.e., it determines the size of a tracking group in
hops. The leader node is furthermore responsible to supporta controlled leadership
handover if an event leaves the sensing area of the leader. Ifa handover is required,
the leader node immediately broadcasts a leader reelectionmessage. Optionally, a
leader node can determine its successive leader node, e.g.,by computing the event
location and electing the sensor node closest to this location as successor. The
successive leader is also communicated within the leader reelection message.

Considering events where the sensing range is larger than the communication
range, not every node that senses the event is a direct neighbor of the leader (e.g.,
nodes C and D in Figure 6.3). Accordingly, these nodes are notinformed by the
heartbeat messages. However, the information response (IREP) messages, which
are required to report the location and classification relevant data of the group mem-
bers to the leader, inform all nodes two hops away from the leader node. In most
cases this is sufficient to cover the sensing area completely. If even larger sens-
ing ranges are present, a passive heartbeat mechanism mightbe used to inform
nodes farther away about the existence of an event (e.g., node D in Figure 6.3).
Of course, this implies some overhead. Optimized broadcasting techniques might
be used [50], [155]. With the proposed mechanism the messageflow of DELTA
overcomes the restrictionSR

CR
< 1 or evenSR

CR
< 1

2 as illustrated in Figure 6.3.
Multiple, concurrently present tracking groups lead to confusion in the network

and communication overhead. In particular into the direction of the base station
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Figure 6.3: Group communication in a DELTA tracking group.

network nodes are unnecessarily strained by having to forward redundant event
reports. Concurrent leaders are well prevented by the communication mechanism
implemented in DELTA, though.

The leader election process aims at quickly determining a single leader node
which is able to cover a moving event reliably and as long as possible. Frequent
leader reelections and leader handover lead to confusion and periods where no
leader is available. To minimize the number of handover, theleader located closest
to the event position is elected. This is the node with highest event sensing am-
plitudes (highest sensor readings). Because the directionof the event is basically
not known, the node closest to the event is the best choice to optimize monitoring
time. The elected leader node should further have enough remaining battery power
to bear the burden of temporary increased communication andcomputation load.
Finally, the election process needs to be fast to avoid periods when no leader is
present. DELTA has been developed to satisfy these requirements by implement-
ing the leader election timer based on measured sensor readings.

6.3 Implementation Details

The ESB sensor nodes have been used (see Section 3.8.1) for the real-world eval-
uation. Moving persons are detected and tracked according to the light they emit
with flashlights. To sense the emitted signals more accurately, an exponentially
weighted moving average filter has been implemented:xk = αxk−1 + (1 − α)xk.
The computation of the averagexk requires only the storage of the past valuexk−1

and the actual light measurementxk. Any change in the measured signal that varies
more than a configurable threshold T from the average is considered as significant
and the signal is processed by the sensor. Currently, T is setto 50. In addition
to noise filtering the moving average filter supports a slow adaptivity to changing
brightness in the environment. The moving average filter converges to the current
brightness. Thus, permanent throwing of events in bright environments (e.g., dur-
ing the day or during building works) is prevented. Anα value of 0.9 has been
chosen in the current implementation.

As mentioned in Section 6.2.2, the computation of the leaderelection timer is
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crucial for the performance of DELTA. On the ESB platform we calculate the light
irradiance every 200 ms for exactly 100 ms. Because the TSL245 output frequency
is limited to 100kHz (see Section 3.8.1), the light values range from 0 to 10’000.
The timer should be set according to the level of irradiance and is computed as
follows:

∆t[ms] =
IMAX − IC

10
∆round[ms] = round(i) · SAMPLE_FREQUENCY

∆t =

{

∆t ,∆t < ∆round

∆t = ∆t − ∆round , else

whereIC is the currently measured irradiance.IMAX is the maximum allowed
irradiance of 10’000. Accordingly,∆t computes a delay between 0 and 1 second.
SAMPLE_FREQUENCY is the sensing frequency of 200ms. The round variable is
set to 0 when the election is initialized and incremented in each subsequent sensing
step. The proposed computation of∆t supports the filtering of non-continuous
irradiance peaks as long as the value is not too high, i.e., ifthe timer does not
expire before the next light sensing is performed.

The ESB sensor nodes support transmission power control. Transmission power
control can be used to save energy while restricting communication to single-hop
communication in specific topologies. In our experiments, neighbor nodes are
placed 1.25 meters away from each other. Therefore, the transmission power has
been adjusted to cover a range of approximately 1.75 meters.Transmission power
control results are shown in Figure 6.4.

(a) Distance 1.25 meters (b) Distance 2.5 meters

Figure 6.4: Fraction of received messages for varying transmission power.

Two distances of 1.25 and 2.5 meters between a sending node and some receiv-
ing nodes were tested. At each receiver location four receiver nodes were placed.
The transmitting node was replaced four times with different sensor nodes. Each of
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the four transmitting nodes transmitted 100 packets of a size of 35 bytes. The trans-
mission power was increased from 10 to 20. The maximum transmission power of
the ESB is 99. The overall fraction of received messages is shown in Figure 6.4.
From this evaluation we conclude that a transmission power of 16 is the best choice
for the current network topology. A high fraction of packetswas received at a dis-
tance of 1.25 meters, while only few packets arrived at a distance of 2.5 meters.
Setting the sending power to a lower level would involve too much packet loss
at 1.25 meters. On the other hand, higher levels would resultin too high receive
fractions at a distance of 2.5 meters.

In dense networks the burst of IREP messages is handled inefficiently by CSMA
with random backoff. Limiting factors are the required 2 ms to switch an ESB node
from receive to transmit state and the approximately 14 ms needed to transmit an
IREP message at 76kbps. On the other hand, the leader requires only a certain
number of IREP messages to estimate the event position. Therefore, we have im-
plemented a simple, on-demand time division multiple access (TDMA) mechanism
on the nodes: Within the heartbeat message the leader schedules at mostn, with
n ≤ 8, members. The leader learns these members from IREP messages it has
received in previous rounds. In any subsequent communication any member node
addressed in the IREP message responds in the time slot it hasbeen assigned to by
the leader. Thus, all addressed nodes can send their data in acollision-free way in
the firstn · 14 ms. As long as not all slots are occupied, all non-addressed member
nodes use common CSMA with random backoff after the TDMA period to trans-
mit their data. If all slots are occupied, the sending of messages by non-addressed
nodes after the TDMA period can optionally be switched off. Of course, this op-
timization works only if the event is sufficiently long, i.e., a few number of times,
within sensing area of the currently responsible leader node.

6.4 Evaluation

The DELTA algorithm has been evaluated both in simulations and in real-world ex-
periments. Simulations allow a faster development of the platform-independent
functionality and simplify the evaluation of larger networks. DELTA has been
compared to EnviroTrack (see Section 3.4.5). EnviroTrack provides similar group
maintenance and tracking functionality. EnviroTrack groups do not collect sensor
readings and are thus not able to support localization and classification.

6.4.1 Simulations

The simulation settings have been adopted from the originalEnviroTrack simula-
tion. The goal in [1] was to track T-72 battle tanks moving through an off-road
environment. For the simulations a realistic object path, neither with sharp turns
nor following just a straight line, was used (see Figure 6.7). DELTA has been eval-
uated with a TTL of 1 (only heartbeats are sent like in EnviroTrack) and a TTL of
2 (reporting event relevant data and informing the two-hop neighborhood about a
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leader). The speed of the target object and the ratio betweensensing range (SR) and
communication range (CR) were varied. Any experiment was repeated eight times.
The mean, minimum and maximum values are shown in the results. The sensor
network consisted of 160 nodes arranged in a grid consistingof 8 x 20 nodes. The
distance between any two neighbor nodes was set to 25 meters.The prevention of
concurrently present leaders is of main interest.

Figure 6.5: Tracking of small-area events.

Figure 6.5 shows results with the communication range beingsignificantly
higher than the sensing range. Such scenarios are tailored to EnviroTrack and all
protocols perform equally well. Considering the ratio of1

4 between sensing range
and communication range, it is not surprising that DELTA with the TTL set to 1
performs equally well as when the TTL is set to 2. In such scenarios, groups can
easily be organized by the heartbeat mechanism alone. Of course, neither local-
ization nor classification can be performed if only heartbeat messages are used.

Figure 6.6: Tracking of large-area events.

Figure 6.6 shows the performance results if the ratio between sensing range and
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communication range is larger than12 . Even with a ratio of34 , which only slightly
hurts the constraint of EnviroTrack that the sensing range needs to be smaller than
half the communication range, the number of coexisting groups increases consid-
erably for both EnviroTrack and DELTA with the TTL set to 1. This shows that in
scenarios with high sensing ranges a passive heartbeat mechanism alone is not suf-
ficient. Answering heartbeat messages with IREP messages solves the problem of
concurrent leaders and supplies the leader with the information needed to support
localization and classification. The decreasing number of leaders in EnviroTrack
for higher speeds is due to the inability of EnviroTrack to build groups in time.

(a) EnviroTrack.

(b) DELTA.

Figure 6.7: Nodes elected as leader in a specific simulation run.

Figure 6.7 shows two typical runs of DELTA and EnviroTrack ifthe ratio be-
tween sensing range and communication range is1

4 . The moving object crosses
the network at a high velocity of 135 km/h. The transmission range is 100 meters.
Accordingly, up to four neighbor nodes in one direction can be informed by the
heartbeat message. The figures show the effectiveness of theleader election timer.
The random timer set by EnviroTrack is not able to determine aleader node (win-
ner node) in time in the beginning, as shown on the left in Figure 6.7(a). Moreover,
the election of leader nodes is, in respect to the path of the moving object, less op-
timal with EnviroTrack than with DELTA. Finally, the leaderelection based on the
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sensor readings optimizes the number of required leaders. In the next section the
performance of DELTA and EnviroTrack in a real sensor network is investigated.

6.4.2 Real-World Experiments

All tests were performed indoor in a darkened room to minimize external influ-
ences. 25 nodes were arranged in a grid consisting of 5 x 5 nodes, with a spacing
of 1.25 meters between every pair of nodes. The setup is depicted in Figure 6.8.

Figure 6.8: Experiment setup with 25 sensor nodes.

The transmission power was reduced to a value of 16 to restrict communication
only to neighboring nodes. Two lamps, common office equipment with a 25 W bulb
and a 40 W bulb, were used as light sources. The lamp was held approximately 1.5
m above ground pointing to floor 1.5 m in front of the moving person. Thus, the
directly illuminated area was a circle with a diameter of approximately 2 m for the
25 W bulb and 4 m for the 40 W bulb, respectively. The person covered a distance
of 7 m, walking at a constant speed of about 0.3 m/s.

Figure 6.9: Event path through the sensor network.

The person walked along a straight line through the sensor network as illus-
trated in Figure 6.9. Each experiment was repeated five timesand a 95% confidence
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interval was applied. To be able to better assess the impact of the different enhance-
ments of DELTA, a second EnviroTrack version (EnviroTrack-MA) enhanced with
a moving average filter (see Section 6.3) was implemented too.

Number of Concurrent Leaders

The results of the detection and tracking performance of DELTA and EnviroTrack
are shown in Figure 6.10.
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(b) Tracking of a 40W bulb

Figure 6.10: Fraction of concurrent leaders in DELTA and EnviroTrack.

If the sensing range increases (40W bulb), DELTA produces significantly fewer
concurrent leaders than the original EnviroTrack implementation. This supports the
simulation results. Concurrent leaders produce unnecessary event reports, produc-
ing confusion while wasting energy and bandwidth. The network load towards the
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base station is increased, affecting the overall network lifetime.
The performance of EnviroTrack enhanced with the moving average (MA) filter

is nearly as good as the performance of DELTA. The fast convergence of the MA
filter at nodes close to the border of the sensing area, i.e., at nodes that measure
only small signal magnitudes due to their location, suppresses them from being
elected as leaders. Nevertheless, EnviroTrack is not able to support any accurate
localization or classification. Moreover, there is a slightly higher fraction of time
when no leader is present. This is due to the random leader election timer that
more often elects poorly located nodes as leader than the measurement-based timer
implemented at DELTA nodes.

Communication Costs

In the current implementation DELTA supports the localization and classification
of events in the plane. The according optimization problem has a dimensional-
ity of 3 due to unknown position and signal amplitude (see Section 3.5.1). To
solve the according optimization problem sensor readings from at minimum three
group members are required (IREP messages). If a nonlinear optimization method
such as Simplex Downhill is used the minimum amount of information is sufficient
to get useful estimations (see Chapter 7). For this reason and in order to mini-
mize communication costs, the transmission of IREP messages was restricted to 3.
Therefore, the on-demand TDMA mechanism proposed in Section 6.3 was used.
In theory, setting the number of available slots for IREP senders to 3 should be
sufficient. However, due to packet loss, on average 5 responding members were
required to guarantee the reception of 3 IREP messages usingESB nodes.
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Figure 6.11: Communication costs of DELTA and EnviroTrack.

