
ENERGY-EFFICIENT MANAGEMENT OF

HETEROGENEOUS

WIRELESS SENSOR NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Gerald Wagenknecht

von Görlitz, Deutschland

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

ENERGY-EFFICIENT MANAGEMENT OF

HETEROGENEOUS

WIRELESS SENSOR NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Gerald Wagenknecht

von Görlitz, Deutschland

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:
Bern, 06.05.2013 Prof. Dr. Silvio Decurtins

Abstract

Various applications for the purposes of event detection, localization, and mon-
itoring can benefit from the use of wireless sensor networks (WSNs). Wireless
sensor networks are generally easy to deploy, with flexible topology and can sup-
port diversity of tasks thanks to the large variety of sensors that can be attached to
the wireless sensor nodes. To guarantee the efficient operation of such a heteroge-
neous wireless sensor networks during its lifetime an appropriate management is
necessary.

Typically, there are three management tasks, namely monitoring, (re) config-
uration, and code updating. On the one hand, status information, such as bat-
tery state and node connectivity, of both the wireless sensor network and the sen-
sor nodes has to be monitored. And on the other hand, sensor nodes have to be
(re)configured, e.g., setting the sensing interval. Most importantly, new applica-
tions have to be deployed as well as bug fixes have to be applied during the net-
work lifetime. All management tasks have to be performed in a reliable, time- and
energy-efficient manner.

The ability to disseminate data from one sender to multiple receivers in a re-
liable, time- and energy-efficient manner is critical for the execution of the man-
agement tasks, especially for code updating. Using multicast communication in
wireless sensor networks is an efficient way to handle such traffic pattern. Due to
the nature of code updates a multicast protocol has to support bulky traffic and end-
to-end reliability. Further, the limited resources of wireless sensor nodes demand
an energy-efficient operation of the multicast protocol. Current data dissemination
schemes do not fulfil all of the above requirements.

In order to close the gap, we designed the Sensor Node Overlay Multicast
(SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient
dissemination of data from one sender node to multiple receivers. In contrast to
other multicast transport protocols, which do not support reliability mechanisms,
SNOMC supports end-to-end reliability using a NACK-based reliability mecha-
nism. The mechanism is simple and easy to implement and can significantly reduce
the number of transmissions. It is complemented by a data acknowledgement after
successful reception of all data fragments by the receiver nodes. In SNOMC three
different caching strategies are integrated for an efficient handling of necessary re-
transmissions, namely, caching on each intermediate node, caching on branching
nodes, or caching only on the sender node. Moreover, an option was included to
pro-actively request missing fragments.

SNOMC was evaluated both in the OMNeT++ simulator and in our in-house
real-world testbed and compared to a number of common data dissemination pro-
tocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The
results showed that SNOMC outperforms the selected protocols in terms of trans-
mission time, number of transmitted packets, and energy-consumption. Moreover,

we showed that SNOMC performs well with different underlying MAC protocols,
which support different levels of reliability and energy-efficiency. Thus, SNOMC
can offer a robust, high-performing solution for the efficient distribution of code
updates and management information in a wireless sensor network.

To address the three management tasks, in this thesis we developed the Man-
agement Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specif-
ically designed for the management of heterogeneous wireless sensor networks. A
distinguished feature of its design is the use of wireless mesh nodes as backbone,
which enables diverse communication platforms and offloading functionality from
the sensor nodes to the mesh nodes. This hierarchical architecture allows for ef-
ficient operation of the management tasks, due to the organisation of the sensor
nodes into small sub-networks each managed by a mesh node. Furthermore, we de-
veloped a intuitive -based graphical user interface, which allows non-expert users
to easily perform management tasks in the network. In contrast to other manage-
ment frameworks, such as Mate, MANNA, TinyCubus, or code dissemination pro-
tocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution
monitoring, configuration and code updating of sensor nodes.

Integration of SNOMC into MARWIS further increases performance efficiency
of the management tasks. To our knowledge, our approach is the first one, which
offers a combination of a management architecture with an efficient overlay mul-
ticast transport protocol. This combination of SNOMC and MARWIS supports
reliably, time- and energy-efficient operation of a heterogeneous wireless sensor
network.

b

Contents

Contents i

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Thesis Outline . 6

2 Related Work 9
2.1 Hardware Platforms . 9

2.1.1 PC Engines ALIX . 10
2.1.2 Crossbow Tmote Sky / TelosB 11
2.1.3 Scatterweb Modular Sensor Board 12
2.1.4 Crossbow MICAz . 13
2.1.5 BTnode . 14

2.2 Operating Systems . 15
2.2.1 ADAM . 15
2.2.2 Contiki Operating System 17

2.3 Evaluation Platforms . 19
2.3.1 OMNeT++ Network Simulation Framework 20
2.3.2 Wisebed WSN Testbed Controlled by TARWIS 21
2.3.3 Energy Measurement . 22

2.4 Multicast in Wireless Sensor Networks 23
2.4.1 Multicast Routing . 23
2.4.2 Multicast Transport . 28

2.5 Data Dissemination Protocols . 33
2.5.1 Directed Diffusion . 33
2.5.2 Pump Slowly, Fetch Quickly (PSFQ) 37
2.5.3 Flooding . 38
2.5.4 MPR . 39

i

2.6 Contiki Protocol Stack . 41
2.6.1 Link Layer Protocols . 42
2.6.2 Network Layer Protocols 45

2.7 Management of Wireless Sensor Networks 49
2.7.1 Management Frameworks 49
2.7.2 Code Dissemination Protocols 51

2.8 Conclusions . 52

I SNOMC: A Overlay Multicast Transport Protocol for Wireless
Sensor Networks 54

3 Protocol Design and Architecture 55
3.1 Introduction . 55
3.2 Protocol Design on Application Layer 56
3.3 Protocol Description . 57

3.3.1 Joining Phase . 58
3.3.2 Data Transmission Phase and Caching 62
3.3.3 End-to-End Reliability 64

3.4 Conclusions . 67

4 SNOMC Implementation 69
4.1 Introduction . 69
4.2 SNOMC Implementation in OMNeT++ 69

4.2.1 Protocol Stack . 69
4.2.2 Protocol Operation . 71
4.2.3 CC2420 Radio . 73
4.2.4 Data Structures and Messages 75

4.3 SNOMC Implementation in Contiki OS 76
4.3.1 Joining Procedure . 76
4.3.2 Data Transmission Procedure 79
4.3.3 Fragmentation, Caching, and Buffer 82
4.3.4 SNOMC Control/Sender Process and Packet Queues . . . 83

4.4 Conclusions . 85

5 SNOMC Evaluation 87
5.1 Introduction . 87
5.2 SNOMC Evaluation of Simulation Results 88

5.2.1 Protocol Stack . 88
5.2.2 Simulation Scenarios . 89
5.2.3 Transmission Times . 91
5.2.4 Number of Transmissions 92
5.2.5 Energy Consumption . 93

5.3 SNOMC Evaluation in Real-World Testbed 94

ii

5.3.1 Protocol Stack . 94
5.3.2 Experimentation Scenarios 95
5.3.3 Transmission Times . 96
5.3.4 Number of Transmissions 101
5.3.5 Energy Consumption . 103

5.4 Comparison of Simulated and Real-World Results 106
5.5 Conclusions . 107

II MARWIS: A Management Architecture for Wireless Sensor Net-
works 109

6 Management Architecture and Protocol Design 111
6.1 Introduction . 111
6.2 Management Scenario and Tasks 112
6.3 Management Architecture . 114

6.3.1 Management Station with Management System for Wire-
less Mesh Networks . 114

6.3.2 Mesh Node with MARWIS Server 115
6.3.3 Sensor Node with SN Agent 116

6.4 WSN Management Protocols . 116
6.4.1 WSN Monitoring Protocol 116
6.4.2 WSN Configuration Protocol 119
6.4.3 WSN Code Update Protocol 120

6.5 Conclusions . 123

7 Implementation of MARWIS and Demonstrator 125
7.1 Introduction . 125
7.2 MARWIS Server Implementation 125

7.2.1 Management Modules 126
7.2.2 Database Implementation 129

7.3 Management Station with Graphical User Interface 134
7.4 Sensor Node Agent Implementation 136

7.4.1 Addressing . 136
7.4.2 Sensor Node Monitor . 137
7.4.3 Sensor Node Configurator 138
7.4.4 Code Updater . 138

7.5 MARWIS Demonstrator . 139
7.6 Conclusions . 140

8 SNOMC Integration into MARWIS 141
8.1 Introduction . 141
8.2 Architecture . 142
8.3 Implementation . 145

iii

8.3.1 Implementation of SNOMC on Wireless Mesh Nodes . . . 145
8.3.2 Adaptation of the MARWIS Graphical User Interface . . . 146

8.4 Evaluation . 146
8.4.1 Evaluation Scenario . 146
8.4.2 Time-Efficient Communication 148
8.4.3 Energy-Efficient Operation 150

8.5 Conclusions . 152

9 Conclusions and Outlook 153
9.1 Addressed Challenges . 153
9.2 Main Contributions and Summary 154
9.3 Outlook . 156

Bibliography 159

List of Publications 173

Curriculum Vitae 176

iv

List of Figures

1.1 Applications utilizing wireless sensor networks. 2

2.1 PC Engines ALIX 3d2 Board[81] 10
2.2 Crossbow Tmote Sky. 11
2.3 Scatterweb MSB430. 12
2.4 Crossbow MICAz[28] . 13
2.5 BTnode platform. 14
2.6 Steps of the build and setup process for a node [113] 16
2.7 Partitioning in Contiki: the core and loadable programs in RAM

and ROM. [38] . 17
2.8 Wisebed testbed at University of Bern. 21
2.9 Directed Diffusion: interest propagation. 34
2.10 Directed Diffusion: gradient establishment. 35
2.11 Directed Diffusion: reinforcement. 35
2.12 Directed Diffusion: multiple sinks. 36
2.13 Directed Diffusion: local repair. 36
2.14 PSFQ: pump operation. 37
2.15 PSFQ: fetch operation. 38
2.16 PSFQ: pro-active fetch operation. 38
2.17 Flooding. 39
2.18 Multipoint Relay. 40
2.19 TinyCubus. 41
2.20 MAC and RDC protocols of NullMAC, ContikiMAC and BEAM. 42
2.21 ContikiMAC: unicast transmission[33]. 43
2.22 ContikiMAC: broadcast transmission[33]. 44
2.23 BEAM: using short beacon strobes [13]. 44
2.24 BEAM: using beacon strobes including payload [13]. 45
2.25 The protocol stack in Contiki. 46
2.26 TCP and µIP header. 46
2.27 UDP and µIP header. 47

3.1 SNOMC: possible scenario. 57
3.2 SNOMC: Joining phase, sender driven mode. 58
3.3 SNOMC: messages for sender-driven joining. 60

v

3.4 SNOMC: Joining phase, receiver driven mode. 61
3.5 SNOMC: messages for receiver-driven joining. 61
3.6 SNOMC: Transmission phase, no caching. 62
3.7 SNOMC: Transmission phase, caching on branching nodes. 63
3.8 SNOMC: Transmission phase, caching on forwarding nodes. . . . 63
3.9 SNOMC: Transmission phase, using broadcast transmissions. . . . 64
3.10 SNOMC: data message. 64
3.11 SNOMC: Reliability, caching only on sender node. 65
3.12 SNOMC: Reliability, caching on branching node. 66
3.13 SNOMC: Reliability, caching on each intermediate node, pro-active. 66
3.14 SNOMC: reliability messages. 67

4.1 OMNeT++: protocol stack. 70
4.2 OMNeT++: SNOMC state machine, sender node. 72
4.3 OMNeT++: SNOMC state machine, receiver nodes. 72
4.4 OMNeT++: SNOMC state machine, forwarding/branching nodes. 73
4.5 OMNeT++: CC2420 state machine. 74
4.6 SNOMC: data structures. 75
4.7 SNOMC control process: joining procedure, sender node. 77
4.8 SNOMC control process: joining procedure, other nodes. 78
4.9 SNOMC control process: data transmission, sender node. 79
4.10 SNOMC control process: data transmission, receiver nodes. . . . 80
4.11 SNOMC control process: data transmission, other nodes. 81
4.12 Buffer structure. 83
4.13 SNOMC sender process: sending messages 84
4.14 SNOMC control process: receiving messages 85

5.1 Simulation protocol stack. 88
5.2 Simulation scenarios. 89
5.3 Evaluation: transmission time. 91
5.4 Evaluation: number of transmitted packets. 93
5.5 Evaluation: energy consumption per node and per transmitted byte. 94
5.6 Real-World protocol stack. 95
5.7 Evaluation scenario 1. 96
5.8 Evaluation scenario 2. 97
5.9 Evaluation scenario 3. 98
5.10 Evaluation: transmission time, scenario 1. 99
5.11 Evaluation: transmission time, scenario 2. 100
5.12 Evaluation: transmission time, scenario 3. 101
5.13 Evaluation: number of transmitted packets, scenario 1. 102
5.14 Evaluation: number of transmitted packets, scenario 2. 103
5.15 Evaluation: energy consumption, scenario 1. 104
5.16 Evaluation: energy consumption, scenario 2. 105

vi

6.1 A possible scenario for heterogeneous wireless sensor networks
with management devices. 113

6.2 Architecture of the MARWIS components. 115
6.3 WSN monitor queries the mesh nodes 117
6.4 User requests sensor node information directly. 117
6.5 Management station requests database information from the mesh

nodes. 118
6.6 The WSN configuring protocol. 119
6.7 A new sensor node joins the sensor sub-network. 120
6.8 The image gets uploaded to all affected mesh nodes. 121
6.9 The user asks for all available images. 121
6.10 The user initiates the code update for the sensor node. 122

7.1 MARWIS server messages for retirieving information from the
sensor nodes. 127

7.2 MARWIS server messages for configuration and code update. . . 128
7.3 User interface: network overview 135
7.4 User interface: sensor node overview. 135
7.5 SN Agent: addressing. 137
7.6 A possible scenario for heterogeneous WSNs with management

devices. 139

8.1 SNOMC in a heterogeneous MARWIS scenario. 142
8.2 SNOMC integrated into the MARWIS architecture. 142
8.3 Protocol stack containing SNOMC in the heterogeneous MARWIS

architecture. 143
8.4 Addressing scheme of the nodes in the MARWIS architecture. . . 144
8.5 SNOMC: structures. 145
8.6 Evaluation scenario using Wisebed testbed. 147
8.7 Evaluation of reliable and time-efficient communication. 148
8.8 Evaluation: transmission time, code update (1392 bytes). 149
8.9 Evaluation: transmission time, configuration command (20 bytes). 150
8.10 Evaluation: energy consumption, code update (1392 bytes). 151
8.11 Evaluation: energy consumption, configuration command (20 bytes).151

vii

List of Tables

2.1 Overview over multicast routing protocols. 24
2.2 Overview over multicast transport protocols. 29
2.3 Overview over management frameworks. 49
2.4 Overview over code dissemination protocols. 51

5.1 MAC Protocol Parameters. 89
5.2 Simulation Parameters. 90
5.3 Energy Consumption of the CC2420 Radio Transceiver. 90

7.1 Database table sensornodes for the sensor nodes. 129
7.2 Database table meshnodes for the mesh nodes. 129
7.3 Database table wmn for the mesh network. 129
7.4 Database table wsn for the sensor network. 130
7.5 Database table sn properties storing the values of the sensor

node properties. 130
7.6 Database table properties storing descriptive information about

the properties. 130
7.7 Database table sensor state storing the state of the sensors. . 130
7.8 Database table sn platforms for the sensor node platforms. . . 131
7.9 Database table mn platform for the mesh node platforms. . . . 131
7.10 Database table os platform for the operating system platforms. 131
7.11 Database table pics storing the pictures used by the GUI. 131
7.12 Database table sn images storing which images running on which

sensor nodes. 132
7.13 Database table images storing the images. 132
7.14 Database table sn values storing the measured sensor values. . 133

8.1 Possible protocol combinations. 146

viii

Chapter 1

Introduction

Wireless sensor networks are widely used by real-world applications to serve re-
search, industry and individual costumers. Hence, wireless sensor networks often
may consist of a large number of heterogeneous sensor nodes. The operation of
such heterogeneous network needs to be cost-efficient, energy-efficient and ensure
functional reliability. The main objective of this thesis is to design and develop a
management architecture that can support reliable, time- and energy-efficient op-
eration of heterogeneous wireless sensor networks.

This chapter gives a brief overview over the field of wireless sensor networks,
describes the related challenges and made contributions and finally outlines the
structure of the thesis.

1.1 Overview

In last years wireless sensor networks have emerged as the technical means to
support a growing number of applications not only in research and in industry but
also in our daily life. This is majorly due to the characteristics of wireless sensor
networks and the benefits thereof.

Wireless sensor networks are composed of large numbers of inexpensive small
electronic devices called sensor nodes. A sensor node is characterized by an easy
installation and, due to adaptive self-configuration, low necessity of maintenance.
Each sensor node operates autonomously and is equipped with various sensors,
a micro-controller and a radio module for wireless data communication. The in-
stalled sensors can measure a wide range of environmental conditions, such as
temperature, humidity, illumination, pressure, and many more. A sensor node is
usually battery driven, which makes energy-efficiency a very important field of
current research in the area of wireless sensor networks.

Figure 1.1 depicts several typical applications for wireless sensor networks.
We briefly comment on them.

• Environmental monitoring: Wireless sensor networks are widely used for
environmental monitoring as well as for habitat and wildlife monitoring.

1

1.1. OVERVIEW

Industrial
process control

Disaster monitoring

Object tracking
Environmental monitoring

Smart cities

Building
automation

Health
monitoring

Internet

Figure 1.1: Applications utilizing wireless sensor networks.

They enable continuous, long-term unattended data collection in large ar-
eas, which are difficult to access otherwise. One example of environmental
motoring is the A4-Mesh project [1]. Water flow and hydrological balance
are monitored in the Swiss Alps and the results help to enhance the water
supply during dry summer periods.

• Industrial process monitoring: Wireless sensor networks are used to mon-
itor and control industrial processes. Sensors can measure data such as pres-
sure, humidity, temperature, flow, viscosity, density and vibration intensity
and transfer them to a control system. By this, status and condition of ma-
chines or systems can be monitored. In case of an unexpected behaviour an
alarm can be triggered. Requirements for industrial applications are often
stricter compared to other domains, since system failure may lead to loss of
production or even worse, loss of lives.

• Building automation: A building automation system consists of heating,
ventilation and air-conditioning, lighting, indoor transportation, security sys-
tems used to improve indoor climate, reduce energy costs and optimize build-
ing operation. The usage of wireless sensor networks in the area of building
automation can reduce installation costs since wiring is avoided. Further-
more, an existing building automation system can be easily extended.

• Smart cities: In the area of smart cities wireless sensor networks can be used
for different purposes, such as traffic and parking management as well as
safety and surveillance. In order to avoid traffic jams sensor nodes are used to
detect traffic density and in combination with actuators (smart traffic signs)
the traffic can be redirected to less used roads. Furthermore, sensor nodes can
be used to measure noise and air pollution. Detecting and tracking people
can be applied for security surveillance, crowd detection, people counting

2

1.2. PROBLEM STATEMENT

or for timekeeping systems. There is also a wide usage of wireless sensor
networks in the area of smart grids.

• Disaster monitoring: Natural disasters such as landslides, tsunamis, earth-
quakes or volcanic eruptions are difficult to predict. Wireless sensor net-
works can be useful in two ways. First, the usage of wireless sensor net-
works enables a more convenient early warning system to reduce the impact
of these events on lives and property. Second, wireless sensor networks pro-
vide a system able to research theses phenomena.

• Health monitoring: Wireless sensor networks have for years contributed in
the area of health care. Continuous monitoring and analysing of vital func-
tions of the human body is crucial for detecting when a patient’s state of
health changes. The sensors measure important parameters such as temper-
ature, blood pressure, glucose level or heart and brain activity, which are
analysed on a base station. This will allow continuous monitoring of the pa-
tient’s state of health outside the hospital to improve life quality of especially
elderly people by prolonging the time living at their home.

• Object detection and tracking: In the area of logistics and transportation
wireless sensor networks are more and more used to detect and track object
such as containers, packets, and other goods. Thus, an object can be followed
at any stage of the supply-chain.

1.2 Problem Statement

The research presented in this thesis addresses major problems concerning the
management of heterogeneous wireless sensor networks as well as the efficient
communication supporting the management tasks.

In terms of network management the following problems are addressed:

• Monitoring: Overseeing the operation of a wireless sensor network is crit-
ical to ensure its purpose. Therefore it is important to follow the status of
the network and the sensor nodes. Are there dead sensor nodes? What is
the current connectivity of the nodes in the wireless sensor network? What
is the battery state of the sensor nodes? Monitoring should include con-
tinuous collecting of status information about the sensor nodes and proper
visualisation of all sensor nodes in the network and their states. The status
information includes sensor node hardware features (micro-controller, mem-
ory, transceiver), sensor node software details (operating system versions,
protocols, applications), dynamic properties (battery, free memory), and, if
available, position information.

• (Re)Configuration: Configuration and re-configuration of sensor nodes is
another critical task necessary to keep the wireless sensor network in opera-

3

1.3. CONTRIBUTIONS

tion. It is responsible for configuring the sensor nodes, their running applica-
tions and the network itself. Examples of configuration tasks are setting the
sensing intervals or setting up the communications protocols (duty cycles,
timers, etc).

• Code updating: Updating and reprogramming the sensor nodes is another
important issue. An application on the sensor node might be buggy or not
working. Updating solves the problem and thus keeps the network running.
In a large wireless sensor network manual execution is not feasible. Hence, a
mechanism to handle this automatically and dynamically over the network is
required. Mechanisms to handle incomplete, inconsistent, and failed updates
have to be provided as well.

To perform the described management tasks data has to be transmitted from
one sender node to many heterogeneous receiver nodes in a reliable, time- and
energy-efficient matter. A powerful communication scheme that provides all these
properties is required:

• Reliability: Reliability is a key issue for critical management tasks such
as code updating or (re)configuration. It should be ensured that a code im-
age or a configuration message is successfully transmitted to all addressed
receivers, posing the need for an end-to-end reliability mechanism.

• Time-efficiency: Although monitoring, (re)configuration and code updates
are no high priority tasks, they should be executed in reasonable time. The
shorter time is needed, e.g., to handle a code update, the less the operation
of the wireless sensor network is interrupted.

• Energy-efficiency: Energy-efficient operation of the management tasks plays
a very important role, given the limited power capacity of battery-operated
sensor nodes. Reducing energy consumption increases the lifetime of indi-
vidual sensor nodes but also of the wireless sensor network as a whole.

• Heterogeneity: Since today’s wireless sensor networks are composed of
various types of sensor node platforms performing different tasks, the man-
agement architecture should be able to service heterogeneous sensor node
platforms.

1.3 Contributions

The contributions of this thesis can be grouped into two main categories: re-
liable, time-, and energy-efficient overlay multicast protocol (SNOMC) and
a management architecture (MARWIS), which supports efficient monitoring,
(re)configuration and code updating in heterogeneous wireless sensor networks.
The combination of both protocols with MARWIS as management architecture and

4

1.3. CONTRIBUTIONS

SNOMC as transport protocol allows an efficient operation and management of het-
erogeneous wireless sensor networks. First, the individual contributions pertaining
to the SNOMC (Sensor Node Overlay Multicast) protocol can be summarized as
follows:

• Design of an overlay multicast protocol specifically targeting a reliable, time-
efficient and energy-efficient dissemination of data in multicast manner. Us-
ing SNOMC supports an efficient operation of application such as MARWIS.
Similar to other overlay protocols a distribution tree consisting of one sender
node, several forwarding nodes and branching nodes, and one or more re-
ceiver nodes is built.

• Support of end-to-end reliability - in contrast to other multicast protocols,
which do not integrate a reliability mechanisms, SNOMC supports a NACK-
based reliability mechanism. It is combined with a data acknowledgement
after successful reception of all data fragments by the receiver nodes. Using
a NACK-based reliability mechanism is straightforward, easy to implement
and reduces the number of transmissions significantly.

• Efficient handling of necessary retransmissions through several different
caching strategies - more specifically three caching strategies were used,
namely, caching on each intermediate node, caching on branching nodes,
or caching only on the sender node. Moreover, an option was included to
pro-actively request missing fragments. In this case the intermediate nodes,
which cache the fragments actively request a detected missed fragment.

• Evaluation of SNOMC in both the OMNeT++ simulator and the Contiki
OS and the comparison of its performance to other popular data dissemi-
nation protocols such as Flooding, MPR (Multipoint Relay), PSFQ (Pump
Slowly, Fetch Quickly), TinyCubus, and Directed Diffusion as well as the
unicast-based protocols UDP and TCP. SNOMC outperforms the mentioned
protocols in terms of transmission time, number of transmitted packets and
energy consumption. The evaluations show that SNOMC delivers very good
performance in various environments and with different underlying MAC
protocols, such as ContikiMAC and NullMAC, independent of the supported
levels of reliability and energy-efficiency.

• Demonstrating that avoidance of expensive end-to-end retransmissions by
caching on intermediate nodes improves performance significantly. Con-
trary to this, pro-actively requesting of missed fragments does not improve
the performance at all. It only causes additional packets to be sent, increas-
ing the probability of collisions and cancelling the advantage of SNOMC’s
optimization.

In summary SNOMC offers a robust, high-performing solution for the efficient
distribution of code updates and management information in a wireless sensor net-
work. This, it can be used in combination with MARWIS for an efficient operation

5

1.4. THESIS OUTLINE

and management of heterogeneous wireless sensor networks. Second, we sum-
marize the contributions pertaining to MARWIS (Management Architecture for
Wireless Sensor Networks).

• Design and implementation of an architecture for monitoring, (re) config-
uration, and code updating in heterogeneous wireless sensor networks. In
contrast to other management frameworks, such as Mate, MANNA, Tiny-
Cubus, or code dissemination protocols, such as Impala, Trickle, and Del-
uge, MARWIS offers an integrated solution of the three main management
task (monitoring, configuration and code updating of the sensor nodes).

• Execution of management tasks in reliable, time- and energy-efficient man-
ner. This to a big extend is thanks to the distinguished feature of MAR-
WIS, namely, the use of wireless mesh nodes as backbone. The approach
enables diverse communication platforms and offloading functionality from
the sensor nodes to the mesh nodes. Moreover, the hierarchical architecture
allows an efficient operation of the management tasks, because it divides a
large sensor network into smaller sub-networks. The main components of
MARWIS are a management station and a management (mesh) node, which
enable the interaction between end users (via a user interface) and sensor
node(s). Furthermore, management information can be stored on the mesh
nodes, requested monitoring information can be directly transferred from the
mesh node to the user, reducing energy consumption of the sensor node.

• An intuitive web-based graphical user interface that allows easy adminis-
tration of the network. Users can perform management tasks on the sensor
nodes in remote and user friendly fashion.

• Integration of a management architecture (MARWIS) and a communication
protocol (SNOMC) to increase performance efficiency of the management
tasks. The MARWIS Communication Server integrates SNOMC into MAR-
WIS and handles the communication in the wireless mesh network and with
the sub-ordinated sensor nodes. To our knowledge, our approach is the first
one that offers such combination of a management architecture with an effi-
cient overlay multicast transport protocol. This combination is also the key
to the support of reliable, time- and energy-efficient operation of a heteroge-
neous wireless sensor network.

1.4 Thesis Outline

The main body of the thesis consists of two parts, one for each scientific contribu-
tion. Beforehand, Chapter 2 discusses the most important related work related in
the areas of management and multicast in heterogeneous wireless sensor networks.

Part I focuses on the Sensor Node Overlay Multicast (SNOMC) protocol. In
Chapter 3 we present the design and architecture of the protocol. Subsequently,

6

1.4. THESIS OUTLINE

in Chapter 4 we discuss the implementation of SNOMC, first, in the OMNeT++
simulator and, second, in the Contiki OS. In Chapter 5 we evaluate the SNOMC
protocol and compare its performance against a number of other data dissemination
protocols for wireless sensor networks such as Flooding, MPR (Multipoint Relay),
PSFQ (Pump Slowly, Fetch Quickly), TinyCubus, and Directed Diffusion as well
as against unicast protocols such as UDP and TCP. The evaluation is done using
the OMNeT++ simulator and the Wisebed testbed.

Part II introduces the second contribution of the thesis, MARWIS (Manage-
ment Architecture for Wireless Sensor Networks). In this part Chapter 6 describes
the design and the architecture specification of MARWIS. The implementation of
MARWIS is given in Chapter 7. In Chapter 8 we present the integration of the
SNOMC protocol into the MARWIS architecture and evaluate their combined per-
formance.

Finally, the thesis concludes with Chapter 9 summarizing our main contribu-
tions on therms of designed management solutions and evaluation results. It further
gives an outlook on subsequent research opportunities.

7

Chapter 2

Related Work

This chapter introduces and discusses the most important studies found in the liter-
ature related to our contributions in the thesis, namely, management and multicast
in heterogeneous wireless sensor networks.

First we start with an introduction to the hardware and software platforms we
used to built heterogeneous wireless sensor networks, presented in Section 2.1 and
Section 2.2, respectively. In order to evaluate our contributed protocols we are us-
ing different evaluation platforms, which are introduced in Section 2.3. Section 2.4
presents approaches for multicasting in wireless sensor networks addressing sev-
eral challenges in the area. Section 2.5 presents data dissemination protocols com-
monly used in wireless sensor networks. Section 2.6 discusses the Contiki protocol
stack including link layer (Section 2.6.1) and network layer (Section 2.6.2). Lit-
erature related to management in wireless sensor networks is discussed in Section
2.7. Finally, Section 2.8 summarises the chapter and indicates its relation to the
work presented in the rest of the thesis.

2.1 Hardware Platforms

A wireless sensor network consists of a large number of nodes, often randomly
distributed in a large area. Generally, a sensor node consists of a micro-controller,
some sensors, and a low-power radio for communication. Currently, available
wireless sensor nodes are mainly prototypes for research purposes. We have se-
lected several types of sensor nodes and selected four types to build a heteroge-
neous wireless sensor network:

• Tmote Sky[30] / TelosB[29],

• MSB [101],

• MICAz [28],

• and BTnodes [20].

9

2.1. HARDWARE PLATFORMS

They are widely used in the research community, well documented and have the
adequate properties in terms memory, energy-efficiency, etc. for an efficient oper-
ation in wireless sensor networks. For MARWIS we used all four types of sensor
nodes in order to build a heterogeneous wireless sensor network. For the evalua-
tion of SNOMC we used the Tmote Sky sensor nodes. For the management and
communication backbone ALIX 3d2 mesh nodes [81] have been selected. The
individual hardware is described in more detail in the subsequent sections.

2.1.1 PC Engines ALIX

Figure 2.1: PC Engines ALIX 3d2 Board[81]

Figure 2.1 shows an ALIX 3d2 Board [81] from PC Engines GmbH. It can
be used to build a fully meshed network using IEEE 802.11 radio transmitters. In
general, wireless mesh nodes can be deployed in various environments, indoors
as well as outdoors. They are usually realised as embedded systems to perform
few dedicated functions. In case of our contribution in the thesis MARWIS (Man-
agement Architecture for Wireless Sensor Networks), these mesh nodes are used
to build a backbone network and divide the wireless sensor network into smaller
subnetworks. Furthermore, the mesh nodes handle the management functionality
provided by MARWIS (cf. Section 6.2). To connect the sensor node gateway with
the mesh node the Serial Line Interface Protocol (SLIP) is used to communicate
over a Linux TUN/TAP interface. TUN/TAP are virtual network kernel devices,
which create a virtual interface for the serial line. SLIP connects the IP layer of
the mesh node directly to the IP layer of the sensor node gateway. The ALIX.3d2
boards feature the following components:

• An x86 compatible 500MHz AMD Geode LX800 CPU offering 256MB
RAM.

• A CompactFlash socket to be equipped with a exchangeable storage card.

• one Ethernet port, two miniPCI sockets for 802.11

• Several interfaces: one serial port, two USB ports, LPC, and I2C.

• An RTC battery can be added.

10

2.1. HARDWARE PLATFORMS

• The AMD Geode processor contains a hardware watchdog, i.e., a timer that
reboots the node if not periodically reset. This helps in recovering a node
from a non-responsive state (self-healing).

2.1.2 Crossbow Tmote Sky / TelosB

(a) Front part[30]. (b) Block diagram[29].

Figure 2.2: Crossbow Tmote Sky.

The Tmote Sky[30] sensor node depicted in Figure 2.2 is the successor of
Crossbows TelosB[29] platform. Figure 2.2(a) shows the front part of the sensor
node with the components, such as micro-controller, radio transceiver and many
more. Figure 2.2(b) shows the simplified block diagram of the Tmote Sky. The
Tmote Sky platform was developed by the Crossbow Corporation and the Univer-
sity of Berkley and is an open source, low-power and high data-rate wireless sensor
module designed to enable innovative experimentation for the research community.
The on-board bootloader allows to flash the sensor node without any additional de-
vice. This advantage makes it easy-to-use and very user friendly. It features the
following components:

• A Texas Instruments MSP430 series RISC CPU (MSP430F1611)[117] of-
fering some 48kB of ROM and 10kB of RAM.

• A Chipcon CC2420 [120] radio transceiver, which is an IEEE 802.15.4 com-
pliant radio for wireless communications operating in the 2.4GHz ISM band.
The radio provides a faster data rate (250 kbps) compared to the MSB430
boards, however, at a price of a lower range.

• An FT232BL chip from FTDI [48] connects the Universal Asynchronous
Receiver Transmitter (UART) bus of the MSP430F1611 micro controller
with the USB interface.

11

2.1. HARDWARE PLATFORMS

• The onboard temperature and humidity sensor Sensirion SHT11 [104] is ca-
pable of measuring temperature and relative humidity.

• An additional Micron M25P80 Flash memory [76] provides 1024kB of ex-
ternal space, e.g., for code or for logging data.

2.1.3 Scatterweb Modular Sensor Board

(a) Front part[101]. (b) Block diagram[16].

Figure 2.3: Scatterweb MSB430.

Figure 2.3 shows an MSB430 Sensor Node Platform [101]. It is developed by
Freie Universität Berlin and ScatterWeb GmbH [102]. This modular node platform
features the following main components:

• A Texas Instruments MSP430 series RISC CPU (MSP430F1612)[117]: this
CPU can be clocked from 100 kHz up to 11 MHz. The clock speed can be
adapted by a software configurable digital controlled oscillator (DCO). The
MSP430F1612 has 55 KB flash memory and 5 KB RAM, and further 18-
digital I/O pins connected to analog-to-digital (ADC) and digital-to-analog
(DCA) converters.

• A CC1020 Chipcon [118] configurable wireless radio transceiver using a
low-noise amplifier that operates in the ISM-band around 868 MHz. Its out-
put power reaches an amplitude up to 8.6 dBm (7.2 mW). The CC1020 uses
8 channels with a data rate of 19.2 kbit/s when using Manchester encoding.

• A Secure Digital Memory Card (SD) Reader can store large amounts of data
on Secure Digital High-Capacity (SDHC) cards with a capacity up to 32 GB.

• A Temperature and Humidity Sensor Sensirion SHT11 [104] is capable of
measuring temperature and relative humidity.

12

2.1. HARDWARE PLATFORMS

• A Freescale MMA7260Q Accelerometer [47] is capable of measuring the
acceleration in 3 dimensions (x,y,z).

2.1.4 Crossbow MICAz

(a) Front part. (b) Block diagram.

(c) Connected to the USB board.

Figure 2.4: Crossbow MICAz[28]

The MICAz Mote [28] depicted in Figure 2.4 is a third generation device used
for enabling low-power, wireless sensor networks available in 2.4GHz. It was
developed by the Crossbow Corporation and offers the following features:

• The MPR2400CA low-power micro-controller is based on the Atmel AT-
mega128L. It offers 128KB program flash memory, 4KB RAM and 4KB
EEPROM.

• Like the TelosB it also offers the Chipcon CC2420 [120] radio transceiver.

• The USB board uses a FT2232C chip from FTDI [48] to connect the USB
interface with the ATMega128L micro-controller shown in Figure 2.4(c).

• The 51-pin expansion connector supports Analog Inputs, Digital I/O, I2C,
SPI and UART interfaces. These interfaces make it easy to connect to a
wide variety of external peripherals.

13

2.1. HARDWARE PLATFORMS

• The node does not provide any sensors or a serial interface. Sensors must
be attached separately. For example, a MTS400CA sensor board can be at-
tached a MicaZ. It provides the following sensors: Temperature & Humidity,
Humidity Accuracy < 3.5%, Temperature Accuracy < 0.5 Deg. C, Baro-
metric Pressure 300mbar to 1100mbar, 3% Accuracy, Ambient Light Sensor
(400-1000nm) response, 2-Axis Accelerometer (ADXL202).

• An additional Micron M25P80 Flash memory [76] provides 512kB of exter-
nal space, e.g., for code or for logging data.

2.1.5 BTnode

(a) Front part[20]. (b) Block diagram[19].

Figure 2.5: BTnode platform.

The BTnode [20] depicted in Figure 2.5 is an autonomous wireless commu-
nication and computing platform and serves as a demonstration platform for re-
search in distributed wireless sensor networks. It has been jointly developed at
ETH Zürich by the Computer Engineering and Networks Laboratory (TIK) and
the Research Group for Distributed Systems. They basically come with the same
hardware features as the widely used MICA2 Mote from Crossbow [27]. However,
they have more SRAM and an additional Bluetooth radio interface. It offers the
following features:

• It contains an Atmel ATmega128L micro-controller[15] (AVR RISC 8 MHz
@ 8 MIPS) with, 128 KByte flash memory, 4 KByte RAM, AND 4 KByte
EEPROM.