Communication costs of DELTA and EnviroTrack are depicted in Figure 6.11.
Figure. 6.11 shows that for a higher sensing range the communication costs of
DELTA are similar to those of EnviroTrack. However, DELTA already provides
the leader with the information needed for localization andclassification. On the
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other hand, similar functionality would have to be added to EnviroTrack to support
localization and classification.

EnviroTrack enhanced with the MA-filter was able to keep the number or sent
messages small. Accordingly, communication costs for group maintenance were
decreased. No localization and classification can be supported yet, though. In gen-
eral, DELTA elects leaders located closer to the event than EnviroTrack. These
nodes cover the sensing area well. On the other hand, with EnviroTrack MA
slightly more concurrent tracking groups occur due to the election of poorly lo-
cated leader nodes. This leads to the slightly higher amountof sent heartbeats
observed with EnviroTrack MA. Therefore, if neither localization nor classification
is required, DELTA with the MA filter but without IREP functionality is the best
choice.

The DELTA results show that on average the desired number of 3IREP mes-
sages has been received. Accordingly, localization and classification methods can
be executed on the leader. Of course, parameters can be adapted to collect more
information about the present event.

6.5 Conclusions

The DELTA algorithm provides an efficient and fast event detection and tracking
algorithm. Tracking groups are efficiently and dynamicallycreated. DELTA works
in many cases including smart dust environments with small radio ranges and high
sensing ranges. The leader election procedure of DELTA is adaptive, quick and
precise. Using the sensor readings improves both, event detection and tracking per-
formances. The implementation of a moving average filter allows the suppression
of poorly located sensor nodes. The convergence property ofthe filter is depen-
dent on the platform and network used and therefore needs to be considered before
deployment.

DELTA provides the event detection system with the requireddetection and
tracking functionality. Additionally, DELTA provides theoverlaid localization and
classification mechanisms with the necessary information.It has been shown that
the usage of 5 IREP transmission slots together with the MA filter was sufficient to
collect the required data and to suppress concurrent leaders (see Figure 6.10). In
later localization experiments the TmoteSky nodes (see Section 3.8.2) were used,
too. With TmoteSky nodes more than 95% of all IREP messages were received.
Accordingly, on TmoteSky nodes the number of slots for IREP senders (members)
could indeed be decreased to the minimum of 3 to receive 3 IREPs in average. To
conclude, DELTA was shown to optimize the desired trade-offbetween required
accuracy and communication cost minimization. In the next chapter the localization
of events based on the information collected by DELTA is presented.
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Chapter 7

Event Localization and Signal
Strength Estimation

This chapter discusses the localization and signal strength estimation features pro-
vided by DELTA [150], [152]. In the previous section it has been shown that events
are observed and tracked by dynamically established groups. Relevant sensor data
is collected at appointed nodes (group leaders) which are destined to perform all
subsequent localization and group organization tasks. Both, event position and the
signal strength(s) of the emitted signal(s) of an event are estimated. The emitted
signals and their amplitudes are event-characteristic andcan be used for classifica-
tion of the respective event sources.

7.1 Introduction

In this chapter DELTA is enhanced with the localization and signal strength esti-
mation logic, which is based on a well-known sensor model. The model has been
introduced in Section 3.5.1. The solution of the localization and signal strength
estimation problems is addressed in Section 7.2. Section 7.3 provides simulation
and real-world performance results.

Existing localization and signal strength estimation approaches mainly focus
on accurate but cost-intensive collaborative signal processing (CSP) methods. The
related work has been presented in Section 3.5. Energy-efficient performance and
network organization issues as proposed in our own approach, presented in the pre-
vious chapter, are barely considered. On the other hand, depending on the applica-
tion, localization and classification requirements might be less constrained than in
traditional CSP research fields such as robotics. Therefore, in wireless sensor net-
works more cost-efficient methods might be sufficient. DELTAbridges the gap by
providing satisfying accuracy while keeping the network load at a reasonable level.
The performance of the proposed localization and signal strength estimation meth-
ods is evaluated in simulations as well as on real hardware. Moreover, a problem
of closed-form linear least-square solutions is outlined and discussed.

Based on the information collected at the leader node, DELTAis able to esti-
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mate both, the location and the characteristics of an event,i.e., the emitted signal
power(s) of the event. There are two restrictions on the kindof signals which can be
used in the localization and classification procedures. First, the computation of po-
sition and signal emission power requires an attenuation model for each considered
signal (e.g., sound, vibration, RSSI). Second, to be able toclassify distinct events,
the signal emission power of every specific event needs to be characteristic, i.e.,
more or less constant. Considering classification, which isaddressed in Chapter 8,
an accurate determination of the event position is of littleimportance. There, the
event location is mainly derived as byproduct in the emittedsignal power compu-
tations. For other applications the event location might beof different interest.

7.2 Event-Based Localization and Signal Strength Esti-
mation

Event-based tracking and localization methods use the sensor readings collected
on the sensor nodes. In order to assess the collected information, adequate sensor
models for the particular sensors are required. The commonly used sensor model
has been presented in Section 3.5.1. In our work, this model has been used too.
The resulting nonlinear optimization problem can either besolved with nonlinear
methods (see Sections 3.5.2 (Simplex Downhill) and 3.5.3 (Conjugate Gradient
method)) or it can be linearized and solved (see Section 3.5.4).

In the simulation part of this work we will show that the linearization lacks
drastic accuracy if the linear system is not over-determined. On the other hand,
over-determination requires additional communication, which cannot always be
provided in wireless sensor networks. Moreover, even in over-determined systems
linear least square methods are not able to provide the similar degree of accuracy
as nonlinear methods.

Accordingly, for DELTA we evaluated the Simplex Downhill and the Conju-
gate Gradient descent method. Both algorithms are not protected against finding
local minima. Therefore, the determination of a well-placed starting point, respec-
tively simplex, is crucial. Finding the global minimum is a challenging problem.
Moreover, it is very cost-intensive and therefore not suitable for our purposes, i.e., it
needs an additional search procedure (e.g., Monte Carlo) which makes it unfeasible
to run on sensor nodes.

7.3 Evaluation

DELTA provides the leader node with the information needed to localize and clas-
sify events. In a first step, different possible localization methods have been eval-
uated in Matlab. The Simplex Downhill (SD) and the ConjugateGradients (CG)
methods together with a closed-form linearized least square (LLS) solution have
been considered. The Simplex Downhill method showed the best performance and
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was chosen for subsequent implementation on real sensor hardware. Results are
presented in the subsequent sections.

7.3.1 Simulations

In a first evaluation four nodes were arranged in a square witha side length of
125 cm. Thus, all localization methods had to work with the minimum amount of
data that is required to solve a system with three unknowns (x, y, c). The linear
least square method was expected to perform poorer than the nonlinear methods,
because the system is not over-determined. An event was randomly placed within
this square. The localization was performed 200 times with aconfidence interval of
95%. The intervals are very small and thus difficult to observe in the figures. Both,
Simplex Downhill and Conjugate Gradient require well located starting points. For
Simplex Downhill the simplex is located at the center of areaof the sensing nodes
and their measurements. For Conjugate Gradient only the center of area is needed.
Optionally, the linear least square method could be appliedto determine the start-
ing point, respectively simplex, of the Simplex Downhill and Conjugate Gradients
methods. Noise in the sensor readings is modeled as Additional White Gaussian
Noise (AWGN). AWGN distorts the received signal according to normal distribu-
tions. The AWGN level has been increased in steps of 10% from 0to 50%.
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Figure 7.1: Localization and Signal Strength Estimation of SD, CG and LLS.

The localization and signal strength estimation results are shown in Figure 7.1.
The results show that the linear least square method does neither compute the loca-
tion of the event nor its emitted signal amplitude satisfactorily. Almost independent
from the noise level, the position error is always about 40% of the transmission
range (i.e., of the grid length). The signal amplitude erroris even worse. On the
other hand, both Simplex Downhill and Conjugate Gradient perform well even if
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only the minimum amount of information is available as in Figure 7.1. Due to un-
reliability and efficiency reasons this might happen frequently in sensor networks.
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Figure 7.2: Localization accuracy of SD and LLS.

The distance errors of Simplex Downhill and linear least square are shown in
Figure 7.2 for AWGN of 10% (good signal to noise ratio) and 40%(poor signal
to noise ratio), respectively. To improve readability, thedistance errors of only
50 out of 200 position estimations are depicted. Only littleaffected by AWGN,
the majority of the linear least square estimations are close to the center of the
sensing area. The distance errors (lines between the exact event positions and their
estimations in Figure 7.2) are accordingly high. Considering the Simplex Downhill
method, the noise level has a noticeable impact. Nonetheless, even with a noise
level of 40% the accuracy of the estimated event location might be sufficient for
most applications. The accuracy of the linear least square method can be improved
if the system is over-determined, i.e., if more than four sensor nodes are used in the
scenario above. Of course, this implies additional communication load. Moreover,
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due to increased collision and link failure probabilities it might become challenging
to collect that information (see also Section 6.4.2).
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Figure 7.3: Accuracy of LLS, SD, and CG in an over-determined system.

In Figure 7.3 results obtained with 6 sensor nodes (over-determined system)
are shown. The two additional nodes were placed at positions(175, 125) and (175,
250). As expected, the performance of linear least square isimproved in the over-
determined system. However, it does still not achieve the performance of the non-
linear methods. The distance errors of Simplex Downhill andlinear least square
are shown in Figure 7.4 for noise levels of 10% and 40%, respectively. Again only
50 out of 200 position estimations are depicted in order to improve readability.

In conclusion, both Simplex Downhill and Conjugate Gradient outperformed
the linear least square method in all scenarios. Moreover, with a nonlinear solution
it is possible to solve localization and signal strength estimation problems with the
minimum amount of information required, which implies lesscommunication load
and a higher success probability. The performance of Simplex Downhill shows a
good trade-off between estimation accuracy and communication load to provide the
leader node with the required information.

7.3.2 Real-World Experiments

Based on its good performance in the simulations and its simplicity, the Simplex
Downhill algorithm was chosen for experiments on real hardware. Real-world ex-
periments were performed on two different platforms, namely on ESB sensor nodes
(see Section 3.8.1) and on TmoteSky sensor nodes (see Section 3.8.2). In a first set
of experiments the Simplex Downhill method was implementedas an add-on to
DELTA on the ESB sensor nodes. In subsequent experiments we focused only on
localization and signal strength estimation performance and implemented the ac-
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Figure 7.4: Localization accuracy of SD and LLS in an over-determined system.

cording functionality on the TmoteSky nodes. The results ofthe latter experiments
were used for subsequent classifications.

Implementation on ESB Nodes

For the real-world experiments on the ESB nodes the same network setup as for the
simulations was used. The Simplex Downhill algorithm was implemented accord-
ing to [114]. Similar to the experiments performed in the detection and tracking
evaluation of DELTA in Section 6.4.2, two light sources of 25Watt and 40 Watt
were used. Every estimation was repeated for 50 times. The localization frequency
was two times per second. In contrast to the simulations, theevent was not ran-
domly placed in the event area, but at specific positions: P1(250, 250), P2(250,188),
P3(188,188), and P4(219,219). The sensor node locations (o) and the event loca-
tions (x) are shown in Figure 7.5.
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Figure 7.5: Arrangement of sensorso and event locationsx.

The mean distance errors (∅) and the standard deviations (σ) of the localization
tests are provided in Table 7.1. Considering the distance of125 cm between two
neighbor nodes, a maximum mean location estimation error of21 cm, at location P1
using the 40 Watt bulb, is acceptable. The Simplex Downhill method performs best
for locations inside the square. The performance is decreased if the event position
is very close to a sensor node. The standard deviation was small in all experiments.
In a large sensor network the sensor nodes observing an eventwill in general be
located around the event source. Thus, the event positions should in most cases lie
within coverage area of the monitoring nodes.

Table 7.1: Distance errors∅ and standard deviationsσ on ESB nodes in [cm].