• As Bluetooth subsystem is has the Zeevo ZV4002 chip supporting AFH/SFH
Scatternets with max. 4 Piconets/7 Slaves.

• The Chipcon CC1000 [119] is the low-power radio and operates in the ISM
Band 433-915 MHz.

• The CC1000 radio transceiver and the Atmel ATmega128L micro-controller
are connected using the SPI bus.

• Using the UART bus the BTnode can be connected to an external device.

14

2.2. OPERATING SYSTEMS

• Further external interfaces are I2C, GPIO, ADC, Clock, Timer, LEDs

2.2 Operating Systems

We are using two different software platforms. The ADAM (Administration and
Deployment of Adhoc Mesh networks) [113] platform is running on the mesh
nodes. For the sensor nodes we are using the Contiki OS [38].

2.2.1 ADAM

ADAM [113] [112] has been developed to provide a user-friendly, intuitive and
extendable build system for a customized embedded Linux operating system for
WMNs. ADAM can cope with unavailable nodes and automatically repairs con-
figuration and software update errors and does not require a co-located backbone
network for management. It improves connectivity between the network nodes and
avoids costly on-site repairs. The ADAM framework is released under GPLv2 li-
cense [2]. Beside MARWIS, it has been also used in other projects, e.g., CTI-Mesh
[4], WISEBED [105], A4-Mesh [1], and LBA [8].

Concept and Architecture

ADAM uses a (1) decentralized distribution mechanism, (2) self-healing mech-
anisms for safe configuration and software updates and (3) a separation of node
specific configuration and binary software images that are specific for a node type.

• The decentralized mechanism for distributing software and configuration up-
dates is the first main concept of ADAM. Each node periodically pulls new
software or configuration updates from its one-hop neighbors. In this way,
an update is transmitted through the network from one to the next node, in-
dependently from the underlying routing protocol. If an update reaches a
mesh node it is applied automatically.

• The second main concept of ADAM are the self-healing mechanisms, which
include monitoring of the network topology during updates, detection of iso-
lated nodes, and automatic rollback to the latest running software if a soft-
ware update fails to boot properly. For example, if the self-healing mecha-
nism monitors a reduced number of neighbours after lowering the transmis-
sion power, it step-wisely increases the transmission in order to reach at least
predefined network connectivity. If a node detects that it does not have any
neighbours and is thus isolated, it follows an automatic lost node procedure
for re-joining the network. If a software update failed and the node was pre-
vented from properly booting after the update it starts an automatic rollback
process and loads the latest known working software.

15

2.2. OPERATING SYSTEMS

• The third main concept of ADAM is the separation of node specific configu-
ration and binary software images. Each node in an ADAM network contains
two image files: one for the operating system kernel and the binaries, and one
for the configuration, which holds the node specific parts. ADAM even splits
up this configuration image into the normal configuration files and a special
network configuration file, which contains all dynamic network parameters.
As a result ADAM must usually only distribute this small (10KB) network
configuration file and not the whole software image (6MB). This drastically
reduces the total amount of transferred data for an update.

ADAM Build System

The goal of the ADAM build system is to simplify all necessary steps for image
creation. It consists of two tools, namely the build-tool to compile the software and
the image-tool to pack the software correctly into the images.

Figure 2.6: Steps of the build and setup process for a node [113]
.

Figure 2.6 illustrates the necessary steps to build a Linux distribution for an
ADAM mesh node. Step 1 contains the creation of the build environment for the
target platform and the set up with all necessary parameters for the cross compila-
tion process, such as of library and compiler paths. In step 2 the tool-chain for the
cross compiler is set up. The cross compiler is used to compile all software pack-
ages for the target platform in step 3. In step 4, the image-tool is used to generate
the software image for the target platform and individual configuration images for
each node. In the steps 5 and 6, cryptographic key pairs for the distribution engine
and the network configuration for each node are generated. The node-specific keys
and the network configurations are then injected into the configuration image of

16

2.2. OPERATING SYSTEMS

the corresponding node in step 7. In the final step, the generated Linux system
images are loaded on the secondary storage of the new nodes or distributed using
the ADAM distribution engine.

2.2.2 Contiki Operating System

Core Core

Loaded program

RAM

ROM

Device drivers

Language run-time

Symbol table

Dynamic linker

Contiki kernel

Loaded program

Device drivers

Contiki kernel

Figure 2.7: Partitioning in Contiki: the core and loadable programs in RAM and ROM.
[38]

The Contiki OS [38] is a lightweight and flexible operating system designed for
resource constraint embedded systems. It was developed at the Swedish Institute
of Computer Science (SICS). A Contiki system is divided into two parts: the core
and the loadable programs as shown in Figure 2.7. The core consists of the Contiki
kernel, device drivers, a set of standard applications, parts of the C language library,
and a symbol table. All parts of the operating system are written in C. Loadable
programs are loaded on top of the core and do not modify the core. The Contiki
kernel is event-driven and supports a simple first in / first out (FIFO) scheduler. It
does not provide a hardware abstraction layer, but device drivers and applications
can communicate directly with the hardware. Communication between processes
always goes through the kernel. Preemptive multitasking can be added to specific
processes by using an application library. Contiki is highly portable and supports
amongst others the Tmote Sky / TelosB, the MSB / ESB, and the MicaZ sensor
node platforms. In order to communicate with other sensor nodes and to integrate
wireless sensor networks with IP networks, Contiki provides the small TCP/IP
stack called µIP [34] and another lightweight layered communication stack for
sensor networks called RIME [35, 40].

The main characteristics of Contiki can be summarized as:

• Multi-thread processing, which is implemented using a hybrid model to han-
dle the processes.

17

2.2. OPERATING SYSTEMS

• An event-driven kernel where pre-emptive multi-threading uses an applica-
tion library, which is optionally linked with programs that explicitly require
it.

• A set of libraries, which can be loaded to the devices’ memory according to
the application requisites.

• Only one stack to buffer the data in the memory management

• Reprogramming and dynamic linking.

• Small but fully compliant TCP/IP stack called µIP in combination with the
RIME stack (described in Section 2.6.2).

In the next sections we describe the main parts of Contiki, namely the handling
of processes and the scheduling, the reprogramming and the protocol stacks of µIP
and RIME, and the integrated MAC protocols.

Contiki Processes and Scheduling

Most programming environments for sensor nodes are based on an event-driven
model and not on traditional multi-threading. In event-driven systems, programs
are implemented as event handlers. The event-handler is responsible for the exter-
nal or internal events, and has to run to completion. Due to the run-to-completion
semantics, an event-handler cannot execute a blocking wait. On the other hand the
system can use a single, shared stack, which leads to a reduced memory overhead
compared to a multi-threaded system, where memory must be allocated for a stack
for each running program.

Using processes gives the developer the possibility to execute simultaneously
different tasks on only one CPU or micro-controller. The operating system takes
care of switching between the different tasks. The context switch consists of saving
and restoring the state of a process. This is very time consuming, since a lot of data
has to be copied. In this programming style an application is developed as a finite
state machine. Only the different states have to be saved and not the whole stack.
Depending on the state, a specific action is executed.

In Contiki so called protothreads [39] are introduced, which combine normal
processes with event-driven programming. Using protothreads simplifies the de-
velopment of event-driven code, since the application can be described as a linear
sequence of program statements. The blocking wait statement is triggered by the
PT WAIT UNTIL() function. It blocks the protothread, the code execution is
stopped and the next protothread in the process queue is executed. Without this,
and since a protothread consists of an infinite main loop, only one protothread
would be executed and the CPU would be monopolized by busy waiting. Using
the blocking wait statement PT WAIT UNTIL() the developer decides whether
and when a protothread should give away the control of the CPU. This statement
should be used as often as possible to avoid busy waiting. An important side-effect

18

2.3. EVALUATION PLATFORMS

of using a protothread is that all used variables have to be declared global and not
local in the scope of the protothread.

Reprogramming and Run-Time Dynamic Linking

Contiki supports reprogramming of sensor nodes during run-time by using loadable
modules (cf. [37]). With loadable modules, only parts of the system need to be
modified when a single program is changed. A dynamic linker, which is part of the
Contiki OS can link, relocate, and load standard ELF object code files [6].

A loadable module contains the native machine code of the program that is to
be loaded into the system. The machine code in the module usually contains ref-
erences to functions or variables in the system. These references must be resolved
to the physical address of the functions or variables before the machine code can
be executed. This is called linking. Linking can be done either when the module
is compiled (pre-linking) or when the module is loaded (dynamic linking). A pre-
linked module contains the absolute physical addresses of the referenced functions
or variables. In contrary to the pre-linked module, a dynamically linked module
contains the symbolic names of all system core functions or variables that are ref-
erenced in the module. This information increases the size of the dynamically
linked module compared to the pre-linked module.

Additionally, the machine code in the module also contains references to func-
tions or variables within the module itself. The physical address of these functions
will change depending on the memory address at which the module is loaded in the
system. The addresses of the references must therefore be updated to the physical
address that the function or variable will have when the module is loaded. This
process is called relocation. Like linking, relocation can be done either at compile-
time or at run-time.

When a module has been linked and relocated the program loader loads the
module into the system. This happens by copying the linked and relocated native
code into a place in the memory from where the program can be executed.

2.3 Evaluation Platforms

This section we introduce different evaluation platforms we use to evaluate our pro-
tocol against existing protocols. Particularly, we distinguish between two types of
evaluation platform: network simulators and real-world testbeds. Furthermore,
we describe the energy measurement in Contiki OS.

Network simulators are mainly used at the development phase of a protocol.
They provide flexible set ups for wireless sensor networks with different topologies
and different sizes (up to hundreds or thousands of sensor nodes). Experiments
can be repeated many times with the same network conditions. Moreover, the
simulation can be stopped and reseted at any time to identify bugs and problems in
the simulated protocol. Since, the behaviour of a single wireless sensor node can

19

2.3. EVALUATION PLATFORMS

be monitored and visualized the debugging of the protocol implementation is an
easy process.

Due to wide gaps between simulation results and real-world results, the suit-
ability of simulations has been questioned. Contrary to simulations protocols, the
wireless environment does not need to be modelled using a real-world testbed for
wireless sensor networks. Thus, an evaluation of protocols gives much more real-
istic results.

There are a number of existing real-world testbeds for wireless sensor net-
works. Beside the different Wisebed testbeds [105], the Harward University (Mote-
Lab[130]), the Technical University of Berlin (TWIST [51]), the Ohio State Uni-
versity (Kansei [42]), University of Southern California (TutorNet [121]), and the
University of Uppsala (Sensei-UU [92]) are running different wireless sensor net-
work testbeds.

2.3.1 OMNeT++ Network Simulation Framework

For our evaluations we have used the Objective Modular Network Testbed (OM-
NeT++) Network Simulation Framework [9] OMNeT++ is a modular open-source
network simulator and contains core modules, the Graphical User Interface (GUI),
analysis tools and free available extensions such as the INET Framework [11] or
the Castalia project [3]. An advantage of OMNeT++ is the modularity and that
the code is open-source. This allows to add own and external functionality. The
GUI support and the clean design of OMNeT++ helps to ease a straightforward
simulation development process. All modules are written in C++ programming
language and interconnected using the high-level language Network Description
(NED). NED is used to define the network topology as well as to attach different
network protocol modules to a network stack.

We are using the INET Framework, which includes UDP, TCP, and IP support.
To model the radio wave propagation and support IEEE 802.15.4 protocols we use
the Castalia project.

A major challenge of using simulations is to model the radio wave propagation
in way that this reflects the real-world environment. To model the radio wave
propagation we use a free space model for direct waves, which is parametrized
for the physical characteristics of the CC2420 radio transceiver using an OQPSK
modulation of a 2.4 GHz carrier wave. The receiving power (PRdb) in decibel is
calculated by using the transmitting power (PTdb) in decibel and the distance (dTr)
between the sender and the receiver as following formula shows:

PRdb = PTdb + 20log10

(
λ

4 · π · dTr

)
(2.1)

The signal strength corresponds to the calculated receiving power (PRdb). The
total noise is calculated by summing up the receiving power of all other concur-
rently ongoing transmissions, the thermal noise and the receiver noise. The Signal-
to-Noise Ratio (SNR) is the result of this calculation and determines the probability

20

2.3. EVALUATION PLATFORMS

of a bit error. The error probability corresponding to the calculated SNR value is
taken from Castalia [3].

In a real-world environment external interface plays a major role. To consider
these effects we simulate a probability of 15% for concurrently occurring external
interferences by placing device randomly, which transmits with 1 mW (0 dBm).

2.3.2 Wisebed WSN Testbed Controlled by TARWIS

To evaluate our proposed protocols we are using a real-world testbed for wireless
sensor networks called Wisebed. In a testbed for wireless sensor networks the sen-
sor nodes are usually wired connected to a controlling unit. This can be a computer
or a mesh node. With this controlling unit the image is uploaded to the sensor node
and debugging data and statistically data is retrieved from the node. Further, the
user can monitor the behaviour of the sensor node. Our Wisebed site is located in
the building of the Institute of Computer Science and Applied Mathematics at the
University of Bern (IAM). It contains 40 TelosB/TMote Sky sensor nodes. The
Wisebed testbed and including the available sensor nodes placed in the IAM build-
ing are shown in Figure 2.8.

01 02

03

04

05

06

07

09

08

10

11

12

13

14

16

17

15

18

19

20

22
21

24

23

25

26 2740

39

28

29

30

31 32

33

34 35

36

37

38

Figure 2.8: Wisebed testbed at University of Bern.

The Wisebed testbed is controlled by the Testbed Management Architecture for
Wireless Sensor Networks (TARWIS) software [57, 58, 56, 55, 26]. TARWIS is a
Web Services-based management system for the administration and management

21

2.3. EVALUATION PLATFORMS

of research testbeds of wireless sensor networks. It allows a researcher to manage
and administrate experiments using a real-world testbed. A configuration of an
experiment contains the duration, the required nodes and the software images for
the individual nodes. Additionally, the experiment configuration supports so-called
commands to control the behaviour of the sensor nodes during the experiment. To
provide exclusive usage of the sensor nodes during an experiment a reservation
system has been implemented. Furthermore, researchers can monitor the running
experiments and interact with them (using commands).

To store the recorded experiment output and results an XML-based language
called Wireless Sensor Network Markup Language (WiseML) [32] is used. Each
printed output, which a sensor node writes to the serial interface, including a times-
tamp, is written to a WiseML file.

TARWIS offers an intuitive and easy-to-use web-based user interface for the
reservation of sensor nodes, configuration and monitoring of the experiments and
gathering the experiment output.

2.3.3 Energy Measurement

To measure the consumption of energy during a certain time period there are two
possibilities. First, a hardware-based energy measurement method. This method is
based on attaching an oscilloscope to the power source of a wireless sensor node
to measure the current voltage and to calculate the current draw. This method can
be very costly and inadequate with increasing size of the wireless sensor network.
For the whole wireless sensor network this would be very expensive and not prac-
ticable. A second method would be a software-based energy measurement. Such
methods are inexpensive and yield accurate results as pointed out in [36]. Contiki
has a built-in energy measurement tool called Powertrace [36]. It is a software-
based energy measurement, which is implemented as a common protothread and
can be started as soon as the energy measurement begins. To measure the energy
consumption, Powertrace uses so-called energest values [41]. These energest val-
ues are clock ticks of the used micro-controller. They can be converted to a time
value (in seconds) by dividing them by the clock rate of the used micro-controller.
In case of a TmoteSky sensor node, which uses an msp430micro-controller [117],
one second corresponds to 32768 clock ticks. Powertrace provides energest val-
ues for interesting energy consumers like the CPU or the radio transmitter. To get
the energest value for the radio communication, Powertrace simply sums up the
energest values for listening and transmitting of packets during the desired time
period. These energest values describe how much time in clock ticks was spent for
radio communication or common tasks using the CPU.

Based on those energest values, the energy consumption can be calculated by
converting these values to seconds and multiplying them with the used power in
Watt. Multiplying seconds with Watt, which is Joule

Second , gives the energy consump-
tion expressed in Joule. The current consumption for certain actions like listening
for data or transmitting data can be found in the datasheet of the used component

22

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

[30]. For the CC2420 radio transceiver [120] the current consumption for listening
is 21.8 mA, and 19.5 mA for transmitting. To convert these values to Watt, they
need to be multiplied by the current voltage, which is 3.6 V in case of a TmoteSky
sensor node. That amounts to a power consumption of 78.48 mW for listening, and
70.2 mW for receiving.

2.4 Multicast in Wireless Sensor Networks

In this section we are presenting an overview of protocols developed for the support
of multicast. While some of these protocols have been designed at the link layer,
others implemented on the transport layer, multicast routing protocols are located
on the network layer. We are more interested in a classification of the protocols
based on the network function that they support. There is a large group of protocols
especially designed for multicast routing. We can of course not cover all existing
works but we show a representative overview of several important routing protocols
in Section 2.4.1. Focus is kept on wireless networks. Routing is not directly related
to data completeness and thus reliable data transport. Therefore, we have excluded
them as possible candidates to compare SNOMC performance too.

Another big group of protocols we considered are protocols for data dissemina-
tion mainly at the transport layer. These would be more appropriate for comparison
since their main responsibility is the delivery of data and it can be expected that
reliability will be addressed. Not many solutions can be found in the literature
that focus on wireless sensor networks. Most multicast protocols with the support
of reliable data transfer are designed for wireless mesh or ad hoc networks. Such
networks, although relying on wireless transmissions, deal with different terminal
characteristics contrary to WSNs, where energy efficiency and limited processing
resources form the main constraints on communication. Therefore, we decided to
focus on evaluation comparison of traditional protocols for data dissemination in
wireless sensor networks, as described in Section 2.5, which (1) reflect better on
wireless sensor network specifics even if not supporting data reliability and (2) are
more commonly used in test-beds and real-world deployments.

2.4.1 Multicast Routing

In this section we present a number of multicast routing protocols. Although
SNOMC leaves out multicast routing aspects and focusses on reliable and energy-
efficient multicast transport, multicast routing protocols are presented due to rea-
sons of completeness. Table 2.1 summarises the characteristics of the protocols in
terms of the affected protocol layer, the addressed type of network, and support of
reliability and energy-efficiency.

The first five presented approaches are especially designed for multicast rout-
ing in wireless sensor networks. They neither support reliability mechanisms nor
energy-efficiency.

23

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

Table 2.1: Overview over multicast routing protocols.

protocol affected layer addressed network reliability energy
VLM2 [106] network/transport WSN no no

[46] network/transport WSN no no
RBMulticast [43] network WSN no no
TinyADMR [95] network WSN no no

AOM [24] network WSN no no
CGM [64] network WSN no no
GMR [99] network WSN no no

GMREE [100] network WSN no yes
HGMR [62] network WSN/MANET no no

[132] network WSN no yes
MERLIN [106] mac/network WSN yes no
StateSync [49] network/transport WSN yes no

[63] network 802.11/MANET no no

A multicast protocol for wireless sensor nodes is VLM2 (Very Lightweight
Mobile Multicast) [106]. VLM2 addresses on routing in that it provides both
downstream routing in the form of multicast (and broadcast and unicast) as well
as upstream routing in the form of unicast, which suites to the asymmetric topol-
ogy of sensor networks rooted in a base station. Further, it focusses on mobility
of wireless sensor nodes and its lightweight footprint. The evaluation of VLM2

was made via simulation, but it was not indicated neither which simulator nor
which simulation parameters were used. The performance of VLM2 was also not
compared to other protocols. Afterwards, VLM2 was implemented on real sensor
nodes, namely MICA sensor motes [27] to form a mobile multicast-based wireless
sensor network. Besides the evaluation, the major drawback of VLM2 is that there
is no reliability mechanism implemented.

In [46] the authors present an effective all-in-one solution for unicasting, any-
casting and multicasting in wireless sensor and mesh networks. The paper studies
only routing schemes and proposes a distributed approximation algorithm to con-
struct a distribution tree. The paper only describes the algorithm formally and
provides no implementation or evaluation of it.

Another multicast routing protocol for wireless sensor networks, called RB-
Multicast, is proposed in [43]. The authors argue that in wireless sensor networks
where traffic is bursty, with long periods of silence between the bursts of data, an
apriori creation of multicast trees (where the sensor nodes have to hold state infor-
mation) adds a large amount of overhead to the sensor nodes for no benefit to the
application. Therefore, RBMulticast is a stateless, receiver-based multicast proto-
col, which simply uses a list of multicast members, integrated in packet headers,
to enable receivers to decide the best way to forward multicast traffic. RBMul-

24

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

ticast was implemented on TinyOS’s TOSSIM [68] simulator and for real-world
experiments in TinyOS [66]. The simulation and experimental results showed that
the protocol provides high success rates in a stateless operation. The evaluation
does not include comparison to other protocols. Drawbacks of RBMulticast are
that it is only focussed on routing and thus there are no reliability mechanisms
implemented.

The authors of [95] adapt ADMR (Adaptive Demand-driven Multicast Rout-
ing), a multicast routing protocol for MANETS, for wireless sensor networks. They
showed that adapting such a protocol into real-world implementations on wire-
less sensor nodes is a challenging task due to the resource-constraint limitations
of sensor nodes. TinyADMR was implemented on MicaZ [28] nodes using the
TinyOS operating system. The real-world impact of path selection metrics, ra-
dio link asymmetry, protocol overhead, and limited routing table size was shown.
Since TinyADMR is an multicast routing protocol any reliability mechanisms were
not addressed.

The paper [24] addresses source routing for overlay multicast in wireless sensor
and ad-hoc networks. They state that the intuitive idea of using multiple unicasts
to disseminate the message over the multicast overlay does not take advantage of
the broadcast nature of radio transmission. Therefore, they argue that overlay mul-
ticast must be matched by the routing and propose Aggregation Overlay Multicast
(AOM). The basic idea of AOM is to first build a data delivery tree from the source
node to all the member nodes. The intermediate member nodes keep track of the
parent and child relationship. When the source multicasts a message, the inter-
mediate member nodes prepare their own header and relay the message through
source routing. Thus, routing is stateless. The evaluation of AOM is done using
the GloMoSim simulator [7]. They compared AOM with the Differential Desti-
nation Multicast (DDM) [61] and showed that AOM improves energy efficiency
and balances the energy consumption better. Since AOM is a multicast routing
protocol, there are no reliability mechanisms integrated.

The following five protocols can be classified as geographic multicast routing
protocols. The construction of the distribution tree is based on the geographic
position of the sensor nodes. All protocols do not take reliability into account.

Paper [64] addresses the challenges of multicast applications with large-scale
groups in large-scale wireless sensor networks. An important issue for energy
saving in geographic multicasting is to obtain location information of destination
nodes and the efficient construction of the geographic multicast tree. To solve this
problem the whole network is divided into many multiple small areas and a leader
node in each area manages the location information of destination nodes in its area.
Thus, hierarchical geographic multicast trees have a higher tree, consisting of the
source node and the leader nodes, and a lower tree consisting of a leader node
and destination nodes in the area of the leader node. The problem is that finding
location information of such leader nodes through global location search at a source
consumes a lot of energy. To avoid global location search the CGM (Consecutive
Geographic Multicasting) protocol proposes a local search based member location

25

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

service and consecutive multicast tree expansion algorithm. The location service
is efficiently minimizing the searching costs for location acquisitions of multicast
members. The consecutive multicast tree expansion algorithm enables to avoid
the data detour problem.The authors evaluate CGM using the Qualnet network
simulator [10] and show that CGM is more scalable than other protocols in terms
of network size and also constructs efficient multicast tree that reduces the data
detouring. The protocol only focusses on geographic routing. There is neither a
data dissemination scheme proposed nor any reliability mechanism.

The authors of [99] present geographic multicast routing (GMR), a multicast
routing protocol for wireless sensor networks. The approach introduces the ideas
of previous geographic unicast routing schemes to multicast routing schemes to
be able to to efficiently deliver multicast data messages to multiple destinations.
Since, GMR only needs information provided by neighbours, it is a fully-localized
algorithm. Further, it does not require any type of flooding throughout the network.
The main idea of GMR is that each node propagating a multicast data message
only needs to select a subset of its neighbours as relay nodes towards destinations.
The cost-aware neighbour selection at each routing step is based on a greedy set
merging scheme. It allows to find a good trade-off between the optimality of the
multicast tree, and the efficiency of data delivery. The evaluation of GRM is based
on simulations. The results of the simulation show that GMR outperforms different
variants of PBM [75] in terms of cost of the trees and computation time over a vari-
ety of networking scenarios. One drawback of the evaluation is that the simulation
is based on a perfect MAC layer without any collisions.

The same authors extend GMR addressing energy-efficiency and propose an
energy-efficient multicast routing protocol called GMREE. The construction of the
multicast trees is based on a greedy algorithm using local information. The selec-
tion of relay nodes from the neighbourhood takes not only the minimization of the
energy into account but also the number of relays selected. Nodes only select re-
lays based on a locally built and energy-efficient underlying graph reduction such
as Gabriel graph (GMREE GG), enclosure graph (GMREE EG) or a local shortest
path tree (GRMEE SPT). The evaluation of GMREE is done using a custom-made
Java simulator for geographic routing. The simulation results show that the pro-
posed protocol outperforms the traditional energy-efficient multi/unicast routing
over a variety of network densities and number of receivers.

Another geographical multicast routing protocol is proposed in [62]. The pro-
posed Hierarchical Geographic Multicast Routing (HGMR) protocol combines the
key design concepts of GMR [99] and HRPM [31]. GMR improves the forwarding
efficiency by exploiting the wireless multicast advantage as described above, but
it suffers from scalability issues when dealing with large sensor networks. HRPM
reduces the encoding overhead by constructing a hierarchy at virtually no main-
tenance cost via the use of geographic hashing but it is energy-inefficient due to
inefficiencies in forwarding data packets. The proposed HGMR is a new location-
based multicast protocol and is optimized for wireless sensor networks by pro-
viding both energy-efficient forwarding efficiency as well as scalability to large

26

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

networks. The evaluation of HGMR is done using the GloMoSim simulator [7]
and showed that HGMR exhibits the strength of both GMR and HRPM. The au-
thors state that HGMR is optimized for wireless sensor networks but the simulation
scenario is using 802.11. This does not reflect the requirements for wireless sensor
networks.

Another energy-efficient multicast routing algorithm, which is based on geo-
graphic routing is proposed in [132]. The algorithm defines the multicast region
as a rectangle that has the smallest area but covers all destination nodes. An ac-
cess point is selected from the rectangle as root of broadcast tree. The algorithm
includes two parts. The first one is to seek a minimal energy path from the sink to
the access point based on the idea of dynamic programming. The second one is to
search for a broadcast tree between the access point and the destination nodes in
the multicast region. The authors evaluate the algorithm analytically and compared
it to pure flooding and SAM [134]. The results indicate that the proposed algorithm
has better performance on energy consumption and success rate of tree setup.

Both following protocols take reliability mechanisms into account. To sup-
port reliability not only the network layer is affected but also the mac layer or the
transport layer respectively.

The authors of [98] address the combination of energy-efficient MAC proto-
cols and routing protocols in wireless sensor networks and propose the MERLIN
(MAC and Efficient Routing integrated with Support for Localization) protocol.
MERLIN integrates MAC and routing features into a single architecture. MER-
LIN employs a multicast upstream and multicast downstream approach to relaying
packets to and from the gateway. On the MAC layer it utilizes Low Power Listening
(LPL), Reception and transmission errors are notified by using asynchronous burst
acknowledgements (BACK) and negative burst acknowledgements (BNACK). For
the proper operation of MERLIN the sensor nodes need to be time synchronized,
which leads to a division of the network into timezones. Together with an appro-
priate scheduling policy, this enables the routing of packets to the closest gateway.
MERLIN has been evaluated against S-MAC [133] in combination of the Eyes
Source Routing (ESR) [131] protocol using the OMNeT++ simulator. The evalu-
ation showed that the use of MERLIN leads to both significant energy saving and
latency reduction with respect to the node duty cycle. This paper [98] focusses
on multicast routing and addresses the challenges of using a energy-saving MAC
protocol. The reliability mechanisms are left at the MAC protocol. The evalu-
ation only shows results about energy consumption and latency and left out any
statements about reliability such as packet loss, etc.

The authors of [49] demonstrate StateSync, an abstraction for reliable dissemi-
nation of application state through a multi-hop wireless network. Using StateSync,
the complexity of multihop wireless network applications and services can be re-
duced to processing a gradually evolving set of table entries, subject to minimal
consistency checks. The StateSync abstraction defines a data model based on key-
value pairs, a reliability model with probabilistic latency bounds, and an event-
driven publish/subscribe API. The advantage of StateSync is that it defines a re-

27

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

liable transport that can protect a large collection of state variables with a single
aggregate refresh. There are three variants of StateSync: SoftState, LogFlood, and
LogTree. SoftState is a very simple implementation based on periodic re-flooding
of the complete state with no retransmission mechanism. LogFlood introduces a
log mechanism to enable publication of updates to existing state and implements
a local retransmission protocol, while using a flooding mechanism to push data
with low latency. LogTree introduces an overlay network consisting only of the
most reliable bi-directional links, and forms distribution trees via that overlay. The
evaluation of the three StateSync variants is done using simulation and a wireless
testbed in terms of network traffic and latency. The results show that the LogTree
variant outperforms the other two variants.

The last presented paper [63] compares two classical multicast routing proto-
cols for MANETs the Multicast Ad-hoc On-Demand Distance Vector (MAODV)
protocol and the On-demand Multicast Routing (ODMRP) protocol. While MAODV
builds and maintains a multicast tree based on hard state information, ODMRP
maintains a mesh based on softstate. The simulation results of this study show that
in many scenarios ODMRP achieves a higher packet delivery ratio, but results in
much higher overheads. In an environment where the network topology changes
very frequently, mesh-based protocols outperform tree-based protocols, due to the
availability of alternative paths, which allow multicast datagrams to be delivered to
all or most multicast receivers even if links fail.

Most of the multicast routing protocols presented in this section are designed
for wireless sensor networks. Although they focus on multicast routing aspects,
they do not take reliability into account. In contrast, our proposed overlay multicast
protocol focusses on reliable and energy-efficient multicast transport and leaves
routing aspects out.

2.4.2 Multicast Transport

In this section we present studies on the topic of multicast transport. Table 2.2
shows the characteristics of the protocols in terms of the affected protocol layer,
addressed type of network, and support of reliability and energy-efficiency. There
are only few multicast transport protocols designed especially for wireless sen-
sor networks. Therefore, we also choose protocols designed for core networks,
for general wireless environments, and WLAN. The purpose of this section is to
evaluate, if there are existing multicast transport protocols that can be used as a
comparative base for the SNOMC protocol.

The first presented paper describes a reliable multicast protocol for core net-
works. It has been selected, because it addresses reliability and light-weight ses-
sions.The paper [45] describes Scalable Reliable Multicast (SRM), a reliable mul-
ticast framework. Although the framework does not focus on wireless networks it
addresses light-weight sessions. The proposed algorithms of this framework are ef-
ficient, robust, and scale well to both very large networks and very large sessions.
The SRM design includes IP multicast group delivery, end-to-end and receiver-

28

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

Table 2.2: Overview over multicast transport protocols.

protocol affected layer addressed network reliability energy
SRM [45] transport/application core yes no

RMDP [93] transport core yes no
RM2 [25] transport wireless environment yes no

[23] mac wireless environment no no
MHARQ [71] transport/application WLAN yes no

SRB [111] mac WLAN yes no
HCP [80] transport MANET yes no

RMAC [107] mac MANET yes no
BAM [106] mac/transport WSN no yes
RMD [72] mac/transport WSN yes yes

[109], [108] network WSN no no

based reliability, and application level framing. It has been prototyped in wb, a
distributed whiteboard application, which has been used on a global scale with ses-
sions ranging from a few to more than 1000 participants. The paper has focused
on SRM’s request and repair algorithms for the reliable delivery of data but it has
not proposed a complete set of algorithms for implementing local recovery. The
evaluation via analysis and simulation of SRM showed that the performance of a
reliable multicast delivery algorithm depends on the underlying topology and op-
erational environment. Based on the results, the authors demonstrate an adaptive
algorithm that uses the results of previous loss recovery events to adapt the control
parameters used for future loss recovery. With the adaptive algorithm, the reli-
able multicast delivery algorithm provides good performance over a wide range of
underlying topologies.

The next three papers present approaches for multicast transport for general
wireless environment. It is not specified, for which wireless environment they are
addressed. The authors of [93] present Reliable Multicast Data Distribution Proto-
col (RMDP), which also focusses on wireless environments. They argue that ARQ-
based protocols perform very poorly as the number of receivers grows. Therefore,
in the proposed protocol the reliability is based on the use of Forward Error Cor-
rection (FEC) techniques. In fact RMDP is a hybrid FEC+ARQ protocol. FEC
encoding is used to improve the behaviour of the protocol in presence of large
groups of receivers. Further, it reduces the amount of feedback from receivers.
ARQ is used to deal with those cases, where the default amount of redundancy
does not suffice to complete reception. The performance evaluation is done only
analytically and there is not comparison to other protocols. The protocol has been
implemented for the use in the MBone, there is no implementation for a wireless
environment. However, the authors argue that the protocol is well-suited to the use
with mobile equipment because of its simplicity, robustness to losses, moderate

29

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

demand for feedback, and scalability.
The authors of [25] focus on reliability of multicast transmissions in wireless

environments. Existing multicast protocols adopt a static packet retransmission
scheme (unicast or multicast) to retransmit lost packets. This often leads to perfor-
mance loss due to wasting bandwidth resources. Thus, this paper analyses retrans-
mission costs where two main parameters are used for the comparison: the network
load and the amount of duplicate packets generated. Further, the authors mention
that a careful continuous monitoring and control is fundamental in wireless mobile
environments. Outcome of the analysis was a reliable multicast protocol called
RM2. RM2 has been implemented in the ns-2 simulator and later compared to
Scalable Reliable Multicast (SRM) for fixed networks. The evaluation showed that
RM2 outperforms SRM in terms of link utilization, number of duplicated pack-
ets, and arrival times. Limitation of this evaluation is that it mixes fixed networks
and wireless networks. Transmission errors are caused by buffer overflow in the
routers (main source for Internet packet loss) and transmission packet error rate
(reflects the link error probability). Furthermore, the approach focusses on wire-
less environments but not specially on wireless sensor networks. Therefore, it is
not a candidate for a comparison with SNOMC.

The authors of [23] designed transmission strategies for medium access con-
trol (MAC) layer multicast. The goal of this work is to maximize the utilization of
available bandwidth. Due to the multicast nature of transmissions, the throughput
is not equivalent to attaining the stability region of the system or the minimization
of loss. The authors show that threshold-based transmission policies maximize the
throughput depending on stability and loss constraints. They present an adaptive
approach to compute the parameters of the optimum policies without any knowl-
edge of system statistics, the senders only need to know the number of ready re-
ceivers in each slot, and not the individual readiness states of the receivers. The
limitations of this approach are that it is considered that each packet can be trans-
mitted only once at the MAC layer. Thus, retransmission or any other reliability
mechanism are not considered. Further, the evaluation is only made by a numerical
analysis. There are no implementations of the approach to prove the performance
in real-world against other protocols.

The following two protocols focus on multicast transport in WLAN/802.11.
The authors of [71] propose a reliability mechanisms for video multicast over wire-
less LANs called Merged Hybrid ARQ with staggered FEC (MHARQ). MHARQ
combines the advantages of receiver-driven staggered FEC and hybrid ARQ schemes
to compensate the large dynamic range of WLAN channels and to achieve high
reliability, scalability and wireless bandwidth efficiency for video multicast. Re-
ceivers can dynamically join or leave FEC multicast groups based on the chan-
nel conditions. In addition, when delayed FEC packets are not enough to recover
the lost packets, the receivers can send a hybrid ARQ request (ARQ NACK) to
the video server. The protocol has been evaluated using the ORBIT radio grid
testbed [91]. Three error recovery schemes for video delivery have been com-
pared: Staggered Adaptive FEC (SAFEC), Hybrid ARQ (HARQ), Merged Hybrid

30

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

ARQ (MHARQ). The results show that MHARQ improves wireless bandwidth ef-
ficiency and scalability for reliable video multicast, compared with existing reliable
multicast schemes.

Also in the area of 802.11 is the following protocol located. The authors of
[111] address that the IEEE 802.11 MAC layer does not support reliable multicast,
which is the limiting factor in the efficacy of multicast applications. They propose
a Slot Reservation based Reliable Multicast (SRB) protocol that adds a reliability
components to the existing multicast protocol in the 802.11 MAC. It is based on
the existing DCF support in the IEEE 802.11 MAC to seamlessly incorporate an
efficient reliable multicast mechanism. The protocol uses RTS-CTS-DATA-ACK
exchange with a slot reservation based scheduling mechanism to ensure reliable
multicast data delivery. The protocol has been evaluated using the NS-2 [78] sim-
ulator and compared to Batch Mode Multicast MAC (BMMM) [115] protocol.
The results show that SRB protocol outperforms BMMMM in terms of delivered
throughput in various scenarios.