25 Watt 40 Watt
Position ∅ σ ∅ σ

P1 18.43 0.14 20.91 0.23
P2 3.86 0.59 14.94 3.21
P3 6.3 0.85 4.13 0.11
P4 3.69 1.6 5.04 1.68

Apart from the position, the Simplex Downhill method also computes the emit-
ted signal strength of the event source. For the classification of events this value is
even more important than the event position, as it is assumedto be characteristic
for the event. Due to the implementation of the light sensor on the ESB sensor
nodes, light intensity is estimated in Hz (see Section 3.8.1). The mean emitted sig-
nal strength computed for the 25 Watt bulb is1.71·106 Hz with a standard deviation
of 0.246 · 106 Hz. On the other hand, the mean amplitude of the 40 Watt bulb is
2.88 · 106 Hz with a standard deviation of0.452 · 106 Hz. Obviously, the resulting
spectra of both events are disjoint and can therefore be usedfor classification.
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Implementation on TmoteSky Nodes

Compared to the ESB platform, the TmoteSky sensor nodes provide more reliable
communication due to the implemented radio (see Section 3.8.2). Moreover, they
provide Photosynthetic Active Radiation (PAR) and Total Solar Radiation (TSR)
light sensors. In subsequent experiments the TSR and the PARsensors were used
to classify different light sources. For the localization,signal strength estimation
and classification experiments five different light sources, bulbs of 25, 40, 60, 75,
and 100 Watt, were used. The light bulbs were arranged according to the setup
depicted in Figure 7.6.

Sensor nodes

Event source 

100 cm

100 cm

Figure 7.6: Experiment setup with 15 event positions.

In the experiments the light sources were placed at 15 locations. Each exper-
iment was repeated 30 times, which resulted in sample set sizes of 2250 samples.
According to DELTA (see Chapter 6) one of the sensor nodes in Figure 7.6 acted
as leader node and requested the sensor readings from its neighbor nodes twice
a second. The information collected by the tracking group depicted in 7.6 pro-
vided the leader node with sufficient information to computeevent position and
characteristics in an over-determined system. In the ESB experiments the sensor
readings of 4 sensor nodes were considered. Accordingly, the ESB results were
computed with the minimum amount of sensor readings. On the other hand, in the
TmoteSky experiments 8 sensor nodes were considered. Therefore, performance
on the TmoteSky nodes should be better. However, a comparison is difficult, be-
cause the sensor nodes implement different light sensors. The ESB sensor node
implements a light sensor that measures only infrared (see Section 3.8.1). On the
other hand, the PAR and TSR sensors implemented on the TmoteSky both include
visible light.

Again, the Simplex Downhill algorithm was applied. The position of the event
as well as the emitted signal strengths of the PAR and TSR values were computed.
The estimates are reported to a base station, where the collected data is used for
classification (see Chapter 8).

In Table 7.2 the mean distance errors∅ and the standard deviationsσ of the
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Table 7.2: Distance errors∅ and standard deviationsσ on TmoteSky nodes in [cm].

PAR TSR
Bulb ∅1 σ1 ∅2 σ2

25 W 5.31 3.29 9.67 5.30
40 W 4.57 3.54 13.67 7.10
60 W 4.43 3.07 18.26 8.66
75 W 5.03 3.35 20.94 9.54
100 W 6.48 2.63 25.00 10.31

event position estimations are shown. In all experiments the distance estimation
was more reliable with the PAR light sensor. Moreover, it remained more or less
constant at approximately 5 cm for all tested light bulbs, which is a feasible ac-
curacy considering the monitored area of 1 square meter. On the other hand, the
estimations based on the TSR light sensor showed a larger variation over the dif-
ferent light bulbs. The distance errors varied from 9 to 25 cm. Accordingly, the
PAR sensor is better suited for event localization purpose.However, if accuracy
requirements allow it, the TSR sensor can be used too.

Table 7.3: Signal strength errorsΘ and standard deviationsσ on TmoteSky nodes in Lux.

PAR TSR
Bulb Θ1 σ1 Θ2 σ2

25 W 3.24e4 0.77e4 3.16e4 0.47e4

40 W 5.72e4 0.96e4 5.23e4 0.73e4

60 W 9.61e4 1.18e4 7.94e4 1.17e4

75 W 12.07e4 1.29e4 9.54e4 1.38e4

100 W 17.47e4 1.89e4 12.09e4 1.64e4

For classification only the emitted light signal strengths are used. Table 7.3
shows the mean emitted signal strengths (Θ) and standard deviations (σ) of the
experiments. Considering the PAR sensor, it seems as if the different light bulbs
should be distinguishable, at least to some extent. This means the mean values
together with the respective standard deviation are more orless disjoint. The same
is true for the TSR. However, similar to the distance estimation errors, the variations
are again higher for the TSR sensor.

Comparing both sensor platforms in terms of localization and signal strength
estimation accuracy was not in the scope of our work. The ESB sensor nodes have
been used to develop DELTA and to provide localization and signal strength esti-
mation results. On the other hand, the TmoteSky platform hasthen been used to
evaluate the classifiers. Nevertheless, the PAR sensor provides slightly better re-
sults than the infrared sensor implemented on the ESB sensornodes. This might
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partly be due to the different hardware, but is partly also due to the usage of ad-
ditional sensor readings in the TmoteSky experiments. The TSR sensor has per-
formed similar to the infrared sensor implemented on the ESBsensor nodes.

7.4 Conclusions

The DELTA localization and signal strength estimation functionality provides accu-
rate and distributed optimization methods. The evaluations showed that a nonlinear
algorithm is best suited in terms of communication load and accuracy. Based on the
Simplex Downhill optimization method, estimates of the position and of the emit-
ted signal strengths of an event can be computed on a leader node. The accuracy of
the mechanisms is satisfying. In particular with the PAR sensor implemented on the
TmoteSky nodes, distance errors were in the order of 5% of thetransmission range,
which is sufficiently accurate for many applications. Furthermore, the computed
emitted signal strength(s) of the different light sources are more or less disjoint.
Thus, classifications based on these estimations are possible. The computed esti-
mates can be transmitted in event reports to the base station. Thus, DELTA avoids
communication overhead in the event observing area and evenmore important on
the paths towards the base station. The classification of events is addressed in the
next Chapter.
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Chapter 8

Event Classification and Reasoning

This chapter considers event classification and reasoning.Event reports, collected
and computed in a distributed manner with DELTA, are used to monitor and classify
observed events [152], [153], [154]. In [152] the classification of time-discrete
events is considered. The respective training and test datawere collected with
DELTA. In monitoring tasks such as anomaly detection in office access, events are
not present as discrete entities, but occur over time. Hence, methods to model and
process such events are required. In [153] a simple Fuzzy ARTneural network
approach is presented. It classifies and compresses observed continuous signals
at the sensor nodes. The compressed output is then sent to a base station, where
system-wide event classification can be performed. This hasbeen implemented in
an office monitoring application [154] and is presented in Chapter 9.

8.1 Introduction

Event classification and anomaly detection have gained muchattention in wireless
sensor networks as presented in Section 3.6. The proposed approaches cover a
considerable range of applications. Nevertheless, simple, lightweight, but still self-
learning algorithms that are based on the information collected in tracking groups
have rarely been considered. In particular, an energy-efficient system for the de-
tection of illegal building intrusion by wireless sensor networks has not yet been
provided. Many existing approaches either do not provide sufficient accuracy or
impose too high demands in terms of communication and storage to address the
problem. In particular, many systems are tailored to highlyaccurate, short-term
deployments. Considering building monitoring such an approach is not applicable,
though. In our application a physical environment has to be permanently mon-
itored. Consequently, frequently loading batteries is notfeasible. On the other
hand, simple threshold-based detection systems are not flexible and require ex-
pert knowledge to determine best-suited thresholds. For these reasons we have
developed problem-specific lightweight solutions that runon top of the networking
functionality provided by DELTA.

Our system provides both, functionality to classify time-discrete events and
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means to distinguish abnormal from normal behavior. Both problems impose dif-
ferent demands on the respective system.

The classification of time-discrete events is addressed in Section 8.2. Thereby,
the content of event reports received from DELTA group leaders is classified ac-
cording to event classes learned from training data. A classifier based on Fuzzy
Logic is proposed. It is compared to a probabilistic classifier and a neural network
approach. The trade-off between classification accuracy (false alarm prevention)
and reporting latency is investigated. In the evaluation five different light bulbs are
classified according to their estimated signal strength emission (see the implemen-
tation on TmoteSky nodes Section 7.3.2). Light sources are classified according to
their emitted photosynthetic active radiation (PAR) and total solar radiation (TSR)
values. With the proposed classifier, classes of event that are a priori known can be
classified in an unsupervised way.

To deal with continuous events that evolve randomly in and over time, the
Fuzzy Logic Controller presented in Section 8.2 is not convenient. An accurate
classification of continuous event patterns with respect topreviously learned event
classes is barely implementable due to resource constraints in distributed wireless
sensor networks if long-term operation is required. This ismainly because storage
capacity is limited and because arbitrary, randomly occurring events are difficult
to predict. On the other hand, if the classification of eventsis not necessary, but
the detection of anomalies is sufficient, the resulting storage complexity can be
lowered. This allows the implementation of anomaly detection functionality in
wireless sensor networks. An adequate anomaly detector on node level is proposed
in Section 8.3. The algorithm is based on Adaptive ResonanceTheory (ART). An
ART neural network is a simple kind of neural network which represents an adap-
tive memory. Thus, a given sensor is able to learn some (local) prototypes of event
patterns. With this adaptive memory each sensor node is ableto report (temporary)
unknown event patterns. Our ART neural networks are extended with an aging
mechanism, which allows discarding old, rarely recognizedevent patterns to make
space for new unknown event patterns. Therefore, our ART neural networks pro-
vide the sensor nodes with a short term memory. Thus, the learning capability can
be maintained. The ART neural networks have been used to detect and report flash-
light periods. The TmoteSky sensor nodes measuring PAR havebeen used. Hence,
the ART neural networks process time vectorsz = {z1, ..., zN}, which describe
the evolution of the PAR light signal over a specific interval. The anomaly detector
is completely self-learning, adaptive, and does not require any a priori knowledge
of the kinds of events that will occur. Drawbacks are poorer accuracy compared to
classifiers that are tuned from training data.

In Section 8.3 the application of ART neural networks for local detection and
reporting of flashlight periods is investigated. In subsequent work, ART neural
networks have been used for building monitoring. Our office monitoring system
based on ART neural networks is presented in Chapter 9. For office monitoring,
passive infrared (PIR) and vibration sensors have been used.
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8.2 Classification and Filtering of Time-Discrete Events

In this section the classification of time-discrete events computed on TmoteSky
nodes is investigated [152]. Three different classifiers are evaluated: a Bayesian
classifier, our developed Fuzzy Logic Controller (FLC), anda neural network ap-
proach. Generic monitoring applications pose an importantrequirement on clas-
sifier design. A priori knowledge of event classes is difficult to obtain. Hence,
events are only observable as collections of raw sensor data. Consequently, event
classes need to be learned from that raw (training) data. As aconsequence, pre-
labeling of the events is not possible. In our work, event classes are learned by a
k-means clustering algorithm (see Section 3.6.1). Any subsequent classifier train-
ing is based on these extracted event classes. Thus, the resulting classifiers are
completely self-learning. Event classes are modeled according to training sets of
emitted signal strength estimations collected with DELTA (see Section 7.3.2). The
resulting event estimates are reported to a base station, where the classifiers are
trained. The learned classifier parameters are then downloaded onto the sensor
nodes, where any subsequent classification and filtering is performed.

8.2.1 Introduction

Environmental data is sensed and processed on the sensor nodes. As discussed be-
fore, event reports are commonly sent to a base station, where the data is stored
and/or further processed. Reporting the measurements fromall sensor nodes to the
base station is expensive. Therefore, the DELTA algorithm has been developed.
With DELTA events are monitored in a distributed manner and only the computed
estimates are reported to the base station. In order to allowan event detection sys-
tem to respond to collected event reports, classification functionality is required.
Classifiers might be implemented at the base station or even on sensor node level.
By implementing the classifiers on node level, false or non-relevant event reports
can be filtered in the network. Thus, communication costs canbe saved. The clas-
sification and filtering of event reports requires means to distinguish different event
types on one hand and confidences in the classifications on theother. For anomaly
detection a distinction between different event types is not necessary. Thus, our
anomaly detection algorithm proposed in Section 8.3 follows another approach.

In our work we consider classifiers which are modeled based onmeasured data.
Therefore, the event classes and the parameters of the classifier are learned, respec-
tively estimated, from training data. In many applicationssuch as most monitoring
systems, it would be difficult to predetermine event classes. Moreover detailed ex-
pert knowledge would be needed. To avoid these drawbacks unsupervised learning
techniques have been developed. Relevant related work is presented in Section
3.6. Learning from data has the advantage that no expert knowledge is required.
Thus, the application of the algorithm is simpler and designflaws due to poor data
abstractions can be prevented.

Another classifier requirement is the ability to filter suspicious data (e.g., false
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alarms). To support this task, a classifier based on fuzzy logic concepts has been de-
veloped. A neural network approach that provides the same functionality has been
evaluated too. Both classifiers assign a confidence degree toevery classification.
Thus, it is possible to filter time-discrete events that do not satisfy a given threshold
requirement. Because non-satisfying event reports are filtered, a periodic reclassi-
fication of events is required. In most applications such as building monitoring or
event tracking, a continuous monitoring with periodic re-computations of the event
characteristics is needed per default. Obviously, the filtering of event reports has an
impact on reporting delays. If more event reports are filtered, fewer reports arrive at
the base station. This might introduce additional delays until an event is reported.
On the other hand, if reports are processed unfiltered, falsealarms might be re-
ported and subsequent actions might arise, which implies energy costs and might
lead to financial costs. Therefore, the trade-off between false-alarm tolerance and
reporting latency is investigated.

In contrast to classification, which can easily be executed on sensor nodes, the
estimation of the classifier parameters, i.e., the classifier tuning, is performed at
a base station. This has two reasons: First, the classifier istuned from training
data which needs to be collected at a central instance anyway. Second, the tuning
of the classifier is too expensive to be run on a simple sensor node, but can be
performed at a base station equipped with more computation power. Alternatively,
if the event reports are routed to a dedicated station in the Internet, the classifier
tuning can be performed there, too. Once the parameters of the classifier have been
computed, they only need to be downloaded onto the sensor nodes, which perform
any subsequent classification.

8.2.2 Fuzzy Logic Controller

In this section our Fuzzy Logic Controller (FLC) is presented. The basic concepts
of fuzzy logics have been presented in Section 3.6.3. All computations are based
on the clusters learned by fuzzy k-means (see Section 3.6.1). We assume thatm
different event classesCi have been extracted. Fuzzy Logic Controllers classify
event patterns according to classification rules. Accordingly, the premises and con-
sequences of the rules need to be determined. Common Fuzzy Logic Controllers
model the premises and consequences based on expert knowledge. This is appro-
priate for systems where the expected event types can be predicted. Because this
is difficult in event detection and monitoring systems, we model the classification
rules from training data. In Section 3.6.3 Takagi Sugeno TSKclassifiers have been
presented that provide the desired functionality. TSK classifiers have the additional
desired property that each conclusion of a classification rule assigns a given event
pattern with a certain confidence to the specific class the pattern is expected to
belong to. This allows the assignment of belief degrees to classifications, which
false-alarm filtering. Therefore, we have decided to model our Fuzzy Logic con-
troller according to the TSK2 classifier model (see Section 3.6.3).

In the following we show how the tuning of both the premises and the conse-
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quences is performed in our approach. The idea is to generateexactly one rule for
each event class (represented as cluster). Accordingly, each classification rule is
used to classify samples of one specific event class.

Tuning the premises

The premises are tuned from the clusters learned by fuzzy k-means. Thereby, the
fuzzy sets of the premises are the projections of the clusters on the coordinate axes,
where the cluster center has highest membership degree. Thecluster, actually a
scatterplot of event samples (estimations) belonging together, is visualized by a
bell in Figure 8.1.

Figure 8.1: Mapping a cluster to the fuzzy sets̃Ak,i of the premises inℜ2.

The projection of a 2-dimensional cluster, i.e., the samples consists of two kinds
of phenomena, is shown in Figure 8.1. In Figure 8.1 the cluster is modeled accord-
ing to triangular membership functions. The ruleRk used to classify samples into
the cluster above looks as follows:

Rk : IF µÃk,1
(x1) ∧ µÃk,2

(x2) THEN gTSK2
k (x) (8.1)

Different kinds of membership functionsµÃk,i
, with i = 1, .., n, can be ex-

tracted from a cluster. In our work triangular and Gaussian membership functions
are used. In order to parameterize a triangular functionµÃk,i

, the minimum, mean,
and maximum values of a cluster in dimension i are needed. Thedetermination of
the parameters of a Gaussian membership functionµÃk,i

requires the mean and the
standard deviation of a cluster in dimension i. The projections are approximations
and do not necessarily model the samples in the clusters exactly.

Tuning the consequences

In order to model the functionsgTSK2
k of the consequences (see Section 3.6.3),

the estimateszk,i have to be computed (see Equation 3.14). These estimates are
computed for each ruleRk. Therefore, the degree of satisfaction (significance) of
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the premise of each ruleRk, in the following labeled as firing strengthsτk(z), needs
to be determined (consider also the premise in rule (8.1)):

τk(z) = µ
Ãk,1

(z1) ∧ µ
Ãk,2

(z2) ∧ ... ∧ µ
Ãk,n

(zn) (8.2)

For the TSK2 classifier (see Equation (3.14)) the product is used as aggregation
function∧. In order to obtain the firing strengthβk,i, of a ruleRk to a clusterCi, the
sum of firing strengthsβ1, ..., βm of all samples belonging to that specific cluster
Ci are computed according to [72]:

βk,i =
∑

z∈Z

Ind(z, Ci)τk(z), ∀k = 1, ...,m; (8.3)

whereInd(z, Ci) indicates the clusterCi to which the elementz belongs:

Ind(z, Ci) =

{

1, if τk(z) is maximum,

0, else.
(8.4)

This means that after having determined the clusterCi with maximum firing
strength as ’class label’ of a samplez, the firing strengths ofz with respect to
each ruleRk is assigned to the according sum inβk,i. An example illustrates the
procedure. Given the set of samplesZ = {z1, ..., z4} and four rulesR1, ..., R4, one
for each clusterC1, ..., C4, the firing strengthsτ1, ..., τ4 of each samplez to each
rule are:

Sample τ1(z) τ2(z) τ3(z) τ4(z) Class

z1 0.6 0.2 0.1 0.1 C1

z2 0.1 0.7 0.1 0.1 C2

z3 0.4 0.3 0.1 0.2 C1

z4 0.2 0.2 0.5 0.1 C3

Samplez1, for example, has a firing strength of 0.6 in respect toC1, of 0.2 in
respect toC2, and of 0.1 in respect toC3 andC4, respectively. According to Equa-
tion (8.4),z1 is therefore assigned toC1 (bold in Table 8.2.2). Similar assignments
are obtained for the other samples. By applying Equation (8.3) the matrixβk,i is
filled as follows:

βk,i =









0.6 + 0.4 0.1 0.2 0
0.2 + 0.3 0.7 0.2 0
0.1 + 0.1 0.1 0.5 0
0.1 + 0.2 0.1 0.1 0









In the first columnβk,1 of βk,i, the firing strengths of{z1, z3}, which belong to
clusterC1, are recorded in respect to the according ruleRk, i.e., to the respective
row in βk,1. In the second column the firing strengths ofz2, which belongs toC2,
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are recorded. The fourth column ofβk,i contains no elements as no sample falls in
the according clusterC4. Thezk,i are finally obtained by normalizing theβk,i:

zk,i =
βk,i

∑m
s=1 βk,s

(8.5)

Both, premises and consequences are tuned at a management station, e.g., a
base station, where the training data has been collected. The estimated member-
ship functionsµÃk,i

and the matrixzk,i are the only information which have to be
downloaded onto the sensor nodes. Any subsequent classification of inputx ∈ ℜn

can then be performed on the sensor nodes by applying Equation (3.14) .

8.2.3 Classifier Configuration

In the following the classifier configurations are presented. In addition to the FLC,
a simple Bayesian classifier (see Section 3.6.2) and a FeedForward Neural Network
approach (FFNN) (see Section 3.6.4) have been evaluated. All three classifiers have
been tuned with the same training sets. For the evaluation the same test sets have
been used.

The data from the signal strength estimation experiments onthe TmoteSky
nodes is classified (see Section 7.3.2), i.e., five differentlight bulbs are classified
according to their emitted Photosynthetic Active Radiation (PAR) and Total Solar
Radiation (TSR). Hence, each patternx consists of two values that are fed into the
respective classifier. The feature or phenomena space consequently isℜ2.

The FLC classifier has been evaluated with both Gaussian and triangular mem-
bership functions. Gaussian functions have the general advantage that the whole
feature space is covered. This is a nice feature, which has little impact in our kind
of application, though. If a pattern cannot be assigned to a given cluster, the sam-
ple is just not classifiable with respect to the given event classes (µÃ = 0). This
is a reasonable property in our context. Hence, the triangular membership function
introduces no drawback in that respect.

The FFNN running on the sensor nodes has been implemented with 10 hidden
neurons. Thus, storage complexity of the FFNN is similar to that of the FLC. The
weights of the FFNN have been computed at the base station from the training set.
For classification, only the weights need to be downloaded onto the sensor nodes.
Like the FLC method the FFNN method assigns a confidence to itsclassifications.

Considering the Bayesian classifier, the differentKi and mi are again esti-
mated at the base station and then downloaded onto the sensornodes. Thereafter,
classifications can be performed on a sensor node according to rule (3.7) in Section
3.6.2. The Bayesian classifier does not support any confidence in its classifications.
A sample is fixedly assigned to the cluster it belongs to with highest probability.

Before providing classification results of the FLC classifier in Section 8.4, the
implementation of ART neural networks for local signal processing and anomaly
detection is presented in the next section.
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8.3 Local Signal Processing with ART Neural Networks

The previous chapter has introduced techniques to classifytime-discrete events.
The assumption was made that the expected time-discrete events are either known
or occur frequently. Thus, expected classes of events can belearned in specific
learning periods. On the other hand, applications such as building monitoring re-
quire means to distinguish abnormal from normal behavior. Normal behavior can
be learned to some extent. However, learning abnormal behavior is much more
difficult and sometimes even impossible. Since modeling unexpected (abnormal)
behavior is commonly not possible and an overall knowledge of expected (normal)
behavior is both difficult to determine and storage-consuming, the classification
methods proposed in the last chapter are not tailored to to anomaly detection.

8.3.1 Introduction

The goal of this implementation has been to detect and reportabnormal light sensor
activation patterns (flashlight periods) on a sensor node. Previously, the DELTA
algorithm was used to detect and track persons equipped witha flashlight. The
goal of this work was to learn and report given light sensor activation patterns. The
light sensor activation patterns are composed of signals, i.e., collected time series
of light measurementsx = {x1, ..., xN}, which are monitored on the sensor nodes.
The classification problem faces mainly two restrictions insensor networks. First,
processing power and memory are limited on sensor nodes. Consequently, complex
pattern classification methods are difficult to be implemented on node level. On the
other hand, communication costs are high. Therefore, it is not possible to transmit
the observed signals unprocessed to a fusion center.

Therefore, we propose an adaptive memory approach that provides online learn-
ing capability on node level. Observed measurement series,periodically collected
in predefined intervals, are processed. Consider the following seriesx = [0, 0, 123,
64, 111, 0, 0, 0, 3, 0] of light measurements in Lux sampled by anode in two
seconds. By applying the adaptive memory,x is classified and compressed with
respect to the current memory of the node. This means, ifx is known, the classifi-
cation number is returned by the adaptive memory. Otherwise, -1 which represents
a not classifiable or unknown event is reported. Only this classification output is
transmitted to a central fusion center, e.g., a DELTA leadernode or a base station.
Thus, event patterns are classified and compressed at node level, which reduces
the amount of reporting data considerably. At the fusion center, the system-wide
classification, of the different local decisions, receivedfrom the sensor nodes, is
performed. In this section the decision unit which classifies and compresses ob-
served signals on node-level is introduced [153]. The system-wide decision unit is
presented in Chapter 9.

In our work, the adaptive memory is implemented as a simple neural network
based on Adaptive Resonance Theory (ART) (see Section 3.6.5). Our Fuzzy ART
neural network learns and classifies sequentially present analog input vectors. The
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number of stored event classes (prototypes) can be controlled and no buffering of
input vectors is necessary. Moreover, the sequential processing and learning im-
poses moderate computational complexity, which makes the algorithm applicable
to sensor nodes. Any observed input is compared and classified with respect to a
maximum number ofM prototypes, which are learned and continuously updated
by the Fuzzy ART. ConsideringM prototypes and an input vector of sizeN the al-
gorithmic complexity, both in time and memory usage, has been shown to be in the
order ofO(MN) [15]. The theory of Fuzzy ART neural networks was discussed
in Section 3.6.5. Some adaptations to meet the requirementsof wireless sensor
nodes are presented in Section 8.3.2. Real-world experiment results are provided
in Section 8.4.2.

8.3.2 Local Fuzzy ART Neural Network

In Chapter 6 we have introduced the DELTA tracking algorithm. Delta was used for
terrain monitoring during night. Persons equipped with flashlights were tracked.
Hence, flashlight periods need to be distinguished from normal illumination pat-
terns. This can be well done with ART neural networks. Advantage of the ART
neural networks is their unsupervised nature and their efficiency in terms of mem-
ory usage and computation costs.