Another group of protocol are designed for multicast transport in MANETs.
The authors of [80] address the challenges of multicast transport of multicast

transport in MANETs because the source must provide congestion control and re-
liability not only for a single but for a distribution tree. In MANETs this problem
increases due to contention, spatial reuse, and mobility. To solve the problems,
the authors design HCP, a Hop-by-hop multiCast transport Protocol, which pushes
transport functionality into the core of the network. Because HCP uses credit-
based, hop-by-hop congestion control, it can quickly determine the appropriate
sending rate when network conditions change. One problem, which the authors
address is that multicast packets are forwarded using broadcast. This leads to a
high packet loss rate when it must contend with TCP traffic, which uses often the
RTS/CTS exchange. Instead, HCP uses a form of semi-reliable broadcast. Each
time it forwards a packet it chooses one of the one-hop receivers and forwards the
packet using the same RTS/CTS exchange as a unicast packet. This ensures that
one receiver gets the packet reliably, and the other receivers attempt to receive the
packet through overhearing the packet. Thus, many packets are transmitted reliably
by the MAC layer. Furthermore, caching provides local recovery and supports dif-
ferent rates within the same multicast tree. The evaluation of HCP is done using
the NS-2 simulator. They compare HCP to an application-layer multicast that uses
an overlay of ATP [116]. The results show greater efficiency as application-layer
multicast.

A reliable MAC protocol called RMAC for wireless ad hoc networks is pre-
sented in paper [107]. One of the main ideas of the protocol is the usage of variable-
length control frame to stipulate an order for the receivers to respond. With this
the problem of feedback collision is solved. Beside this, the usage of receiver busy
tone (RBT) for preventing data frame collisions is extended to multicast scenar-
ios. Further, acknowledgement busy tone (ABT) is used to acknowledge the data
frames. Additionally, RMAC provides both reliable and unreliable services for
unicast, multicast, and broadcast communication. RMAC has been evaluated us-

31

2.4. MULTICAST IN WIRELESS SENSOR NETWORKS

ing GloMoSim [7]. RMAC has been compared to BMMMM [115] and it has been
shown that RMAC not only provides higher reliability but also involves lower cost.

The only two approaches about multicast transport for wireless sensor networks
found in the literature are presented as follows.

In [79] a multicast protocol called BAM (Branch Aggregation Multicast) is pre-
sented. The approach focusses on multicast for wireless sensor networks. BAM is
composed of two aggregation techniques. One is single hop aggregation (S-BAM)
and the other is multiple paths aggregation (M-BAM). S-BAM supports single-
hop link-layer multicast and is designed to reduce redundant communication at
every branch. It aggregates radio transmission within a single-hop and enables just
single transmissions to multiple intended receivers. M-BAM supports multi-hop
multicast and is designed to reduce the number of branches. It aggregates multiple
paths into fewer ones and limits the range of radio transmission. The combination
of S-BAM and M-BAM is called SM-BAM. The authors evaluated BAM in three
ways, qualitative evaluation by theoretical analysis, quantitative evaluation through
computer simulations, and experiments using CrossBow’s MICA2 [27]. In the real-
world experiments the authors compare the three variants of BAM with Directed
Diffusion [60] with B-MAC [86] as underlying MAC protocol and show that they
outperform Directed Diffusion in terms of energy-consumption. Limitations of
BAM are that they do not provide any reliability mechanisms. BAM inspired us to
use aggregation as well as link layer multicast on the branching nodes in the design
of SNOMC. The link layer multicast is called broadcast optimization in SNOMC.

The paper [72] addresses the problem of reliability of data dissemination, par-
ticularly in the case of total or partial network reconfiguration. The authors propose
RMD (Reliable Multicast Data Dissemination) protocol targeting multicast groups
of collaborating objects. The protocol focuses on guaranteeing the data transmis-
sion rather than improving the delivery ratio. The multicast data dissemination is
ensured using tree-based reliable multicast protocols (TRMP) [65]. As reliability
mechanism local ACKS and NACK are used to trigger retransmissions. Aggre-
gated ACKs indicate correct overall reception to the source. To improve reliability
a cross layer design is proposed. The MAC layer provides neighbourhood infor-
mation, local (one-hop) ACKs and retransmissions (timeout or ARQ based) and
interaction points (callbacks) for signalling local ACKs to the dissemination/trans-
port layer. The dissemination protocol fragments the message, ensures end-to-end
delivery through aggregate ACKs, and controls the MAC layer for the listening
phase in order to save energy. RMD has been evaluated analytically and through
simulation. The results show the benefits of using cross-layer interactions between
dissemination and MAC. Further the authors compare RMD with PSFQ [129] us-
ing the OMNeT++ simulator. It has been shown that RMD ensures the data de-
livery to all recipients even under high error rates, while consuming 2-3 times less
energy, and maintaining a comparable delay. Similar to SNOMC, RMD also uses
NACKs to request retransmissions. RMD would be a fitting candidate for a com-
parison with SNOMC. But there is no real-world implementation available we left
it out and focussed on the comparison with common data dissemination protocols

32

2.5. DATA DISSEMINATION PROTOCOLS

(see Section 2.5).
The last presented paper does not present a protocol but a study about using IP

multicast in wireless sensor networks.
The authors of [109] and [108] address general challenges and benefits of us-

ing IP and IP multicast in wireless sensor networks. They made an evaluation from
two multicast routing protocols, namely MAODV (Multicast Ad hoc On-Demand
Distance Vector) [96], SSM (Source-Specific Multicast) [17], one unicast routing
protocol, namely AODV (Ad hoc On-Demand Distance Vector) [82], and pure
broadcast. They used the NS-2 [78] simulator and showed that both multicast pro-
tocols outperform the AODV and pure broadcast in terms of number of forwarded
packets and energy consumption. The results clearly point to the benefits of the
use of IP multicast in processing and energy-restricted environments such as in
wireless sensor networks. This paper is just a study about the potential usage of IP
multicast in wireless sensor networks. There is no own approach for a multicast
protocol.

The presented multicast transport protocols are mainly designed for other net-
works as wireless sensor networks. It can be stated that besides BAM and RMD
no multicast transport protocols for wireless sensor networks can be found in liter-
ature. RMD is the only protocol which addresses the same problems as SNOMC
does (reliability and energy-efficiency). Thus it would be the only candidate for a
comparison with SNOMC, our overlay multicast transport protocol. Due to there
is not real-world implementation of RMD at the time of the SNOMC evaluation
available, we decided to evaluate SNOMC against common data dissemination pro-
tocols, such as Flooding, Multipoint Relay (MPR), Directed Diffusion, and PSFQ.
These data dissemination protocols are presented in the next Section 2.5.

2.5 Data Dissemination Protocols

In this section we present a subset of the many data dissemination protocols exist-
ing in the literature on wireless sensor networks. These protocols has been selected
for the evaluation of SNOMC, because they are common data dissemination pro-
tocols used in wireless sensor networks.

2.5.1 Directed Diffusion

One data dissemination scheme, commonly used in wireless sensor networks, is
Directed Diffusion [60]. This communication protocol follows different principles
than other protocols. The main difference is the data-centric routing in that all
communication is for named data. Data generated by sensor nodes is named by
an attribute-value pair. Directed diffusion consists of several elements: naming,
interest propagation, gradient establishment, data propagation, reinforcement, and
repair.

Naming is realized as follows. The task descriptions are named by a list of

33

2.5. DATA DISSEMINATION PROTOCOLS

attribute-value pairs that describe a task. Attributes are, e.g. the type of data,
interval, duration, and rectangle. The type of data describes the type of the data
to be collected. The interval attribute indicates the event data rate. The duration
describes the time period of the data collection. The rectangle attribute describes
the area of interest.

The task description leads to an Interest Propagation. An Interest is transmit-
ted from a sink node. For each task the sink periodically broadcasts the Interest.
Figure 2.9 shows the propagation of Interests within the sensor network.

source
node

sink
node

intermediate
nodes

event

interests

Figure 2.9: Directed Diffusion: interest propagation.

Every node maintains an interest cache, where each item in the cache corre-
sponds to an interest. Interest entries in the cache do not contain information about
the sink but about the immediate previous hop. An entry in the interest cache
has several fields. A timestamp field indicates the timestamp of the last received
matching interest. Further, it contains an interval field and an expiresAt field. Ad-
ditionally, it contains one or more gradient fields, one field per neighbour. Each
gradient contains a field datarate. The value for the datarate is requested by the
specified neighbour and derived from the interval attribute of the interest. It also
contains a duration field, derived from the timestamp and expiresAt attributes of
the interest. It indicates the approximate lifetime of the interest.

When an interest arrives at a node, it checks if the interest exists in the cache. If
not, the node creates an interest entry. The fields from the interest cache entry are
taken from the receiver interest. This entry has a single gradient for the neighbour
from which the interest was received including the specified event data rate. If
there exists an interest entry, but no gradient for the sender of the interest, the node
adds a gradient with the specified value. Further, it updates the entries and fields
for the timestamp and the duration accordingly. If there exists both an entry and a
gradient, the node simply updates both fields.

Gradient Establishment happens after the interests are flooded through the
wireless sensor network. Each pair of neighbour nodes establishes a gradient for
each other. Further, a gradient specifies both a data rate and a direction in which
to send events. Thus, the interest propagation sets up routing information in the

34

2.5. DATA DISSEMINATION PROTOCOLS

source
node

sink
node

intermediate
nodes

event

gradients

Figure 2.10: Directed Diffusion: gradient establishment.

wireless network sensor network to transmit data towards the sink. Figure 2.10
shows the established gradients.

The next step is Data Propagation. A sensor node located within the rect-
angle propagated by the interest starts sensing and collecting the samples in the
given interval. If an event is detected the interest cache is checked if there is a
fitting interest for this type of event. Then it creates a data message, which will
be transmitted to the relevant neighbour using unicast transmission. A node that
receives a data message from its neighbours tries to find a matching interest entry
in its data cache. This cache keeps track of recently seen data items to avoid loops.
To determine the data rate of an event the sensor node can determine this checking
the stored data in the data cache. To forward a received data message, a sensor
node needs to examine the matching gradient in the interest cache.

source
node

sink
node

intermediate
nodes

event

Figure 2.11: Directed Diffusion: reinforcement.

The path from the source to the sink can be established using Reinforcement.
The data from the sources to the sink arrive at the sink via potentially different
paths. Thus, the different paths cause high traffic and lead to collisions and lost
packets. To avoid this the sink reinforces the neighbour from which the sink wants
to get the data by resending the original interest message but with a smaller interval

35

2.5. DATA DISSEMINATION PROTOCOLS

(higher data rate). When the neighbour node receives this interest, it notices that
it already has a gradient for this neighbour but with a lower data rate. Thus, this
node must also reinforce at least one of its neighbours. The so selected path has a
low-delay. An example of reinforcement is shown in Figure 2.11.

source
node

sink
node

intermediate
nodes

event

A

B

Figure 2.12: Directed Diffusion: multiple sinks.

When two sinks express identical interests, interest propagation, gradient es-
tablishment, and reinforcement work in the same way as described above. The
situation is shown in Figure 2.12. Sink A has already reinforced a path to the
source. When another sink B propagates an identical interest, the new sink can
also use reinforcement to establish the path towards the source. Directed Diffusion
has no rule to combine paths when they go (partly) through the same sensor nodes.

source
node

sink
node

intermediate
nodes

event

C
D

E

Figure 2.13: Directed Diffusion: local repair.

If an intermediate node on the established path fails, a Repair of the path is
needed. The situation is shown in Figure 2.13. Sensor node C detects a poor link
quality from its neighbour node D by detecting that the data rate decreases. To
solve the problem sensor node C reinforces the neighbour node E. Sensor node E
then also reinforces its neighbour node and so a new path has been established.

36

2.5. DATA DISSEMINATION PROTOCOLS

2.5.2 Pump Slowly, Fetch Quickly (PSFQ)

Contrary to many data dissemination protocols that focus on many-sensors-to-one-
sink communication PSFQ [129] addresses the case of one-sink-to-many-sensors
communication. This communication direction is more common for network man-
agement tasks such as code updates and configuration of sensor nodes. While the
sensors-to-sink path may tolerate information loss due to the highly correlated data,
the reverse path requires end-to-end reliability to ensure the successfully dissem-
ination of, e.g., a code update to each sensor node. The PSFQ protocol provides
three main operations: pump operation, fetch operation, and status reporting.

S RF
data_1

data_2
Tmin Tmin

data_3

Tmax
data_1

data_2

data_3
Figure 2.14: PSFQ: pump operation.

Since reliability is generally more important than transmission time, the main
idea of PSFQ’s pump operation is to slowly inject packets into the network to
avoid congestion situations. The operation is shown in Figure 2.14. A sensor node
S transmits packets to its neighbour node F. Sensor node F relays this information
to sensor node R. To schedule the transmission times of the sensor nodes along
the path two timers are used. A sensor node broadcasts packets every Tmin to its
immediate neighbours. After sensor node F receives a packet it relays it after a
random wait time, which is selected between Tmin and Tmax. This duration between
packet transmissions allows sensor nodes to recover missing packets. Moreover,
the random delay allows a reduction in the number of redundant broadcasts of the
same packet by the neighbours. If the packet is forwarded by one of the nodes,
other neighbours suppress their transmissions.

In case of packet errors, PSFQ’s fetch operation performs aggressive hop-by-
hop recovery at each sensor node to fetch the lost packets from neighbour nodes.
The fetch operation is illustrated in Figure 2.15. When sensor node F detects a lost
packet, it immediately broadcasts a NACK message to its neighbours. If the NACK
message gets lost and sensor node F does not receive any reply within a period of
Tr, where Tr ¡ Tmax, it continues sending NACK messages. If sensor node S has the
packet cached, it rebroadcasts the packet to sensor node F in an interval between
(1/4)Tr and (1/2)Tr. To prevent message implosion, PSFQ limits NACK message
transmission to the one-hop neighbourhood. Thus, NACK messages are not trans-
mitted via multiple hops. PSFQ relies on the sequence number of the transmitted
packets to detect a loss packets. Since, a data message does not include the overall

37

2.5. DATA DISSEMINATION PROTOCOLS

S RF
data_1

data_2
Tmin

data_3

data_1

Tr
nack

data_2

Figure 2.15: PSFQ: fetch operation.

number of packets in the flow, a loss of the last packet can not be detected. For
this case, PSFQ employs a proactive fetch operation, where the receivers follow a
timer-based fetch operation. The operation is shown in Figure 2.16. Sensor node F
does not receive data packet number three within a time period Tpro, it broadcasts
a NACK message for this packet to its neighbours.

S RF
data_1

data_2
Tmin

data_3 Tpro

nack

data_3

Figure 2.16: PSFQ: pro-active fetch operation.

Finally, there is the report operation, which introduces an end-to-end error
control mechanism. The sink node requests feedback from the sensor nodes by
setting a report bit in the packet header. When the sensor nodes receive this packet,
they respond immediately with a report message. The report message is forwarded
towards the sink node and each node on the path adds its status information to this
report message.

To summarize, PSFQ provides with its pump operation an effective mechanism
to limit congestion. Although, the fetch operation introduces hop-to-hop reliability,
end-to-end reliability is not provided.

2.5.3 Flooding

Several strategies can be used for data delivery from one sender node to many
receiver nodes. The simplest strategy is flooding, where data is transmitted using

38

2.5. DATA DISSEMINATION PROTOCOLS

broadcast communication mechanisms.

sender
node

receiver
nodes

forwarding
nodes

Figure 2.17: Flooding.

An example of flooding is shown in Figure 2.17. The sender starts to broadcast
the first packet. Each intermediate node re-broadcasts the packet until the packet
arrives at the receiver nodes. To avoid infinite re-broadcasting of packets, resulting
in a broadcast storm, loop prevention is needed. The loop prevention mechanism
for data messages is very simple. Each packet has an identifier (sequence number).
If a packets arrives at an intermediate node and was already forwarded it has been
dropped.

Flooding is, however, inherently very inefficient, energy consuming, and unre-
liable.

2.5.4 MPR

Multipoint Relay (MPR) is a data dissemination protocol, which is also broadcast-
based like Flooding. In contrast to Flooding, MPR tries to reduce the number of
forwarding intermediate nodes with the goal of reducing the amount of collisions.
In general it can be said that less collisions lead to a faster data transmission.

In MPR only a subset of sensor nodes (so called multipoint relays) rebroadcast
messages. The relays are chosen based on local knowledge at each node of its two-
hop neighbourhood. Each sensor node calculates its own set of relay nodes, that is
the set of its one-hop neighbours, reaching most of its two-hop neighbours.

Starting from sensor node 0 the set of relay nodes has to be found to reach the
nodes 19 and 23. Via sensor node 1 sensor node 0 can reach one two-hop neigh-
bours (node 4) and via sensor node 2 it can reach two two-hop neighbours (nodes 5
and 6). Most two-hop neighbours can be reached via node 3, namely nodes 4, 5, 6,
and 7. Therefore, sensor node 3 joins the set of relay nodes and selects itself as the
next one-hop neighbour with which the most two-hop neighbours can be reached.
The next node in the relay set would be node 7. Node 16 is required to reach node
17. Figure 2.18 shows the result of the algorithm.

39

2.5. DATA DISSEMINATION PROTOCOLS

0

sender
node

receiver
nodes

forwarding
nodes

0

1

2

3

4

6

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 2.18: Multipoint Relay.

As preliminary requirement for the algorithm each node has to know its one-
hop and two-hop neighbourhood. To gather this information each node broadcasts
Hello messages for a certain interval. A node, which receives this message knows
that the sending node is a one-hop neighbour. Then it sets flag rebroadcast to
indicate that it forwards the hello message and sets the address of the original
node. All nodes receiving the rebroadcasted message know that the this node is in
the two-hop neighbourhood.

Similarly to Flooding, Multipoint Relay (MPR) does not support any reliability
mechanisms such as retransmission of lost packets.

TinyCubus

TinyCubus [73], [74] is an adaptive cross-layer framework for wireless sensor net-
works. It is also broadcast-based and deploys a role-based code distribution al-
gorithm using cross-layer information such as role assignments to decrease the
number of messages needed for code distribution to specific nodes. While the
management part of the framework is discussed in Section 2.7 we discuss the data
dissemination protocol of TinyCubus in this section.

The data dissemination protocol is an integral part of the role-based code dis-
tribution algorithm. It is very simple and requires some assumptions. The authors
discuss in [73] that in wireless sensor networks the roles of all the sensor nodes
are defined in advance. Thus, a message can be broadcasted through the wireless
sensor network not affecting all nodes of the network, but only a subset of them.
Further, the authors define that the nodes with the same role have to be connected
that all nodes with the same role can be reached. An example is shown in Figure
2.19. The nodes with the same roles build a group and have the same colour. The
receiver nodes are also in the same group. Only the nodes in the same group for-
ward a message. Starting from the gateway node, the message is broadcasted and
the forwarding nodes rebroadcast the message.

The authors make several important assumptions. First, the roles of the nodes

40

2.6. CONTIKI PROTOCOL STACK

gateway
node

receiver
nodes

nodes with
the same role

Figure 2.19: TinyCubus.

are assigned and the nodes have knowledge about their neighbours before the data
dissemination starts. Following this assumption we can take an optimal set of
nodes with the same role to reduce the number of hops from the gateway to the
receivers. Secondly, the communication is done using broadcasts. In addition, if
reliability is necessary the distribution algorithm uses implicit acknowledgements.
If a sensor node transmits a message the next node receives the message and for-
wards it. The forwarded message can be overheard by the previous node. If the
neighbour node does not forward the message within a certain time, the message
will be retransmitted.

2.6 Contiki Protocol Stack

In this section we present the protocol stack of the Contiki OS, because the real-
world implementation of SNOMC is integrated into the Contiki protocol stack. The
protocol stack includes two important MAC protocols, namely NullMAC and Con-
tikiMAC. Additionally we present BEAM (Burst Aware Energy Efficient Adaptive
MAC) protocol, which is an energy-efficient MAC protocol integrated in the Con-
tiki OS protocol stack. BEAM has been developed in the CDS group of the Univer-
sity of Bern. In the centre of the Contiki protocol stack the µIP stack and the RIME
protocol stack are placed at the network layer. The µIP stack includes an UDP
and TCP implementation. As data dissemination protocols we present a number
of commonly used protocols for wireless sensor networks, namely Directed Dif-
fusion and PSFQ (Pump Slowly, Fetch Quickly). Further, we describe Flooding
as simplest possible data dissemination protocol and with MPR (Multipoint Relay
...) an optimization of flooding. We present also TinyCubus because it combines a
management framework for wireless sensor networks and a broadcast-based data
dissemination protocol.

41

2.6. CONTIKI PROTOCOL STACK

2.6.1 Link Layer Protocols

In Contiki a number of common MAC protocols are implemented. Examples are
X-MAC [21, 114] and its successor ContikiMAC [33] as well as NullMAC as a
minimalistic MAC protocol. In general, a MAC protocol is mainly responsible
for sharing the transmission medium between multiple nodes that want to access
the medium at the same time. Besides this, the main functions are frame delimiting
and recognition, addressing, transfer of data from upper layers, error protection and
correction. MAC protocols for wireless sensor networks must be additionally en-
ergy efficient to maximize the lifetime of the nodes. Radio communication is typi-
cally the biggest consumer of energy. Energy consumption for reception (including
idle listening) is often as high as for transmission. Therefore, the MAC protocol
must turn off the radio as often as possible, while being awake long enough to re-
ceive packets from other sensor nodes. Contiki splits the traditional MAC protocol
into two smaller, task-specific protocols:

• a MAC protocol: responsible for accessing the transmission medium using
CSMA/CA

• a RDC protocol: the Radio Duty Cycle (RDC) protocol is responsible for
power saving.

In terms of Contiki, the MAC protocol is responsible of checking the transmis-
sion medium whether someone else is transmitting data or not. This mechanism
is called Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). If
the transmission medium is free, the data can be transmitted. If the transmission
medium is occupied, the MAC protocol has to wait for a certain time and then to
try again to send the data. The other task of the MAC protocol is handling the radio
duty cycling. This mechanism is called Radio Duty Cycle (RDC) protocol. The
RDC protocol takes care of the energy saving mechanisms. This includes turning
off the radio transmitter as much as possible without decreasing the transmission
performance too much.

NullMAC ContikiMAC

MAC

RDC

csma nullmac

contikimac nullrdc

BEAM

h2h

beam

Figure 2.20: MAC and RDC protocols of NullMAC, ContikiMAC and BEAM.

The separation of a common MAC protocol into a MAC and a RDC part can
be very confusing (cf. Figure 2.20). NullMAC, ContikiMAC and BEAM also
consist of a MAC and a RDC part. The MAC part of NullMAC is called nullmac,
and the RDC part is called nullrdc. For ContikiMAC, the MAC part is called
csma, and the RDC part is called contikimac. In case of BEAM the MAC part is
called h2hr (hop-to-hop reliability), and the RDC part is called beam.

42

2.6. CONTIKI PROTOCOL STACK

NullMAC

NullMAC is the simplest possible MAC protocol, which is implemented in Con-
tiki. Both the MAC part (nullmac) and the RDC part (nullrdc) are very simple.
nullmac only checks, if the transmission medium is free to send the packet. If
the transmission medium is occupied, the packet is dropped without any attempt
to resend. Analogously, nullrdc never turns off the radio transmitter. The pack-
ets are transmitted with the maximum power but also with the maximum energy
consumption.

ContikiMAC

ContikiMAC is an energy optimized MAC protocol and is the default MAC pro-
tocol of Contiki since release 2.5. It is the successor of X-MAC. ContikiMAC
supports energy saving mechanisms, such as periodic wake-ups, wake-up strobes
and phase-lock optimization. These energy saving mechanisms are implemented
in the RDC protocol (contikimac). A sensor node using ContikiMAC turns on the
radio transmitter periodically only for a very short time (periodic wake-up). Within
this time period, contikimac checks the radio channel. This is called Clear Channel
Assessment (CCA) and uses the Received Signal Strength Indicator (RSSI) to give
an indication for radio activity on a certain channel. If the RSSI value is higher
than a given threshold, the CCA is positive and a packet transmission from an-
other sensor node is detected. In this case the radio transceiver keeps turned on
until the whole packet has been received. To acknowledge the successful reception
of a packet, the receiver transmits an acknowledgement back the sender and turns
off the radio. If the sender transmits a packet and the receiver’s radio transmitter
is turned off at the same time, the transmitted packet gets lost. To avoid this the
receiver uses wake-up strobes to notify an upcoming transmission. If the sender
wants to transmit a broadcast packet, it has to be rebroadcasted for the full wake-
up interval. Thus, the sender can be sure that each neighbour node has once turned
on the radio transceiver within this time period and can receive the wake-up strobe.
Figure 2.21 and 2.22 illustrate these two situations.

Sender

Receiver

D AD D D

AD

send data packets until ack received

transmission detected

D

A

reception window

data packet

acknowledgement packet

Figure 2.21: ContikiMAC: unicast transmission[33].

In the third energy-saving mechanism, namely phase-lock optimization, the
sender tries to learn when a certain receiver wakes up. Since the wake-up of a
certain receiver is periodic, the sender can estimate the next wake-up of the receiver

43

2.6. CONTIKI PROTOCOL STACK

Sender

Receiver

D D D D

D

send data packets until during entire period

transmission detected

D

reception window

data packet

D D

Figure 2.22: ContikiMAC: broadcast transmission[33].

after the first successful packet transmission. With this estimated sleep interval, the
sender is able to time the first transmission of a wake-up strobe more accurately.

BEAM

Burst-Aware Energy-Efficient Adaptive MAC (BEAM) [13] protocol is an energy
efficient link layer protocol designed to maximize the lifetime of a wireless sen-
sor network. BEAM employs all advanced features of the energy efficient IEEE
802.15.4 compliant radio module CC2420 to optimize energy efficiency. To save
energy it uses adaptive and unsynchronized radio duty cycle periods. The radio
transceiver is turned on periodically to check the radio channel for incoming pack-
ets. Between these channel checks, the radio module is turned off. The wake-up
periods of the different sensor nodes are unsynchronized. Thus, no synchroniza-
tion messages are required. It was designed to operate under variable traffic load
conditions by dynamically adapting the duty cycles. To support hop-to-hop reli-
ability BEAM implements an ARQ mechanism. BEAM has two operation modi:
using short beacon strobes and using beacon strobes including payload.

start

payload

early ACK
sleep rcvlisten

data frame
with payload

short preamble frame
without payload

listen for
early ACK

sender

receiver
data ACK

sleep

4

start sleeprcv
non-intended

receiver sleep

5

1 2 3

lis
te

n

rcv

Figure 2.23: BEAM: using short beacon strobes [13].

The BEAM modus using short beacon strobes is depicted in Figure 2.23.
The sender periodically transmits short beacon strobes to indicate transmission
intention and waits for an early ACK frame (1). The receiver wakes up, listens
to the channel, and with the destination address stored in the short preamble frame
header, it recognizes that it is the intended receiver. Then, it transmits back the
early ACK frame (2). Upon reception of the early ACK frame, the transmitting
node is aware of the intended receiver being awake and transmits the data frame
(3). Successful transmission is acknowledged by the receiver via a data ACK frame
(4). Non-intended receivers can thus go to sleep much earlier as in the second

44

2.6. CONTIKI PROTOCOL STACK

operation mode, because they know that they are not the intended receivers (5).
The main disadvantage here is that at least four transmissions are required in the
optimal case.

payload

start listen rcvsleep

payload payloadsender

receiver

sleep

31

data ACK

short preamble frame
 with payload

listen for
data ACK

listen sleep

sleep

rcv
non-intended

receiver

2

4

5
start

Figure 2.24: BEAM: using beacon strobes including payload [13].

The second mode of BEAM using short beacon strobes including payload is
shown in Figure 2.24. The sender node transmits periodically short beacon strobes
including payload (1). The receiver wakes up and listens to the channel (2). Since
the destination address is stored in the short preamble frame header, it can recog-
nize that it is the intended receiver and sends a data ACK frame (3). The sender
receives the data ACK frame, stops transmitting the data frame, and goes to sleep
(4). If the sender does not receive the data ACK (e.g. due to interferences) it contin-
ues transmitting the short preamble frames including payload. In the optimal case,
two transmissions for each transmitted MAC frame are needed. Clearly, longer
duty cycles (as long as the data frame) of the receiver affect the energy-efficiency
negatively. The non-intended receivers then have to listen longer to conceive that
the data is not destined for them (5).

2.6.2 Network Layer Protocols

In this section we describe Contiki’s µIP stack and Contiki’s RIME stack.

Contiki µIP Stack

Part of the Contiki protocol stack is a lightweight TCP/IP stack called µIP, shown
in Figure 2.25. Its architecture was especially developed to handle the hardware
constraints of 8-bit or 16-bit micro-controllers. Despite its small code size and
small memory footprint, µIP attends the subset of RFC1122 [18] needed for full
host-to-host interoperability and supports TCP flow control, fragment reassembly,
and retransmission time-out estimation [34]. To use as little memory as possible,
µIP uses one global packet buffer. This buffer holds incoming and outgoing packets
but can store only one packet at a time. Therefore, packet buffering has to be
implemented either by the underlying MAC protocol or in the application using
µIP. Another challenge is the calculation of 32-bit checksums used in TCP and
UDP protocol headers. Calculating a 32-bit checksum on an 8-bit architecture takes
many more clock cycles than on a 32-bit architecture, since the 32-bit checksum
has to be stored in the main memory and cannot be processed directly in the 8-bit

45

2.6. CONTIKI PROTOCOL STACK

RADIO

NULLMAC

RIME

μIP

TCPUDP

APP

rmh

ruc

stuc mh nf

ipoliteuc

ibc polite

abc

μIP process

μIP over mesh

CONTIKIMAC

Figure 2.25: The protocol stack in Contiki.

wide CPU registers. µIP solves this challenge by dividing its functionality into two
parts: one generic part and one architecture specific part.

A number of Internet protocols are implemented on top of the µIP protocol
suite. Besides IP [89] and the two major transport protocols TCP[22] and UDP[87],
and also ARP[85], SLIP[94], and ICMP[88] have been implemented. Figure 2.26

Source port Destination port

Sequence number Acknowledgement number

Window size

TCP lenght Flags TCP checksum

Urgent pointer

32 Bits

VHL Length

IP Id

TOS

IP offset

TTL IP checksumProto

Source IP address

Destination IP address

Figure 2.26: TCP and µIP header.

shows the TCP and µIP headers. The headers include the fields for the IP address
and the port of the source and destination. Furthermore, it includes the IP and TCP
checksums. The main feature of TCP is the end-to-end reliability. Each packet has
to be acknowledged using the sequence number and the acknowledgement number.
The windows size is used for congestion control. 16-bits are reserved to store the
length of the TCP packet.

The TCP implementation in µIP has some limitations compared to a ”standard”
TCP implementation like TCP Reno. Due to the constraints of available space
some mechanisms for packet delivery to the application are not implemented, for
instance, the soft error reporting mechanism and dynamically configurable type-
of-service bits for TCP connections. Such functionalities are not usually used by
the applications and skipping them would not cause a big impact in a real scenario.

46

2.6. CONTIKI PROTOCOL STACK

Furthermore, due to the µIP stack is not able to process more than one packet at
the same time, the transmission of multiple unacknowledged TCP segments is not
supported and the congestion window is set to the value of one. This leads to a
decrease of the achievable throughput but prevents nodes from allocating precious
memory for unacknowledged segments.

32 Bits

VHL Length

IP Id

TOS

IP offset

TTL IP checksumProto

Source IP address

Destination IP address

Source port Destination port

UDP checksumUDP length

Figure 2.27: UDP and µIP header.

Contrary to TCP, UDP has no support for end-to-end reliability. It is connec-
tionless and does not retransmit packets as TCP does. Therefore, it has a lower
complexity. This simplicity helps to use it on wireless sensor nodes. The UDP
implementation in Contiki has basically the same header of the Internet standards
and is shown in Figure 2.27. The header includes among others the source and
destination ports, the checksum and 16 bits to store the package length.

µIP was implemented as a protothread on top of Contiki. Therefore, it uses
events to signal the arrival of new packets. To use µIP, the application protothread
has to open a new socket for the desired IP address. µIP then stores the process ID
(PID) of the application protothread to the connection state data structure. Every
time a new packet arrives, µIP posts a tcpip event to the registered protothread,
which is unblocked by the scheduler as soon as it is its turn. Listing 2.1 shows
how to open a UDP unicast connection to port 2500 of the host with the IP ad-
dress 192.168.1.20 and the transmission of one UDP packet with the payload
HELLO:

Listing 2.1: Sending an UDP packet

s t a t i c s t r u c t u i p u d p c o n n * udp conn ;
s t a t i c u i p i p a d d r t i p a d d r ;
s t a t i c c h a r * msg=”HELLO” ;
u i p i p a d d r (& i p a d d r , 1 9 2 , 1 6 8 , 1 , 2 0) ;

udp conn = udp new(& i p a d d r , UIP HTONS (2 5 0 0) , NULL) ;
u i p u d p p a c k e t s e n d (udp conn , &msg , s i z e o f (msg)) ;

The data structure uip udp conn stores the PID of the application protothread,
to which the tcpip event is posted. Additionally, the destination port and des-
tination IP address is stored by this data structure. The µIP function udp new

47

2.6. CONTIKI PROTOCOL STACK

opens the UDP unicast flow and the function uip udp packet send triggers
the transmission of the data found at the supplied memory address &msg. Listing
2.2 illustrates the code on the receiver part for listening for a tcpip event and
processing the arrived packet:

Listing 2.2: Receiving an UDP packet

w h i l e (1){
PROCESS WAIT EVENT UNTIL (ev == t c p i p e v e n t)

i f (u i p n e w d a t a ()) {
u i n t 8 t l e n = u i p d a t a l e n () ;
vo id * p t r = u i p a p p d a t a ;

}
}

The statement PROCESS WAIT EVENT UNTIL(ev == tcpip event)
blocks this protothread until a tcpip event arrives. The pre-processor macro
uip newdata() checks if a new packet arrived, and the uip datalen() func-
tion returns the size of the arrived data in bytes. uip appdata is a void pointer
to the packet payload.

Contiki RIME Stack

Contiki RIME [35, 40] is a lightweight layered communication stack for wireless
sensor networks and is shown in Figure 2.25. The RIME stack differs from tradi-
tional network stacks in such a way, that each of its layers is very thin. It contains of
different node-to-node communication services. These services are implemented
in a hierarchical manner with lower layer services providing basic features and
more complex services building on top of them. Each layer introduces very lim-
ited functionality and accomplishes only one certain task, which leads to a lower
implementation complexity. RIME uses very short headers from one layer to the
next. A connection between two sensor nodes is usually established by copying
the data to the RIME buffer and initiating the actual transmission. The RIME stack
offers methods for unicast and broadcast communication, that are optimized for the
needs of embedded systems. These are the methods:

• abc: Anonymous Best-effort Single-hop Broadcast protocol

• ibc: Identified Best-effort Single-hop Broadcast

• uc: Best-effort Single-hop Unicast protocol

• stuc: Stubborn Single-hop Unicast protocol

• ruc: Reliable Single-hop Unicast protocol

• mh: Best-effort Multi-hop Unicast

48

2.7. MANAGEMENT OF WIRELESS SENSOR NETWORKS

Table 2.3: Overview over management frameworks.

framework monitoring configuration code update/reprogramming
Mate [67] no no yes

MANNA [97] yes yes no
TinyCubus [73] no yes yes

• rmh: Hop-by-hop Reliable Multi-hop Unicast

• polite: Polite (Anonymous) Single-hop Broadcast protocol

• ipolite: Polite (Identified) Single-hop Broadcast protocol

• nf: Best-effort Network Flooding

One possible realization is to use the RIME stack as a standalone communica-
tion stack without µIP. Another possibility is to use µIP on top of RIME. The former
reduces communication overhead, but in this case there is not support of Internet
communication. The default configuration of Contiki is using RIME in combina-
tion with µIP. IP packets are tunnelled over the RIME stack, which results in an
additional 2 byte header for each IP packet. The combination of RIME and µIP
gives a strong flexibility. To communicate with any device in the Internet µIP can
be used. For lightweight communication that only takes place inside the wireless
sensor network the RIME stack can be used, e.g., for neighbourhood discovery.

2.7 Management of Wireless Sensor Networks

In this section we discuss different aspects of the management of wireless sensor
networks. In the following, first we discuss between general management frame-
works and later focus on the aspect of code dissemination.

2.7.1 Management Frameworks

In this section we only consider management frameworks for deployed wireless
sensor networks. Management frameworks for testbeds are described in Section
2.3. Table 2.3 shows an overview of the selected management frameworks.

Mate

The authors of [67] present Mate, a tiny communication-centric virtual machine
designed for sensor networks. Sensor nodes have to be reprogrammable over the
air, because nodes may be physically unreachable. Reprogramming nodes, thus,
code dissemination of the code, can be a significant factor for energy costs. Fo-
cus of this paper is not the code dissemination but the reduction of the code. The

49

2.7. MANAGEMENT OF WIRELESS SENSOR NETWORKS

main idea of Mate is to provide a high-level programming interface allowing im-
plementing complex programs very short (under 100 bytes). Code is broken into
small capsules of 24 instructions, which can self-replicate through the network.
The code is interpreted in a virtual machine on the sensor node. The virtual ma-
chine additionally offers a safe execution environment, because sensor nodes have
usually no hardware protection mechanisms. Another advantage of Mate is that it
simplifies programming for non-expert users.

Compared to MARWIS, Mate focus only reprogramming of sensor nodes using
a high level programming interface. In MARWIS binary code of applications are
transmitted and no byte code interpreted in a virtual machine on the sensor node.
Thus, the reprogramming of a sensor node with Mate can be compared with the
reconfiguration of a sensor node in MARWIS. Besides this difference, MARWIS
also supports monitoring of sensor nodes.

MANNA

The MANNA architecture [97] considers three management dimensions: func-
tional areas, management levels, and wireless sensor network functionalities. In
the MANNA architecture, the execution of management services (composed of
functions) is dependent on the information obtained from the wireless sensor net-
work models. The definition of functions that compose these services is based on
the three architectural planes: functional architecture, physical architecture, and in-
formation architecture. The functional architecture allows the establishment of all
possible configurations for the management entities, such as manager, agent, and
management information base (MIB). The physical architecture is the implementa-
tion of the functional architecture. In doing this, physical aspects such as the man-
agement protocol, the physical location of agents, agent functionalities, manage-
ment service implemented, and supported interfaces for wireless sensor networks
are defined. The MANNA information architecture is based on the object-oriented
information model. Basically, the system is decomposed into two categories of
modules, which play the role of managers and agents exchanging management in-
formation.