Traditional ART neural networks provide a long-term memoryof M categories.
When allM neurons in the comparison layer F2 of the ART neural network are
used, the learning capability of the ART neural network is exhausted. Any new
input pattern, even if it occurs frequently, can no longer belearned. Hence, 1 (un-
known) would be returned for every such input pattern. On theother hand, we
envision a mechanism that recognized frequently present input patterns, while spo-
radic input patterns shall be classified as unknown. Therefore, we have changed the
common ART neural network design to implement short-term memory. Short term
memory is implemented by an aging mechanism. After every monitoring cycle,
the age of each prototype that has not been matched is incremented. Thus, spo-
radically matched prototypes become older quickly. As soonas the memory of the
ART neural network is full, always the oldest prototype in the memory is replaced
by the current, unknown input pattern. The approach is reasonable as frequently
matched prototypes (normal input) are hardly affected by the aging mechanism.
Thus, frequent input is recognized and filtered by the ART neural network.

Finally, traditional ART neural networks return the category number if a cate-
gory is determined for a given input time vectorx and -1 otherwise. In contrast, our
ART-based event detector returns 1 (state has changed) if the classification number
of two subsequent classifications has changed and 0 (no statechange) otherwise.
Flashlight periods lead to many classification state changes. Hence, the number
of classification state changes is used as indicator for flashlight periods. The ART
neural networks used in the detection of flashlight periods provide the following
features:

• The ART neural networks are very lightweight.
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• Repeated illumination conditions are filtered by the ART neural network.
This saves communication costs.

• Flashlight periods lead to many classification state changes and thus to re-
ports.

• A data compression ofN to 1 is achieved, which minimized data volume.

In the implementation light signals are continuously monitored in intervals of
2 s. Within this 2 s the light intensity in Lux is sampled 40 times. To decrease
the size of these time series, two discrete Haar Wavelet transforms are applied (see
Section 3.6.6). The resulting analog input time vectorx of size 10 is fed to the
Fuzzy ART network. The input time vectorx represents the monitored light signal
over two seconds and might for example look as follows: [0 0 0 388 298 0 0 0 0 0]
in Lux. In this example the light sensor would have measured light in the second
half of the first monitoring second. This pattern is then classified in dependence of
the stored prototypes in the memory of the Fuzzy ART neural network.

The recognition (comparison) layer F2 of the Fuzzy ART neural network allo-
cates memory for 10 categories. This means, the adaptive memory implemented
on the sensor nodes can store up to ten event pattern prototypes. The resulting stor-
age requirements are in the order of 200 bytes for the Fuzzy ART neural network
(each weight requires 2 bytes). The Fuzzy ART neural networkrequires only com-
parisons and simple arithmetic operations. To save communication costs, twenty
subsequent Fuzzy ART outputs are stored into a single reportvector that is sent
to a fusion center every 40 s. Thus, 800 samples collected over a period of 40 s
are compressed to 20 values. The sensitivity threshold of the Fuzzy ART neural
networkρ is 0.75 and the learning rate is 0.1.
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8.4 Evaluation

In the following two sections the classification performance of the Fuzzy Logic
Controller as well as the local signal processing performance of the Fuzzy ART
neural network are shown.

8.4.1 Classification of Time-Discrete Events

The configuration of the classifiers was presented in Section8.2.3. TmoteSky nodes
(see Section 3.8.2) were used. Five light bulbs of 25, 40, 60,75 and 100 Watt
were classified according to their emitted PAR and TSR values. The experiment
is depicted in Figure 7.6. The required training and test sets were generated as
follows: the emitted PAR and TSR values were estimated 30 times for each bulb
at 15 event locations. The resulting training and test sets consist of 2050 event
patterns, consisting of PAR and TSR light emission estimates. The mean emitted
signal strength errorsΘ and the standard deviationsσ in Lux of the sets computed
on the TmoteSky nodes are provided in Table 7.3 in Chapter 7. These values only
indicate the distribution of the patterns in the sets. For classification neither the
mean signal strength errorsΘ nor the standard deviationsσ are needed. Two test
sets, namely a training set and a test set have been computed.The training set was
used at the base station to tune the classifiers, while the patterns in the test set were
classified on a sensor node to evaluate the performance of therespective classifier.

False-Alarm Filtering

The FLC and the FFNN provide a confidence in their classifications. The confi-
dence is a value between 0 and 1. A value of 1 means the classifier has perfect
confidence in its classifications. The filtering of events is done by rejecting classifi-
cations that do not satisfy a given confidence requirementTµ. Table 8.1 shows the
performance of the different classifiers based on the classification error rate, i.e., of
the rate of wrong classifications (false positives) in dependence ofTµ.

All classifiers perform almost equally well if no filtering isapplied (Tµ = 0).
Thus, a classification error-rate of approximately10% can be achieved. With FLC
and FFNN arbitrary classification error-rate constraints can be satisfied. If, for
example, the classification error rate needs to be smaller than 5% (marked bold
in Table 8.1), the FLC-Gaussian and the FFNN require aTµ of 0.5, while FLC-
Triangular requires aTµ of 0.4. The Bayesian classifier does not support filtering,
thus its classification error-rate remains constant.

Outlier Filtering and Reporting Latency

The FLC and the FFNN filter events that do not satisfy a givenTµ. As a conse-
quence some reporting delays are introduced. As mentioned in Section 7.3.2, clas-
sification is performed at the leader node every 0.5 s. The classification is aborted
in the current implementation ifTµ is not satisfied after 30 computations, i.e., if the
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Table 8.1: Error rates of the classifiers.

Bayesian FLC-Gaussian FLC-Triangular FFNN
Tµ Error [%] Error [%] Error [%] Error [%]

0

9.86

9.56 10.64 11.07
0.1 9.01 9.68 9.22
0.2 8.56 9.07 7.45
0.3 7.03 6.23 5.92
0.4 6.35 4.6 5.02
0.5 4.85 2.95 3.34
0.6 3.42 2.61 1.95
0.7 3.34 2.37 0.76
0.8 3.64

0
0.83

0.9 2.9 0

reporting time exceeds 15 seconds. To evaluate the reporting delay five character-
istic distribution parameters (in seconds) have been computed: The minimum and
maximum, the median, and the lower and upper quartiles.

Table 8.2: Reporting delays of triangular FLC.

Error rate Latency percentiles p in [s]
Tµ [%] Min 25-p Median 75-p Max

0 10.64 0.5 0.5 0.5 0.5 0.5
0.1 9.68 0.5 0.5 0.5 0.5 3.5
0.2 9.07 0.5 0.5 0.5 1 10
0.3 6.23 0.5 0.5 0.5 1

> 15

0.4 4.6 0.5 0.5 1 6
0.5 2.95 0.5 0.5 1.5 7.5
0.6 2.61 0.5 1 4.25 13.5
0.7 2.37 0.5 2.5 10.5

> 150.8
0

0.5 4.5
> 15

0.9 0.5 > 15

Table 8.2 shows the reporting latencies if applying the triangular FLC classifier
with varying Tµ. The minimum reporting delays to achieve an error-rate below
5% are marked bold. The results show that in 50% of all experiments (median)
event reports are generated within 1 s. Accordingly, the classification needs to be
performed only twice to generate an event report. In 75% of all experiments a
report is sent within 6 s. At least in one experiment no reportcould be generated
within 15 s. As expected, ifTµ is increased, the reporting delays increase too.
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Table 8.3: Reporting delays of FFNN.

Error rate Latency percentiles p in [s]
Tµ [%] Min 25-p Median 75-p Max

0 11.07 0.5 0.5 0.5 0.5 0.5
0.1 9.22 0.5 0.5 0.5 0.5 1
0.2 7.45 0.5 0.5 0.5 0.5 2.5
0.3 5.92 0.5 0.5 0.5 0.5 2.5
0.4 5.02 0.5 0.5 0.5 1 2.5
0.5 3.34 0.5 0.5 0.5 1 4
0.6 1.95 0.5 0.5 1 1.5

> 15
0.7 0.76 0.5 0.5 1 1.5
0.8 0.83 0.5 1.5 1.5 3
0.9 0 0.5 1.5 3 7

The FFNN outperforms the FLC in terms of reporting delay (seeTable 8.3).
Considering an error-rate lower than 5%, in 50% of all experiments (median) a
correct event report is immediately sent. Moreover, even inthe worst case a report
is reported within 4 seconds. This is because the neural network is able to model the
distribution of the event patterns better than the FLC, which needs the abstraction of
triangular or Gaussian distributions. On the other hand, the knowledge processing
is hidden by the FFNN. This makes it more difficult to understand and configure
the classifier. If the initial values are poorly chosen, the FFNN can perform much
worse than the FLC.

8.4.2 Anomaly Detection and Signal Processing on Node Level

In this section the performance of a Fuzzy ART neural networkfor signal com-
pression and classification on single sensor nodes is investigated. The TmoteSky
platform was used (see Section 3.8.2). The goal is to detect and distinguish flash-
light periods from normal illumination patterns. The Photosynthetic Active Radia-
tion (PAR) sensor has been used. The ART neural network configuration has been
presented in Section 8.3.2.

All experiments started during daytime in a bright lecture room. Two different
light patterns were tested. The first light pattern is shown in the upper part in Figure
8.2. First, the blinds were lowered. Then, the blinds were raised and lowered again,
before two flashlight periods occurred. In the second light pattern (in the lower part
in Figure 8.2) the raising and lowering of the blinds was substituted with turning
the room illumination on and off. Moreover, an additional room illumination on/off
period was performed between the two flashlight periods. Both experiments were
repeated three times.

In both patterns two flashlight periods were included. In these periods, a person
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Figure 8.2: Light pattern I (upper part) and light pattern II (lower part).

equipped with a flashlight entered the room and searched the room with the flash-
light. Thereby, the sensor node was illuminated from time totime depending on
the searching. Accordingly, the flashlight period invoked atemporarily increased
number of bright/dark switches on the sensor node. Instead of the classification
numbers, changes in the classifications (state changes) arereported.

Figure 8.3: Sequence of changes of classification outputs.

An example of a flashlight period is shown in Figure 8.3. In thebeginning
event patterns of prototype 1 were detected for a couple of times. Thereafter, dif-
ferent prototypes were detected in a short time. This is due to the many bright/dark
switches imposed by the flashlight period. The changes in classifications represent
the frequency in presence of different input patterns. Therefore, this measure was
used to detect flashlight periods. In office monitoring (see Chapter 9) we followed
another approach. It is important to remember that only state changes indicated as
1 are reported by the observing sensor node. Thus, considerable communication
can be saved, since often classifications will not change, e.g., if no flashlight is
present during night time. Moreover, the mechanism is completely self-learining
and adaptive.

The results with the first light pattern are shown in Figure 8.4. In all three exper-
iments the lowering and raising of the sun-blinds did not lead to any state changes.
Accordingly, the Fuzzy ART anomaly detector is able to adaptto slowly changing
environmental conditions. The adaptation behavior depends on parameterization of
the Fuzzy ART network, though. Both flashlight periods are easily identifiable by
the respective accumulations of state changes in Figure 8.4. In experiment 1, the
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Figure 8.4: Occurrence of state changes in experiments 1 to 3.

raising of the sun-blinds in the end invoked one state change, which could easily be
filtered by the system.

In contrast to experiments 1 to 3, experiments 4 to 6 contain two periods where
the room illumination was turned on and off. This invoked fewabrupt illumina-
tion changes shortly before and after the first flashlight period (see Figure 8.5).
Considering the detection of the flashlight periods, the performance is similar to
performance in experiments 1 to 3.

We conclude the evaluation by providing the mean number of state changes in
all twelve flashlight periods which is 24.5, and the standarddeviation which is in
the order of 2. Accordingly, a person moving with a flashlightcan well be dis-
tinguished from ’normal behavior’ by observing at least a certain number of state
changes in a specific interval. The filtering of subsequent event patterns has lead
to communication savings of approximately 83%, compared toa mechanism that
would have reported every ART output. A more detailed analysis of possible com-
munication savings with ART neural networks is provided in the office monitoring
application in the next chapter.