MANNA is a theoretical approach how to design a management architecture
for wireless sensor networks, based on a distributed architecture using agents. The
agents in MANNA can be compared to the mesh nodes in MARWIS.

TinyCubus

TinyCubus [73] is a flexible and adaptive cross-layer framework, which was de-
veloped for TinyOS-based wireless sensor networks. It supports capabilities for
flexible reconfiguration, optimization and adaptation. TinyCubus consists of three
parts: a data management framework, a cross-layer framework, and a configuration
engine. The data management framework allows the dynamic selection and adapta-
tion of both system and data management components. The cross-layer framework

50

2.7. MANAGEMENT OF WIRELESS SENSOR NETWORKS

Table 2.4: Overview over code dissemination protocols.

framework dissemination scheme reliability
Impala [70] unicast no
Trickle [69] broadcast no
Deluge [54] broadcast yes

supports data sharing and other forms of interaction between components in order
to achieve cross-layer optimizations. The configuration engine allows code to be
distributed reliably and efficiently by taking into account the topology of sensors
and their assigned functionality. This part of TinyCubus has been described in Sec-
tion 2.5.4. TinyOS is primarily used as a hardware abstraction layer. For TinyOS,
TinyCubus is the only application running in the system. All other applications
register their requirements and components with TinyCubus and are executed by
the framework.

The main difference between TinyCubus and MARWIS is that TinyCubus is
a middleware between the operating system (TinyOS) and the applications. In
contrast, in MARWIS the applications are running directly in the operating system.
A commonality between MARWIS and TinyCubus is that both offer a combined
management architecture and data dissemination protocol.

2.7.2 Code Dissemination Protocols

In this section we present selected code dissemination protocols. These protocols
are independent from management framework. Table 2.4 compares the protocols
in terms of dissemination scheme and support of reliability.

Impala

Impala [70] is a middleware architecture that enables application modularity, adap-
tivity, and repairability in wireless sensor networks. It provides functionality to
distribute new applications received via the sensor node’s wireless transceiver and
to be applied to the running system dynamically. For this purpose, abstractions
between the operating system and the application are created. New code is only
transmitted on demand if there is a new version available on a neighbour node.
Furthermore, if certain parameters change and an adaptation rule is satisfied, the
system can switch to another protocol. However, this adaptation mechanism only
supports simple adaptation rules. Although it uses crosslayer data, Impala does not
have a generic, structured mechanism to share it and so, is not easily extensible.

In contrast to MARWIS the code dissemination of Impala is based on uni-
cast transmissions. Furthermore, Impala does not support a reliability mechanism
whether the code dissemination was successful or not.

51

2.8. CONCLUSIONS

Trickle

Trickle [69] is an algorithm for code distribution in wireless sensor networks. It
periodically broadcasts meta-data about the software version nodes are using. A
sensor node receiving the meta-data can check if it has an older or newer version
of the software. Thus, the node can decide if it requires itself an update or the
neighbour node has the older software version and need an update. Since, the code
update is broadcasted also nodes, which have not explicitly requested an update
receive the new software version. Thus, all sensor nodes in the network get the
newest version of the software.

The code dissemination of Trickle relies on broadcast transmissions and in
contrast to MARWIS, does not support any reliability mechanism.

Deluge

Deluge [54] disseminates the code updates in wireless sensor networks using an
epidemic routing algorithm, which uses a three-way handshake based on adver-
tisement (ADV), request (REQ) and actual code (CODE) transfer. In Deluge, the
code is subdivided into fragments (called pages), which are disseminated using a
NACK-based ARQ protocol. The code is transmitted, fragment by fragment, via
broadcast. So called pipelining is implemented allowing a node that correctly re-
ceives a fragment from a neighbour node to directly start the dissemination of this
page to the next-hop sensor node. The randomization of the transmission of the
advertisement within predetermined time windows, as well as advertisement sup-
pression, are implemented to reduce the congestion in the propagation of the code
updates through the wireless sensor network.

While MARWIS code updates is based on multicast (in combination with
SNOMC), the code dissemination scheme of Deluge relies on broadcast. Deluge
is the only of the selected protocols which supports reliability.

2.8 Conclusions

This chapter provides the necessary background to understand the design choices
made in the development of SNOMC (our proposed overlay multicast transport
protocol) and MARWIS (our proposed management architecture for heterogeneous
wireless sensor networks). Most importantly we motivate the need for the new
developments presented in this thesis and we argue about the contribution to the
scientific community. In the context of SNOMC we presented a comprehensive
overview of multicast routing protocols (Section 2.4.1), multicast transport proto-
cols (Section 2.4.2), and traditional data dissemination protocols for wireless sen-
sor networks (Section 2.5). In the context of MARWIS, Section 2.7 describes other
management frameworks and code dissemination platforms found in the literature.
Not as last, we describe the hardware (Section 2.1) and software platforms (Sec-
tion 2.2) used for the work in this thesis. Proper understanding of these platforms

52

2.8. CONCLUSIONS

is needed in the argumentation of our implementation and design choices.
The thesis is further organised in two parts. The first part focusses on the de-

sign, implementation, and evaluation of our protocol for our proposed multicast
protocol for reliable data transport (SNOMC). These are the corresponding chap-
ters for design (Chapter 3), implementation (Chapter 4), and evaluation (Chapter
5) of SNOMC . In the second part MARWIS a novel management architecture
for heterogeneous wireless sensor networks is presented, in design (Chapter 6) and
implementation (Chapter 7). Finally we address integration of SNOMC and MAR-
WIS and their common performance (Chapter 8).

53

Part I

SNOMC: A Overlay Multicast
Transport Protocol for Wireless

Sensor Networks

54

Chapter 3

Protocol Design and Architecture

This chapter presents the design and architecture of the SNOMC (Sensor Node
Overlay Multicast) protocol [126, 125]. SNOMC is an overlay multicast transport
protocol for wireless sensor networks that supports reliable and time- and energy-
efficient transport of bulky data.

Section 3.2 describes the problem we address with SNOMC and the general
design decisions for SNOMC. Section 3.3 presents the detailed description of the
protocol, including the several protocol phases, such as joining and transmission
phase, and the reliability mechanisms. Finally, Section 3.4 concludes the chapter.

3.1 Introduction

Wireless sensor nodes running different applications for the support of various
tasks such as event detection, localization, tracking, and monitoring. Indepen-
dently of the performed task an application should be configured and continuously
updated for the lifetime of the sensor nodes. These processes, i.e., configuration
and updating, should be done over the air [127] and their traffic pattern differs con-
siderably from the predominant traffic pattern in wireless sensor networks. Typi-
cally traffic in wireless sensor networks is from many-to-one communication, e.g.,
many sensor nodes transmitting their data to a single sink. On the contrary, during
a code update one-to-many communication takes place, e.g., the code update needs
to reach multiple sensor nodes. Moreover, the traffic nature of the updates is bulky.
Since node updates are rather crucial, transmissions should be reliable.

Distributing data from one sender node to many receivers can be done in dif-
ferent ways (cf. [128]). The simplest one is flooding where many independent uni-
cast connections are established from the source to all selected receivers. Flooding,
however, is inherently very inefficient, energy-consuming and unreliable. Another
way is to rely on multiple unicast connections between the source and any of the
desired receivers. In the context of wireless sensor networks, however, redundancy
translates to higher probability of collisions, which can cause long transmission
times. This leads to an inefficient and unreliable code distribution. A more effi-
cient distribution scheme, which better fits the requirements set by configuration

55

3.2. PROTOCOL DESIGN ON APPLICATION LAYER

and code updating, is multicast. Multicast is able to propagate data from a sin-
gle sender to many receivers by affecting smaller number of sensor nodes in the
network. It is easily extendable with any kind of reliability mechanism and it has
better support for bulky traffic patterns, which typical occur in code update sce-
narios. Thus, multicast communication fits very well for any code update task in
wireless sensor networks. Currently, to our knowledge, there is no single multicast
protocol able to meet the combined set of requirements for reliability and efficiency
(in both time and energy consumption) for bulky traffic patterns.

The question arises how can we design such a multicast protocol in a wireless
sensor network. How can we support end-to-end reliability (necessary for code
updates) while still keeping energy consumption and delays low? In the design
process several choices need to be made including how is bulky traffic best propa-
gated and what is an appropriate underlying MAC protocol. Further, we would like
the multicast communication to be IP-based in order to access the wireless sensor
network via the Internet [12].

3.2 Protocol Design on Application Layer

We wish to design a protocol that supports multicast in wireless sensor networks
in an efficient and energy-conserving way. The protocol should operate with bulky
traffic, which is characterized by data arrivals in bursts of, e.g., 1000 bytes (15
packets with a payload of 70 bytes). As mentioned before, a typical example of
bulky traffic is a code update when the update originates from one sender and is
intended to reach many destinations.

There are several approaches towards the design of multicast in wireless sensor
networks. On the one hand, we can distinguish between overlay multicast [52] and
IP Multicast, which differ in the protocol layer of the implementation. IP Mul-
ticast is implemented on the network layer. Its distribution tree is built between
routers in the Internet. Overlay multicast is implemented on the application layer,
and therefore, its distribution tree is built between the participating nodes. Further-
more, we can choose between a sender-driven and a receiver-driven formation of
the multicast group. In the former, the sender decides on the receiving nodes (the
participants in the multicast group) while in the latter the receiving nodes decide
themselves whether they want to be part of the multicast group and receive data or
not. In the sender-driven approach the multicast group only exists until the data is
transmitted to the receivers (which is a typical scenario for code updates). Thus, it
is not foreseen that later other receiver nodes can join the multicast group. In case
of the receiver-driven approach receivers nodes can join later to a multicast group.

In case of overlay multicast, different transport protocols (UDP or TCP) can
be used for the overlay connections. Due to its stateless character UDP does not
support any reliability, but it benefits from low complexity. TCP can support end-
to-end reliability but on the cost of certain communication overhead. Acknowledg-
ments can be positive or negative and inform on the reception status of messages.

56

3.3. PROTOCOL DESCRIPTION

A possible multicast scenario in a wireless sensor network with the different
node roles is shown in Figure 3.1. In such a scenario the sensor nodes have dif-
ferent roles. There is one sender node, which sends the data and is the root of the
distribution tree. There are forwarding nodes, which just forward the data to the
next-hop neighbor. Furthermore, there are branching nodes, which duplicate the
data packet and forward it to two or more next-hop neighbor nodes. And finally,
there are the receiver nodes.

sender
node S

branching
nodes B

receiving
nodes Rx

forwarding
nodes F

Figure 3.1: SNOMC: possible scenario.

Caching is a convenient way to have content closer to the requesting side and
hence decreases delays. There are three possibilities on where to cache data: on
sender nodes, on branching nodes or on all intermediate nodes (forwarding and
branching). Furthermore, nodes that cache data fragments can also detect gaps in
the fragment sequence and pro-actively request the missed fragments.

In order to meet our design requirements from Section 3.2 we chose an over-
lay multicast approach, which is able to operate in both sender-driven mode and
receiver-driven mode. The main argument for an overlay approach is that it is eas-
ier to implement at the application layer than at the network layer. We are using
UDP as transport protocol and to ensure reliability we are using a simple NACK-
based mechanism on application layer with all three caching modes, pro-actively or
passively. Our protocol - Sensor Node Overlay Multicast (SNOMC) - is described
in the following section.

3.3 Protocol Description

This section describes the technical details of how SNOMC operates, including
joining a multicast group and transmitting data to the group. Further, the NACK-
based reliability mechanism and each of the three caching variants are described.

57

3.3. PROTOCOL DESCRIPTION

3.3.1 Joining Phase

To distribute data from one sender node to many receiver nodes we need to build a
distribution tree. A distribution tree can be built only after the receiver nodes have
joined a multicast group. As mentioned above, this can happen in two different
ways, namely, sender-driven or receiver-driven. We begin with description of the
sender-driven approach.

Sender-Driven Join Approach

S B R1 R2

join_ack(rec_1)
join_ack(rec_2)

F

join(rec_lst)

join_ack(rec_lst)

join(rec_lst) join(rec_lst)
join(rec_lst)

1 2 3

5 4 46

Figure 3.2: SNOMC: Joining phase, sender driven mode.

In a sender-driven approach the sender decides, which nodes should be in the
multicast group as receivers. The result of the joining phase is a distribution tree,
including the sender node (S), forwarding nodes (F), branching nodes (B), and
receivers (Rx). The joining phase for the sender-driven mode is shown in Fig. 3.2
and operates as follows.

(1) First, the sender S creates a join message (cf. Figure 3.3(a)), which con-
tains amongst others the list of receivers (rec lst), the multicast group id
(mc id) created by the sender node, and the sender address (sender id).
Next, the sender node transmits this join message to this next-hop neigh-
bour, from which all receivers can be reached, according to the routing table.

(2) The next-hop node, upon reception of the join message, checks via which
next-hop nodes all receivers in the list can be reached, according to its rout-
ing table. If all receiver can be reached via one next-hop neighbour, it simply
forwards the full receiver list in a join message to this particular neighbour
and acquires a forwarding role (F).

(3) If the receiver nodes can be reached only via different next hop neighbours,
the node acts as a branching node (B). In such case the node splits the initial
list accordingly and transmits the new partial lists to the respective next-hop
neighbours (also according to the routing tables).

(4) When a join message reaches a receiver (Rx) the latter confirms its role
as a receiver by transmitting a join ack message with its address in the
rec lst field back to the last branching node (cf. Figure 3.3(b)).

58

3.3. PROTOCOL DESCRIPTION

(5) The branching node waits for the join ack messages of all subordinate re-
ceivers, combines these messages into one (by combining the rec lst field
from the several received join ack messages) and transmits it back to
the sender node (or to the next branching node up on the path towards the
sender node). If after a certain time the branching node has not received all
join ack messages from all receivers (in case a join ack message gets
lost), the branching node will resend the join message to the according
receivers.

(6) After the join ack message reaches the sender node, it knows that the join
procedure was successful and the data transmission phase can start.

The used caching strategy (cf. Section 3.3.2) affects the joining procedure. The
intermediate nodes have to be informed about the selected caching strategy so that
each nodes can decide if they have to cache the data fragments or not. This happens
through the caching strat field in the join message (cf. Figure 3.3(a)). In
case of caching on every intermediate node, each forwarding node and branching
node caches additionally the data fragments (2/3). Moreover, each node stores its
address in the last node id field. The next-hop node knows which node it has
to request for lost fragments. In general, each node knows its predecessor and its
successor node. Between them the overlay connections are established. In case of
caching on branching nodes, only these nodes cache the data fragments and write
their addresses into the last node id field (3). In case of caching only on the
sender node, the branching nodes do not cache the data fragments, but still writes
its own address into the last node id field (3), because the receivers have to
know where it has to transmit the join ack message. In the last two cases, each
branching node knows its predecessor and its successor branching node. Between
them the overlay connections are established. The caching strategy has to be de-
fined in the joining phase, because it defines between which nodes the overlay links
are established. If the caching strategy has to be changed the joining phase has to
be repeated.

The structure of the join message is shown in Figure 3.3(a). The field type
contains the message type, in this case join. The rec lst field contains a list of all
addressed receivers. The address of a receiver is 2 bytes long so that approximately
a number of maximum 30 receivers can be in the rec lst field. The mc id field
contains the multicast group id generated by the sender node and is used to identify
the connection later at the data transmission phase. The field caching strat
contains the selected caching strategy (cf. Section 3.3.2); possible values are
no cache, cache branching, cache branching proactive, cache intermediate, and
cache intermediate proactive. The field sender id contains the address of the
sender node and the field last node id the address of the last forwarding node
or branching node according to the selected caching strategy. The latter informa-
tion is necessary so that the nodes know their predecessor and successor to estab-
lish later the overlay connections for the data transmission phase and the reliability
mechanism.

59

3.3. PROTOCOL DESCRIPTION

type rec_lst mc_id caching_strat sender_id last_node_id

(a) join message

type rec_lst mc_id

(b) join ack message

Figure 3.3: SNOMC: messages for sender-driven joining.

The structure of the join ack message is shown in Figure 3.3(b). It also
contains the field type with the value join ack. The second field rec lst con-
tains the list of the receivers. When the receiver creates a join ack message
it only contains its own address. Later, when these messages are combined at the
branching nodes it contains list of all receivers subordinated to this branching node.
Finally, when the message arrives at the sender node, the list contains all addressed
receivers.

Receiver-Driven Join Approach

In the receiver-driven approach the receivers themselves decide whether they want
to be in a multicast group and receive data from the sender. In this case they have
to know which node is the sender node. In this approach it is also possible that
receivers join the multicast group later. The joining phase is shown in Figure 3.4.

(1) Each receiver Rx transmits a join message (cf. Figure 3.5(a)) to the next-hop
neighbor in the direction towards the sender node according to the routing
table. The message contains the field rec lst, which initially carries only
the receiver’s address.

(2) A neighbor node takes the incoming join message and decides on its role
(e.g., forwarding node or branching node). If there is just one subordi-
nate receiver it acts as a forwarding node F and writes its address in the
last node id field; if there are more than one receiver, it acts as a branch-
ing node B. In the latter case it adds its address to the last branch node
id field in the join message to inform the sender node (or the follow-up

branching node) about its own role as branching node. This information is
later used for the overlay connections. Afterwards, it transmits the join
message further to the sender node.

(3) The sender node collects all joinmessages and creates a join ackmessage
with the receiver list, its own address as sender id and decides the mul-
ticast group id for the mc id field. Then it transmits the message towards
the receivers, either to the next forwarding node or the next branching node,
according to the selected caching strategy.

60

3.3. PROTOCOL DESCRIPTION

(4) The branching node splits the join ack message and sends out adapted
copies to the corresponding receivers

(5) When the join ack message arrives at the receivers they know that their
joining to the multicast group was successful.

The distribution tree is built implicitly through the path of the join messages and
the data transmission phase can start.

S B R1 R2

join(rec_lst)

join(rec_1)
join(rec_2)

F

join_ack(rec_lst)

join(rec_lst)

join_ack(rec_1)
join_ack(rec_2)

1
2

3 5

1

54

Figure 3.4: SNOMC: Joining phase, receiver driven mode.

The used caching strategy (cf. Section 3.3.2) affects the receiver-driven join-
ing phase as well. Again, in this approach the intermediate nodes have to be in-
formed about the selected caching strategy. The sender node decides about the used
caching strategy before it transmits the join ackmessages towards the receivers.
It writes the selected strategy in the caching strat field in the join ack
message (cf. Figure 3.3(b)). If caching on each intermediate node is selected it
forwards this message to the next forwarding node. In case of caching on branch-
ing nodes or in case of no caching, it forwards the join ack message to the next
branching node.

The structure of the join message for the receiver-driven approach is shown
in Figure 3.5(a). The field type contains the message type, in this case join. The
rec lst field contains a list of all addressed receivers. The field sender id
contains the address of the sender node, the field last node id the address of
the last forwarding node and the field last brach node id the address of the
last branching node. This information is necessary for the nodes to know their pre-
decessor and successor, which helps to establish later the overlay connections for
the data transmission phase and the reliability mechanism according to the selected
caching strategy.

type rec_lst sender_id last_node_id last_branch_node_id

(a) join message

type rec_lst mc_id sender_idcaching_strat

(b) join ack message

Figure 3.5: SNOMC: messages for receiver-driven joining.

61

3.3. PROTOCOL DESCRIPTION

The structure of the join ack message is shown in Figure 3.3(b). It con-
tains also the field rec lst with the list of the joined receivers. The mc id field
contains the multicast group id generated by the sender node and used to identify
the connection later at the data transmission phase. The field caching strat
contains the selected caching strategy (cf. Section 3.3.2) with the possible values
no cache, cache branching, cache branching proactive, cache intermediate, and
cache intermediate proactive. Finally, it contains the field sender id with the
address of the sender.

3.3.2 Data Transmission Phase and Caching

Propagating data from sender to receivers is done using overlay connections estab-
lished as result of the join phase. It depends on the chosen caching strategy between
which nodes the overlay connections are established. If the data are cached on ev-
ery intermediate node (sender, forwarding, and branching nodes) the overlay con-
nections are established between them. Thus, an overlay connection corresponds
to each hop in the distribution tree. If the data are cached on a sender or branch-
ing nodes, the overlay connections are established between sender node, branching
nodes, and receivers.

S B R1 R2F

data(frag_1)
data(frag_1)

data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

1

2

3

3

Figure 3.6: SNOMC: Transmission phase, no caching.

The data transmission in case of no caching is depicted in Figure 3.6 and oper-
ates as follows.

(1) The sender node fragments the data and caches them. Afterwards it transmits
them in data messages (cf. Fig. 3.10) to the next branching node using the
overlay connection.

(2) The branching node duplicates the data message and transmits the dupli-
cates to the receivers or to the next branching nodes respectively. It does not
cache the fragments. Using broadcast transmissions on branching nodes is
described below and depicted in Figure 3.9.

(3) Eventually, a receiver collects all fragments.

62

3.3. PROTOCOL DESCRIPTION

S B R1 R2F

data(frag_1)
data(frag_1)

data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

1

2

3

3

Figure 3.7: SNOMC: Transmission phase, caching on branching nodes.

Data transmission in case of caching on the branching node works quite similar,
with the difference that the branching nodes cache the fragments (2). It is depicted
in Figure 3.7.

In case of caching on each intermediate node the procedure works a little bit
different. The overlay connections are not only established between the sender
node, the branching nodes and the receivers, but also between the forwarding
nodes. The procedure is depicted in Figure 3.8 and works as follows.

S B R1 R2F

data(frag_1)
data(frag_1)

data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

1

3

4

4

data(frag_1)

data(frag_2)

data(frag_3)

2

Figure 3.8: SNOMC: Transmission phase, caching on forwarding nodes.

(1) The sender node fragments the data and caches them. Afterwards it transmits
them in data messages (cf. Fig. 3.10) to the next forwarding node using a
one hop overlay connection.

(2) The forwarding node caches the fragment and forwards it to the next follow-up
node.

(3) The branching node duplicates the data message and transmits the duplicates
to the receivers or to the next branching nodes respectively. It does not cache
the fragments.

(4) Eventually, a receiver collects all fragments.

If caching on each intermediate node is selected as caching strategy an opti-
mization using broadcast transmissions is possible. On the branching nodes the

63

3.3. PROTOCOL DESCRIPTION

data messages have to be duplicated and transmitted to two or more successor
nodes. In this case we can use a broadcast transmission instead of two or more
unicast transmissions. This case is depicted in Figure 3.9 (3).

S B R1 R2F

data(frag_1)

data(frag_2)

data(frag_3)

1

3

4

4

data(frag_1)

data(frag_2)

data(frag_3)

2

data(frag_1) data(frag_1)

data(frag_2) data(frag_2)

data(frag_2) data(frag_2)

Figure 3.9: SNOMC: Transmission phase, using broadcast transmissions.

The data message is depicted in Figure 3.10. It contains the field type with
the value data, the field mc id to identify the multicast group. Then it includes
two fields for the fragment numbers. The field frag no contains the number
of the current fragment and the field last frag no contains the number of the
last fragment to indicate the end of the transmission. And finally, it contains the
fragment in the frag field.

type mc_id frag_no last_frag_no frag

Figure 3.10: SNOMC: data message.

3.3.3 End-to-End Reliability

End-to-end reliability is ensured using a mechanism based on negative acknowl-
edgments. In case a data fragment gets lost a receiver recognizes it and requests
the lost data fragment by transmitting backwards a nackmessage. A nackmes-
sage, arriving at a sensor node that has the missing data fragment cached, triggers
retransmission of the fragment. There are three caching strategies: caching only on
the sender node, caching on branching nodes, and caching on every intermediate
node. Additionally, a node that caches data fragments can also pro-actively request
lost data fragments. The success of a transmission is indicated using a data ack
message transmitted by the receivers towards the sender node. Hence, end-to-end
reliability can be ensured. Below we describe each of the caching strategies.

The caching strategy only the sender node is depicted in Figure 3.11.

(1) The first transmission phase is the same like in Figure 3.6. The sender splits
the data into fragments, creates the according data messages and transmits
them to the next sensor node.

(2) A data fragment gets lost.

64

3.3. PROTOCOL DESCRIPTION

S B R1 R2

nack(frag_2)

data_ack(rec_2)

F

data(frag_1)

data_ack(rec_lst)

data(frag_1)
data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

nack(frag_2)
data(frag_2) data(frag_2)

data_ack(rec_1)

1

2

3

4
5

67

Figure 3.11: SNOMC: Reliability, caching only on sender node.

(3) If a data fragment gets lost the receiver detects a gap in the fragment sequence
and requests the missing fragment. The receiver generates a nack message
(cf. Figure 3.14(a)), which is transmitted towards the sender node via the
according branching node.

(4) Since the sender node has the fragment in the cache, it retransmits it towards
the requesting receiver.

(5) If the receiver finally gets all fragments successfully, it confirms this with a
data ack message (cf. Figure 3.14(b)).

(6) A branching node accumulates all incoming data ack messages into a com-
bined data ack message towards the sender node. The branching node
knows from the joining procedure how many data ack messages have to
be received.

(7) Finally, the sender node gets notified about the successful transmission of the
data.

In case that the data is cached not only at the sender node, but also at the
branching node the protocol operation changes slightly as shown in Figure 3.12.

(1)-(3) The first three steps are as in Figure 3.11.

(4) A missed data fragment will be directly retransmitted towards the receivers
by the branching node, since it hast the data cached.

(5)-(7) Also the end of the procedure is the same as depicted in Figure 3.11.

In case the data is cached at every intermediate node (forwarding and branching
nodes), which is shown in Figure 3.8, the protocol does not change very much.

65

3.3. PROTOCOL DESCRIPTION

S B R1 R2

nack(frag_2)

data_ack(rec_2)

F

data(frag_1)

data_ack(rec_lst)

data(frag_1)
data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

data(frag_2)

data_ack(rec_1)

1

2

3

5

6

4

7

Figure 3.12: SNOMC: Reliability, caching on branching node.

The request for a lost data fragment is transmitted back to the last forwarding
node instead of the last branching node. If the node has cached the fragment it
retransmits it; otherwise it forwards the nack message up the distribution tree
until a node is found where the fragment was cached.

The nodes that cache the data fragment also can pro-actively request frag-
ments, if they detect a gap in the fragment sequence. In this case a missed fragment
is detected earlier and not only at arrival at the receiver nodes. The pro-active mode
is shown in Figure 3.13 with the caching strategy on each intermediate node.

S B R1 R2

nack(frag_2)

data_ack(rec_2)

F

data(frag_1)

data_ack(rec_lst)

data(frag_1)
data(frag_1)

data(frag_2)

data(frag_3)

data(frag_2)
data(frag_2)

data(frag_2)

data_ack(rec_1)

1

2

3

56

4

data(frag_1)

data(frag_2)
data(frag_3)

data(frag_3)
data(frag_3)

7

Figure 3.13: SNOMC: Reliability, caching on each intermediate node, pro-active.

(1) The first transmission phase is the same like in Figure 3.6, with the difference
that the forwarding node caches the data fragment.

66

3.4. CONCLUSIONS

(2) A data fragment gets lost.

(3) The forwarding node detects the loss when the third data fragment arrives
and requests pro-actively the missed second fragment. It does not forward
fragment 3 in order to preserve the sequence of the fragments. The for-
warding node then generates a nack message (cf. Figure 3.14(a)), which is
transmitted towards the sender node.

(4) Since the previous node in the distribution tree has the fragment in the cache,
it retransmits it towards the requesting forwarding node. After receiving the
retransmitted fragments the forwarding node transmits fragments 2 and 3 to
the next node towards the receivers.

(5)-(7) The last three steps (data acknowledgement) are the same like in the previ-
ous caching strategies.

If sensor node that requests a missed fragment starts also a retransmission
timer. If the retransmission timer expires and the requested fragment does not
arrived, the sensor node requests the fragment again.

To ensure end-to-end reliability we are using two types of messages, the nack
message (shown in Figure 3.14(a) and the data ack message shown in Figure
3.14(b). While the nack message is used for requesting missed fragments, the
data ack message is used to acknowledge the successful receive of all fragments
at the end of the transmission (not of each fragment). The nack message contains
the field type with the value nack, and further the field rec lst with the list
of the receivers. It also contains the field frag no with the list of the missed
fragments. The message data ack contains also the field type with the value
data ack and the list of the receivers, which successfully received all fragments
(field rec lst).

type frag_norec_lst

(a) nack message

type rec_lst

(b) data ack mes-
sage

Figure 3.14: SNOMC: reliability messages.

3.4 Conclusions

This chapter introduced the Sensor Node Overlay Multicast (SNOMC) protocol,
which is specifically designed for overlay multicast transport in wireless sensor
networks. It supports a reliable dissemination of bulky data from one sender node
to many receiver nodes.

A distribution tree is used to transmit the data efficiently from the sender node
to the receiver nodes using overlay connections. We described the joining phase,

67

3.4. CONCLUSIONS

which results in a distribution tree, composed of one sender node, forwarding
nodes, branching nodes, and the receiver nodes. The overlay connections are UDP
flows between the sensor nodes and are described in Section 4.3.4. As an opti-
mization we introduced a broadcast transmission at the branching nodes to avoid
unnecessary unicast transmissions to two ore more following nodes.

To ensure end-to-end reliability we designed a NACK-based reliability mech-
anism, combined with a data acknowledgement after the successful transmission
of all data fragments to the receiver nodes. To avoid costly end-to-end retransmis-
sions we propose different caching strategies: caching on each intermediate node,
caching on branching nodes, or only caching on the sender node. Further, the nodes
which cache data also can pro-actively request missing fragments.

The following chapter 4 presents the SNOMC implementation in the OM-
NeT++ simulator and a real-world implementation in the Contiki OS. A quanti-
tative evaluation of SNOMC is further presented in chapter 5.

68

Chapter 4

SNOMC Implementation

This chapter describes the implementation details of SNOMC. After a short intro-
duction in Section 4.1, we describe the implementation details of SNOMC in the
OMNeT++ simulator [9] in Section 4.2 and the implementation in the Contiki OS
[38] in Section 4.3. Finally, a concise summary is given in Section 4.4.

4.1 Introduction

SNOMC was designed as a multicast transport protocol to perform efficient man-
agement tasks in MARWIS. Before integrating the two we decided to indepen-
dently evaluate SNOMC. In order to make a proper performance evaluation we
took the two-step approach.

First, for a proof-of concept evaluation we implemented SNOMC in the OM-
NeT++ simulator. Later, for real-world experiments in the Wisebed testbed and the
integration in MARWIS, we implemented SNOMC in the Contiki OS.

4.2 SNOMC Implementation in OMNeT++

In this section we describe the implementation of SNOMC in the OMNeT++ sim-
ulator. SNOMC has been implemented in the INET framework provided by OM-
NeT++. The INET framework is suited for simulations of wired, wireless and
ad-hoc networks. Beyond IP and UDP/TCP there are implementations of 802.11,
Ethernet, PPP, IPv6, OSPF, RIP, and several other protocols.

In this section, first the OMNeT++ protocol stack is described. Afterwards,
we describe the implementation of the protocol operations of SNOMC and the
implementation of CC2420 radio transceiver. Moreover, the implementation of
important SNOMC data structures and messages is discussed.

4.2.1 Protocol Stack

OMNeT++ is very appropriate for the evaluation of complex systems. Figure
4.1 shows the OMNeT++ protocol stack. Our protocol stack covers the applica-

69

4.2. SNOMC IMPLEMENTATION IN OMNET++

tion, SNOMC, UDP, µIP, NullMAC and ContikiMAC as MAC protocols and the
CC2420 radio.

APP

SNOMC

UDP

uIP

CONTIKIMAC NULLMAC

RADIO

NotificationBoard

Interface Table

Routing Table

Channel Control

Network

Figure 4.1: OMNeT++: protocol stack.

The application module is responsible to start the joining phase and later the
data transmission. After finishing the data transmission it collects statistically data
such as transmission time. The SNOMC protocol has been implemented as a state
machine, which is described detailed in Section 4.2.2. The UDP module is taken
unchanged from the OMNET++ INET framework. The µIP module is adapted
from the original IP module, provided by the INET framework. All functionality
to fragment packets are removed - in method fragmentAndSend(), because the
maximum size of a fragment is fixed to 78 (due to of the MTU of 802.15.4 MAC-
FRAMES of 128 Bytes). Since, we only want to support overlay multicast the
method for routing multicast packets is removed (routeMulticastPacket()).

As MAC protocols we implemented NullMAC and ContikiMAC, which are
integral part of Contiki OS. The description of the protocols can be found in Section
2.6.

The CC2420 radio transceiver is implemented in the class CC2420Radio.
The state machine (shown in Figure 4.5 and described in Section 4.2.3) is imple-
mented as a class CC2420RadioState and the states are defined as enums, such
as CC2420 IDLE, CC2420 TX CAL, or CC2420 SLEEP. The transitions be-
tween the states are implemented as method calls, such as setRadioToIDLE(),
setRadioToTX CAL(), or setRadioToSLEEP(). Some transitions are ini-
tiated by the upper MAC protocol via commands (such as STXON or SRXON).
Autonomous state transitions (such as TX CAL → TX Preamb Send → TX
Send) are handled via timers which expire according the state transition dura-

70

4.2. SNOMC IMPLEMENTATION IN OMNET++

tions in the real CC2420 radio transceiver. The timers are handled as self mes-
sages via handleSelfMessages(). There are two buffers, one for incom-
ing messages called RX Buffer, and one for outgoing messages called TX Buffer.
To empty the RX Buffer and the TX Buffer the methods flushRXBuffer()
and flushTXBuffer() are used. When a frame arrives at the radio it is de-
livered by the ChannelControl module. After finishing the receiving process
the radio transmits the command RECEPTION COMPLETE which initiates pro-
cessing of the handleLowerMsgEnd() method. Within this method the frame
is handled - if there is a collision (handleCollision()), if there is a bit er-
ror (handleBiterror()), or the frame received correctly (handleCorrect
Frame()). In the latest case, the frame is written in the RX Buffer.

There are a number of global modules, such as notificationBoard, the
interfaceTable as well as the routingTable. Using the notification
Board all protocol layers can exchange information. Thus, a module is able to no-
tify that one of their values or states have changed. When a change occurs, the mod-
ule has to post the change using the method fireChangeNotification().
Every other module that wants to be notified about a change can subscribe to
the notificationBoard using the method subscribe(). The module has
to be a child from the class INotifiable. The subscribed module gets no-
tified when the function receiveChangeNotification() is called. The
interfaceTable contains all interfaces such as the radio or serial interface.
The routingTable contains all routes between the sensor nodes. The Channel
Control module includes the radio model and calculates with the help of param-
eter, such as bitrate, bandwidth, carrier frequency, modulation, thermal noise, radio
sensitivity, and other parameter the signal-to-noise ratio (SNR) of a signal at the re-
ceiving node. Further, the ChannelControlmodule delivers the received frame
to the radio module of the node, if there is no bit error or collision.

4.2.2 Protocol Operation

The SNOMC protocol has been implemented in OMNeT++ as a state machines.
Depending on whether the node acts as a sender node, a receiver node, or a for-
warding/branching node the state machine differs.

Figure 4.2 shows the simplified state machine of the sender node. When it
starts the joining procedure it creates the join message, checks the receiver list
and sends the message to the according neighbour. Then it waits for incoming
join ack messages. When such a message arrives, it checks if all receivers have
notified the joining to the multicast group. If this is not the case, the sender node
stays in the waiting for join acks state. If all join ack messages ar-
rived, the data transmission procedure starts. The data gets fragmented, the frag-
ments are buffered and packed into the data messages and transmitted to the
according neighbour. Afterwards, the sender node waits for next events. When
a nack message arrives, it creates a data message with the requested fragment
and transmits it to the according neighbour. When a data ack message arrives, it

71

4.2. SNOMC IMPLEMENTATION IN OMNET++

join_ack

yes

nack

start joining

create "join"
send "join"

wait for
join_acks

all
received?

start data
transmission

no fragment "data"
buffer "data"
send "data"

wait for
event

retransmit
"data"

all
received?

data_ack

transmission
finished

yes
no

Figure 4.2: OMNeT++: SNOMC state machine, sender node.

checks, if all receivers acknowledged the successful data transmission. If this is not
the case, it goes back to the wait for event state. If all data ack messages
arrived, the data transmission finished successfully.

wait for
event

process "join"
prepare buffer

join

send "nack"
start "nack_timer"

data

missed
frags?

no

yes

buffer
"data"

transmission
finished

send
"data_ack"

nack_timer

Figure 4.3: OMNeT++: SNOMC state machine, receiver nodes.

Figure 4.3 shows the simplified state machine of the receiver node. The only
state is the wait for event state. The behaviour of the receiver depends on
the incoming messages. When a join message arrives, the receiver processes it,
defines its own role as a receiver and prepares the buffer for the incoming data
messages. Afterwards, it goes back to the wait for event state. When a
data message arrives the receiver node buffers it and checks if fragments are
missing. If so, a nack message is created and transmitted towards the sender
node. Afterwards, a nack timer is started and the state machine goes back to
the wait for event state. When the nack timer expires, again the buffer is
checked for missed fragments. If fragments are missing the timer is started again.
If all fragments have successfully arrived the receiver a data ack message is sent
towards the sender node and the transmission is finished.

72

4.2. SNOMC IMPLEMENTATION IN OMNET++

wait for
event

process "join"
forward "join"

join

process "join_ack"
forward "join_ack"

join_ack

forward
"data"

data

cache? no

cache
"data"

yes

cached?nack

forward
"nack"

no

retransmit
"data"

yes

forward
"data_ack"

data_ack

Figure 4.4: OMNeT++: SNOMC state machine, forwarding/branching nodes.

Figure 4.4 shows the simplified state machine of a forwarding/branching node.
The behaviour of both node types does not differ much. A forwarding node has
only to forward a message to one neighbour while a branching node has to forward
the message to two or more neighbours. The state machine has only one state,
the wait for event state. When a join message arrives the node decides on
its role (as a forwarding or branching node) and the message is forwarded to the
next neighbour. Similar is the behaviour when a join ack message arrives. The
message gets processed and forwarded towards the sender node. When a data
message arrives the behaviour depends on the caching strategy. If the node does
not cache fragments, the message is just forwarded. If the node caches fragments,
the fragment is cached before the message is forwarded. When a nack message
arrives, the behaviour also depends on the caching strategy. If the requested frag-
ment is cached on the node, the fragment is taken from the buffer and transmitted as
data message to the requesting receiver. If this is not the case, the nack message
is transmitted towards the sender node.

4.2.3 CC2420 Radio

Figure 4.5 shows the state machine of a CC2420 radio transceiver as it was im-
plemented in the CC2420Radio class. The radio transceiver has two buffers,
one for outgoing messages (RX Buffer) and one for incoming messages (TX
Buffer). Each of them stores 128 bytes. The radio transceiver is realized as a
built-in state machine, which is used to switch between different operational states.
The change of state is done either by using commands or by internal events such
as SFD (Start Frame Delimiter). The CC2420 provides an AUTO-ACK mode. An

73

4.2. SNOMC IMPLEMENTATION IN OMNET++

Frame TX Acknowledge
TX

Frame RX

TX
CAL IDLE RX

CAL
ACK
Send

TX
Preamb

Send
SFD

Search
ACK

Preamb
Send

TX
Send RECV ACK

CAL

STXON SRXON

SRFOFF

STXON

SACK

SACKOverflow

Auto ACK
disabled SFD

found

RX
Overflow

1 2

3

45

8

7

6

9

10

11

Figure 4.5: OMNeT++: CC2420 state machine.

acknowledgement frame is transmitted for all incoming frames accepted by the
address recognition with the acknowledge request flag set and a valid CRC. The
address recognition is part of the CC2420 transceiver.

The red transitions are commands, the black ones are internal events. The states
are numbered as follows:

(1) In the IDLE state the radio is switched off. If the MAC protocol gives the
STXON or SRXON command the radio transceiver switches to the corre-
sponding state.

(2) The frequency synthesizer has to be calibrated to receive the frames. This
calibration (RX CAL) takes 192 µs. Afterwards, the radio transceiver switches
to the SFD Search state.

(3) In the SFD Search state the radio transceiver listens for the SFD byte (Start
of Frame Delimiter). If the SFD is found the radio transceiver switches to
the RECV state. If the MAC protocol transmits a SACK (Send Acknowl-
edge) command, the radio transceiver switches to the ACK CAL state. If the
radio transceiver receives a SRFOFF command, it disables the receiving/-
transmission of messages and the frequency synthesizer and switches to the
IDLE state.

(4) The radio transceiver receives the frame. If the RX buffer overflows, the
next state is the RX Overflow. If the AUTO-ACK flag is disabled, it returns
to the SFD Search state. Otherwise, the radio transceiver sets the SACK
command and thus switches to the ACK CAL state.

(5) If there is an overflow (RX Overflow), the RX buffer is emptied (by MAC

74

4.2. SNOMC IMPLEMENTATION IN OMNET++

command SFLUSHRX and the radio transceiver switches to the SFD Search
state.

(6) The frequency synthesizer has to be calibrated to generate the signal for the
auto-acknowledgment. This calibration (ACK CAL) takes 192 µs. After-
wards, the radio transceiver switches to the ACK Preamb Send state.

(7) The preamble and SFD byte are transmitted (ACK Preamb Send) and the
radio transceiver switches immediately to the ACK Send state.

(8) The acknowledgment frame (MAC-ACK or AUTO-ACK) is transmitted (ACK
Send) and the radio transceiver switches to the RX CAL state.

(9) The frequency synthesizer has to be calibrated to generate the signal. This
calibration (TX CAL) takes a period of 192 µs. After that the radio transceiver
switches to the TX Preamb Send state.

(10) The preamble and SFD byte are transmitted (TX Preamb Send) and after
that the radio transceiver switches to the TX Send state.

(11) Transmitting the frame (TX Send) and switching to RX CAL.

4.2.4 Data Structures and Messages

The SNOMC implementation has four data structures to hold all necessary in-
formation: SNOMC control structure (snomc ctrl struct), SNOMC buffer
(snomc buffer), SNOMC incoming queue (snomc in queue), and SNOMC
outgoing queue (snomc out queue). Figure 4.6 shows the four data structures.

last_node_id

sender_id

caching_strat

rec_lst

mc_id

next_node_id

receiver_id

trans_succ

(a) SNOMC control structure

fragments

no_of_frags

frag_number

frag_length

fragement

no_last_frag

(b) SNOMC buffer

…

message

message

…

…

message

(c) SNOMC
in/out queue

Figure 4.6: SNOMC: data structures.

The snomc ctrl struct shown in Figure 4.6(a) contains the id of the
multicast group (mc id), the list of the receivers (rec lst), the caching strat-
egy (caching strat), and the addresses of the sender node (sender id), of
the previous neighbour node (next node id), and of the next neighbour node

75

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

(next node id). The list of receivers is realized as a STL (Standard Tem-
plate Library) list. Each entry of the list contains the address of the receiver
(receiver id) and a flag if the receiver successfully received all data (trans
succ).

The snomc buffer shown in Figure 4.6(b) contains all buffered data frag-
ments. It contains the total number of cached fragments (no of frags), the se-
quence number of the last fragment (no last frag), and a list of the fragments
(fragments). The list of cached fragments is realized as a STL list. Each entry
of the fragment list contains the sequence number (frag number) and the length
of the fragment (frag length) and the data of the fragment (fragment). The
SNOMC buffer has the same structure on the sender node, the receiver node and
all nodes that cache the data.

The queues of the incoming packets and the outgoing packets have the same
structure and are shown in Figure 4.6(c). They are also realized as a STL list and
contain any kind of messages. It is organized as a FIFO queue so that the messages
stay in the same order.

The SNOMC messages are also realized as C++ classes. The fields of each
message are attributes of this class. Additional information and parameters can be
attached to the message using the addPar function. The message handling is done
using the functions handleMessage, handleLowerMessage, handle
UpperMessage, and handleSelfMessage, depending on from which layer
the message arrives. The following SNOMC messages have been implemented:
join, join ack, data, data ack, and nack. The messages are described in
Section 3.3 and shown in the Figures 3.3, 3.5, 3.10, and 3.14.

4.3 SNOMC Implementation in Contiki OS

In this section we present details of the SNOMC implementation in Contiki OS.
In contrast to the implementation in the OMNeT++ simulator the implementation
took a bigger effort, because we had to solve many challenges regarding the limi-
tations of the sensor nodes and the operating system. We implemented the sender-
driven mode and the three caching strategies, including pro-actively requesting
missed fragments.

First, we describe the joining and the data transmission procedure on the im-
plementation level. The procedures are depicted using flowcharts, which are better
suited for intuitive presentation than pseudo-code listings. Afterwards we show
implementation details of the caching, the packet queues, the SNOMC sender and
control process, timers and variables.

4.3.1 Joining Procedure

Figure 4.7 shows the joining procedure on the sender node. It depicts the start of
the joining procedure and the behaviour when a join ack messages receives the

76

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

has received from
all receivers?

start joining

wait for event

receive
"join_ack"
message

yes

start
data

transmission

no

Sender Node

3

4

start "join_ack"
timer

5

send "join"
message (s)

to neighbour(s)

creates "join"
message(s)

checks receivers
list

1

2

"join_ack"
timer expires

6

Figure 4.7: SNOMC control process: joining procedure, sender node.

sender node.

(1) The sender node starts the joining procedure. First, it checks the receivers list
and the routing table and decides via which neighbour nodes the receivers
can be reached. Afterwards, it creates the join message(s) and transmits
them to the neighbours accordingly.

(2) Then, it starts the join ack timer and awaits the next event.

(3) When the sender node receives a join ackmessage, it checks if it got it from
all receivers.

(4) If it did not get the notifications from all receivers it restarts the join ack
timer again and waits for the next event.

(5) If it got the notifications from all receivers the joining procedure is finished
and the data transmission can start.

(6) When the join ack timer expires it checks in the receiver list which re-
ceivers have not notified the joining in the multicast group. Then, the proce-
dure continuous with step (1).

Figure 4.8 shows the joining procedure for the forwarding nodes, branching
nodes, and receiver nodes. Initially, the nodes will be not know which role they
will play and which caching strategy is used.

(1) The node receives the join message. First, it checks the receiver list in the
join message and define its own role as follows. If all receivers can be
reached via one single neighbour node, it acts as a forwarding node. If the
receivers can be reached via different neighbour nodes, it acts as a branching
node.

77

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

receive
"join"

message

wait for event

receive
"join_ack"
message

no

Forwarding Node

Branching Node

Receiver Node

am I
receiver?

do I cache
fragments?

send "join"
message(s)

to neighbour(s)

prepare buffer

no

no
start

"data_reception"
timer

am I
branching

node?

has received from
all receivers?

(re)start "join_ack"
timer

wait for event

yes

yes

no

yes

forward "join_ack"
message towards

the sender

combine
"join_ack"
messages

yes

2

45

6

7

8

9

10

checks receivers
list

1

3

11

"join_ack" timer
expired

Figure 4.8: SNOMC control process: joining procedure, other nodes.

(2) Then, it checks in the join message which caching strategy is used. If the
node has to cache the data fragments it prepares the buffer. If not, it continues
without the buffer preparation.

(3) In the receiver list of the join message the node sees if it is a receiver node
or not.

(4) If it is a receiver node, it starts the data reception timer and waits for
the next events.

(5) If the node is not on the receivers list, it just forwards the join message to the
one or more neighbour nodes (depending on whether the node is a branching
node or a forwarding node). Then, it waits for the next event.

(6) When the node receives a join ack message, it checks first its own role.

(7) If the node is a forwarding node it just forwards the join ack message to-
wards the sender node.

(8) If the node is a branching node, it checks if it got notifications from all receiver
nodes.

(9) If it got all notifications, it combines these notifications to a new join ack
message and forwards it towards the sender node.

(10) If not all notifications from all receivers have arrived the node starts the
join ack timer and waits for incoming events.

(11) When the join ack timer expires, it checks if all notifications arrived in
the meanwhile and the procedure continuous with step (8).

78

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

4.3.2 Data Transmission Procedure

has received from
all receivers?

start data
transmission

buffer "data"
fragments

receive
"nack"

message

receive
"data_ack"
message

yes

wait for event

Sender Node

1

forward "data"
message

to neighbor(s)

"data_ack"
timer expires

no

yes

data
transmitted

all "data"
fragments in the

buffer send?

start
"data_ack"

timer

take "data"
fragment from

buffer

wait for event

mark all data
fragments in

buffer as unsent

restart
"data_ack"

timer

no

2

3

4

5

6

7

8

9
fragment data
create "data"

messages

Figure 4.9: SNOMC control process: data transmission, sender node.

After the joining procedure the data transmission procedure starts. Figure 4.9
shows the procedure for the sender node. The sender node is responsible for the
fragmentation of the data and for the transmission to the receiver nodes. The data
transmission is finished when all receivers are notified that all data arrived success-
fully.

(1) As first step of the data transmission procedure the data has to be fragmented.
This procedure is described in detail in Section 4.3.3. Then, the data frag-
ments are stored in the buffer. In the beginning all data fragments in the
buffer are marked as unsent.

(2) A standard check up is made, if all data fragments in the buffer were sent. In
the first check after the initial data fragmentation clearly no data fragment
has been sent so far.

(3) If all fragments were sent, the data ack timer is started and the process
waits for the next events.

(4) If not all fragments are sent, the next unsent fragment is taken from the buffer
and forwarded to the next neighbour(s). Afterwards, the procedure continues
with step (2).

(5) If a nack message arrives at the sender node, the requested missed fragment
will be taken from the buffer and transmitted to the neighbour(s). Since the
sender node created the fragments, it has all of them in the buffer for sure. It
is also independent of the caching strategy, because the sender node anyway
caches all fragments.

79

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

(6) If a data ack message arrives the sender node this means that one or more
receivers successfully got all data fragments. The sender node checks if it
got notification from all receivers.

(7) If it got a notification from all receivers, the data transmission finished suc-
cessfully.

(8) If it does not got a notification from all receivers, the data ack timer is
restarted and the sender node waits for next events.

(9) The expiration of the data ack timermeans that the data transmission was
not successful to all receivers or a subset of them. In this case all fragments
in the buffer are marked as unsent and the data will be retransmitted to all
receiver nodes. The procedure starts again with step (2).

"nack" timer
expires

yes

no

send "data_ack"
message

towards sender

deliver data to
the application

receive
"data"

message

buffer "data"
fragment

wait for event

1

are "data"
fragments
missed?

Send "nack"
message with

missed fragments

Receiver Node

(re)start "nack"
timer

2

3

4

5

6

"data_reception
" timer expires

create "join_ack"
message

send "join_ack"
message towards

the sender

restart
"data_reception"

timer

7

Figure 4.10: SNOMC control process: data transmission, receiver nodes.

Figure 4.10 shows the situation at the receiver nodes. The receiver node gets
the data fragments and they request missed fragments. When all data fragments
have arrived the receiver notifies the sender node about this.

(1) When the receiver node gets a data message with a data fragment it buffers
it in its buffer.

(2) Then, the receiver node checks, if there are missed fragments.

(3) If this is not the case, the receiver notifies the sender node about this by trans-
mitting a data ack message.

(4) After processing case (3), the receiver reassembles the data, deliver it to the
application and waits for next events.

80

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

(5) If the receiver did not get all fragments, it creates a nack message with the
missed fragments and forwards it towards the sender node. Then, it (re)starts
the nack timer and waits for new events.

(6) When the nack timer expires the receiver node checks again which frag-
ments are missing. The procedure continuous with step (2).

(7) The data reception timer is started after the join message received
(cf. Figure 4.8). If data only consists of one fragment and this fragment gets
lost, the receiver node cannot know if there is any data transmission after the
joining procedure. This timer ensures that the receiver node does not wait
infinitely after the joining procedure. When the data reception timer
expires a second join ack message is generated and transmitted towards
the sender node. Afterwards, the data reception timer is restarted.

receive
"data_ack"
message

receive
"nack"

message

yes

no

combine
different "nack"

messages

Forwarding Node

Branching Node

forward "data_ack"
message towards

sender node

receive
"data"

message

forward
fragment(s)

to neighbour(s)

wait for event

wait for event

am I
branching

node?

duplicate "data"
message

yes

no

do I cache
fragments?

do I have the
fragment?

yes

forward
"nack"

message

no

am I
branching

node

yes

no

"nack_wait"
timer expires

5

6

7 8

13

do I cache
fragments?

cache fragment

1

yes

no

2

3

4

9

11

10

12

wait for event

take "data"
fragment

from buffer

send "data"
fragment to

receiver

store
"nack"

message

start
"nack_wait"

timer

14

15

Figure 4.11: SNOMC control process: data transmission, other nodes.

Figure 4.11 shows the situation at the forwarding and branching nodes. Both
nodes are responsible for forwarding of data messages, for caching, and for re-
transmission of missed fragments.

(1) When a node receives a data message it first checks, if it should cache the
data, depending on the role of the node and the selected caching strategy.

(2) If yes, the node stores the data fragment in the buffer, if it is not already cached
(in case the data message was a retransmission).

(3) If it should not cache the data (according to the caching strategy), it just con-
tinues with the procedure.

(4) Next, the node checks if it is a branching node.

81

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

(5) If it is a branching node it duplicates the data message and forwards it to
two or more neighbour nodes. If the broadcast optimization is enabled the
branching node broadcasts the data message.

(6) If the node is a forwarding node, it forwards the data message with the du-
plication and waits for further events.

(7) When the node receives a data ack message, it forwards the message to-
wards the sender node.

(8) When a nack message arrives, the node first checks if it generally should
cached fragments, depending on the role of the node and the selected caching
strategy.

(9) If the node should not cache fragments, it only forwards the nack message
towards the sender node.

(10) If the node does caching it checks the requested fragment is in the buffer.

(11) If the fragment is in the buffer, then it copies the fragment from the buffer and
sends it to the requesting receivers.

(12) If the node does not have the requested fragment in the buffer, the nodes
further behaviour depends on whether the node is a forwarding node or a
branching node.

(13) If it is a forwarding node it only forwards the nack message towards the
sender node.

(14) If it is a branching node it stores the nack message and waits for certain time
(nack wait timer) for further nack messages to combine them.

(15) When the nack wait timer expires it checks if in the meanwhile other
nackmessages arrived. It combines them and forwards the combined nack
message towards the sender node.

When the node pro-actively requests missed fragments it checks if fragments
are missed in its own buffer and pro-actively requests the missed fragments. The
procedure is the same as shown in Figure 4.10, numbers (2) to (5).

4.3.3 Fragmentation, Caching, and Buffer

The fragmentation of data of 1000 bytes into smaller fragments of 70 bytes each is
accomplished by the function buildFragment(uint8 t size). This func-
tion builds a data message (fragment) with a given size. Afterwards, this function
stores the fragment in the buffer.

To implement the cache discussed in Section 3.3.2, a simple buffer was imple-
mented as cache. The caching strategy is defined in the snomc ctrl struct

82

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

shown in Figure 4.6(a). All types of nodes (sender node, forwarding nodes, branch-
ing nodes, receiver nodes) have the same buffer implementation. The structure of
the buffer is called buffer t and includes, besides the storage of the fragments,
also information about the number of fragments (no of frags) and the number
of the last fragment (no last frag). The size of the memory is dynamically al-
located using the Managed Memory Allocator (mmem) provided from Contiki OS.
The structure of the buffer is depicted in Figure 4.12.

no_of_frags

no_last_frag

fragments
…

…

Figure 4.12: Buffer structure.

To cache a fragment, an intermediate node simply copies the frag field of the
data message to the right position in the cache buffer. This position in the cache
buffer is characterized by a start byte, which is calculated from the size of the
fragment and the frag no.

4.3.4 SNOMC Control/Sender Process and Packet Queues

As discussed in Section 2.6, the µIP TCP/IP stack of Contiki OS uses a single
buffer for incoming and outgoing messages. Therefore, µIP does not have a queue
for incoming or outgoing packets and only one packet is stored. Thus, packet loss
also happens because the sensor node can not store an incoming packet while the
µIP buffer is occupied, since the processing of the current packet is not finished
and µIP does not overwrite the global packet buffer. That is problematic, since
due to the preconfigured backoff time of the MAC protocol, a node waits before
it actually transmits a packet. During this time period, the node is not able to
receive new packets. To overcome this issue we implemented the SNOMC protocol
as four Contiki processes: SNOMC control process (described above) with the
incoming packet queue process and the SNOMC sending process with the outgoing
packet queue process. Both packet queues act as proxies between the SNOMC
control/sender processes and µIP. Thus, the SNOMC control/sender processes do
not talk directly to µIP, instead they use the packet queues for receiving new packets
and transmitting packets.

The SNOMC sending process is shown in Figure 4.13. The SNOMC sender
process does not transmit a message directly via the µIP buffer. Instead, it adds the

83

4.3. SNOMC IMPLEMENTATION IN CONTIKI OS

send
message

wait for event

"packet_send"
timer expires

SNOMC Sender
Process

start "packet_send"
timer

add message to
out_packet_queue

1

2

take first message
from

out_packet_queue

send message

restart
"packet_send"

timer

wait for event

uIP buffer
occupied?

message stays in
out_packet_queue

4

3

5
6

yes

no

Figure 4.13: SNOMC sender process: sending messages

message to the outgoing packet queue (out packet queue). The out packet
queue is polled frequently by the SNOMC sender process (randomly between

20ms and 84ms) and the first message in the queue is send.

(1) When SNOMC wants to send a message, it does not simply send it via the µIP
buffer. It stores the message in the outgoing packet queue (out packet
queue). The queue is in fact a FIFO queue, the first packet stays on the first
position. Thus, the order of the packets is ensured.

(2) After storing the packet, the packet send timer is started. Then, the pro-
cess waits for next events.

(3) When the packet send timer expires, the first packet is taken from the
out packet queue.

(4) Then it is checked, whether the µIP buffer is free.

(5) If the buffer is free, the message is sent. Afterwards the packet send timer
is restarted.

(6) If the buffer is occupied the packet stays in the out packet queue and the
packet send timer is restarted.

The outgoing packet queue is implemented using managed memory alloca-
tor provided by the Contiki OS. Thus, we have a dynamic sized queue. The
SNOMC sender process uses the function addToQueue(* msg) to add a packet
to the queue. Since, the queue is organized as a FIFO memory, the function
getFromQueue() always returns the first (and oldest) packet of the queue.

Figure 4.14 shows the interaction between the SNOMC control process and the
incoming packet queue .

84

4.4. CONCLUSIONS

initialize

wait for typ_ip
event

tcp_ip event
arrives

SNOMC Control
Process

attach to queue

1
copy packet from

uIP buffer to
in_packet_queue

post packet_event

wait for event

3

2

Figure 4.14: SNOMC control process: receiving messages

(1) First, the process of the communication protocol has to tell the incoming packet
queue that it wants to use the queue. The process does that by executing the
attachToQueue(handle h) function. This function stores the process
ID of the process of the SNOMC receiver process in the data structure h of
type handle. Next, the attachToQueue function starts the incoming
packet queue process, which is listening for tcp ip events posted by µIP.

(2) If new packets arrive, µIP posts the tcp ip event, signalling that a new packet
was copied into the global packet buffer. The packet queue now checks for
a free packet slot.

(3) If so, the new packet in the global packet buffer is copied to this slot, otherwise,
the packet is dropped. The packet queue now posts the packet queue
event to the process with the ID stored in the data structure handle. The
receiver process of the SNOMC protocol has to listen for the event packet
event. If such an event arrives, the process uses the getPacket function
to access the new packet. This function returns a pointer to the data of the
new packet.

4.4 Conclusions

This chapter focussed on the details of the SNOMC implementation in the OM-
NeT++ simulator and in the Contiki OS. Based on the SNOMC design described
in Chapter 3 we implemented SNOMC for both platforms. The protocol operations
are implemented as state machines. The behaviour depends on the state and the in-
coming message. Due to the limitations of the µIP buffer incoming and outgoing
messages are queued in two separate queues. An important property of SNOMC
is caching, which is implemented using a buffer structure. In OMNeT++ we addi-
tionally implemented the underlying MAC protocols NullMAC and ContikiMAC
and the CC2420 radio transceiver.

With these two implementations of SNOMC we had the possibility to make
a proper performance evaluation of SNOMC against other popular data dissemi-

85

4.4. CONCLUSIONS

nation protocols as well as the possibility to integrate SNOMC in the MARWIS
architecture. This integration allows us to perform management tasks such as code
update, reconfiguration and monitoring in an efficient way. This has been evaluated
in Chapter 8.

The following Chapter 5 presents the quantitative evaluation of SNOMC. To
make a proof-of-concept evaluation we first use the implementation in the OM-
NeT++ simulator. Later, to determine its performance in a real-world environment
we use the Contiki OS implementation in the Wisebed testbed.

86

Chapter 5

SNOMC Evaluation

In this section we evaluate the SNOMC (Sensor Node Overlay Multicast) protocol
and compare its performance against a number of other data dissemination proto-
cols for wireless sensor networks, such as Flooding, MPR (Multipoint Relay) [90],
PSFQ (Pump Slowly, Fetch Quickly) [129], TinyCubus [73], and Directed Diffu-
sion [59, 60]. For a detailed description of the protocols we refer to Section 2.6.
Additionally, we compared it to two unicast protocols, namely UDP and TCP.

After Introduction in Section 5.1 we present the results of the evaluation using
the OMNeT++ simulator in Section 5.2. The evaluation of SNOMC in the Wisebed
testbed is presented in Section 5.3. Section 5.4 compares the simulated results and
the results of the real-worlds experiments. Section 5.5 concludes this chapter.

5.1 Introduction

The performance of SNOMC in terms of transmission time, number of totally
transmitted packets and energy consumption is compared to other data dissemina-
tion protocols often used in wireless sensor networks. We chose broadcast-based
protocols such as Flooding, MPR (Multipoint Relay), and TinyCubus. Further-
more, we consider typical data dissemination protocols especially designed for
wireless sensor networks, such as PSFQ (Pump Slowly, Fetch Quickly), and Di-
rected Diffusion. Since we are using Contiki OS, which supports a µIP protocol
stack, we also compare SNOMC to the unicast-based distribution using UDP and
TCP.

We implemented the above protocols in the OMNeT++ simulator and made
evaluations to proof the general concepts of the SNOMC protocol, such as join-
ing procedure, data transmission, reliability mechanisms, and the different caching
strategies. Later, we implemented them in Contiki OS to evaluate SNOMC under
real-world conditions running experiments in the Wisebed testbed.

To ensure a fair evaluation we implemented on top of each of the protocols
(except for TCP) a simple NACK-based reliability mechanism including different
caching strategies as used in SNOMC. Furthermore, we used SNOMC on top of
different MAC protocols to show the performance of SNOMC, independently of

87

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

the underlying MAC protocol. In the OMNeT++ implementation we used BEAM
[13, 122], and implementations of NullMAC and ContikiMAC, which are inte-
grated in the Contiki OS. The latter two we used for our real-world experiments in
the Wisebed testbed. We could not use BEAM for the real-world experiments, be-
cause the BEAM implementation in Contiki OS does not support broadcast trans-
missions.

5.2 SNOMC Evaluation of Simulation Results

This section presents the evaluation of the SNOMC protocol in the OMNeT++
simulator. First, we describe the protocol stack. Then, we introduce the different
simulation scenarios. Finally, we discuss the results of our measurements.

5.2.1 Protocol Stack

To evaluate the performance of SNOMC, we compare it to a number of data dis-
semination protocols commonly found in wireless sensor networks in combination
with different underlying MAC protocols. More specifically, these protocols are:
Flooding, Multipoint Relay, TinyCubus, Directed Diffusion, UDP, and TCP as data
dissemination protocols as well as BEAM [13], ContikiMAC [33] and NullMAC
as MAC protocols. For the description of the protocols we refer to Section 2.6.
All protocols have been implemented in the OMNeT++ simulator [9]. The pro-
tocol stack is shown in Fig. 5.1 and is based on the µIP stack from Contiki OS.
To enable a fair comparison we had to ensure end-to-end reliability for all proto-
cols and implement the same simple NACK-based reliability mechanism as used
in SNOMC.

PHY / 802.15.4

NULLMAC

μIP

TCP

APP

SNOMC

BEAM

E2E

UDP FLOOD MPR Tiny
Cubus

Directed
Diffusion

CONTIKIMAC

Figure 5.1: Simulation protocol stack.

The underlying MAC protocol plays an important role for the transmission
of data between neighbour nodes. Hence, different MAC protocols can lead to
significantly different results, irrespectively of the used transport or multicast pro-
tocol. We chose three MAC protocols with different support mechanisms for reli-
ability and energy-efficient operation. The Burst-aware Energy-Efficient Adaptive
MAC Protocol (BEAM) [13] uses an adaptive duty cycle mechanism, which reacts

88

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

Table 5.1: MAC Protocol Parameters.

acknowledgements max. retransmissions energy-saving
BEAM positive ack 5 yes

ContikiMAC early ack 2 yes
NullMAC no 0 no

quickly to changes in both traffic loads and traffic patterns and ensures hop-to-hop
reliability. ContikiMAC [33], which is part of the Contiki operating system, also
supports energy-saving radio duty cycling mechanisms and reliability based on
an acknowledgement mechanism. NullMAC, also part of Contiki, has no energy-
saving mechanisms and does not support reliability. Table 5.1 shows an overview
of the parameter of the used MAC protocols.

5.2.2 Simulation Scenarios

We arranged 36 sensor nodes in a grid of 6x6 nodes with a distance of 100 meters
between each two nodes as shown in Fig. 5.2. Since we are interested in a multicast
scenario, we chose a sender (node 0) with three receivers (node 17, 33, and 35).

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(a) SNOMC

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(b) UDP and TCP

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(c) Directed Diffusion

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(d) Flooding

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(e) MPR

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

(f) TinyCubus

Figure 5.2: Simulation scenarios.

89

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

Table 5.2: Simulation Parameters.

carrierFrequency bit-rate sensitivity thermalNoise TX power modulation
2.4 GHz 250 kbps -94 dBm -110 dBm 1mW O-QPSK

Table 5.3: Energy Consumption of the CC2420 Radio Transceiver.

mode sleeping receiving transmitting
consumption in mA 0.4 mA 18.8 mA 17.4 mA

Given the chosen simulation scenario, each of the compared protocols affects
a different set of nodes. In case of SNOMC there are two branching nodes (21, 28)
and three forwarding nodes (7, 14, 22) as shown in Fig. 5.2(a). For UDP and TCP
the same nodes are affected but there are three independent unicast connections
(cf. Figure 5.2(b)). As shown in Fig. 5.2(c) a different set of nodes participates in
the distribution tree in Directed Diffusion, which is a result of the different Interest
message routing compared to the static routing of SNOMC. In Flooding all nodes
are affected (cf. in Fig. 5.2(d)). In the chosen grid scenario the Multipoint Relay
protocol calculates a rather high number of multipoint relay nodes (cf. Fig. 5.2(e)).
In the case of TinyCubus, the same set of nodes as in SNOMC is affected. Due to
design decisions the protocol does not distinguish between receivers and interme-
diate forwarders (cf. Fig. 5.2(f)). Hence, all nodes in the set (7, 14, 21, 22, and 28)
will rebroadcast the packets.

We created two evaluation scenarios, which differ in the size of the transmitted
messages - 20 bytes and 1000 bytes. The size of 1000 bytes is typically associ-
ated with software updates on the sensor nodes; the size of 20 bytes is related to a
short configuration message for the sensor nodes. For each scenario, 50 simulation
runs are used for evaluation. We measured three parameters: (i) transmission times
from the sender to all receivers (including the joining phase), (ii) the total number
of packets it takes to ensure the successful reception of the data by all receivers, and
(iii) the energy consumption of the nodes in the network. The energy consumption
is measured according to the CC2420 state machine with real state switching times
and energy consumption according to [120] and [83] (values for sleeping, receiv-
ing, and transmitting, see Table 5.3) and is calculated per node and per transmitted
byte. The energy consumption of the CPU and writing the flash memory is much
smaller than the energy consumption of the radio transceiver. Therefore, only the
energy consumption of the radio transceiver is taken into account.

In order to get realistic simulation results a radio model in OMNeT++ is im-
plemented according to the data CC2420 manual [120] and the Castalia Simula-
tor [83]. It is used to calculate the signal to noise ratio (SNR) based on parameters
shown in Table 5.2. Using the SNR and real measurements with a CC2420 radio
transceiver the bit error rate (BER) is calculated. In addition, a packet error rate of

90

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

5% is assumed to represent random noise and external interferences.

5.2.3 Transmission Times

In this section, we present our findings on transmission times. In all figures on the
x-axis the combinations of transport and MAC protocols are shown. In our notation
B stands for BEAM, C for ContikiMAC, and N for NullMAC.

First, in Fig. 5.3(a), we discuss results for the time required to transmit 1000
bytes from the sender node to the three receiver nodes. SNOMC requires the short-
est time to transmit 1000 bytes to the receivers. As expected, unicast data distri-
bution based on UDP-E2E requires more time due to the redundant unicast flows
that need to be established for each of the three receiver nodes. TCP performs
even worse since every packet has to be acknowledged. This kind of traffic pattern
caused by simultaneous data and acknowledgements increases collision probabil-
ity and hence affects delay negatively. Flooding, Multipoint Relay, and TinyCubus
are all broadcast protocols and are much worse in performance. On the one hand,
broadcasting affects usually more nodes, which leads to a higher number of trans-
missions. Consequently, the probability of collisions increases and more retrans-
missions are necessary, pushing delay up. On the other hand, to avoid collisions
higher random back-off times are necessary compared to unicast-based protocols.
This leads to longer transmission times.

Further we can see that using caching in intermediate nodes performs better
than caching only on sender node. It avoids long end-to-end transmissions, which
cost time. Further, it reduces the number of packets in the network, which reduces
the probability of collisions.

 0

 5

 10

 15

SNOMC
B|C|N

FLOOD
B|C|N

MPR
B|C|N

TinyCubus
B|C|N

DD
B|C|N

UDP-E2E
B|C|N

TCP
B|C|N

tim
e

[s
]

protocol combinations

Transmission time (data distribution only) 1000 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(a) 1000 bytes

 0

 0.2

 0.4

 0.6

 0.8

SNOMC
B|C|N

FLOOD
B|C|N

MPR
B|C|N

TinyCubus
B|C|N

DD
B|C|N

UDP-E2E
B|C|N

TCP
B|C|N

tim
e

[s
]

protocol combinations

Transmission time (data distribution only) 20 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(b) 20 bytes

Figure 5.3: Evaluation: transmission time.

Let us now compare the performance of the MAC protocols (BEAM, Contiki-
MAC, NullMAC) in combination with the higher level transport protocols. In the
diagrams, shown in Fig. 5.3(a), the MAC protocols are indicated with the letter
underneath the transport protocol name. In our notation B stands for BEAM, C
for ContikiMAC, and N for NullMAC. We see that BEAM has a little worse per-
formance than NullMAC (for SNOMC, Directed Diffusion, UDP-E2E and TCP).

91

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

However, BEAM outperforms ContikiMAC, which is the result of two factors.
First, BEAM is optimized for bulky traffic while ContikiMAC focuses only on
constant (or slowly changing) traffic. Bulky traffic is characterised by transmis-
sions of a large number of packets within a short time period. Second, BEAM [13]
has better congestion control and duty cycle mechanisms. The latter is also the rea-
son why caching at intermediate nodes affects the performance of both protocols
differently, i.e., for BEAM the effect is much smaller than for ContikiMAC. Null-
MAC in combination with broadcast-based protocols (Flooding, MPR, TinyCubus)
works better than BEAM in combination with these protocols. Since BEAM has
energy-saving mechanisms, the radio transceiver can be in sleep mode. If so, longer
time is needed to transmit a packet from sender to receiver. On the contrary, the ra-
dio transceiver in NullMAC is always on and therefore the sender can immediately
transmit the packet.

In case of 20 bytes of data a single packet has to be transmitted. Transmission
times are shown in Fig. 5.3(b). We see that SNOMC achieves the best perfor-
mance. Ideally, TinyCubus requires a smaller number of transmissions compared
to SNOMC (due to using broadcast transmissions). SNOMC, however, has the ad-
ditional benefit of smaller random-back off times (see implementation of the packet
queues in Section 4.3.4). UDP and TCP need more transmissions and longer trans-
mission times due to the three independent flows. Due to just one packet has to
be transmitted in scenario 2, also TCP requires only one acknowledgement for
the transmitted packet, explaining the much smaller differences between TCP and
UDP compared to the scenario with 1000 bytes.

Further, in SNOMC, TinyCubus, Directed Diffusion and UDP collisions among
data and acknowledgements generally do not occur and hence no retransmissions
are required. Therefore, the corresponding boxplots in Fig. 5.3(b) are quite com-
pact and do not have big outliers. Finally, the differences between Flooding, Mul-
tipoint Relay and Directed Diffusion are similar as for the 1000 bytes scenario.

5.2.4 Number of Transmissions

Fig. 5.4(a) shows the number of total transmissions needed for the successful trans-
fer of 1000 bytes. As we can see, SNOMC requires the fewest number of pack-
ets, followed by UDP, TCP and Directed Diffusion. The results of broadcast-based
protocols (Flooding, Multipoint Relay, and TinyCubus) are considerably worse and
are compliant with our observations on transmission times. Flooding requires most
transmissions (inherent to its communication style), followed by Multipoint Relay
(result of the disadvantageous set of multipoint relays) and, with the best perfor-
mance of the three, TinyCubus.

Looking at the MAC protocols, BEAM requires more packets to ensure hop-to-
hop reliability than NullMAC, irrespectively of the transport protocol. This is due
to the fact that the receiver can be in sleeping mode and multiple attempts may be
required before the packet is transmitted successfully. ContikiMAC always needs
more packet retransmissions on link layer due to a worse duty cycle mechanism

92

5.2. SNOMC EVALUATION OF SIMULATION RESULTS

compared to the adaptive duty cycle mechanisms of BEAM. Thus, a higher number
of necessary end-to-end retransmissions on the transport layer is required.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

SNOMC
B|C|N

FLOOD
B|C|N

MPR
B|C|N

TinyCubus
B|C|N

DD
B|C|N

UDP-E2E
B|C|N

TCP
B|C|N

se
nt

 p
ac

ke
ts

 [#
]

protocol combinations

Number of sent packets (data distribution only) 1000 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(a) 1000 bytes

 0

 50

 100

SNOMC
B|C|N

FLOOD
B|C|N

MPR
B|C|N

TinyCubus
B|C|N

DD
B|C|N

UDP-E2E
B|C|N

TCP
B|C|N

se
nt

 p
ac

ke
ts

 [#
]

protocol combinations

Number of sent packets (data distribution only) 20 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(b) 20 bytes

Figure 5.4: Evaluation: number of transmitted packets.