The algorithm is completely self-learning and does only require initial param-
eter settings for the number of allowed prototypes, the vigilance parameter and the
learning rate. Depending on the observed signal and the memory constraints on the
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Figure 8.5: Occurrence of state changes in experiments 4 to 6.

sensor node these values might slightly differ.
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8.5 Conclusions

In this chapter the classification of events has been addressed. Algorithms to clas-
sify time-discrete event patterns have been presented in Section 8.2. The trade-off
between false-alarm prevention and reporting latency has been investigated. The
evaluation has shown the trade-off between classification error-rate and reporting
latency. Arbitrary error-rates have been achieved with FLCand FFNN. Error-rate
minimization imposes reporting delays, though. If the application requires certain
accuracy but can handle some delay, a neural network or a FLC classifier is an ap-
propriate choice. The FFNN achieves slightly better latency results, but the tuning
of the classifier is more critical. On the other hand, the FLC is easy to understand
and performs well.

The Bayesian classifier has performed similar to FLC and FFNNwithout filter-
ing. Even with moderate filtering, the Bayesian classifier isoutperformed by the
other solutions, though. All three solutions require training. Each trained classifier
is performed at a leader node and requires only local neighborhood information.
Thus, communication and computation overhead is kept small.

Considering the detection of unexpected, continuous events, the proposed time-
discrete algorithms are not suited. This is mainly, becausethe algorithms require
the modeling of event classes from training data. However, unexpected (abnormal)
behavior can commonly not be predicted. Modeling everything that is expected
(normal) is not feasible either. Therefore, we have implemented an adaptive mem-
ory approach based on Fuzzy ART neural networks that provides online learning
and classification capability. Compared to the previous classifiers this approach
achieves lower accuracy due to its sequential operation. However, storage costs
are much smaller, which makes it a good choice for anomaly detection. The al-
gorithm has been implemented to distinguish flashlight periods from normal room
illumination patterns. The Fuzzy ART neural network has provided good perfor-
mance in terms of detection accuracy and resource savings. Communication costs
of approximately 83% could be saved.

In the next chapter an office monitoring system that uses ART neural networks
to detect and report abnormal office occupancy is presented.

155





Chapter 9

Office Monitoring Application

In the previous chapters we have presented the different modules of our event de-
tection system. The general system architecture has been provided in Figure 1.1.
A typical application scenario has been presented in Figure1.2. In this chapter we
present the deployment of the event detection system in an office monitoring appli-
cation [154]. A common office room, offering space for two working persons, has
been monitored with ten sensor nodes and a base station. The task of the system
is to report suspicious office occupation such as office searching by thieves. On
the other hand, normal office occupation should not throw alarms. In order to save
energy for communication, the system provides all nodes with some adaptive short-
term memory. Thus, a set of sensor activation patterns can betemporarily learned.
The local memory is implemented as an Adaptive Resonance Theory (ART) neu-
ral network. Unknown event patterns detected on sensor nodelevel are reported
to the base station, where the system-wide anomaly detection is performed. The
anomaly detector is lightweight and completely self-learning. The system can be
run autonomously or it could be used as a triggering system toturn on an additional
high-resolution system on demand. Our building monitoringsystem has proven to
work reliably in different evaluated scenarios. Communication costs of up to 90%
could be saved compared to a threshold-based approach without local memory.

9.1 Introduction

Subject of this chapter is the detection and reporting of abnormal behavior in build-
ing monitoring. Conventional building monitoring systemsaddress the problem
by deploying video surveillance systems (see Section 3.7.2). Such systems have a
number of drawbacks, though. The system is expensive in terms of hardware, stor-
age and communications. In particular if wireless technology is used, energy for
communication becomes a critical issue. Furthermore, collecting multiple video
streams imposes high demands on storage, online monitoringand video analysis.
For example, the more video screens a security guard has to monitor, the higher is
the probability that he misses some relevant information. Finally, a permanently
active camera system is unpleasant for the office staff.
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The envisioned system involves numerous research questions: is it possible to
develop an energy-efficient reliable building surveillance system? Can the data vol-
ume be reduced while minimizing the probability of losing relevant information?
Can privacy of staff be improved? Is the system economic?

Wireless sensor network technology provides means to develop such a sys-
tem. Sensor networks are economic due to their lack of wires.Energy-efficiency
is achieved by parallelism, distributed computing and in-network processing. De-
cisions can be made in the network, decreasing communication load and storage
requirements. Hence, office occupation can be processed andfiltered in the net-
work. Because no pictures are taken, the identity of office staff can be hidden. For
these reasons, we provide a wireless sensor network for building monitoring. The
system can run standalone or it can be used to trigger a high-resolution system such
as a (wireless) video surveillance system. A hybrid system would optimize accu-
racy, while keeping costs low. Unless something critical isdetected by the sensor
network, video surveillance is turned off. During this time, energy and storage
costs are minimal and the identity of the office staff is concealed.

Tininess, resource constraints, need for long-term operation and dependency on
batteries impose severe restrictions on wireless sensor networks. Hence, services
provided in sensor networks need to be lightweight in terms of memory and pro-
cessing power. Communication costs should be low. We satisfy these requirements
by filtering normal (i.e., known) building occupation within the network. Normal
behavior is temporarily learned by short term memory using an aging mechanism.
The memory is implemented as Adaptive Resonance Theory (ART) neural net-
work. ART neural networks compress observed event patternsto a single value
representing the ART decision (known| unknown). Unknown patterns are reported
to the base station. At the base station, the reported local decisions are fed to a bi-
nary ART neural network that performs the system-wide anomaly detection. ART
neural networks are adaptive and learn sequentially. They require low storage and
communication costs. These features are advantageous for use together with sensor
nodes.

9.2 Office Monitoring

In this section the office monitoring application is introduced. We have used sensor
nodes for a number of reasons. The system is lightweight, cost-effective, and easy
to deploy. In particular no wires are required. The system conceals the identity of
persons working in the office. Only sensor activation patterns can be determined.
Thus, the system ensures privacy to the office staff. A high resolution system pro-
viding more detailed information could optionally be triggered. Thus, the appli-
cation of the secondary, high resolution system could be restricted to periods of
abnormal office occupation.

The deployment of the office monitoring system is depicted inFigure 9.1. In
the current deployment the ART based anomaly detection software and the event
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Figure 9.1: Office monitoring deployment.

detection and tracking functionality of DELTA were implemented. The medium
access functionality has not yet been ported to the sensor nodes. A common office
room of approximately 26.5m2 providing two working places was monitored. The
room contains 5 office cabinets, 4 tables and two file cabinets. In total, 11 wireless
sensor nodes were deployed: 3 nodes measuring Passive Infrared (PIR), 7 nodes
measuring vibration and one node acting as gateway (base station). The 3 sensor
nodes that measure PIR were placed such that the two working desks and the office
entrance were monitored. The 7 vibration sensors monitoredactivation in the office
cabinets and in the file cabinets. The sensor nodes do not report every sensor read-
ing to the base station. This would be too communication intensive. Instead, series
of sensor readings, 10 in the current implementation, are collected and processed on
node level. The resulting local pattern classifications (known | unknown) are then
sent to the base station, where the system-wide anomaly detection is performed.

9.2.1 System Design

Our building monitoring system can be summarized as follows. Series of sensor
readings are periodically collected and processed on node level. In the current
implementation the PIR and vibration sensors are processedevery 2 s. Since series
of ten sensor readings are processed, i.e., the monitoring resolution on node level
is 20 s, time vectorsx = {x1, ..., xi; i = 10} are locally processed by ART neural
networks. As mentioned before, our ART neural networks implement an adaptive
short term memory, which is based on an aging mechanism. The sensor nodes
can store a certain number of prototype time vectorsy. Prototypesy that are not
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matched by an inputx become older. When the memory of the ART neural network
is full, the oldest prototypey is replaced by the current input vectorx. With this
mechanism learning can be continuously maintained. Ifx is not recognized in the
ART memory, i.e., the input pattern is unknown, a 1 is signaled to the base station.
Otherwise, no report is sent. It is not necessary to report locally known patterns, i.e.,
to signal a 0, because the base station expects the presence of a known time vector
x if no report has been sent by the according node. Because eachsensor node
reports for every monitoring interval whether it has locally detected an unknown
time vectorx or not, the base station is able to perform global decisions based
on the collected reports. Since ten sensor nodes are deployed, the base station
processes space vectors of the formz = {z1, ..., zj ; j = 10}, wherezi ∈ {0, 1} is
the output of sensor node i.

An example may clarify the functionality. We assume, a person is searching
two cabinet drawers that are equipped with vibration sensors 5 and 6. The first
drawer is opened, then the second one, before the first draweris closed, again
followed by the second one. This is all done within a monitoring period of 20 s.
Hence, time vectorx5 containing the sensor readings of sensor node 5 might look
like [0, 24, 12, 0 , 0, 0, 14, 22, 0, 0], whilex6 is [0, 0, 0, 33, 0, 0, 0, 0, 41, 13].
Numbers of 0 mean no activation of the according sensor (PIR or vibration). Both
vectors are locally processed by Fuzzy ART neural networks.We assume thatx5

is recognized by the memory of sensor node 5, whilex6 is not recognized by the
memory of sensor node 6. Since Fuzzy ART neural networks store prototypes,
this recognition behavior is possible. The other sensor nodes have not measured
activation in the current monitoring period, i.e., they recognize time vector [0, 0,
0, 0, 0, 0, 0, 0, 0, 0] in their memory. In this example, only sensor node 6 reports
a 1 (unknown time vector). Accordingly, the space vectorz processed at the base
station is [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]. The base station implements a binary ART
neural network to process the binary inputz. The output of the binary ART at the
base station is again 1 (unknown) ifz is not recognized and 0 otherwise.

ART neural networks are predestinated to meet storage, local pattern recogni-
tion, and filtering requirements. The storage costs of an ARTneural network are
in the order ofO(MN), both in terms of time and memory (see Section 8.3). In
the office monitoring application we have used the ESB sensornode platform (see
Section 3.8.1). The available memory on these nodes for local signal processing is
in the order of 300 bytes. Considering the available memory,the input vector size
of 10, and 2 bytes to store floating points, 10 prototypes are stored in the memory
of our ART neural networks. Finally, traditional ART neuralnetworks return the
category number if a category is determined for a given input~I and -1 otherwise.
In contrast, our ART-based event detector returns 0 (known)if ~I is recognized and
1 (unknown) otherwise. Hence, our ART neural networks provide the following
features:

• ART neural networks are very lightweight.

• Known input vectors are filtered by the ART neural network, which saves
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communication costs.

• A data compression ofN to 1 is achieved, which reduces data volume.

9.2.2 System-wide Anomaly Detection

In our basic system implementation, ART neural networks areimplemented both
at node level and at the base station. In related work thresholds are often used.
Therefore, we also evaluated simple threshold-based decisions. In these cases, a 1
(unexpected input vector) is reported if the sum ofx exceeds a predefined threshold
T, i.e., if

∑10
i=0 xi > T . Consideringx6 = [0, 0, 0, 33, 0, 0, 0, 0, 41, 13] above,

the sum is 87. Accordingly, if T is smaller than 87, a 1 is reported. Otherwise, no
report is sent (the input is considered as expected or normal). The following four
combinations are possible:

Local System-wide

Fuzzy ART binary ART
Fuzzy ART Threshold-based

Threshold-based binary ART
Threshold-based Threshold-based

In the following evaluation the two crossed-out combinations are not consid-
ered: feeding local binary output to a threshold-based decider at the base station
is not feasible. An example illustrates the corresponding problem. Consider two
binary input vectors at the base station:z1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] is an event
that should be reported, whilez2 = [0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is an event that should
be filtered. This potential case is not manageable with a threshold-based decider at
the base station, because

∑10
i=0 z1,i = 1 (should be signaled), while

∑10
i=0 z2,i = 3

(should be filtered), which conflicts with a threshold-baseddecision. Next, we
consider a system with threshold-based decisions on node level and at the base
station. It is important that

∑10
i=0 xi is reported to the base station instead of 1

if
∑10

i=0 xi > T . Otherwise, the problem could be reduced to the previous one.
This completely threshold-based approach cannot be parameterized such that the
resulting anomaly detection system works reliably.

The designs of the remaining two systems are depicted in Figure 9.2. In every
monitoring period of 20 s, every sensor node j signals a locally unknown event
pattern either if the current time vectorxj has not been recognized by the memory
of node j (Fuzzy ART, see Figure 9.2(a)) or if

∑10
i=0 xi > T (threshold-based,

see Figure 9.2(b)). Hence, the base station collects and processes space vectors
z = {z1, ..., zj ; j = 10}, where j represents the ID of the respective sensor node
andz ∈ {0, 1}. Thus, if an unknown event pattern (signaled as 1) has been reported
by a specific sensor node j, neuron j in F1 of the binary ART neural network is
activated, i.e., 1 is fed to the corresponding neuron. In Figure 9.2 this means that 1
is fed to neurons 2, 5 and 10 of the binary ART neural network. If the base station
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(a) Local Fuzzy ART. (b) Local thresholds.