The results for the transmission of 20 bytes are shown in Fig. 5.4(b). Tiny-
Cubus achieves the best performance in combination with NullMAC. It has an
optimal set of forwarding nodes and NullMAC keeps the radio transceiver always
awake. Hence, this combination reaches the minimal number of packets (6) to en-
sure the successful transmission of 20 bytes. The other broadcast protocols (Flood-
ing and Multipoint Relay) show an improved performance as well, considering the
scenario with 1000 bytes. Just one packet has to be transmitted, which causes less
collisions and retransmissions. Out of all non-broadcast-based protocols, SNOMC
has the best performance while Directed Diffusion has the worst. Directed Diffu-
sion requires a larger number of packets because of the more extensive hop con-
nectivity, i.e., more connections compared to UDP and TCP. If Directed Diffusion
would use the same sensor nodes as, e.g., UDP or TCP, it would perform better.
Further, the differences between the three caching modes are quite small, a result
of the smaller number of required retransmissions.

5.2.5 Energy Consumption

We now discuss the energy consumed per node and per transmitted byte. Results
for the scenario with 1000 bytes are shown in Fig. 5.5(a). We compare only the
performance of BEAM and ContikiMAC, since NullMAC does not have an energy
saving mechanism. In general, it can be seen that for broadcast-based protocols
there is a stronger relation between the consumed energy and the number of trans-
mitted bytes. More specifically, the more bytes are transmitted the higher is the
energy consumption per byte due to higher packet loss. The energy consumption
of unicast-based protocols is generally good with the exception of Directed Diffu-
sion, which performs rather poor due to additional maintenance messages, e.g., for
path reinforcement or the propagation of new interest. Concerning the impact of
the MAC protocol, BEAM offers higher energy-efficiency than ContikiMAC since
the latter has a worse duty cycle mechanism compared to the adaptive duty cycle

93

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

mechanism of BEAM. Furthermore, caching does not significantly influence the
performance of broadcast-based protocols from an energy point of view.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

SNOMC
B|C

FLOOD
B|C

MPR
B|C

TinyCubus
B|C

DD
B|C

UDP-E2E
B|C

TCP
B|C

en
er

gy
 [n

J]
 p

er
 B

yt
e

protocol combinations

Energy per Byte (all nodes, data distribution) 1000 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(a) 1000 bytes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

SNOMC
B|C

FLOOD
B|C

MPR
B|C

TinyCubus
B|C

DD
B|C

UDP-E2E
B|C

TCP
B|C

en
er

gy
 [n

J]
 p

er
 B

yt
e

protocol combinations

Energy per Byte (all nodes, data distribution) 20 bytes

caching on sender node
caching on intermediate nodes

caching on branching nodes (SNOMC only)

(b) 20 bytes

Figure 5.5: Evaluation: energy consumption per node and per transmitted byte.

In Fig. 5.5(b) corresponding results on energy consumption are shown for the
scenario with a single packet (20 bytes). Due to the transmission of 20 bytes im-
plies a lower number of collisions and retransmissions, the energy consumption per
transmitted byte is lower for 20 bytes (1 packet) than for 1000 bytes (15 packets).

5.3 SNOMC Evaluation in Real-World Testbed

In this section we present the results of the evaluation under real-world condi-
tions. We measure the transmission time, the number of transmitted packets and
the consumed energy transmitting 1000 bytes from one sender node to three re-
ceiver nodes.

For the evaluation we are using our in-house testbed developed in the Wisebed
project. It consists of 40 TMoteSky sensor nodes, which are distributed in the
building of the Institut für Informatik und angewandte Mathematik. More detailed
information about Wisebed can be found in Section 2.3.

First, the used protocol stack is described. Afterwards, we show the three
used evaluation scenarios followed by the measurements for time consumption,
transmitted packets, and energy consumption.

5.3.1 Protocol Stack

To evaluate the performance of SNOMC, we compare it to a number of data dis-
semination protocols commonly found in wireless sensor networks in combina-
tion with different underlying MAC protocols. In addition to the implementa-
tion and evaluation in OMNeT++ we implemented with PSFQ (Pump Slowly,
Fetch Quickly) protocol another transport protocol. Moreover, we do not eval-
uate SNOMC and the other data dissemination protocols with the BEAM MAC
protocol. The reason is that BEAM implemented in Contiki OS does not support

94

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

PHY / 802.15.4

NULLMAC

μIP

TCP

APP

SNOMC E2E

UDP FLOOD MPR Tiny
Cubus

Directed
DiffusionPSFQ

CONTIKIMAC

Figure 5.6: Real-World protocol stack.

broadcast transmissions, which is necessary for the broadcast-based protocols and
the broadcast optimization of SNOMC.

Thus, the used protocols for the evaluation of SNOMC are: Flooding, Multi-
point Relay, TinyCubus, PSFQ, Directed Diffusion, UDP, and TCP in combination
with NullMAC and ContikiMAC. For the description of the protocols we refer to
Section 2.6. All protocols have been implemented in Contiki OS [38]. The pro-
tocol stack is shown in Fig. 5.6 and is based on the µIP stack from Contiki OS.
To ensure a fair comparison with SNOMC, we also implemented in the real-world
evaluation the same simple NACK-based reliability mechanism, used in SNOMC,
on top of all data dissemination protocols (except for TCP).

5.3.2 Experimentation Scenarios

For the evaluation of SNOMC we used three different scenarios in the in-house
testbed . The first scenario, shown in Figure 5.7, consists of all 40 sensor nodes
in the in-house testbed. We have one sender node (number 7), and three receiver
nodes (numbers 16, 19, and 21). The SNOMC distribution tree spans over the
nodes 4, 40, 23, and 1. The rest of the nodes are passive in transmitting the data
using SNOMC but they play an active role while transmitting data using Flooding
or Multipoint Relay.

Since most of the broadcast-based protocols did not terminate and thus failed
in scenario 1 with all 40 nodes (cf. Section 5.3.3), we choose a second scenario
(see Figure 5.8). This scenario has the same sender node, the same receiver nodes,
and the same spanned distribution tree for SNOMC. But it does not include all the
other passive sender nodes. This leads to much less traffic and transmitted packets
using the broadcast-based protocols and a better performance.

The third scenario, shown in Figure 5.9 is used to compare SNOMC specifi-
cally with UDP-E2E. The sender node is again node number 7, but receiver node
16 changed to receiver node 21. Thus also the spanned distribution tree changed
and consists of the nodes number 4, 40, and 1. This scenario shows the advantages
of a multicast-based data distribution scheme compared to a unicast-based one.

95

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

02

03

05

06

07

09

08

10

11

12

13

14

16

17

15

18

20

24

25

26 27

39

28

29

30

31 32

33

34 35

36

37

38

22

01

04

19

21

23

40

Figure 5.7: Evaluation scenario 1.

5.3.3 Transmission Times

In this section we present the results for the transmission time in the three scenarios.
In all figures on the x-axis the combinations of data dissemination protocols with
the different caching strategies are shown. In our notation s stands for caching only
on sender node, b(-pa) for caching on branching nodes (with pro-active request),
i(-pa) caching on each intermediate sensor node (with pro-active request), and i-bc
stands for the broadcast optimization of SNOMC. With pro-active mode each in-
termediate node that caches data, requests actively missing fragments. Caching on
branching nodes and the broadcast optimization appears only in SNOMC. The dia-
grams on the left side show the measured values using NullMAC, and the diagram
on the right side shows the values using ContikiMAC. Both diagrams have the same
scale on the y-axis to ease the comparison between NullMAC and ContikiMAC.

Figure 5.10(a) shows the transmission times transmitting 1000 bytes from one
sender node to the three receiver nodes using NullMAC. Compared to the other
protocols SNOMC has the best performance.

Only the performance of UDP-E2E comes close to SNOMC. Broadcast-based
protocols such as Flooding and MPR work generally worse than unicast-based pro-
tocols except for TCP. The reason is obvious. All packets (data as well as nack
messages) are broadcasted which leads to a huge amount of messages in the net-
work and causes high interferences. The three broadcast-based protocols differ in

96

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

01

04

07

11

16
19 24

23

40

Figure 5.8: Evaluation scenario 2.

how many sensor nodes rebroadcast the packets. Therefore, Flooding has the worst
performance, followed by MPR, and TinyCubus. In case of using TinyCubus only
the sensor nodes 4, 40, 23, and 1 rebroadcast the packets. Thus, there is less traffic
in the network and TinyCubus performs better.

Directed Diffusion does not work and does not deliver results. The reason is
that the found paths are always very bad and in combination with the bad links there
are no stable connections. TCP performs poorly because each packet is acknowl-
edged, and not only the missed one, leading to higher traffic and interferences.

Comparing the various caching strategies, we see that caching on each inter-
mediate nodes show the best results. In case of SNOMC caching on each inter-
mediate node performs better than caching on branching nodes. Thus, we can
say that the more often the packets are cached the better the performance is. Pro-
actively requesting missed packets results on higher packet traffic in the network.
Thus, always caching with pro-active requests has a worse performance compared
to caching strategies without pro-active requests.

If we have a look on Figure 5.10(b), we see the results using ContikiMAC. As
mentioned above, we see that a number of protocols does not work in this scenario.
Only SNOMC, UDP-E2E, TinyCubus and partly Flooding show meaningful results
at all. The other protocols fail. The reason is how ContikiMAC handles broadcasts.
In the unicast case ContikiMAC sends a frame and gets back an acknowledgement.

97

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

02

03

05

06

07

09

08

10

11

12

13

14

16

17

15

18

20

23

25

26 27

39

28

29

30

31 32

33

34 35

36

37

38

22

01

19

21

24

04

40

Figure 5.9: Evaluation scenario 3.

If the neighbour sleeps then there is no acknowledgement. ContikiMAC sends the
frame until the neighbour wakes up and answers. In the broadcast case there are no
acknowledgements. Hence, ContikiMAC sends as long as for the maximum duty
cycle among the neighbours so that it can be ensured that every neighbour was
awake during this time. This produces a huge amount of traffic and interferences.

Figures 5.10(c) and 5.10(d) show the results transmitting 20 bytes from one
sender to the receiver nodes using NullMAC and ContikiMAC respectively. The
results are similar to the 1000 byte scenario. SNOMC has a smaller advantage
compared to UDP-E2E and TCP because the joining phase takes additional time
before the delivery of the data can start. Using NullMAC (see Figure 5.10(c))
the transmission times are lower than the transmission times using ContikiMAC
(see Figure 5.10(d)). Directed Diffusion also does not deliver results using both
NullMAC and ContikiMAC, because it was not possible to establish stable routes
in this scenario.

Since Directed Diffusion and PSFQ have phases in the protocol operation that
use broadcast transmission, also theses protocols fail using ContikiMAC as MAC
protocol. Therefore, we run the same experiments on a smaller scenario, which
only consists of a sub-set of nodes, namely only 9 instead of 40. The results are
shown in Figure 5.11.

Figure 5.11(a) shows the results using NullMAC. The results from SNOMC,

98

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 100

 200

 300

 400

 500

 600

 700

 800

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes nullmac

(a) NullMAC, 1000 bytes

 0

 100

 200

 300

 400

 500

 600

 700

 800

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes

 0

 10

 20

 30

 40

 50

 60

 70

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes nullmac

(c) NullMAC, 20 bytes

 0

 10

 20

 30

 40

 50

 60

 70

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes

Figure 5.10: Evaluation: transmission time, scenario 1.

UDP-E2E, and TCP are almost the same as in the large 40-node scenario, because
the same set of nodes are affected as in scenario 1. We can see that SNOMC
outperforms all protocols.

Also in this smaller scenario 2 broadcast-based protocols such as Flooding,
MPR, and TinyCubus perform poor. The reasons are still the same as in scenario
1. A lot of packets in the network leading to high interferences and thus many
retransmissions. Directed Diffusion and PSFQ perform better than the broadcast-
based protocols. Directed Diffusion finds good paths in the interest phase to deliver
the data efficiently.

Also the results in this scenario show that the caching strategy has significant
influence. Caching only on the sender node performs worse than caching on each
intermediate node and pro-active requests of missing packets cause worse perfor-
mance due to higher traffic and more interferences.

While most of the data dissemination protocols failed in scenario 1 using Con-
tikiMAC, we have results for all of them in scenario 2, as shown in Figure 5.11(b).
SNOMC outperforms all other protocols, broadcast-based protocols perform worst,
and the different caching strategies have a certain influence. If we look at the broad-
cast optimization of SNOMC we see the strong influence of the underlying MAC
protocol. In combination with NullMAC the broadcast optimization performs very
well. It shows the overall best performance of all protocol and caching combina-

99

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 50

 100

 150

 200

 250

 300

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes nullmac

(a) NullMAC, 1000 bytes

 0

 50

 100

 150

 200

 250

 300

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes

 0

 10

 20

 30

 40

 50

 60

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes nullmac

(c) NullMAC, 20 bytes

 0

 10

 20

 30

 40

 50

 60

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes

Figure 5.11: Evaluation: transmission time, scenario 2.

tions. In combination with ContikiMAC the broadcast optimization has an opposite
impact, since ContikiMAC handles broadcast transmissions inefficiently.

Figures 5.11(c) and 5.11(d) show the results transmitting 20 bytes in scenario
2 using NullMAC and ContikiMAC respectively. The difference in performance
between the broadcast-based protocols and both SNOMC and UDP-E2E is smaller
in scenario 2 than in scenario 1, because just a small number of nodes are affected.
Additionally, only one packet has to be transmitted which leads to less traffic and
thus less packet loss and necessary retransmissions.

To have a comparison to the hardest competitor of SNOMC, UDP-E2E, we
choose a third scenario to compare both protocols. Figure 5.12 shows diagrams
with the results using NullMAC and ContikiMAC. We see that SNOMC outper-
forms UDP-E2E by factor of 2 to 2.5 with both MAC protocols due to the reduced
number of hops. With UDP-E2E at least 18 hops are necessary to transmit a packet
to all three receiver nodes. In case of using SNOMC just 6 hops, or even 4 hops
with the broadcast optimization. Thus, we see the advantage of the overlay multi-
cast communication scheme compared to a unicast-based one. UDP-E2E has very
low overhead, because it does not have a joining phase but the reduced number of
hops in the distribution tree compensates the joining overhead.

In both diagrams we again see the effect of the caching strategy and the effect
of ContikiMAC for the broadcast optimization of SNOMC.

100

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 20

 40

 60

 80

 100

 120

 140

s | b | b-pa | i | i-pa | i-bc
SNOMC

s | i | i-pa
UDP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes NULLMAC

(a) NullMAC, 1000 bytes

 0

 20

 40

 60

 80

 100

 120

 140

s | b | b-pa | i | i-pa | i-bc
SNOMC

s | i | i-pa
UDP

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes

 0

 5

 10

 15

 20

 25

 30

 35

s | b | b-pa | i | i-pa | i-bc
SNOMC

s | i | i-pa
UDP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes NULLMAC

(c) NullMAC, 20 bytes

 0

 5

 10

 15

 20

 25

 30

 35

s | b | b-pa | i | i-pa | i-bc
SNOMC

s | i | i-pa
UDP

tim
e

[s
]

protocol

Comparing transmission time 20 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes

Figure 5.12: Evaluation: transmission time, scenario 3.

5.3.4 Number of Transmissions

The number of transmissions is another metric that shows how efficiently a protocol
operates. The more packets are necessary to deliver a certain number of bytes the
more inefficient is the protocol.

Figure 5.13 shows the number of transmitted packets with 1000 bytes from
one sender to three receivers. These are results for scenario 1 with the combina-
tion of NullMAC or ContikiMAC. We can see that the broadcast-based protocols
require much more transmissions to deliver the data to the receivers compared to
the unicast-based protocols. SNOMC outperforms all other protocols also in this
metric.

Directed Diffusion, PSFQ, TCP, and partly TinyCubus, MPR and Flooding fail
in combination with ContikiMAC in scenario 1. In combination with NullMAC
only Directed Diffusion fails.

Figures 5.13(c) and 5.13(d) show the results of transmitting 20 bytes in sce-
nario 1. Also in the 20 bytes scenario the broadcast-based protocols require a
significantly large number of transmissions because the whole network with all 40
nodes get flooded. In contrast to that, SNOMC and UDP-E2E just require a small
number of transmission to deliver the 20 bytes to the receivers. Just as in the 1000
bytes scenario using ContikiMAC takes more necessary transmissions than using
NullMAC. The combination of NullMAC and Directed Diffusion fails also in this

101

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 1000 bytes NULLMAC

(a) NullMAC, 1000 bytes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 20 bytes NULLMAC

(c) NullMAC, 20 bytes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 20 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes

Figure 5.13: Evaluation: number of transmitted packets, scenario 1.

scenario, because Directed Diffusion was not able to stable stable routes.
Therefore, we used scenario 2 with much less sensor nodes to evaluate the

protocols. The results are shown in Figure 5.14.
SNOMC requires a somewhat lower number of transmissions than UDP-E2E.

SNOMC requires additional packets for the joining phase. It has a slight advantage
in number of hops due to the use of a distribution tree instead of using three parallel
unicast connections as UDP-E2E uses.

The broadcast-based protocols use a high number of transmissions due to broad-
casting and rebroadcasting of the packets, although only a small number of nine
nodes (see Figure 5.11) are rebroadcasting the packets. Directed Diffusion requires
many packets in the Interest phase, which uses broadcast transmissions to find the
adequate paths. Also PSFQ uses broadcast transmissions in its pump operation.

Comparing the two MAC protocols we see that ContikiMAC requires much
more transmissions than NullMAC, especially for the broadcast-based protocols.
The reason is how ContikiMAC handles broadcast transmissions. As described
in Section 2.6.1 ContikiMAC rebroadcast a packet for the full wake-up interval
(128ms). We also see this effect comparing the SNOMC broadcast optimization
for NullMAC and ContikiMAC.

Also the influence of the caching strategy can be seen in theses diagrams.
Caching on the sender node requires end-to-end retransmissions of missed frag-

102

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 1000 bytes NULLMAC

(a) NullMAC, 1000 bytes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes.

 0

 2000

 4000

 6000

 8000

 10000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 20 bytes NULLMAC

(c) NullMAC, 20 bytes.

 0

 2000

 4000

 6000

 8000

 10000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

pa
ck

et
s

[#
]

protocol

Comparing packets 20 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes.

Figure 5.14: Evaluation: number of transmitted packets, scenario 2.

ments, which leads to a high number of transmissions. The nack message has to
be transmitted from the receiver node to the sender node and the missed fragment
has to retransmitted from the sender node back to the receiver node. If the missed
fragment is cached on a branching or intermediate node, an end-to-end retransmis-
sion is not required. Thus, caching on intermediate nodes (or branching nodes)
decreases the number of hops (and transmissions) for a packet request.

Figures 5.14(c) and 5.14(d) show the results of transmitting 20 bytes in scenario
2. The results are similar to the results of scenario 1 (see Figures 5.14(c) and
5.14(d)). SNOMC and UDP-E2E requires significantly less transmissions than
Flooding, MRP and TinyCubus. Directed Diffusion and PSFQ perform as poor as
the broadcast-based protocols because both have protocol phases, which depend
also on broadcasts.

5.3.5 Energy Consumption

Energy consumption is measured for all nodes individually and is accumulated for
the whole network. Thus, in scenario 1 energy consumption of 40 nodes is mea-
sured and accumulated. The consumed energy includes the energy for transmitting
and receiving packets, the operation of the micro-controller on the sensor node,
and reading/writing flash memory.

103

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 100000

 200000

 300000

 400000

 500000

 600000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes NULLMAC

(a) NullMAC, 1000 bytes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes.

 0

 20000

 40000

 60000

 80000

 100000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 20 bytes NULLMAC

(c) NullMAC, 20 bytes.

 0

 20000

 40000

 60000

 80000

 100000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes.

Figure 5.15: Evaluation: energy consumption, scenario 1.

Figure 5.15(a) shows the results in energy consumption using NullMAC. Since,
NullMAC is an always on protocol (without any energy saving mechanisms) the
measured energy values behave as the transmission times - the faster the trans-
mission of the 1000 bytes finishes, the less energy is needed for the transmission.
Comparing the results using ContikiMAC (cf. Figure 5.15(b)), we again see that a
number of protocol combinations failed such as Directed Diffusion and PSFQ.

Figures 5.15(c) and 5.15(d) show the results in energy-consumption transmit-
ting 20 bytes in scenario 1. Naturally, less energy is consumed transmitting just 20
bytes than 1000 bytes. But the relation between the compared protocols is similar
to the 1000 byte scenario. SNOMC requires less energy than the other protocols in-
dependent of the underlying MAC protocol. Using NullMAC requires more energy
than using ContikiMAC, because NullMAC has no energy-saving mechanisms.

Due to the problems in scenario 1 described in Section 5.3.2, we re-run the
experiments using scenario 2, with just 9 sensor nodes. The results are shown in
Figure 5.16. Using ContikiMAC (cf. Figure 5.16(b)) leads to longer transmis-
sion time but also to lower energy consumption. ContikiMAC uses duty cycles
as energy-saving mechanism so that the sensor node go to sleep when there is
nothing to transmit or receive. The sensor nodes awake periodically and check if
there is an incoming packet. Thus, considerable energy can be saved. The energy-
consumption depends on the transmission time, the number of transmitted and re-

104

5.3. SNOMC EVALUATION IN REAL-WORLD TESTBED

 0

 20000

 40000

 60000

 80000

 100000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes NULLMAC

(a) NullMAC, 1000 bytes.

 0

 20000

 40000

 60000

 80000

 100000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes CONTIKIMAC

(b) ContikiMAC, 1000 bytes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 20 bytes NULLMAC

(c) NullMAC, 20 bytes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

s|b|b-pa|i|i-pa|i-bc
SNOMC

s|i|i-pa
FLOOD

s|i|i-pa
MPR

s|i|i-pa
TinyCubus

s|i|i-pa
PSFQ

s|i|i-pa
DD

s|i|i-pa
UDP TCP

en
er

gy
 [m

J]

protocol

Comparing energy 1000 bytes CONTIKIMAC

(d) ContikiMAC, 20 bytes.

Figure 5.16: Evaluation: energy consumption, scenario 2.

ceived packets and the duty cycles of the sensor nodes.
Saving energy using ContikiMAC works fine when we have mainly unicast

transmissions as in SNOMC, UDP, TCP, and partly Directed Diffusion and PSFQ.
In these cases we save a lot of energy compared to using NullMAC (approximately
by the factor of 2 to 3). For the broadcast-based protocols such as Flooding, MPR
and TinyCubus we save less energy, explained by the way how ContikiMAC han-
dles broadcast transmissions. It broadcasts packets for a time period of 128ms and
during this time the node does not go to sleep. Therefore, broadcast-based proto-
cols using ContikiMAC save less energy (approximately by the factor of 1.5 to 2)
than the other data dissemination protocols (SNOMC, UDP-E2E, TCP).

The results using NullMAC in scenario 2 are shown in Figure 5.16(a). Since
NullMAC does not save energy, the results for energy consumption correspond to
the results for transmission time.

Figures 5.16(c) and 5.16(d) show the results for transmitting 20 bytes in sce-
nario 2. Also here we can see the expected results. SNOMC and UDP-E2E require
less energy than the other data dissemination protocols.

Summarizing the results of the experiments in the real-world testbed we can
see that SNOMC outperforms the other data dissemination protocols in terms of
transmission time, energy consumption, and number of transmitted packets in dif-
ferent scenarios. SNOMC outperforms unicast-based protocols such as UDP-E2E

105

5.4. COMPARISON OF SIMULATED AND REAL-WORLD RESULTS

because it requires a lower number of hops to deliver the data. In big scenarios
with a large number of sensor nodes broadcast-based protocols such as Flooding,
MPR, TinyCubus, and PSFQ perform very bad or even fail to transmit the data to
the receiver nodes. The energy consumption strongly depends on the underlying
MAC protocol. Using energy-saving ContikiMAC saves a lot of energy compared
to NullMAC. SNOMC performs very good independent of the underlying MAC
protocol.

5.4 Comparison of Simulated and Real-World Results

Our main observation is that simulation results differ from the results of the real-
world experiments. The reasons for that difference are mainly in the implementa-
tion of the protocols in the OMNeT++ simulator.

One major aspect is the handling of the packet in the protocol stack. In OM-
NeT++ all processing time of a packet in the protocol stack is zero. In Contiki
OS the transfer of a packets through the several protocol layers from the radio to
the application layer takes a certain amount of time. Since Contiki OS uses pro-
tothreads, processes can be interrupted and thus the processing time of packets can
differ a lot.

Another fact that causes difference in results is that broadcasting of Contiki-
MAC was implemented in OMNeT++ in a different way compared to the imple-
mentation in Contiki OS. In the OMNeT++ implementation it does not broadcast
the packets for a certain time period as in the Contiki OS implementation. Instead,
in the OMNeT++ implementation ContikiMAC broadcasts a packet just three times
in a row as it is done in the OMNeT++ implementation of NullMAC. This fact also
causes difference between simulations results and the results of the real-world ex-
periments.

Although, in OMNeT++ a realistic radio model was implemented to gain real-
istic results, our experiments using testbed showed that in reality interferences have
a much higher impact on transmissions. Additional external interferences are taken
into account in the implementation of the radio model but no effect such as reflec-
tion or multi-path fading. Due to the in-house testbed is located in the institutes
building this effects occur regularly and influence the results strongly.

There are some differences among the scenarios. The distance between the
the sensor nodes in the simulation scenarios is much higher than in the in-house
testbed scenarios. Therefore, on the in-house testbed, due to more overlapping
interference ranges, transmitted packets experience higher collision probabilities.
This is especially the case for broadcast-based protocols. To avoid these problems
several timers such as the retransmission timer, random back off timer, etc, in the
Contiki OS implementation were given much higher values compared to ones in
the OMNeT++ implementation.

Beside the differences between the simulation results and the real-world re-
sults we have also commonalities. The relation in the results between the different

106

5.5. CONCLUSIONS

protocols in the simulation and in the real-world experiments are similar. We can
see that in both evaluation environments broadcast-based protocols perform much
worse than the other protocols. SNOMC performs always best independent of of
the underlying MAC protocol.

The main advantage of the evaluation of SNOMC in the OMNeT++ simulator
is that it allows an easy implementation of the protocol and thus a fast proof-of-
concept. The main advantage of the evaluation of SNOMC in Wisebed is that it
helps to optimize the protocol for real-world environments.

5.5 Conclusions

We propose the Sensor Node Overlay Multicast (SNOMC) protocol to support
a reliable, time-efficient and energy-efficient dissemination of bulky data from
one sender node to many receivers. To ensure end-to-end reliability we designed
and implemented a NACK-based reliability mechanism. Further, to avoid costly
end-to-end retransmissions we propose different caching strategies implemented
in SNOMC.

In this chapter we evaluated SNOMC against a number of data dissemination
protocols for wireless sensor networks, such as Flooding, MPR (Multipoint Re-
lay), PSFQ (Pump Slowly, Fetch Quickly), TinyCubus, and Directed Diffusion as
well as the unicast-based protocols UDP and TCP. To ensure a fair competition
we implemented the same reliability mechanisms and caching strategies on top of
the selected protocols. As underlying MAC protocols we chose BEAM, Contiki-
MAC and NullMAC for the simulations, and ContikiMAC and NullMAC for the
real-world evaluation.

As proof-of-concept of SNOMC we made an evaluation in the OMNeT++ sim-
ulator. For evaluating the performance of SNOMC in real-world we run a number
of experiments in our in-house Wisebed testbed. We choose three performance
metrics: transmission time, number of transmitted packets and energy consump-
tion.

We showed that the SNOMC protocol performs very well compared to the
selected data dissemination protocols. Especially, broadcast-based data dissemi-
nation protocols, such as Flooding, MPR, and TinyCubus cause broadcast storms
and thus perform very poor. Data dissemination protocols especially designed for
wireless sensor networks, such as Directed Diffusion or PSFQ, have some protocol
phases also relying on broadcast transmissions. Thus, also these protocols perform
worse than SNOMC. The most serious competitor of SNOMC is UDP-E2E. In this
case the advantage of SNOMC depends on the topology of the network and the
distribution tree as we showed in Section 5.3.3. Especially in scenario 3 SNOMC
shows its advantage compared to UDP-E2E, because the forks in distribution tree
are close to the receivers.

Further, we showed the influence of the different caching strategies. In general,
we can say that caching on intermediate nodes improves the performance of each

107

5.5. CONCLUSIONS

protocol, since expensive end-to-end retransmissions are avoided. We also showed
that pro-active requesting of missed fragments does not improve the performance
at all. Pro-active requesting causes additional packets, higher traffic and thus much
more collisions, which cancels the advantage of the intended optimization.

Moreover, we showed that SNOMC performs well with different underlying
MAC protocols that support different levels of reliability and energy-efficiency. It
proves that SNOMC can be used in different environments and in different systems,
independently of the used protocol stack.

We therefore conclude that SNOMC can offer a robust, high-performing so-
lution for the efficient distribution of code updates and management information
in a wireless sensor network. To further show the usability of SNOMC, we inte-
grate it into the MARWIS architecture as described in Chapter 8 and evaluate the
performance of SNOMC in MARWIS (presented in Section 8.4).

108

Part II

MARWIS: A Management
Architecture for Wireless Sensor

Networks

109

Chapter 6

Management Architecture and
Protocol Design

In this chapter we present the design and architecture of MARWIS (Management
Architecture for Wireless Sensor Networks). MARWIS [127, 123, 14] is a manage-
ment architecture for heterogeneous wireless sensor networks that supports moni-
toring, configuration and code updating of the wireless sensor network in general
and the sensor nodes in particular.

Section 6.1 describes the problem we address with MARWIS and motivates the
need of such architecture. Section 6.2 describes a typical management scenario and
corresponding management tasks such as monitoring, configuration and code up-
dating. Section 6.3 goes into design details of the architecture and its components,
namely, management station, mesh node with MARWIS Server, and different types
of sensor nodes each running with the Sensor Node Agent. Subsequently, Section
6.4 describes the management protocols needed to support the three management
tasks. Finally, Section 6.5 concludes the chapter.

6.1 Introduction

A heterogeneous wireless sensor network consists of several different types of sen-
sor nodes. Various applications supporting different tasks, e.g., event detection,
localization, tracking, and environmental monitoring, may run on these specialized
sensor nodes. In addition, new applications have to be deployed as well as new
configurations and bug fixes have to be applied during network lifetime. In a net-
work with thousands of nodes, this becomes a very complex task and a general
management architecture is required.

One of the challenges that the management architecture should address is how
to achieve that monitoring, configuration, and code updating can be performed on
heterogeneous sensor nodes for the whole duration of their lifetime? Another ques-
tion is how to structure such a heterogeneous wireless sensor network to handle
management tasks efficiently and automatically over the network?

We propose the usage of a wireless mesh network as a backbone to build a

111

6.2. MANAGEMENT SCENARIO AND TASKS

heterogeneous wireless sensor networks. The proposed new management architec-
ture called MARWIS supports common management tasks such as monitoring and
configuring the wireless sensor network, and disseminating code updates of new
program versions of the applications running on the sensor nodes.

Beside these management tasks there are few other general features, which the
architecture should support:

1. reliable communication,

2. time-efficient communication,

3. energy-efficient operation,

4. support of heterogeneous sensor nodes.

Since code updating and network configuration are both critical tasks, end-to-end
reliability is required. This means that the user should be informed if an update
was successful or not. Although monitoring, (re)configuration and code updates
are no high priority tasks, they should be executed in reasonable time. Energy-
efficient operation of the management tasks plays a very important role, given the
limited power capacity of the battery-operating sensor nodes. Furthermore, the
architecture should be able to service heterogeneous sensor node platforms. The
qualitative and quantitative evaluation of these features can be found in the Chapter
7 addressing the MARWIS implementation.

6.2 Management Scenario and Tasks

Many different applications may run in a wireless sensor network, e.g. as men-
tioned before, event detection, localization, tracking, and monitoring. Therefore,
different types of sensor nodes, which can measure different sensor values and per-
form different tasks, are required. Existing sensor node platforms in general have
different radio modules, which are not interoperable. Sensor nodes of the same type
build a sensor sub-network, which is not able to communicate directly to another
sensor sub-network. Several such sensor sub-networks build a heterogeneous wire-
less sensor network. To interconnect such a heterogeneous wireless sensor network
mesh nodes are proposed as gateways between the sensor sub-networks. A sensor
node plugged into a serial interface (e.g. USB) of a mesh node works as gateway.
The wireless mesh nodes communicate among each other via IEEE 802.11.

A possible scenario of a heterogeneous wireless sensor network is shown in
Fig. 6.1. Sensor nodes are depicted in green, red, turquoise and khaki. The mesh
nodes are depicted by grey circles. Each mesh node operates a sensor sub-network,
which consists of sensor nodes of the same type and hence communicate to each
other. The sensor node plugged into a mesh node via USB, serial, or another inter-
face operates as sensor node gateway to the specific sensor sub-network. A man-
agement station is a mesh node in the mesh network with additional functionality

112

6.2. MANAGEMENT SCENARIO AND TASKS

Internet

user
terminal

mesh
nodes

sensor
nodes

sensor node
gateways

management
station

Figure 6.1: A possible scenario for heterogeneous wireless sensor networks with
management devices.

such as a web server. It creates the connection between the user and the wireless
mesh network including the wireless sensor networks.

The use of an architecture with a wireless mesh network as backbone has var-
ious advantages. The main benefit is the ability to communicate with different
types of sensor nodes in several sensor sub-networks. Another advantage of using
a wireless mesh network is that a new sensor node platform can be easily inserted
into the heterogeneous wireless sensor network by plugging a sensor node gateway
into a mesh node. Moreover, the use of a wireless mesh network has advantages
by subdividing a large wireless sensor network into smaller sensor sub-networks.
A wireless sensor network consisting of thousands of nodes and one base station
creates many communication problems. Most of them are caused by the high num-
ber of hops in larger wireless sensor networks. Subdivision into smaller sensor
sub-networks limits the sensitive sensor node links to three or four hops to the next
sensor node gateway. Connections with lower number of hops result in a better
communication performance with a clearly lower packet delay, jitter and packet
loss. Sensor nodes in the vicinity of the sink also benefit from preserved energy
and processing power, because they do not have to forward the whole wireless
sensor network traffic.

In addition to the communication gateway functions, mesh nodes further per-
form management tasks for the heterogeneous wireless sensor networks. As result,
the limited sensor nodes have less management functions to perform, which de-
creases memory and computation requirements towards them.

In addition to the mesh nodes, which provide the management functionality,
there are one or more management stations. With their support a user can perform
a large set of management tasks. In a heterogeneous wireless sensor network with
a large number of heterogeneous sensor nodes a comprehensive management ar-
chitecture is required. From the management point of view three tasks are required
to operate a heterogeneous wireless sensor network.

1. monitoring the wireless sensor network and the sensor nodes,

113

6.3. MANAGEMENT ARCHITECTURE

2. (re)configuring the wireless sensor network and the sensor nodes,

3. updating and reprogramming the sensor nodes.

Monitoring includes visualization at the management station of all sensor nodes
in the various sensor sub-networks. Furthermore, status information about the sen-
sor nodes has to be continuously collected and displayed. This includes sensor
node hardware features (micro-controller, memory, transceiver), sensor node soft-
ware details (operating system versions, protocols, applications), dynamic proper-
ties (battery, free memory), and, if available, position information. Configuration
includes configuring the sensor nodes, the running applications or the network.
Examples are configuring the sensing intervals or configuring the communications
protocols (duty cycles, timers, etc). Updating and reprogramming the sensor nodes
is a another important task. Both the operating system and applications must be
updated, fully or partially. In a large wireless sensor network manual execution of
this task is not feasible. A mechanism to handle this automatically and dynamically
over the network is required. Mechanisms to handle incomplete, inconsistent, and
failed updates have to be provided as well.

6.3 Management Architecture

The proposed MARWIS architecture to manage heterogeneous wireless sensor net-
works reliably, time- and energy-efficiently contains the following structural ele-
ments: one or more management stations running the customized Linux distribu-
tion ADAM [113], several mesh nodes as management nodes running the MAR-
WIS server, sensor node gateways plugged into a mesh node, and the different
types of sensor nodes running the sensor node agent. These elements are shown in
Figure 6.2.

In the next sections the detailed description of the three components can be
found.

6.3.1 Management Station with Management System for Wireless
Mesh Networks

The management station (shown in Figure 6.2(a)) is divided into two parts. First,
it contains of a user terminal to access a web-based graphical user interface (GUI)
to control the wireless sensor network. The user interface displays the wireless
sensor network topology with the mesh nodes including the subordinate sensor
nodes and information about the state of the sensor nodes(1).

Second, it contains a mesh node running ADAM, a management system for
wireless mesh networks [113]. ADAM is a small Linux distribution including all
required applications, especially a HTTPS server to handle the requests and trans-
mit them to the sensor nodes. Further, the management station contains a web

114

6.3. MANAGEMENT ARCHITECTURE

User Terminal
User Interface (Web

Browser)

WSN
Monitor

WSN
Configurator

Code
Update

Manager

ADAM

MARWIS Server

Mesh Node

WSN
Monitor
Module

WSN
Configurator

Module

Code Update
Manager
Module

WSN Manager

Program
Versions

WSN
Information

Sensor
Values

MARWIS Server

Sensor Node

Ap
pl

ic
at

io
n

1

Contiki

Ap
pl

ic
at

io
n

2

Ap
pl

ic
at

io
n

N

Se
ns

or
 N

od
e

M
on

ito
r

Se
ns

or
 N

od
e

C
on

fig
ur

at
or

C
od

e
U

pd
at

er

Sensor Node
Agent

Contiki Core

Management Station

3

Internet
1

Mesh
Network

2
WSN

4

Program
Versions

WSN
Information

Sensor
Values

a) b) c)

Actor

Figure 6.2: Architecture of the MARWIS components.

server and a MARWIS server with three program modules, such as a WSN mon-
itor, a WSN configurator, and a code update manager. To store and backup
information about the wireless sensor network and the sensor nodes centrally on
the management station it also contains three databases for sensor values, for wire-
less sensor network information, and for the program versions of the applications
running on the sensor nodes.

All communication in the network between the mesh nodes as well as between
the sensor nodes is done via TCP/IP (2) and SNOMC [126, 125] (see Chapters 3 -
5).

6.3.2 Mesh Node with MARWIS Server

The WSN manager is located on every mesh node and shown in Figure 6.2(b). It
also runs on ADAM and provides the management functionality for the different
sensor sub-networks. It consists of three databases and the MARWIS server with
three program modules, namely a WSN monitor, a WSN configurator, and a code
update manager (as shown in Figure 6.2).

The WSN information database stores all information about the sensor nodes
and the WSN, such as topology (neighbours, addresses), and states of the sensor
nodes (battery, memory). The program version database stores all versions of all
programs for all platforms, which can be installed on the sensor nodes. Finally, the
sensor value database stores all data measured by the sensors. All databases are
accessible by an API to get and store data (3).

The WSN monitor connects to the WSN information database and to the sen-
sor value database in order to handle the requests from the management station.

115

6.4. WSN MANAGEMENT PROTOCOLS

It also stores data coming from the sensor nodes into the databases. The WSN
configurator is responsible for the configuration tasks. It queries properties from
the sensor nodes and stores them in the WSN information database. The code up-
date manager stores newly received program images (and related information) in
the program version database and notifies the management station about available
programs. To execute the updating process, it transmits the image to the sensor
node.

The communication between the mesh node and the sensor network uses µIP
[34] and SNOMC (4) and the communication between the mesh nodes uses TCP/IP
(5).

6.3.3 Sensor Node with SN Agent

On the sensor node, the management tasks are handled by a SN agent (as shown in
Fiqure 6.2(c)). It consists of a SN monitor, a SN configurator, and a code updater.
The SN monitor handles the monitor requests by sending the values to the mesh
node. The SN configurator executes the configuration requests and notifies the
mesh node. The code updater is responsible for the code replacement on the
sensor node. It receives the program image of the application and performs the
update by loading the new module and replacing the old one. Finally, it informs
the mesh node about the success of the update.

The communication between the mesh node and the sensor network uses µIP
and SNOMC (6).

6.4 WSN Management Protocols

We consider monitoring, reconfiguration, and code updating the most important
tasks of our management architecture. This section provides the description of the
management protocols operation and the relation to the architectural components.
The management protocols are:

• WSN Monitoring Protocol

• WSN Configuration Protocol

• WSN Code Update Protocol

6.4.1 WSN Monitoring Protocol

Monitoring a wireless sensor network enfolds, first, static information about the
sensor node, such as type of node, running operation system and applications, and
secondly the state of the sensor node, such as battery, connectivity, memory. With
MARWIS monitoring of a wireless sensor network can be done in two different
ways. Since all information about the network is stored in the databases on the
mesh nodes the user can explore this information requesting from the mesh node,

116

6.4. WSN MANAGEMENT PROTOCOLS

serving the corresponding subordinate sensor network. Alternatively, the user can
request a selected sensor node directly.

WSN
Monitor

ADAM

MARWIS Server

Mesh Node

WSN Monitor
Module

WSN Manager

WSN
Information

Sensor
Values

MARWIS Server

Management Station

Mesh Network

24

Mesh Node

WSN Monitor
Module

WSN Manager

WSN
Information

Sensor
Values

MARWIS Server

24

1
3

Figure 6.3: WSN monitor queries the mesh nodes

As shown in Figure 6.3), requesting information via the mesh nodes works as
follows:

1. The management station queries all mesh nodes about their subordinate sen-
sor nodes.

2. To answer the request, the WSN monitor module queries the database WSN
information database and sends the requested data back.

3. Afterwards the management station queries current sensor data of the desired
sensor node by sending the request to the according mesh nodes via HTTPS.

4. To answer the request, the WSN monitor module queries the sensor data
database and sends the requested data back.

WSN
Monitor

ADAM

MARWIS Server

Mesh Node

WSN Monitor
Module

WSN Manager

WSN
Information

Sensor
Values

MARWIS Server
Management Station

Mesh Network

4

SENSOR
NODE

GATEWAY
SENSOR

NODE

1 2

3

5

Figure 6.4: User requests sensor node information directly.

117

6.4. WSN MANAGEMENT PROTOCOLS

In the second case, the user wants to request information of a sensor node
directly and not query the WSN information database on the mesh node. This is
shown in Figure 6.4. The protocol works as follows:

1. The user requests either sensor node information (e.g. neighbourhood in-
formation) or sensor data (e.g. temperature, humidity) from a single sensor
node or from a group of sensor nodes. The request created by the WSN
monitor is forwarded to the affected sensor node gateway. The sensor node
gateway sends this request via a unicast or multicast transport protocol, e.g.,
SNOMC, to the queried sensor nodes.

2. The sensor node generates the response message (measures data or reads the
internal information).

3. The sensor node sends the requested information back via UDP or TCP to
the mesh node, forwarded by the sensor node gateway.

4. The WSN manager module writes the new information into the according
database (WSN information database and/or sensor value database).

5. The WSN manager module responds to the request and sends the information
to the management station, where it is displayed to the user.

Mesh Node
WSN Manager

Sensor
Values

MARWIS Server

Mesh Network

User Terminal
User Interface
(Web Browser)

Internet

1

4

Program
Versions

WSN
Info

2

ADAM

MARWIS Server

Management Station

Program
Versions

WSN
Information

Sensor
Values

1

Mesh Node
WSN Manager

Sensor
Values

MARWIS Server

Program
Versions

WSN
Info

2

3

Actor

Figure 6.5: Management station requests database information from the mesh nodes.

Since the information about the wireless sensor network topology is stored in
the databases on the mesh nodes it can be several minutes old and can be therefore
obsolete. For example, there could be a newer and still unknown sensor node,
subordinate to another mesh node. Therefore, the management station requests
the information of all mesh nodes stored in their databases (sensor value database,
WSN information database, and program version database) and merge it into their
own databases accordingly. This is shown in in Figure 6.5. The protocol works as
follows:

118

6.4. WSN MANAGEMENT PROTOCOLS

1. The management station asks via HTTPS all mesh nodes to transmit infor-
mation about, e.g., topology, node state, etc from the databases for a certain
period.

2. This information is taken from the databases and transmitted to the manage-
ment station using TCP/IP.

3. The values from the different mesh nodes are merged, stored and backuped
in the according databases at the management station.

4. The user gets notified about this process and the timeliness of the informa-
tion.

6.4.2 WSN Configuration Protocol

WSN
Configurator

ADAM

MARWIS Server

Mesh Node

WSN Configurator
Module

WSN Manager

WSN
Information

MARWIS Server
Management Station

Mesh Network

4

SENSOR
NODE

GATEWAY
SENSOR

NODE

1 2

3

5

Figure 6.6: The WSN configuring protocol.

The task of the WSN configuration protocol is to perform a configuration at one
or more sensor nodes. Possible configuration scenarios are: turn the sensors on/off,
change sensing cycles (e.g. a measurement every second or minute), changing
routing tables, configuring communication protocols, etc. The WSN configuration
protocol is shown in Figure 6.6. The protocol works as follows:

1. The user selects a configuration attribute and one single sensor node (or a
group of sensor nodes), which should be configured. The WSN configurator
creates a request, which is forwarded to the involved sensor node gateway.
The sensor node gateway sends this request via a unicast or multicast trans-
port protocol to the queried sensor node(s).

2. On the sensor node(s) the Sensor Node Configurator performs the config-
uration task and generates a notification (with the new configuration of the
property).

3. This notification is forwarded via the sensor node gateway to the mesh node
using UDP or TCP.

119

6.4. WSN MANAGEMENT PROTOCOLS

4. The mesh node stores the new value of the configuration property in the
WSN information database.

5. On the mesh node the WSN configurator module informs the user about the
success or failure of the configuration request.

To verify the new configuration the management station queries periodically the
WSN information database via HTTPS.

WSN

WSN
Configurator

ADAM

MARWIS Server

Mesh Node

WSN Configurator
Module

WSN Manager

WSN
Information

MARWIS Server

Management Station
4

SENSOR
NODE

GATEWAY
SENSOR

NODE

12
35

Figure 6.7: A new sensor node joins the sensor sub-network.

If a new sensor node joins a sensor sub-network it has to be registered into
MARWIS to be displayed to the user. Figure 6.7 shows how a new sensor node
joins the sensor sub-network. The protocol works as follows:

1. When a new sensor node joins the sensor network, it broadcasts a Hello
message.

2. The Hello message is forwarded by the sensor nodes of the sub-network
and the sensor node gateway to the WSN configurator module.

3. The WSN configurator module and the sensor node negotiate the necessary
network configuration. Afterwards, the WSN configurator module requests
all available information (e.g., chip, transceiver, battery, operating system,
neighbours, etc.) from the sensor node.

4. The WSN configurator module registers the sensor node in the WSN infor-
mation database.

5. The information about the joint sensor node is also propagated to the man-
agement station.

6.4.3 WSN Code Update Protocol

The WSN code updating protocol is responsible for three tasks: uploading the new
image and distributing it within the mesh network, notifying the management sta-
tion about the available programs and finally performing the update. The first task,
the uploading process, is shown in Figure 6.8. The protocol operates as follows:

120

6.4. WSN MANAGEMENT PROTOCOLS

Code
Update

Manager

ADAM

MARWIS Server

Mesh Node

Code Update
Manager Module

WSN Manager

Program
Versions

MARWIS Server

Management Station

Mesh Network

Mesh Node

Code Update
Manager Module

WSN Manager

Program
Versions

MARWIS Server

3

User Terminal
User Interface
(Web Browser)

Internet

1

3

2

Actor

Figure 6.8: The image gets uploaded to all affected mesh nodes.

1. The user selects the new image and the according information (version, com-
ponents, etc), which should be uploaded, using the user interface.

2. The image is transmitted to the affected mesh nodes managing the sensor
nodes using SNOMC.

3. The code update manager module in the MARWIS Server stores the new
image plus the associated information to the program version database.

Code
Update

Manager

ADAM

MARWIS Server

Mesh Node

Code Update
Manager Module

WSN Manager

Program
Versions

MARWIS Server

Management Station

Mesh Network

Mesh Node

Code Update
Manager Module

WSN Manager

Program
Versions

MARWIS Server

2

1

2

User Terminal
User Interface
(Web Browser)

Internet

3

Actor

Figure 6.9: The user asks for all available images.

The second task is the notification of the management station about which pro-
grams are available in the program version database. This is shown in Figure 6.9.
The protocol works as follows:

1. All available program versions are listed in the user interface. To update this
list the code update manager queries via HTTPS the MARWIS server of all
mesh nodes in the mesh network.

121

6.4. WSN MANAGEMENT PROTOCOLS

2. The code update manager module in the MARWIS server queries the pro-
gram version database for the available programs/applications.

3. Afterwards the user gets notified about the available programs/applications.

Code
Update

Manager

ADAM

MARWIS Server

Mesh Node

Code Update
Manager Module

WSN Manager

WSN
Information

MARWIS Server
Management Station

Mesh Network

3
SENSOR

NODE
GATEWAY

SENSOR
NODE

6

5

2

Program
Versions

4

7

8

9

User Terminal
User Interface
(Web Browser)

Internet
1Actor

Figure 6.10: The user initiates the code update for the sensor node.

The main task of the protocol is updating the image on the sensor nodes itself.
This is shown in Figure 6.10. The procedure works as follows:

1. The user selects the new program version and the sensor nodes, which should
be updated, in the user interface.

2. The code update manager sends this request via HTTPS to the corresponding
mesh nodes.

3. The code manager module on the mesh node checks, which program version
is installed on the selected sensor nodes by quering the WSN information
database.

4. The code update manager module takes the image of the new version of the
selected program.

5. The new image is transmitted via the sensor node gateway to the targeted
sensor nodes, using an adequate unicast or multicast transport protocol.

6. On the sensor node the update is installed by copying the image in the mem-
ory and starting it.

7. If the update is successful the sensor node verifies this by sending the new
program version via the sensor node gateway to the mesh node.

8. The code update manager module stores this new information in the WSN
information database.

9. The management station gets informed whether the update was successful.

122

6.5. CONCLUSIONS

6.5 Conclusions

This chapter introduced the MARWIS architecture, which is specifically designed
for the management for heterogeneous wireless sensor networks in reliable, time-
and energy-efficient manner. A distinguished feature of MARWIS is the use of
a wireless mesh backbone. The advantages of this approach are enabling diverse
communication platforms and offloading functionality from the sensor nodes to the
mesh nodes and so decreasing their computational requirements.

In particular, the focus of the chapter was set on discussing design decisions
as well as describing the architecture components and the underlying management
protocols. In a nutshell the main components of the architecture are a management
station and a management (mesh) node, which enable the interaction between end
users (via a user interface) and sensor node(s). The smooth co-operation of these
components relies on protocols for the monitoring, configuration and code updates
of the sensor nodes.

The following Chapter 7 presents the MARWIS implementation, a MARWIS
demonstrator, and related implementation issues.

123

Chapter 7

Implementation of MARWIS and
Demonstrator

In this chapter we present the implementation of MARWIS (Management Archi-
tecture for Wireless Sensor Networks), which was described in the previous chap-
ter. In Section 7.1 addresses the challenges of the implementation. Sections 7.2,
7.3, and 7.4 describe the implementation details of MARWIS, including the MAR-
WIS Demonstrator described in Section 7.5. Finally, Section 7.6 concludes the
chapter.

7.1 Introduction

After we described the design and architecture of MARWIS in the previous chapter
6 this chapter addresses two goals: the implementation and the quantitative and
qualitative evaluation of MARWIS.

First, we describe in detail how the different MARWIS components were im-
plemented. The implemented MARWIS components include (i) the MARWIS
server running on the mesh nodes; (ii) a management station that is also running on
a mesh node but includes beside the MARWIS Server also a web server running a
based Graphical User Interface; and (iii) a sensor node agent, running on the sensor
nodes with the Contiki OS.

Implementing MARWIS on a real system gave a demonstrator platform, which
enables us to perform several tests. The purpose of these tests was to estab-
lish whether the proposed architecture is operational and to provide a qualitative
and quantitative evaluation. In terms of evaluation we were interested to show
that MARWIS enables reliable and time-efficient communication combined with
energy-efficient operation in a network of heterogeneous wireless sensor node.

7.2 MARWIS Server Implementation

The MARWIS server located on the mesh nodes consists of three management
modules (WSN Monitor Module, WSN Configurator Module, and Code Update

125

7.2. MARWIS SERVER IMPLEMENTATION

Module), one module for each management tasks; three databases (WSN informa-
tion database, program version database, sensor value database), and a graphical
user interface to depict all information about the WSN and perform the manage-
ment tasks.

7.2.1 Management Modules

The modules handle the management tasks as well as the communication between
the mesh nodes and the sensor nodes. The modules and the communication inter-
face are implemented as a server program written in C using UDP/TCP sockets.

The WSN Monitor Module has several tasks. It stores data coming from the
sensor nodes into the WSN information database and the sensor value database,
respectively. Furthermore, it answers requests from the management station by
retrieving data from the two databases. To retrieve data from the sensor nodes a
message with the request is generated and transmitted to the according sensor node
via the sensor node gateway (cf. Section 6.4.1). This functionality is implemented
as follows:

• getAllSensors(sn id[]): This function generates a message, which
includes a request for all available sensors (prop id) and sends it to the given
sensor nodes (sn id[]). Each sensor node determines all installed sensors and
generates a message back to the mesh node.

• getAllProps(sn id[]): This function generates a message, which in-
cludes a request for all available properties (prop id) and sends it to the given
sensor nodes (sn id[]). Each sensor node determines the available properties
and generates a message back to the mesh node.

• getSensorValue(sn id[], prop id[]): This function generates
a message, which includes a request for a sensor value of a given sensor
(prop id) and sends it to the given sensor nodes (sn id[]). Each sensor node
determines the requested values and generates a message reporting these val-
ues to the mesh node.

• getPropValue(sn id[], prop id[]): This function generates a mes-
sage, which includes a request for a property value of a given sensor (prop id)
and sends it to the given sensor nodes (sn id[]). Each sensor node deter-
mines the value of the requested property and generates a message sending
this value back to the mesh node.

• getNeighbors(sn id[]): This function generates a message, which
includes a request for the neighbours of the sensor node and sends it to the
given sensor nodes (sn id[]). Each sensor node determines its neighbours
and generates a message sending this information back to the mesh node.

• getHopDistance(sn id[]): This function generates a message, which
includes a request for the hop distance from the sensor node to the gateway

126

7.2. MARWIS SERVER IMPLEMENTATION

and sends it to the given sensor nodes (sn id[]). Each sensor node determines
this information and generates a message back to the mesh node.

• confProp(sn id[], prop id, conf cmd): This function generates
a message, which includes the configuration command (conf cmd) to config-
ure a given property (prop id) and sends it to the given sensor nodes (sn id[]).

• uploadImg(sn id[], prop id, img, update cmd): This func-
tion generates a message, which includes the updated image (img) and the
update command (update cmd) and sends it to the given sensor nodes (sn id[]).
To identify the application for later configuration it also gets a property id.

All requests are sent over TCP/IP and µIP respectively to the sensor nodes. As
transport protocols UDP or SNOMC are used.

msg_type

msg_type

prop_ids[n]

request

response

sn_id length

(a) getAllProperties

msg_type prop_id

msg_type sn_id

val_length

prop_value

prop_id

request

response

(b) getPropValue

Figure 7.1: MARWIS server messages for retirieving information from the sensor nodes.

The request and response messages for the getAllSensors() and getAllProps()
functions have the same format and are shown in Figure 7.1(a). The request mes-
sage contains just one field named msg type, sized one byte. The msg type
for requesting all sensors or all properties is REQUEST ALL SENSORS and RE-
QUEST ALL PROPS respectively. The response message has four fields. In the
msg type field, again one byte long, the message type is indicated with RE-
SPONSE ALL SENSORS or RESPONSE ALL PROPS. In the sn id field the iden-
tifier of the responding sensor node is indicated. In our case the Contiki RIME
address is used for that. Therefore, this field has a size of two bytes. The length
field, itself one byte long, indicates the length of the prop ids field and so the
number of all responded properties. Each prop id is one byte long.

For the functions getSensorValue(), getPropValue(), getNeighbors(), and getH-
opDistance() the same format of request and response message is used as shown in
Figure 7.1(b). The request message contains again the one byte field msg type
with the value REQUEST PROP VALUE and a one byte field called prop id,
which indicates the requested property. The response message contains five fields.
The msg type field has the value RESPONSE PROP VALUE, the sn id field

127

7.2. MARWIS SERVER IMPLEMENTATION

contains the RIME address of the sensor node (two bytes), and the prop id field
contains the identifier of the requested property (one byte). The value in the field
val length indicates the length of the requested property. The range can be
from one byte (e.g. current battery value or sensor value) up to many bytes (e.g.
routing table). In case the requested property does not exist, the length is zero and
the prop value field is empty.

The WSN Configurator Module is responsible for all configuration tasks. It
connects to the WSN information database to read and write data. Furthermore,
it creates packets for the sensor nodes to query sensor node properties and send
commands.

msg_type sn_id

msg_lengthstatus

response

msg_type prop_id

request

cmd_length

conf_cmd

prop_id

status_msg

(a) confProp

img

msg_type sn_id

msg_lengthstatus

response

msg_type prop_id

request

cmd_length

prop_id

status_msg

update_cmd

img_length

(b) updateImage

Figure 7.2: MARWIS server messages for configuration and code update.

The configuration messages have different formats and are shown in Figure
7.2(a). The msg type is REQUEST CONF PROP and the prop id is the corre-
sponding property, which should be configured. The field cmd length indicates
the length of the configuration command conf cmd, which is a string. The re-
sponse message contains the field msg type (RESPONSE CONF PROP), sn id
(RIME address of the requested sensor node), and prop id (identifier of the con-
figured property). Moreover, it contains a one byte field status, which indicates
the status of the configurations. Possible values are SUCCESS, IN PROCESS, or
FAILED. Moreover, a status message can be sent (field status msg) as a string.
The field msg length indicates the length of the message string.

The Code Update Manager Module is responsible for storing newly uploaded
code (and related information) in the program version database. Furthermore, the
code manager module answers to requests from the management station about
available programs by sending a complete list of all program versions stored in
the program version database. It also executes updating of the sensor nodes by
transmitting the image to the selected sensor nodes.

128

7.2. MARWIS SERVER IMPLEMENTATION

The message format for updating an application is shown in Figure 7.2(b). The
request message has again the fields msg type (REQUEST UPDATE IMAGE)
and prop id. It contains further two fields indicating the length of the update
command string (cmd length) and the length of the image (img length), both
one byte long. It contains a string-field with the update command (update cmd)
as well as a field, which includes the binary data for the image (img). The response
message looks similar to the response message for the configuration command,
with the only difference that the msg type is RESPONSE UPDATE IMAGE.

7.2.2 Database Implementation

The three databases (WSN information database, program version database, and
sensor value database) are managed with SQLite3 [110]. SQLite3 is a file-based
database management system contained in a small C programming library (approx-
imately 350KB).

sn id sn name sn ip, hw id os id
INT VARCHAR(20) VARCHAR(20) INT INT
pos x pos y pos z gw mn id
INT INT INT BOOL INT
Table 7.1: Database table sensornodes for the sensor nodes.

The WSN information database stores data about the sensor nodes and the
WSN. This database contains tables. The basic information about the sensor nodes
are stored in the table sensornodes, which is depicted in Table 7.1. It con-
tains the id, the name, and the IP address of the sensor node, the identifiers of
the platform and the running operating system, the 3D position of the node, the
information if the node is a sensor node gateway or not, and the identifier of the
corresponding mesh node. The primary key is the column sn id, indicated in bold.

mn id mn type mn ip, pos x pos y pos z
INT VARCHAR(20) VARCHAR(20) INT INT INT

Table 7.2: Database table meshnodes for the mesh nodes.

For each mesh node a corresponding table exists. This table is called meshnodes
and is depicted in Table 7.2. It contains the id, IP address, type, and 3D position of
the mesh node. The column mn id is the primary key of this table.

mn id mn neighbor id time
INT INT TIMESTAMP

Table 7.3: Database table wmn for the mesh network.

The links between the sensor nodes and mesh nodes are stored into two tables:
wsn (shown in Table 7.4) and wmn (shown in Table 7.3), respectively. With this
information the networks (WSN and WMN) can be shown. The tables contain

129

7.2. MARWIS SERVER IMPLEMENTATION

sn id sn neighbor id etx time
INT INT INT TIMESTAMP

Table 7.4: Database table wsn for the sensor network.

the identifier of the sensor node (or mesh node) and the identifier of the neighbor
node. Due to the dynamic characteristic of a link we also store the timestamp of the
link. If a link disappears the according row in the table will be deleted. In case of
the sensor network there is an additional column storing the link quality. The pri-
mary key of both tables is the pair sn id, sn neighbor id or mn id, mn neighbor id,
repectively.

sn id prop id prop value time
INT INT VARCHAR100 TIMESTAMP

Table 7.5: Database table sn properties storing the values of the sensor node
properties.

The values of all properties of a sensor node are stored in a table called sn
properties. This table contains the identifier of the sensor node and the iden-
tifier of the property as well as the value and the time of the property. The table
format is depicted in Table 7.5. Since all properties can have only one value at a
time the primary key includes the columns sn id and prop id.

prop id prop desc prop type
INT TEXT VARCHAR20

Table 7.6: Database table properties storing descriptive information about the
properties.

An additional table called properties stores descriptive information about
the properties of a sensor node. These properties can be static ones such as the
micro-controller, the radio transceiver, flash memory, or dynamic ones such as
the sensors, the LEDs and the battery. The table is shown in Table 7.6. It con-
tains three columns: the identifier and description of the property, as well as the
data type (which can be string, int or float). This is necessary because in the
sn properties table all property values are stored as a string and the data type
information is used to convert the string into a correct data type. The primary key
is the property id.

sn id prop id state interval
INT INT INT INT

Table 7.7: Database table sensor state storing the state of the sensors.

A further table called sensor state stores the current state of the sensors
of a sensor node. This includes the switch state (on/off) of the sensor as well as the
sensing interval. The identifier of the sensor node and the identifier of the property
are the primary key.

130

7.2. MARWIS SERVER IMPLEMENTATION

snpf id snpf desc pic file name
INT TEXT VARCHAR(50)

Table 7.8: Database table sn platforms for the sensor node platforms.

Several supporting tables store the information about the sensor node plat-
forms, the mesh node platforms, and the operating system platforms. The table for
the sensor node platform (in fact the sensor node type) is called sn platforms
and is depicted in Table 7.8. In contains the identifier and the description of the
sensor node platform. To depict the sensor nodes on the Web-GUI we use small
pictures of the nodes. Therefore, the table contains the file names of the picture
file. The primary key of the table is the columns snpf id.

mnpf id mnpf desc pic file name
INT TEXT VARCHAR(50)

Table 7.9: Database table mn platform for the mesh node platforms.

ospf id ospf desc
INT TEXT

Table 7.10: Database table os platform for the operating system platforms.

The tables for the mesh node platform (mn platform, shown in Table 7.9)
and the operating system platform (os platform, shown in Table 7.10) are sim-
ilar to the one for the sensor node platform. The columns mnpf id and ospf id are
the primary keys of the both tables.

pic file name pic desc pic file size file
VARCHAR(50) TEXT INT BLOB

Table 7.11: Database table pics storing the pictures used by the GUI.

Furthermore, there is a table pics storing the information of the pictures used
by the GUI. It contains the file name of the picture, the description the file size and
the binary data of the picture and is depicted in Table 7.11. The primary key of this
table is the column pic file name.

To access the WSN information database the following functions are imple-
mented:

• getAllMeshNodes() ← mn id[]: This function returns a list of all
available mesh nodes (mn id). The table meshnodes is queried.

• getAllSensorNodes() ← (sn id, mn id)[]: This function re-
turns a list of all available sensor nodes (sn id) including the responsible
mesh node (mn id). In this case the table sensornodes is queried.

• getAllOwnSensorNodes(mn id) ← sn id[]: This function returns

131

7.2. MARWIS SERVER IMPLEMENTATION

a list of all accessible sensor nodes (sn id[]) from a given mesh node (mn id).
Again the information is gathered from the table sensornodes.

• getSensorNodeProperties(sn id) ← prop id[]: This func-
tion returns a list of all available properties (prop id[]) of a given sensor
node (sn id) by querying the table sn properties.

• getPropertyValue(sn id, prop id) ← value: This function
returns the value of a given property (prop id) of a given sensor node (sn id)
gathering the information from the tables sn properties and sensor
state.

• insertPropertyValue(sn id, prop id): This function inserts (or
updates) a value of a given property (prop id) of a given sensor node (sn id)
into the tables sn properties and sensor state.

• insertProperty(sn id, prop id, [value]): This function in-
serts a new property (prop id), [optional with the value of the property],
of a given sensor node (sn id) into the database. In this case the table
properties is affected as well.

• insertNewSensorNode(sn id): this function inserts a new sensor
node (sn id) into the database. In this case the tables sensornodes, wsn,
sn properties and sensor state have to be updated.

sn id img id img state proc slot update time
INT INT INT INT TIMESTAMP

Table 7.12: Database table sn images storing which images running on which sensor
nodes.

The program version database stores all versions of all programs, which can
be installed on the sensor nodes. This database contains two tables: sn images
(shown in Table 7.12) and images (shown in Table 7.13). The first table contains
information about which image of the applications and the operating system is
running on which sensor node. It contains the following columns: identifiers of the
sensor node and image. Furthermore, it contains the state of the image (running,
stopped) and the process slot on the sensor node in which the application runs.
Finally, it contains the time of the update. The primary key is the identifiers of the
sensor node and the image.

img id img name img version img type img desc
INT VARCHAR(100) VARCHAR(10) INT TEXT

ospf id img file name img file size img file time img file
INT VARCHAR(50) INT TIMESTAMP BLOB

Table 7.13: Database table images storing the images.

132

7.2. MARWIS SERVER IMPLEMENTATION

The second table images contains the images of all applications for all plat-
forms. It contains columns for the identifiers of the sensor node, the image and the
supported operating system (see Table 7.10), name, version, type (application or
whole operating system image), and description of the image. It also contains the
file of the image, including the file name, file size and file timestamp. The image
identifier is the primary key of this table. To access the databases the following
functions are implemented:

• getAllProgVersions() ← [(img id, img name, img
version, img type, img desc)]: This function returns a list of all
available programs (img id) including their name, version, type and descrip-
tion. The table images is querried.

• insertNewProgVersion(img name, img version, img type,
img desc, ospf id, img file): This function inserts a new pro-
gram into the database, including all related information such as name, ver-
sion, type, description, and supported operating system. The table images
is updated.

• getImage(img id) ← img file: This function is the counterpart of
the previous function. It returns the image of a given program (img id). In
this case the table images is queried as well.

• getProgsOfNode(sn id) ← [(img id, img name, img
version, img type, img desc, img state, proc slot,
update time)]: This function returns a list of all programs on a selected
sensor node. This includes the running applications as well as the stopped
applications, which are still stored in the memory of the sensor node. This
query affects the tables sn images and images and contains all related
information about the image.

sn id prop id value time
INT INT INT TIMESTAMP

Table 7.14: Database table sn values storing the measured sensor values.

The sensor value database stores all data measured by the sensors. It con-
tains only one table, which is shown in Table 7.14. The table called sn values
contains the identifiers of the sensor nodes, the property and the measured value of
the time of the measurement. The primary key consists of all four columns. The
difference to the table sn properties is that in this table all values of the past
are stored and not only the most recent value. To access the database the following
functions are implemented:

• getSensorValues(sn id, prop id, time from, time to)
← value[]: This function returns a list of all sensor values from a given

133

7.3. MANAGEMENT STATION WITH GRAPHICAL USER INTERFACE

sensor (prop id) on a given sensor node (sn id) within a time interval (time from,
time to).

• getCurrSensorValue(sn id, prop id) ← (value, time):
This function gives the most recent value of a given sensor (prop id) on a
given sensor node.

• getAllSensorValues() ← [(sn id, prop id, value,
time)]: This function dumps the database and gives a list of all values
(including the time stamp) of all sensors on all sensor nodes.

• insertSensorValue(sn id, prop id, [(value, time)]):
This function inserts a value (or a list of values) from a given sensor (prop id)
on a given sensor node (sn id) into the database.

The management station also contains the three databases to additionally store
and backup all data from all mesh nodes’ databases. Thus, the management sta-
tion queries all databases from the mesh nodes to retrieve their data. For this, the
following functions are implemented:

• newDataAvailable(time, database) ← mn id[]: This func-
tion creates a request to all databases of the mesh nodes, if new data is avail-
able in a given database and for a given time. It returns a list of the mesh
nodes, which have new data in the given database.

• getData(time, mn id, database) ← data: This function cre-
ates a request to query the selected database for the given time at all indicated
mesh nodes.

7.3 Management Station with Graphical User Interface

As front-end of MARWIS a web-based graphical user interface was implemented.
With this GUI the user can perform major management tasks, such as monitoring,
configuration, and code update.

A start-up web site, shown in Figure 7.3, visualizes the topology of the net-
works as a map and the information about the sensor nodes. In the example case
in Figure 7.3 the map depicts the two upper floors in the building of the Institut für
Informatik und angewandte Mathematik. The mesh nodes are depicted with grey
circles and the sensor nodes from type tmote sky are depicted with green circles.
The dotted lines represent the links between the nodes. The information about
the mesh and sensor nodes include the IP address, information about the platform
and the operating system, information about the hardware (micro-controller, radio,
etc.), information about the sensors, the LEDs and the status of the battery (cur-
rent voltage). All this data is shown on the right side of the map. By clicking on
the hosting mesh node (e.g. marwismn01), the connected sensor sub-network is
shown.

134

7.3. MANAGEMENT STATION WITH GRAPHICAL USER INTERFACE

Figure 7.3: User interface: network overview

Figure 7.4: User interface: sensor node overview.

By clicking on a sensor node (e.g, sn01), the information about the sensor
node and the operating system is depicted as shown in Figure 7.4. On this page
all sensor nodes of the sensor sub-network are listed. For each sensor node basic
information (Node Info) such as platform, operating system, hosting mesh node,
hardware information, and current voltage (monitoring task) is presented. This
information can be seen on the left side of Figure 7.4. The user can ping the
sensor node to find out, if the node is still alive (monitoring task). Under LEDs

135

7.4. SENSOR NODE AGENT IMPLEMENTATION

the user can find the state of the LEDs. By selecting them the user can switch
the LEDs on or off (configuration task). The measured values of the available
sensors are depicted in the diagrams. In the example case we have two light sensors
(photosynthetic active radiation, total solar radiation), one for relative humidity and
one for temperature. The user can switch on/off the sensors and decide the sensing
interval (configuration task). All information is taken from the databases from the
mesh nodes (see Figure 6.3 in Section 6.4.1). With Refresh the user can refresh the
information by querying the sensor nodes directly (see Figure 6.4).

Another management task is the code update. The user uploads first the image
to the database. The user has to give the application a name, a version, a description
and afterwards select the code file (see Figure 6.8 in Section 6.4.3). After the image
is uploaded to the mesh node, the user can select the image of the application and
the sensor node, which should be updated and start the updating process (see Figure
6.9). It is possible to start, stop and delete an application on the sensor node.

The web-based graphical user interface runs on the management station, which
has an Apache web server. It is written in php version 5.4.6 [84] using packages for
Sqlite3. The graphics in the map have been created by Graphviz 2.12 [50] using
the neighbourhood information from the database. The tree has been implemented
using dhtmlxtree version 1.6 [5]. The diagrams are made with Flot version 0.7
[44].

7.4 Sensor Node Agent Implementation

In this section the implementation details of the SN Agent on the sensor node are
discussed. This includes addressing of the sensor nodes and the three management
tasks on the node (monitoring, configuration, and code updates).

As described in Section 2.2.2 we are using Contiki 2.5 as operating system.
Contiki has some advantage to support most of the sensor node platforms we are
using, such as Tmote SKY / TelosB, MicaZ and MSB. In case of the BTNode plat-
form we implemented a port Contiki [103]. Contiki supports protothreads, which
allows code updates of several applications running on the node. Furthermore,
Contiki supports TCP/IP (µIP) and RIME that eases implementation of the man-
agement protocols (see Section 6.4).

7.4.1 Addressing

The first task is the addressing of the sensor nodes. Each node has an IP address.
The first three bytes identify the sensor sub-network (10.1.10); the last byte identi-
fies the sensor nodes itself (101). We are using the Contiki RIME address, which
has two bytes and corresponds to the identifier of the sensor node. A node identifier
of 72 corresponds to a RIME address of 72.0. To create a RIME address of 10.101
the node identifier has to be set to 2661. This example is shown in Figure 7.5. The
routing tables on the hosting mesh nodes look accordingly.

136

7.4. SENSOR NODE AGENT IMPLEMENTATION

10 1 10 101

2661

IP Address

RIME Address
Figure 7.5: SN Agent: addressing.

7.4.2 Sensor Node Monitor

The Sensor Node Monitor is responsible for handling monitor requests. First,
when a sensor node switches on, the values of all available properties are collected
and stored in an array. The array consists of the property id, the information flag
to indicate if the property is static or dynamic, the value of the property and a
time stamp. Possible static properties are node platform, node id, node IP address,
node role (gateway or not), micro-controller, radio transceiver, operating system,
or memory space. Dynamic properties are for instance the value of the sensor
(light, humidity, temperature), current battery value, LED status, or free memory
space. When the Sensor Node Monitor receives a monitor request, it checks if the
property is static or dynamic. In case of a static property it takes the value from
the array. In case of a dynamic property it determines the value by, e.g., requesting
the sensor directly. Afterwards it generates a packet to transmit the requested value
back to the mesh node. The following functions implement the functionality:

• InitSensorNodeMonitor(): When a sensor node starts, this function
determines all available (static) properties and their values. These values are
stored in the array described above.

• ReceiveMonRequest(prop id[], sender ip): When a request
for one or more sensor node properties reaches the monitor, this function is
called. The parameter is an array of the requested properties (prop id[]) and
the IP address of the sender. This function determines the requested values
(by calling GetPropertyValue()) and sends it back to the sender (sender ip)
by calling SendSensorValue()).

• GetPropertyValue(prop id[]) ← value[]: This function reads
the values of all requested properties (prop id[]). If a static property is re-
quested its returned value is read from the array. In case of a dynamic prop-
erty it calls the driver functions of the, e.g., sensors, to retrieve the dynamic
values of the requested properties. In the latter case the value is also stored
into the property array including the according time stamp.

• SendSensorValue(prop id[], value[], sender ip): This func-
tion creates one or more packets with property values and transmit them to
the sender.

137

7.4. SENSOR NODE AGENT IMPLEMENTATION

7.4.3 Sensor Node Configurator

The Sensor Node Configurator executes the configuration commands on the sen-
sor node. The configuration task is strongly depending on the application, which
has to be configured. It can be permanent or non-permanent. In the permanent case
the variable is written into the flash memory. Thus, this variable is still available
after rebooting the sensor node. An application reads this variable and changes its
behaviour during run-time accordingly. In the non-permanent case only a global
variable located in the RAM is written. The application reads this global variable
and changes its behaviour accordingly. After rebooting the value of the global
variable has disappeared. The Sensor Node Configurator receives a message con-
taining a configuration command. The configuration command contains the name
and the value of the global variable, which has to be set and an information if the
variable is located in the RAM or in the flash memory. In the latter case the address
of the variable has to be indicated. After writing the global variable in the RAM or
the variable in the flash memory the notification message is created and transmit-
ted to the mesh node. The following functions implement the functionality of the
Sensor Node Configurator:

• ReceiveConfRequest(conf cmd, sender ip): This function is
called when a configuration request has been received. It starts the configura-
tion process by calling Configure(). The IP address of the sender (sender ip)
is recognized to send the notification message later.