Figure 9.2: System designs with local memory (left) or local threshold (right).

did not receive a report from a sensor node, the base station assumes a recognized
event pattern at the respective node. Hence, the corresponding neuron is fed with
0. This mechanism saves a considerable amount of reporting costs, because sensor
nodes do not need to report known event patterns. The resulting input space vector
z in Figure 9.2 is [0, 1, 0, 0, 1, 0, 0, 0, 0, 1]. In Figure 9.2 this input vector is not
known by the binary ART memory and a system-wide unknown event is reported,
i.e., the output of the binary ART is 1.

Since single system-wide event reports are not sufficient toaccurately sig-
nal anomalies (office intrusions), a significance test determining accumulations of
system-wide event reports is provided. This test evaluatesthe frequency of anoma-
lies over a certain time period.

Significance Test

SignificanceΘ = 0;
Age of last unknown eventevent_age = 0;
while true

Calculate binary ART ouputξ ∈ {0, 1};
if ξ == 1 // unknown event

if event_age < Tmax_age

Θ++;
event_age = 0;

else
Θ = 0;
event_age = 0;

end
else // known event

event_age++;
end
if Θ > Tsignificance

report anomaly;

The significance test is described in the pseudo-code above.The significance
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test determines an alarm if in a certain time interval 5 system-wide unknown events
( Θ > Tsignificance, Tsignificance= 4) have been signaled by the binary ART neural
network. Thereby, the time difference between every subsequent pair of events
must be smaller than 80 s (Tmax_age= 5, which implies 4· 20 s).

Since five system-wide events are required, at maximum 320 s (4 · 80 s) can
elapse until an office intrusion is reported. On the other hand, the minimum delay
is 80 s if 5 events are subsequently signaled (4· 20 s). The estimation of the
maximum delay assumes that the office intrusion triggers unknown events. If this
is (temporarily) not the case, the anomaly detection is delayed or disabled. The
thresholdsTsignificanceandTmax_agehave been determined in simulations. Various
thresholds have been evaluated. The used values have performed well.

9.3 Anomaly Detection Performance

The last part of this chapter addresses the current deployment and its evaluation.
As presented before, 10 sensing nodes have been deployed in an office offering
two workplaces.

9.3.1 Office Occupancy Patterns

All experiments lasted between 2 and 4 days. Within these monitoring periods
either normal office occupation or normal office occupation extended with specific
hourly office access patterns were monitored. The specific patterns were either
office searching performed by one person in an empty office room or hourly stress
situations where multiple office staff were present, askingeach other to look for
missing items. The office access and occupation patterns aredefined as follows:

• Office searching: The office is hourly searched for 2 - 5 minutes. The
searching person enters the room and arbitrarily searches all different cabi-
nets and drawers in the office. To avoid systematic search patterns, the office
searching is performed by different persons. This pattern represents illegal
access or abnormal behavior and is assumed to trigger alarms.

• Stress situation: In this office occupation pattern two to three persons are
present in the office and are looking for some missing item(s). For example
a document might be requested by an entering person and the two office
personnel search and provide the requested information. Events of this kind
last between 90 seconds and 3 minutes. This pattern imposes ahigh stress
level on the system, but should not trigger alarms.

• Normal office occupation: Here, no restrictions have been defined. The
office was just monitored for a given amount of time.

As discussed before, the system processes signals (PIR and vibration) in 20 s
intervals on node level. Thus, every 20 s, local and global decisions are determined.
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If nothing happens in the office or the activation is locally recognized, no event
reports are sent to the base station. Hence, the base stationhas input vectors of
form [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Such input vectors do not produce events at
the base station. On the other hand, if many events occur during a certain time
interval (office searching), many different unknown-eventreports are sent to the
base station. The resulting varying input vectorsz cannot all be known at the base
station. Hence, the base station signals accumulations of events which leads to the
system-wide alarm (anomaly).

9.3.2 Computation at Desktop PC

The system based on Fuzzy ART neural networks at the sensor nodes and on a bi-
nary ART neural network at the base station has been implemented and evaluated in
the sensor network. On the other hand, determining the set ofapplicable thresholds
for the threshold-based local decider requires repeatableexperiments. This can-
not be provided by real-world experiments. Therefore, in addition to the running
Fuzzy ART based system, every output of the sensor nodes was collected at a desk-
top PC, where the threshold-based anomaly detection systemwas implemented.
Thus, the threshold-based decider could be evaluated and optimized offline with
varying thresholds. To justify this implementation, the Fuzzy ART neural network
based system was re-implemented at the base station, too. The results computed at
the base station and at the desktop PC were equal. Hence, an offline analysis of the
threshold-based decider is justified.

9.3.3 Detection Performance of the Anomaly Detectors

We investigated the number of false positives (false alarms) and false negatives
(missing alarms) generated by the local Fuzzy ART and threshold-based (T-based)
anomaly detectors. The threshold-based local anomaly detector has been evalu-
ated with the complete range of applicable thresholds. Reports are generated if
∑10

i=0 xi > T . Since analog input time vectorsx are processed and single sensor
readings are in a range from 0 to 50, the resulting threshold Tcould be in the range
from 0 to 500. High values are improbable because too many signals would be
filtered. Comparatively low values of 16 and 17 for T have shown good prevention
of false alarms, while no real alarms have been missed. All three office occupa-
tion scenarios were evaluated: normal office occupation, hourly office searching
and hourly stress situations. The first experiment lasted for 48 hours including two
working days. The two other kinds of experiments lasted for 4days. In these 4
days, the respective occupation pattern (searching| stress) was performed 8 times
in 8 hours. Accordingly, the latter two experiments provided 32 specific office
occupation patterns (searching| stress) in each case.

Table 9.1 shows the anomaly detection performance of both anomaly detec-
tors. The first important result is that, apart from one failure of the threshold-based
system withT = 16, no false negatives were observed in all experiments. This
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Table 9.1: False Positives (FP) and False Negatives (FN) of the anomalydetectors.

Fuzzy ART T-based 16 T-based 17
FP FN FP FN FP FN

Normal office
1 - 1 - 1 -

occupation (48h)
32 hourly office

- - 2 1 2 -
searchings (96h)
32 hourly stress

1 - 12 - 9 -
situations (96h)
Total (240h) 2 - 15 1 12 -

system behavior is very important, because false negativesmean undetected intru-
sions. The presence of false negatives would question any anomaly detection and
alarming system. On the other hand, some false positives, i.e., false alarms, could
not be prevented. In particular the hourly stress level experiments generated false
alarms, whereby the threshold-based system performed muchworse. If no false
positives can be tolerated, the system could be used to trigger a secondary high-
resolution system (see also Section 3.7). In such an implementation the presence
of false positives is less severe since only the secondary system is unnecessarily
triggered.

The reporting of false alarms in the hourly stress level experiments is due to
similarity of these experiments and office searching. The experiments have shown
that Fuzzy ART neural networks are able to recognize and filter local anomalies,
which leads to the system-wide prevention of false alarms. We conclude this section
by highlighting that the local event recognition feature ofthe Fuzzy ART neural
networks is in particular beneficial in presence of high stress level without intrusion.
In this case, the system based on Fuzzy ART neural networks led to 1 false alarm in
32 stress situations, whereas the system based on local thresholds reported between
9 and 12 false alarms in the same situations. No false negatives (missing alarms)
were encountered by both systems.

9.3.4 Message Load

Only normal office occupation was evaluated to assess communication costs. The
other two experiments do not reflect normal behavior. In these intrusion or stress
situations artificial anomalies are generated, which leadsto temporarily increased
communication load compared to normal daily office occupation. Signaling every
local input vectorx with

∑10
i=0 xi > 0 as event, i.e., threshold-based local decisions

with T = 0, determines maximum possible communication costs. The costs of the
respective anomaly detector have been computed in percentage of the maximum
possible communication costs.

The communication costs of the Fuzzy ART system and the T-based system are
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Table 9.2: Message load of the anomaly detectors.

Fuzzy ART T-based 16 T-based 17
Monitoring without

11.9 % 7.0 % 5.9 %
intrusion (48h)

shown in percentage in Table 9.2. The local filtering of the Fuzzy ART neural net-
works leads to communication cost savings of up to 90%. Even better results can be
achieved with the threshold-based filtering . However, the T-based system requires
learning and training, i.e., the thresholds need to be determined. In contrast, Fuzzy
ART neural networks are completely self-learning, i.e., only the memory size and
the vigilance factorρ need to be defined in advance. Furthermore, results in the last
section have shown that the Fuzzy ART neural network approach prevents false
alarms in case of stress situations.

Overall, without local filtering 10261 messages were reported to the base sta-
tion during 48 hours. With the Fuzzy ART system this message load could be
decreased to 1222 messages, which leads in average to 25 messages per hour. Con-
sidering the network size of 10 nodes and the faced office monitoring problem, a
system-wide communication load of 25 messages per hour seems adequate.

9.3.5 Reporting and Triggering Delay

The reporting and triggering latency introduced by our anomaly detection system
is investigated in this section. Section 9.2.2 has shown that the current implementa-
tion introduces a minimum reporting delay of 80 s and a maximum reporting delay
of 320 s.

Table 9.3: Reporting Latencies [s] until alarm is reported.

Fuzzy ART T-based 16 T-based 17
µ ρ µ ρ µ ρ

Hourly office
148 44 146 38 150 52

searching (32h)

The effectively measured average reporting delaysµ and their standard devi-
ationsρ are listed in Table 9.3. There is no significant difference between the
different implementations. In average approximately 150 swere needed to detect
and report office searching. The standard deviations vary slightly between 40 and
50 s. Detection latencies longer than 2 minutes seem rather long. However, this
value depends on the duration of the monitoring period. The application of shorter
monitoring periods could be evaluated. The monitoring period cannot be reduced
arbitrarily due to the involved communication increase, though. The minimal re-
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porting delay achievable is further restricted by the minimum amount of time re-
quired to identify abnormal behavior. We assume that reporting latencies of around
90 seconds might be achievable.

9.3.6 Standalone ART Neural Network Performance

In the previous experiments any local output has been reported to the base station
to support later comparisons, i.e., to make the offline simulations of the threshold-
based mechanism possible. On the other hand, a real deployment would only signal
effectively unknown event patterns to the base station. Forthe sake of complete-
ness, the Fuzzy ART based monitoring system has been run standalone.
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(a) Soft hourly office searching.
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(b) Intense hourly office searching.

Figure 9.3: Anomaly Detection Performance with ART neural networks.

Two monitoring periods of 8 hours are illustrated in Figure 9.3. The hourly
office searching pattern has been used. In the first experiment the office was softly
searched by making little noise, i.e., the office cabinets were carefully opened,
searched and closed again. In the second experiment the office searching was more
intensive. Little care was spent on avoiding noise. Accordingly, the sensor activa-
tion amplitudes were higher, which is confirmed in Figure 9.3. The intense office
searching experiment signaled more reports of suspicious behavior. In both experi-
ments all hourly office searching have been detected and no false alarms have been
generated. The standalone implementation has shown similar performance to the
implementation that has logged additional information.

9.4 Conclusions

A wireless sensor network for building monitoring has been proposed In this chap-
ter. The system detects and reports abnormal office occupation. In contrast to
conventional video surveillance systems, the system conceals the identity of the
monitored office staff. Moreover, the deployed system is efficient and lightweight
and produces much less data, decreasing administration andstorage cost.
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The system implements either a Fuzzy ART neural network or a simple threshold-
based decider on a local level. A binary ART neural network isimplemented at the
base station. The proposed system with local Fuzzy ART decisions worked well in
all experiments. In particular no false negatives were encountered, i.e., no cases of
office searching were missed by the system. In normal office occupation with low
stress level the threshold-based approach has performed similar to the Fuzzy ART
neural network. Considering high stress levels, the Fuzzy ART neural network pro-
duces considerably fewer false positives than the threshold-based approach, though.
This is due to the local memory maintained by the Fuzzy ART neural network that
provides local recognition and filtering. It has been shown that communication
costs could be cut by 90% with the Fuzzy ART-based system. Thedetection delay
is currently approximately 2 minutes and 30 s, but could be further decreased by
optimizing the monitoring cycles.

Optionally, the proposed system could be used to trigger a secondary, more
detailed system such as a video surveillance system. Advantages of such an in-
tegrated approach would reduction of communication costs,post processing and
storage, because the secondary, more expensive system would be only sporadically
used. On the other hand, additional information could be captured on demand.
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Chapter 10

Conclusions

In this thesis the development of an energy-efficient, fault-tolerant and fully dis-
tributed event detection system has been addressed. The system needs to meet
application-specific detection accuracy requirements. Nonetheless, energy-efficient
mechanisms are required to support long-term operation. Tooptimize the trade-off
between detection accuracy and long-term operation, appropriate functionality on
different layers of the network stack is required. A smart integration of the function-
ality on the different layers is furthermore important. Therefore, we have suggested
an architecture that implements a networking stack designed to satisfy the differ-
ent system requirements. The MAC layer provides energy-efficient medium access
control. In addition, synchronization messages that are periodically exchanged on
the MAC layer have been used to discover neighborhood information and setup a
routing backbone based on this information. By integratingrouting functionality
into the MAC layer, no additional control traffic to setup andmaintain routing is
required. Moreover, additional energy can be saved by temporarily turning off the
radios of non-backbone nodes. Upon detection of an event, non-backbone nodes
wake up and provide networking functionality to the overlayapplication software.
Thus, medium access and routing are completely transparentto the application
layer. Mobile networks are supported on the networking layer with an optional
topology-adaptive routing mechanism. On top of these medium access and rout-
ing services the application-specific functionality has been implemented. Tracking
groups are dynamically established and maintained upon detection of an event. The
tracking groups provide the event localization and classification software executed
at the leader node with the required information to perform these tasks. The classi-
fication software provides event classification and anomalydetection functionality.
The event detection system has been applied to an office monitoring system that de-
termines illegal or suspicious office access and occupancy.The individual chapters
are summarized in the following.

In Chapter 4 we investigated the virtual clustering effect known from synchro-
nized contention-based MAC protocols for wireless sensor networks. In virtual
clustering, network nodes arrange themselves into groups according to common
listen/sleep cycles. We have proposed a simple clock synchronization scheme that
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avoids virtual clustering without introducing additionalcontrol traffic. All network
nodes locally share a common listen/sleep schedule. The algorithm has shown fast
and robust convergence. After convergence, no virtual clusters have appeared. It
has been shown that the mechanism extends network lifetime and lowers storage
complexity on the sensor nodes, because no tables with neighboring virtual clusters
have to be stored.

In Chapter 5 the support of a routing backbone and the temporal shut-down
of non-backbone nodes were focused on. We have provided two backbone con-
struction methods (MPR-based CDS and N-CDS) that explore the content of the
synchronization messages exchanged on the MAC layer to establish a CDS. By
exploring the synchronization messages, no additional control traffic is generated.
Both approaches have shown good energy load balancing and have performed well
in reducing the current number of active nodes. Consequently, network lifetime
is extended with both approaches. Network connectivity hasbeen achieved in all
simulations. In addition to the solutions on the MAC layer, we have implemented a
CDS-based backbone construction method on the network layer (R-CDS). R-CDS
requires the exchange of hello messages to learn local neighborhood. In terms of
backbone construction, R-CDS performs similar to the solutions on the MAC layer.
The advantage of R-CDS is the supply of backbone repair mechanisms. Thus, node
mobility can be supported. On the other hand, R-CDS requiresadditional control
traffic, which is waste of energy. Depending on network dynamics one of the ap-
proaches can be chosen.

In Chapter 6 the event detection and tracking functionalityof DELTA has been
provided. DELTA detects and tracks events efficiently. Considering networking,
DELTA minimizes the number of event tracking groups. DELTA has been com-
pared to EnviroTrack. EnviroTrack is an efficient and lightweight event detection
and tracking mechanism. Both algorithms provide a similar set of basic operations.
DELTA has outperformed EnviroTrack in detection speed and in avoiding concur-
rent tracking groups. DELTA has been able to detect and trackevents with vary-
ing sensing ranges efficiently with a single tracking group.Unlike EnviroTrack,
DELTA provides the group leader with information needed to perform localization
and classification. The message overhead of this data collection functionality has
been evaluated in the real-world experiments and has shown to be the least possible.
The data collection functionality further supports largersensing ranges.

In Chapter 7 the localization and signal strength estimation performance of
DELTA has been discussed. Based on event-relevant information collected in the
tracking groups, position and emitted signal strengths of events have been esti-
mated. The nonlinear Simplex Downhill (SD) method has shownto provide best
performance considering the given requirements. In contrast to Linearized Least
Square (LLS) methods, which require intrinsically less computation power, the SD
method has proven to work also with the minimum amount of information needed
to solve the resulting optimization problem. On the other hand, the computational
burden has shown to be acceptable. In wireless sensor networks it might frequently
happen that only the minimum amount of information about an event can be col-
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lected due to packet loss or energy-efficiency reasons. These cases can only be
covered with nonlinear methods, in our case with the SD method. The SD method
achieved good estimation accuracy both in positioning and emitted signal strength
estimations. Unlike the position estimations, the signal strength estimations are
event specific and can be used for event classification.

In Chapter 8 the event classification functionality has beenpresented. All clas-
sifier software is performed at the DELTA leader node. The software supports event
classification, i.e., the labeling of unknown events, and anomaly detection. In a first
part the event classification software has been presented. This software addresses
the classification of discrete event types. In experiments different kinds of light
bulbs have been classified. Our own developed Fuzzy Logic Controller (FLC) has
been compared to a simple Bayesian classifier and a Feedforward Neural Network
(FFNN) approach. The FLC classifier has shown to be lightweight and accurate.
Furthermore, the filtering of false alarms could be prevented with arbitrary accu-
racy. However, the more accurate the system is, the longer are the reporting delays
due to filtering of events that do not satisfy the confidence threshold. Error rates of
5% could be achieved with low reporting latency. This is an accuracy improvement
of 50% compared to the Bayesian classifier. Mainly due to storage complexity
the presented classifiers are not appropriate for anomaly detection. For anomaly
detection the application of ART neural networks has been proposed. ART neu-
ral networks represent a simple adaptive memory that is ableto store and refine a
certain number of prototypes. With ART neural networks it has been possible to
compress and classify time series of event observations on sensor node level. Thus,
communication costs can be kept low. The ART neural networkshave shown to
be very lightweight and sufficiently accurate. The ART neural networks have been
used for office monitoring.

Finally, the office monitoring application has been presented in Chapter 9.
Anomalies, locally determined by Fuzzy ART neural networkshave been reported
to a fusion center (the DELTA leader node), where the system wide decision has
been implemented as a binary ART neural network. The system was able to re-
port abnormal behavior (hourly office searching), while normal office access and
occupation did not trigger any alarms. The message load of the proposed ART-
based anomaly detector has shown to be marginal. In a normal office monitoring
period of 48 hours approximately 25 messages per hour were transmitted, which
reflects communication cost savings of 90%. The approach hasbeen compared
to a threshold-based anomaly detector. Both approaches have shown similar per-
formance in normal office monitoring and in detecting office searching. However,
under higher stress levels, the ART-based anomaly detectorhas outperformed the
threshold-based approach. This is due to the local filteringcapability of ART neu-
ral networks. In conclusion, the ART-based anomaly detector has shown to work
reliably by introducing low communication costs. The anomaly detector can be
used standalone or it can trigger a secondary, high-resolution system.

The main conclusions of this thesis can be summarized as follows. Existing
monitoring applications are application-specific and are laid out for short-term de-
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ployments. In contrast, we have proposed a common architecture for event detec-
tion that addresses accuracy while conserving energy. Energy savings have been
achieved on different layers of the network stack. Based on alightweight commu-
nication and group organization protocol, events have shown to be traceable with
acceptable overhead. Furthermore, the amount of data required for classifications
and decision making has been collected efficiently. Finally, feasible classification
methods have been proposed, which have been used in an office monitoring appli-
cation and have shown good performance, i.e., the system requirements in terms of
energy savings and monitoring accuracy have been met.
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Chapter 11

Future Work

In this chapter possible directions for future work are outlined. First, application-
specific system evaluation aspects are discussed. Second, some specific, unsolved
problems and possible solutions are presented. Finally, some new trends and future
directions of research are proposed.

The office monitoring system has been deployed in a small-scale office. More-
over, a rather small number of sensor nodes has been used. In future work larger
scenarios could be tested. The performance of the system in an open-plan office
could be investigated. This would impose a higher range of varying event pat-
terns and more fluctuations. We assume that the local memory implemented on the
sensor nodes should contribute even more in such a scenario than in small-scale
environments. Nevertheless, the performance of the systemneeds to be demon-
strated. Furthermore, different implementations of ART neural networks could be
evaluated. Also, the memory size of the ART neural network could be adjusted
depending on the application. In an open-plan office with a higher number of toler-
able event patterns, the memory of the ART neural networks would probably have
to be increased. Depending on the sensor platform used, thiswould also require
some adaptations in the ART design. Finally, other kinds of event patterns could
be included. Currently, the monitoring application has been run based on passive
infrared and vibration events. In addition, noise levels could be monitored or illu-
mination conditions, and so on.

So far, the different features of our monitoring system havebeen evaluated
rather isolated. While testing DELTA in simulations and real-world experiments,
the classification functionality of the framework had not yet been implemented. On
the other hand, the final office monitoring system has imposedlittle stress on the
DELTA tracking subsystem, because all sensor nodes were located in a single room
within communication range of each other. In future work, the whole system could
be implemented and evaluated in a large deployment which covers for example a
whole department. In such a scenario, all features of our monitoring system could
be tested concurrently.

Considering topology control, all proposed CDS approachescould be evaluated
in comparison to each other. Until now, a detailed real-world performance analy-
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sis of the topology control mechanisms is missing. Only simple scenarios have
been tested. This is due to the suboptimal performing ESB sensor platform in this
context. Accordingly, the most appropriate topology control mechanism could be
implemented on a sensor node platform such as the TmoteSky platform. We as-
sume that on such a platform the mechanisms should perform quite well. Finally,
the topology control mechanisms implemented on the MAC layer have shown to
outperform T-MAC, but no comparisons to other protocols have been performed. In
future work, our protocols could be compared to both topology control and recent
MAC protocols.

The gravity-based local clock synchronization scheme (LACAS) has been im-
plemented as part of a cross-layer approach. Moreover, it has been evaluated in
simulations only. In the current office monitoring system ithas not been included.
Therefore, LACAS could be implemented on sensor hardware and extensively
tested in isolation to prove its benefits. Because the gravity-based mechanism is
supposed to be very robust, good performance benchmarks canbe expected.

We have shortly outlined some directions for future research in the protocols
proposed in this thesis. Many more optimizations and configurations could be
evaluated. It is a general property of real-world experiments that they are very
time-consuming and continuously reveal additional challenges. In particular large-
scale real-world wireless sensor network experiments are difficult to be done in
a manageable way. On the other hand, simulations allow large-scale evaluations,
but they are often not able to consider key properties of wireless sensor networks.
Accordingly, also in this thesis some features have been evaluated in real-world
experiments, while for others simulations have been performed.

The development of an accurate long-term-operating event detection system
has led to some insights and ideas for future directions of research. In many existing
systems networking aspects and application-specific requirements are still consid-
ered exclusively. Considering event detection, few systems address both, network-
ing issues and detection accuracy. We think that more integrated approaches are
needed to provide useful sensor network solutions to end users. A lot of research
is spent on developing smart communication for wireless sensor networks. On the
other hand, a target application is often not provided. However, the consideration
of application-specific requirements is essential to develop useful systems. There-
fore, we think that in future emphasize will have to be given to applications. So far,
privacy has gained little attention in event detection systems. On the other hand,
wireless sensor networks can be implemented to hide the identity of monitored per-
sonnel. We think that this could be a driving factor for the commercialization of a
wireless sensor network based surveillance system. The usage of wireless sensor
systems to trigger a high resolution system might be interesting and useful too.
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Chapter 12

Acronyms

ART Adaptive Resonance Theory

BS Base Station

CDS Connected Dominating Set

CG Conjugate Gradient

CSP Collaborative Signal Processing

DELTA Distributed Event Localization and Tracking Algorithm

DS Dominating Set

ESB Embedded Sensor Board

FFNN Feedforward Neural Network

FSM Finite State Machine

GPS Global Positioning System

HPF High Pass Filter

IBL Instance Based Learning

IDSQ Information Driven Sensor Querying

IREP Information Response

LACAS Local Adaptive Clock Assimilation Scheme

LLS Linear Least Square

LPF Low Pass Filter

MAC Medium Access Control

MANET Mobile Ad Hoc Network
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MCDS Minimum Connected Dominating Set

MIS Maxmimum Independent Set

MPR Multipoint Relay

NAV Network Allocation Vector

PAR Photosynthetically Active Radiation

QoS Quality of Service

RSSI Received Signal Strength Indicator

RTS/CTS Ready To Send / Clear To Send

SD Simplex Downhill

STM Short Term Memory

TCP Transport Control Protocol

TSR Total Solar Radiation

TDMA Time Division Multiple Access

WSN Wireless Sensor Network
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