• Configure(conf cmd): This function performs the configuration by
executing the configuration command (conf cmd). As described above exe-
cuting the configuration command means to write a value to a global variable
in the RAM or to a variable in the flash memory, respectively.

• RestartSensorNode(): If a configuration demands a restart, this func-
tion restarts the sensor node.

• SendNotification(message, sender ip): This function sends a
notification about the success of the configuration.

7.4.4 Code Updater

The Code Updater is responsible for the code updating process. Contiki works
with loadable modules to allow replacing applications. This allows to start/stop/load-
/update application during run-time. The image of the application is divided into
several packets and transmitted to the sensor node. The packets are received and the
image is stored into the flash memory. Then, the referenced variables are checked
and functions of the new application are linked and relocated by the Contiki dy-
namic Link Editor (CLE). The code updater starts the application using the Contiki
function init(). Finally, it sends a packet to notify the mesh node of the success of
the update. The following functions implement this functionality:

138

7.5. MARWIS DEMONSTRATOR

• ReceiveUpdRequest(img*, sender ip): After receiving a packet
with a part of the image, this function adds the image data on top of the
previous ones in the flash memory. After the last packet with parts of the im-
age has arrived, the image building process is started by calling the function
BuildImage(). The IP address of the sender (sender ip) is marked to send
later the notification message.

• BuildImage(img*, upd type): This function creates the application
using the Contiki dynamic Link Editor (CLE).

• RestartSensorNode(): This function restarts the sensor node.

• RestartApplication(app id): This function starts (or restarts) the
selected application (app id).

• SendNotification(message, receiver ip): This function sends
notification about the success of the update. If th update was successful, the
new version number and a timestamp of the update is sent to the mesh node.
If not, the message contains an error message.

7.5 MARWIS Demonstrator

To show the ability of MARWIS to support heterogeneous WSNs we implemented
a MARWIS demonstrator [124]. We built a small WSN including sensor nodes
from several platforms (Tmote SKY / TelosB, MSB, MICAz, and BTnodes) and a
WMN as backbone with ALIX 3d2 mesh nodes. This demonstrator contains the
complete MARWIS implementation with the management station with the web-
based GUI running on a mesh node, the MARWIS Server running on mesh nodes
and SN Agent running under Contiki OS on the several sensor node platforms.
Figure 7.6 shows the scenario.

Internet

user
terminal

mesh
nodes

sensor
nodes

sensor node
gateways

management
station

Figure 7.6: A possible scenario for heterogeneous WSNs with management devices.

We demonstrated the operation of the three management tasks (monitoring,
configuration, and code update). For monitoring the current battery state and the

139

7.6. CONCLUSIONS

sensor values of the temperature, light and humidity sensors are displayed. Ad-
ditionally, the sensor nodes are pinged to show if the sensor node is alive or not.
To demonstrate the configuration task the sensing interval of the sensors is config-
ured. To demonstrate the code update we implemented simple applications, which
perform simple blinking sequences (e.g., blinking red, blinking loop, etc).

For the demonstration we setup a heterogeneous WSN with different types of
sensor nodes, similar as shown in Figure 7.6). We used 5 Alix 3D mesh nodes,
3 TelosB sensor nodes, 3 MSB sensor nodes, 3 MicaZ sensor nodes, 3 BTnodes
sensor nodes. One mesh node act as the management station, the other 4 mesh
nodes handle the 4 sensor sub-networks containing the 4 different types of sensor
nodes.

7.6 Conclusions

This chapter focussed on the details of the MARWIS implementation The MAR-
WIS server with the management modules and the databases was implemented on
the mesh nodes. On the management station a web-based graphical user interface
was implemented to allow the user to perform the management tasks, such as mon-
itoring, configuration, and code updates. On the sensor nodes SN Agents were
implemented performing the management tasks on the sensor nodes.

Further, we implemented a MARWIS demonstrator to qualitatively evaluate
MARWIS’s support of heterogeneous types of sensor nodes and the function of the
MARWIS management protocols.

The following Chapter 8 presents the integration of SNOMC into the MARWIS
architecture and a quantitative evaluation of MARWIS.

140

Chapter 8

SNOMC Integration into MARWIS

This chapter presents the integration of the SNOMC protocol into MARWIS. SNOMC
is the overlay multicast transport protocol for wireless sensor networks that sup-
ports reliable and time- and energy-efficient transport of bulky data presented in
Chapter 3.

Section 8.1 describes the problem we address with the integration of SNOMC
into MARWIS. While Section 8.2 presents the architectural aspects of the integra-
tion, Section 8.3 focuses on the implementation, including the implementation of
SNOMC on wireless mesh nodes and adaptations of the web-based graphical user
interface of MARWIS. Section 8.4 presents a detailed evaluation of the time- and
energy-efficiency of SNOMC in combination with MARWIS. Finally, Section 8.5
concludes the chapter.

8.1 Introduction

The combination of SNOMC and MARWIS supports reliable, time-, and energy-
efficient management of heterogeneous wireless sensor networks. While SNOMC
provides the reliable, time-, and energy-efficient communication in heterogeneous
wireless sensor networks, MARWIS provides the management functionality for
monitoring, configuration and code updating. To achieve this, SNOMC has to run
on each entity of the heterogeneous network, not only on sensor nodes but also on
mesh nodes.

Figure 8.1 shows an example scenario using SNOMC in a heterogeneous MAR-
WIS environment. In this scenario we have a wireless mesh network, which forms
the backbone of the heterogeneous wireless sensor network. In the wireless mesh
network we have a management station and a number of mesh nodes. Each of the
mesh nodes handle a sensor sub-network.

The SNOMC distribution tree is marked by the orange arrows. Thicker arrows
show the distribution tree within the wireless mesh network, blue arrows show the
tree in the mesh network, orange arrows shows the tree in the sensor sub-networks.

141

8.2. ARCHITECTURE

Internet

user
terminal

mesh
nodes

sensor
nodes

sensor node
gateways

management
station

Figure 8.1: SNOMC in a heterogeneous MARWIS scenario.

8.2 Architecture

In order to integrate SNOMC into the MARWIS the architecture of MARWIS re-
quires some changes. Another important aspect is the addressing of the mesh nodes
and sensor nodes in the heterogeneous network.

Figure 8.2 shows the architectural changes on the Management Station and the
mesh nodes while integrating SNOMC. Both on the Management Station and the
mesh nodes a MARWIS Communication Server is running, which is responsible
for the communication within the mesh network. In the MARWIS Communica-
tion Server the transport protocols SNOMC or UDP-E2E are integrated to support
efficient and reliable data delivery in a MARWIS environment.

User Terminal

User Interface (Web Browser)

WSN
Monitor

WSN
Configurator

Code
Update

Manager

ADAM

MARWIS Server

Mesh Node

WSN
Monitor
Module

WSN
Configurator

Module

Code Update
Manager
Module

WSN Manager

Program
Versions

WSN
Information

Sensor
Values

MARWIS Server

Management Station

3

Internet
1

Mesh
Network

WSN
4

Program
Versions

WSN
Information

Sensor
Values

MARWIS CommServer

MARWIS CommServer
2

5
6

Figure 8.2: SNOMC integrated into the MARWIS architecture.

142

8.2. ARCHITECTURE

Figure 8.2 shows the code updating process of sensor nodes using SNOMC in
MARWIS (including the wireless mesh network and the wireless sensor network)
as shown in Figure 6.10 in Chapter 6.4.3.

1. The user selects the update, the receiver nodes, and the transport protocol for
the data transmission. This information are sent to the Code Update Manager
on the Management Station.

2. The Code Update Manager fragments the image and transmits it including
the information about the receivers and the selected transport protocol to the
MARWIS Communication Server. In case of using SNOMC the MARWIS
Communication Server initiates the join procedure to build the distribution
tree.

3. After a successful joining procedure of the sensor nodes, the transmission of
the data fragments starts.

4. Beside on the management station, a MARWIS Communication Server is
also running on the mesh nodes and listens to incoming packets.

5. The MARWIS Communication Server also caches the fragments on the mesh
nodes. Caching is the responsibility of the Code Update Manager.

6. Afterwards the fragments are transmitted to the wireless sensor network via
the sensor gateway node attached to the mesh node.

In a heterogeneous scenario it can also happen that the code update requires
different images for different types of sensor nodes. In this case the distribution
tree is built by the mesh nodes. The image for each sensor sub-network node is
taken from the database of the mesh node, which manages the sub-network.

In case of transmitting commands for monitoring and configuration the dis-
tribution tree is always built by the management station. The same message is
transmitted to all receivers, because even if sensor nodes are of a different type
they receive the same configuration message.

802.11

IP μIP

UDP

MARWIS

SNOMC

802.11

IP

UDP

MARWIS

SNOMC

SLIP CONTIKI
MACSLIP

μIP

CONTIKIMAC
802.15.4

UDP

SN AGENT

SNOMC

μIP

CONTIKIMAC
802.15.4

WLAN USB CC2420 CC2420

Application

Transport

Network

Link Layer
Physical Layer

Management Station Mesh Node Sensor Gateway Node Sensor Node Sensor Node

Figure 8.3: Protocol stack containing SNOMC in the heterogeneous MARWIS
architecture.

143

8.2. ARCHITECTURE

The SNOMC integration into MARWIS follows the same design principles as
SNOMC for wireless sensor networks. It includes the same protocol phases such as
joining and data transmission, and also includes the same reliability mechanisms as
described in Chapter 3. Moreover, SNOMC uses the same messages join, join ack,
data, data ack, and nack as on the sensor nodes with the Contiki OS. Therefore,
SNOMC supports heterogeneity by running on different types of networks, such
as 802.11 or 802.15.4. The protocol stack in the different entities of the MARWIS
architecture, such as management station, mesh node, sensor gateway node, and
sensor nodes is shown in Figure 8.3. A packet is transmitted from the management
station to one or more sensor nodes (only one sensor node as receiver is depicted in
the Figure). The packet is created by the MARWIS and distributed by the SNOMC
protocol. The packet is passed through the protocol stack at the management sta-
tion. Management station and mesh nodes are connected using IEEE 802.11. On
the mesh node the packet is directed to the sensor node gateway. Sensor node gate-
way and mesh node are connected with a serial line, using SLIP as protocol. From
the sensor node gateway the packet is transmitted using a radio transceiver, which
is IEEE 802.15. 4 compliant and ContikiMAC as MAC protocol. On top is µIP on
the network layer. On the receiver node the packet is passed through the protocol
stack, including µIP, UDP, SNOMC. Afterwards, the packet is delivered to the SN
Agent, which is the MARWIS implementation on the sensor node.

SNOMC on the sensor nodes and SNOMC integrated into MARWIS differs not
in the design principles but in the implementation, which is described in Section
8.3.

Addressing of the nodes in the MARWIS architecture plays an important role.
The addressing scheme is shown in an example in Figure 8.4. All nodes have
private IP addresses. The management station and the mesh nodes are in the same
sub-network as in each sensor sub-network. The SLIP interface (tuneslip) of the
mesh nodes is in the same network as the sensor sub-network and has a private IP
address, e.g., 10.1.10.100.

Internet

user
terminal management

station

10.1.1.1
10.1.1.10

10.1.1.1310.1.1.12

10.1.1.11

10.1.10.101

10.1.10.102

10.1.10.103

10.1.13.101

10.1.13.102

10.1.13.103

10.1.13.104

10.1.11.101

10.1.11.102

10.1.12.102
10.1.12.103

10.1.12.104
10.1.12.105

Figure 8.4: Addressing scheme of the nodes in the MARWIS architecture.

144

8.3. IMPLEMENTATION

8.3 Implementation

The implementation of SNOMC on mesh nodes is the major aspect for the inte-
gration of SNOMC and MARWIS. Furthermore, some changes at the MARWIS’
web-based graphical user interface were required so that the user can select the
protocol to transmit the data to the selected sensor nodes.

8.3.1 Implementation of SNOMC on Wireless Mesh Nodes

SNOMC and the MARWIS Communication Server are implemented in C/C++ us-
ing UDP/TCP sockets. In contrast to the implementation in Contiki OS, we are
using standard C templates (STL) such as linked lists to store the required infor-
mation on each node. The SNOMC control structure is depicted in Figure 8.5(a).
It contains the multicast identifier (mc id) from type int. Then, it contains a list
of receivers from type std::list. The entries of the list contain a structure contain-
ing the IP address of the receiver from type struct sockaddr in and a bool which
indicates if this receiver successfully received all fragments. Further, it includes
the IP addresses of the sender, the last node, and the next node (both forwarder
or branching node) from type struct sockaddr in. Only the sender-driven mode of
SNOMC is implemented.

last_node_id

sender_id

caching_strat

rec_lst

mc_id

next_node_id

receiver_id

trans_succ

(a) control structure

fragments

no_of_frags

frag_number

frag_length

fragement

no_last_frag

(b) fragment list

Figure 8.5: SNOMC: structures.

The second structure describes the cached fragments and is shown in Figure
8.5(b). It describes the total number of fragments and the sequence number of
the last fragment (both from type int). Further, it describes the cached fragments,
which are stored in an own structure called struct fragments. This structure de-
scribes the sequence number and the length of the stored fragment (both from type
int) and the data of the fragment from type string. The fragments are stored in the
order according to their sequence number.

145

8.4. EVALUATION

Table 8.1: Possible protocol combinations.

protocol caching strategy number
UDP-E2E sender node 1
UDP-E2E intermediate nodes 2
UDP-E2E intermediate nodes, pro-active, 3
SNOMC sender node 11
SNOMC branching nodes 12
SNOMC branching nodes, pro-active 13
SNOMC intermediate nodes 14
SNOMC intermediate nodes, pro-active 15

TCP sender node 21

8.3.2 Adaptation of the MARWIS Graphical User Interface

Changes of the web-based graphical user interface were also necessary. The user
can not only select the image and the sensor nodes, which should get the code
update, but also the transport protocol. Two different transport protocols are se-
lectable: SNOMC and UDP-E2E. For all protocols each of the tree caching strate-
gies as caching on sender node, caching on branching nodes, and caching on each
intermediate node can be chosen. Each combination of transport protocol and
caching strategy is encoded by an integer which is transmitted to the MARWIS
Communication Server. Possible combinations are shown in Table 8.1.

The MARWIS Communication Server provides functions for the communica-
tion. The function snomc join(rec lst, caching strat) initiates the
joining phase. The parameters are the list of receivers and the selected caching
strategy. The functions returns a value indicating if the joining was successfully
or not. The function snomc send image(img *) initiates the sending of the
image. The according function for transmitting configuration or monitoring com-
mands is called snomc send cmd(cmd).

8.4 Evaluation

The section presents the quantitative evaluation of MARWIS with the integrated
SNOMC protocol. The following features were evaluated: (1) reliable and time-
efficient communication, and (2) energy-efficient operation.

8.4.1 Evaluation Scenario

After the integration of MARWIS and SNOMC we made several experiments in
our Wisebed testbed. The evaluation was performed in a small network including a
management station, two mesh nodes, and two sensor sub-networks with five sen-

146

8.4. EVALUATION

sor nodes each, as shown in Figure 8.6. Each of the two mesh nodes are connected
to sensor node gateways, which are connected to parts of the Wisebed testbed.

management station

mesh nodes with
sensor node gateway

sensor nodes
(branching nodes)

sensor nodes
(receiving nodes)

distribution tree
wireless link
(802.15.4)
wireless link
(802.11)

Figure 8.6: Evaluation scenario using Wisebed testbed.

We defined two evaluation scenarios. In the first one we distribute to the sen-
sor nodes an image of an application that controls LEDs at sensor nodes. This
application has a size of 1392 bytes, which corresponds to 20 data messages.

In the second scenario, we transmit a configuration command of 20 bytes to
configure the sensing interval of a sensor on the sensor node. This corresponds to
one data message.

We measure the time to transmit the code update (1392 bytes) and the configu-
ration command (20 bytes) using either SNOMC or UDP-E2E. As MAC protocols
we are using ContikiMAC and NullMAC, both integrated in Contiki OS. As sensor
nodes Tmote SKY nodes are used. Further, we measure the energy consumption
of the sensor nodes during the transmission time. The energy consumption of the
mesh nodes including the sensor node gateways is left out. Overall we made 20
experimentation runs to evaluate both metrics.

147

8.4. EVALUATION

8.4.2 Time-Efficient Communication

Preliminary Experiments without SNOMC

In a first experiment we evaluated the use of a wireless mesh network as a back-
bone to divide a large wireless sensor network into smaller sensor sub-networks
[127]. For investigation of the additional round-trip time (RTT) and packet loss for
increased hop count in wireless sensor and mesh networks, we made experiments
with ICMP echo request (ping). The round-trip time was evaluated with one, two
and three hop sensor node and mesh node links. The wireless sensor network
tests were made with Tmote SKY nodes running a standard Contiki installation.
As mesh nodes ALIX 3d2 mesh node with 128 MB RAM and two 60 mW IEEE
802.11g interfaces have been used. The sensor nodes and mesh nodes are located
in different rooms. They are placed in such distance from each other that a node
can only communicate with its one hop neighbours. Figure 8.7 shows the results
of the experiments.

 0

 50

 100

 150

 200

 250

SN
3-hop

SN
2-hop

SN
1-hop

Mesh
3-hop

Mesh
2-hop

Mesh
1-hop

R
T
T

[
m
s
]

RTT measurements

RTT with variance

(a) RTT.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

SN
3-hop

SN
2-hop

SN
1-hop

Mesh
3-hop

Mesh
2-hop

Mesh
1-hop

P
a
c
k
e
t

l
o
s
s

r
a
t
i
o

[
%
]

Packet loss ratio

Packet loss ratio

(b) Packet loss ratio.

Figure 8.7: Evaluation of reliable and time-efficient communication.

Figure 8.7(a) shows the different round-trip times in wireless mesh networks
and wireless sensor networks for 500 measurements (pings). The results are self-
explanatory: an additional sensor node hop causes over 50 times longer round-trip
time than a additional mesh node hop.

Figure 8.7(b) shows the packet loss over 500 packets. As it can be seen using
a wireless mesh network results in almost no packet loss. In a wireless sensor
network we have a much higher packet loss, from approximately 2% (one hop) up
to approximately 16% (three hops).

Although the measured values strongly depend on the hardware used as well as
on the operating system and the communication protocols, the difference between
a mesh and a sensor node hop is obvious. The further away a sensor node is lo-
cated from the base station, the higher is the packet loss and the round-trip time.
Retransmissions for lost packets can additionally increase the round-trip time and
jitter. A large wireless sensor network with large number of hops (e.g., more than
30) will be unserviceable.

148

8.4. EVALUATION

Experiments with SNOMC using in-house Testbed

After the integration of SNOMC and MARWIS we executed several experiments
using the Wisebed testbed. Figure 8.8 shows the transmission time for a code up-
date of 1392 bytes using SNOMC or UDP-E2E with the different caching strategies
in combination with NullMAC or ContikiMAC.

 0

 50

 100

 150

 200

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

tim
e

[s
]

protocol

Comparing transmission time 1392 bytes NULLMAC / SNOMC+MARWIS

(a) NullMAC.

 0

 50

 100

 150

 200

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

tim
e

[s
]

protocol

Comparing transmission time 1000 bytes CONTIKIMAC

(b) ContikiMAC.

Figure 8.8: Evaluation: transmission time, code update (1392 bytes).

As we can see SNOMC performs, in the different combinations, better than
UDP-E2E by approximately a factor of two. Due to Contiki OS limitations it is
only possible to have four parallel UDP flows. Therefore, to address six receivers
we have to transmit the data in two steps with three parallel UDP flows in each
step. That is one reason why UDP-E2E has a higher transmission time.

In general, the caching strategy did not show to have a big effect. In case of
caching only on sender node, the fragments are only cached on the management
station. In case of caching on branching nodes, the fragments are cached on each
of the two branching nodes (green circles in Figure 8.6). In case of caching on
every intermediate node the fragments are cached on every mesh node and every
sensor node, including the sensor node gateways. In the last case, a maximum of
four hops are necessary to request a lost fragment. Thus, the caching strategy has
not a big influence.

In case of pro-active requests of missed fragments we can reduce the number of
hops of a request from the receivers. However, a pro-active request causes higher
traffic and thus a higher collision probability. Thus, as a conclusion the negative
effect of higher traffic neutralizes the positive effect of reduced number of hops for
requesting missing fragments.

Comparing NullMAC and ContikiMAC, we see that NullMAC is faster by a
factor of three. Further, we can see that the broadcast on the last hop to the re-
ceivers has a positive influence in case of using NullMAC. Using ContikiMAC,
the broadcast optimization turns into a disadvantage due to the way how Contiki-
MAC handles broadcast transmissions. More specifically, ContikiMAC broadcasts
a packet continuously for a time period of 128ms until it can be sure that each
neighbour was awake during this time period and able to receive the broadcasted

149

8.4. EVALUATION

packet. In contrast, using NullMAC every node is always awake and thus Null-
MAC just needs to broadcast the packet ones.

 0

 5

 10

 15

 20

 25

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

tim
e

[s
]

protocol

Comparing transmission time 20 bytes NULLMAC / SNOMC+MARWIS

(a) NullMAC.

 0

 5

 10

 15

 20

 25

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

tim
e

[s
]

protocol

Comparing transmission time 20 bytes CONTIKIMAC

(b) ContikiMAC.

Figure 8.9: Evaluation: transmission time, configuration command (20 bytes).

Figure 8.9 shows the transmission time for transmitting one configuration mes-
sage to the six receiver nodes. The statistical spread is much lower than in the
previous scenario. We have just one data packet to transmit and this mainly works
without any problems, because we do not have many packets in the network that
could interfere each other. The caching strategy has almost no influence for the
same reason. The outliers occur if after a successful join the data packet gets lost.
In this case the receivers have a timer of five seconds to wait for the first packet.
After this timer expires the receiver requests for the first data fragment. The differ-
ence in transmission time between SNOMC and UDP-E2E is caused by the same
reason as described above (no more than four parallel UDP flows possible in Con-
tiki OS). UDP-E2E has no join procedure whereas SNOMC has. Thus, if the only
data fragment gets lost, the receivers do not know that there was a transmission.
Hence, there is no such timer, which makes a request after five seconds as it is in
SNOMC. And thus, UDP-E2E has no outliers as SNOMC has.

8.4.3 Energy-Efficient Operation

In this section we discuss the results of energy consumption. It is measured during
the transmission time of a 1392 bytes code update and a 20 bytes configuration
command. For the measurement we are using the Contiki in-built module Power-
trace [36].

Figure 8.10(a) shows the results for the code update using SNOMC and UDP-
E2E in combination with NullMAC. Since NullMAC is an always-on MAC pro-
tocol (cf. Section 2.2.2) the results for the energy consumption are linear to the
transmission time. The longer a transmission takes the higher is the consumed en-
ergy. Thus, the energy-consumption with UDP-E2E is higher than with SNOMC.
The broadcast optimization of SNOMC has the lowest energy consumption. The
use of pro-active requests for lost fragments does not only cause a higher trans-
mission time, but also a higher energy consumption, as result of higher number of

150

8.4. EVALUATION

 0

 5000

 10000

 15000

 20000

 25000

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

en
er

gy
 [m

J]

protocol

Comparing energy 1392 bytes NULLMAC / SNOMC+MARWIS

(a) NullMAC.

 0

 5000

 10000

 15000

 20000

 25000

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

en
er

gy
 [m

J]

protocol

Comparing energy 1392 bytes CONTIKIMAC

(b) ContikiMAC.

Figure 8.10: Evaluation: energy consumption, code update (1392 bytes).

packets and higher traffic.
Figure 8.10(b) shows the results for the code update using SNOMC and UDP-

E2E in combination with ContikiMAC. Compared to NullMAC the use of Con-
tikiMAC decreases the energy consumption approximately by the factor of two.
ContikiMAC is an energy-saving protocol using duty cycles. But, with bursty traf-
fic as we have it by transmitting 1392 bytes, ContikiMAC reduces the sleeping
cycles and awakes more often.

 0

 1000

 2000

 3000

 4000

 5000

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

en
er

gy
 [m

J]

protocol

Comparing energy 20 bytes NULLMAC / SNOMC+MARWIS

(a) NullMAC.

 0

 1000

 2000

 3000

 4000

 5000

SNOMC
 s | b | b-pa | i | i-pa | i-bc

UDP-E2E
 s | i | i-pa

en
er

gy
 [m

J]

protocol

Comparing energy 20 bytes CONTIKIMAC

(b) ContikiMAC.

Figure 8.11: Evaluation: energy consumption, configuration command (20 bytes).

Figure 8.11(a) shows the results for transmitting a configuration command to
the sensor nodes using NullMAC. Also in this case the energy consumption corre-
sponds to the transmission time. There are very few outliers, because just one data
packet is transmitted, which leads to very little interference problems in most of
the experiments. UDP-E2E has no big outliers. The best effort has the SNOMC
broadcast optimization.

Figure 8.11(b) shows the energy consumption using SNOMC and UDP-E2E in
combination with ContikiMAC. Compared to NullMAC we reduce the energy con-
sumption by the factor of approximately two. SNOMC has again bigger outliers,
while UDP-E2E has only very little outliers. The reasons are described above.

151

8.5. CONCLUSIONS

8.5 Conclusions

This chapter focussed on the integration of SNOMC into the MARWIS architec-
ture. For this we adapted the MARWIS architecture. We added a MARWIS Com-
munication Server, which handles the communication in the wireless mesh net-
work. Furthermore, changes are done on the MARWIS graphical user interface to
allow the user to select the used transport protocol. Thus, SNOMC can be used in
an heterogeneous wireless sensor network which is supported by a wireless mesh
backbone.

We evaluated the co-operation of SNOMC and MARWIS by running experi-
ments using the in-house testbed. In these experiments we transmitted a code up-
date (1392 bytes) and a configuration command (20 bytes) to six sensor nodes. The
results of the experiment showed that the combination of SNOMC and MARWIS
supports reliably, time- and energy-efficient operation of a heterogeneous wireless
sensor network.

152

Chapter 9

Conclusions and Outlook

While wireless sensor networks have experienced an increasing degree of (aca-
demic) research interests in the last decade, nowadays research in wireless sensor
networks increasingly finds its way into a growing number of industrial, environ-
mental and business applications.

Wireless sensor networks deployed for real-world applications are composed of
different types of sensor nodes fulfilling various tasks, depending on the application
purpose. The operation of such wireless sensor networks needs to be cost-efficient,
energy-efficient and to ensure functional reliability.

These requirements, despite the wide-spread adoption of wireless sensor net-
works, motivate the still big potential for further research in the area of wireless
sensor networks and are the driver behind the work performed in this thesis.

9.1 Addressed Challenges

A heterogeneous wireless sensor network consists of several different types of sen-
sor nodes. Various applications supporting different tasks, e.g., event detection,
localization, tracking, and environmental monitoring, may run on these specialized
sensor nodes. In addition, new applications have to be deployed and new configu-
rations and bug fixes have to be applied during the network lifetime.

In a network with thousands of nodes, this becomes a very complex task and a
general management architecture is required. One the one hand, the management
architecture should address monitoring, (re)configuration, and code updating of
wireless sensor nodes. Although all three tasks are not high priority tasks, they
should be executed in reasonable time and most importantly conforming to certain
quality of execution. In particular, code updating and node configuration are both
critical tasks, the proper execution of which is required for the healthy operation of
the wireless sensor network.

On the other hand, the operation of the management architecture should en-
sure that several essential functional requirements are met. Referring to the im-
portance of the management tasks, end-to-end reliability and time-efficiency be-
come key necessities in the realisation of code updates and node configuration.

153

9.2. MAIN CONTRIBUTIONS AND SUMMARY

In addition, the limited energy capacity of the battery-operating sensor nodes sets
energy-efficient operation as another important requirement towards the manage-
ment tasks. Future wireless sensor networks will combine a multitude of various
sensor platforms and, therefore, require the ability to handle network heterogene-
ity. Each of these challenges alone have been studied a lot in the literature. It is
their combined support, however, that is still not fully achieved.

In order to fill the gap in research this thesis proposes a management architec-
ture able to provide monitoring, (re)configuration, and code updating in a reliable,
energy- and time-efficient manner for heterogeneous wireless sensor networks. For
the realisation of the communication within the architecture a reliable, time-, and
energy-efficient multicast protocol was developed.

9.2 Main Contributions and Summary

The contributions presented in this thesis are the result of our work to offer a so-
lution to the challenges addressed in the previous section. In Part I we presented
the design, implementation, and evaluation of the SNOMC (Sensor Node Overlay
Multicast) protocol (Chapters 3 - 5). In Part II MARWIS the Management Ar-
chitecture for Wireless Sensor Networks (Chapters 6 and 7) and the integration of
SNOMC and MARWIS (Chapter 8) are presented.

SNOMC (Sensor Node Overlay Multicast)

The Sensor Node Overlay Multicast (SNOMC) protocol was specifically designed
for data dissemination using overlay multicast in wireless sensor networks. It sup-
ports reliable, time-efficient and energy-efficient dissemination of bulky data from
one sender node to many receiver nodes. SNOMC was especially designed to
use it in the MARWIS architecture. It distributes management data, such as code
updates or configuration commands to selected sensor nodes in an efficient and
reliable way.

A distribution tree is used to transmit the data efficiently from the sender node
to the receiver nodes using overlay connections. The distribution tree is formed
during a joining phase and is composed of one sender node, several forwarding
nodes and branching nodes, as well as one or more receiver nodes. The distribution
tree is formed during a joining phase and is composed of one sender node, several
forwarding nodes and branching nodes, as well as one or more receiver nodes. To
optimise performance and avoid unnecessary unicast transmissions we introduced
broadcast transmission at the branching nodes in case of two ore more following
nodes.

The support of end-to-end reliability is realised by deploying a NACK-based
reliability mechanism, combined with a data acknowledgement after successful
reception of all data fragments by the receiver nodes. Caching was adopted to de-
crease the number of required end-to-end retransmissions. More specifically three

154

9.2. MAIN CONTRIBUTIONS AND SUMMARY

caching strategies were used, namely, caching on each intermediate node, caching
on branching nodes, or caching only on the sender node. Moreover, an option was
included to pro-actively request missing fragments. In this case each intermediate
sensor node, which caches fragments can pro-actively request a missed fragment.

In order to evaluate the performance of SNOMC, on the one hand, we com-
pared it to other popular data dissemination protocols for wireless sensor net-
works. These were Flooding, MPR (Multipoint Relay), PSFQ (Pump Slowly, Fetch
Quickly), TinyCubus, and Directed Diffusion as well as the unicast-based protocols
UDP and TCP. As underlying MAC protocols we chose BEAM, ContikiMAC and
NullMAC for the simulations, and ContikiMAC and NullMAC for the real-world
evaluation.

Three performance metrics were chosen for evaluation, namely, transmission
time, number of transmitted packets and energy consumption. Our findings were
presented in Chapter 5. We showed that the SNOMC protocol performs better
compared to the selected data dissemination protocols, both transmitting 20 bytes
(refers to a configuration command) and 1000 bytes (refers to a code update). In
particular, data dissemination protocols relying on broadcast, such as Flooding,
MPR, and TinyCubus cause broadcast storms and perform poorly. Performance
improves for data dissemination protocols that are especially designed for wire-
less sensor networks, such as Directed Diffusion or PSFQ, but, as they also have
some protocol phases relying on broadcast transmissions, SNOMC still outper-
forms them. The most serious competitor of SNOMC is UDP-E2E, in which case
the advantage of SNOMC depends on the network topology and the distribution
tree as we showed in Section 5.3.3.

The performance with different caching strategies was investigated as well. In
general, our observations show that caching on intermediate nodes improves the
performance independently of the tested protocol. That is due to the avoidance
of expensive end-to-end retransmissions. We further demonstrated that pro-active
requesting of missed fragments does not improve the performance at all. It only
causes additional packets to be sent, increasing the probability of collisions and
cancelling the advantage of SNOMC’s optimization.

Finally, we showed that SNOMC can deliver good performance in various en-
vironments and with different underlying MAC protocols, which support different
levels of reliability and energy-efficiency. In conclusion, SNOMC can offer a ro-
bust, high-performing solution for the efficient distribution of code updates and
management information in a wireless sensor network.

MARWIS (Management Architecture for Wireless Sensor Networks)

The MARWIS architecture is the answer we offer to a comprehensive management
of heterogeneous wireless sensor networks. The architecture specifically takes into
account the operation of such networks in reliable, time- and energy-efficient man-
ner and its design was described in Chapter 6. A distinguished feature of MARWIS
is the use of a wireless mesh backbone, which is the main enabler of the commu-

155

9.3. OUTLOOK

nication and interaction among the various sensor network types. Moreover, a
mesh-based backbone allows for the offloading of functionality from the sensor
nodes to the mesh nodes and by doing so decreasing computational requirements
towards the sensor nodes.

Chapter 6 introduced the design decisions taken in the development of MAR-
WIS, the architecture components and underlying management protocols. In terms
of components, MARWIS consists of sensor node(s) and a user interface as well as
management station(s) and management (mesh) node(s), which bridge the interac-
tion between the first two groups. In terms of protocols, solutions for monitoring,
configuration and code updates of the sensor nodes were offered to ensure the
smooth co-operation of the MARWIS components.

Following the design, Chapter 7 focused on the implementation of the MAR-
WIS components. On the one hand, a web-based graphical user interface was
implemented on the management station (a mesh node) to allow user interaction
with the sensor nodes. Moreover, the MARWIS Server implementation included
the corresponding management modules and databases (also on mesh nodes). On
the other hand, a SN Agent was implemented on the sensor nodes to enable the
management tasks.

To perform the management task in a reliably, time- and energy-efficient way,
we integrated SNOMC into MARWIS. The changes required for the integration of
MARWIS and SNOMC were described in Chapter 8. Using SNOMC in MAR-
WIS allows us transmit code updates and configuration command efficiently to the
selected sensor nodes, independent from the underlying MAC protocol The evalu-
ation of the integrated system itself was discussed in detail in the same Chapter 8.
We showed that SNOMC can be used in a heterogeneous wireless sensor network,
where the networks backbone is formed by wireless mesh nodes, and, more impor-
tantly, that this is done in a reliable, time- and energy-efficient manner. This was
evaluated for large as well as small (single packet) payloads. Therefore, we claim
that the combination of MARWIS and SNOMC offers an optimal solution for the
management of sensor network comprising multiple sensor type domains.

9.3 Outlook

We showed that our overlay multicast protocol SNOMC provides reliable, time-
and energy-efficient one-to-many communication in wireless sensor networks and
in combination with the newly proposed management architecture MARWIS, man-
agement tasks can be provided efficiently in heterogeneous wireless sensor net-
works. We can imagine several possible improvements of each contribution espe-
cially related to real-world deployments.

1. While the main communication pattern in wireless sensor networks is many-
to-one, management tasks follow more the one-to-many communication pat-
tern. In a real-world wireless sensor network both communication patterns

156

9.3. OUTLOOK

can appear. SNOMC can be enhanced to offer many-to-one data dissemina-
tion. The distribution tree can be reused inversely to collect the data from
the sensor nodes, with reliability and energy-efficiency as key aspects. The
operational mode of the enhanced SNOMC can be then driven by the sensor
nodes, which want to transmit data or driven by the sink node which wants
to gather the data from several sensor nodes.

2. The performance of data dissemination in wireless sensor networks affects
all layers of the protocol stack. Harmonization between the protocols across
different layers is an important target for optimizations. The SNOMC proto-
col is located at the application layer and uses UDP as data transport proto-
col. Although our evaluations showed that SNOMC plus UDP perform well
in combination with various MAC protocols, cross-layer information passed
from or to the MAC protocol would improve the performance of SNOMC.

3. An Internet Engineering Task Force (IETF) working group has standardized
the transmission of IPv6 packets over IEEE 802.15.4 low power wireless
personal area network (LoWPAN) as the 6LoWPAN protocol [77]. Since
IPv6 multicast has been left out in 6LoWPAN, the Trickle Multicast Internet
draft [53] tries to fill this gap. A still unsolved problem remains in reliable
data transport.

4. In the area of management we envision improvements of code updating. So
far MARWIS only supports updating of applications but not of the complete
image of the operating system. An image of the whole operating system is
much bigger (up to 30KB) than the image of an application. To find tech-
niques to transmit, store, replace, and start the complete operating system to
a sensor node is a new field of research.

5. In order to reduce the number of necessary transmissions for code updating
the use of compression techniques or the use of diff-like or incremental up-
dates is a next step to improve MARWIS performance. This should benefit
transmission time and energy consumption. Evaluations have to show if un-
compressing or reconstructing the image on the sensor node would not cost
more energy than the saved energy for transmission.

157

Bibliography

[1] “A4-Mesh: Authentication, Authorization, Accounting, and Auditing in
Wireless Mesh Networks.” [Online]. Available: https://a4-mesh.unibe.ch/

[2] “ADAM: Administration and Deployment of Adhoc Mesh networks.”
[Online]. Available: http://cds.unibe.ch/research/software.html

[3] “Castalia - a simulator for Wireless Sensor Networks.” [Online]. Available:
http://castalia.npc.nicta.com.au

[4] “CTI-Mesh: Wireless Mesh Networks for Interconnection of Remote Sites
to Fixed Broadband Networks.” [Online]. Available: http://cds.unibe.ch/
research/cti-mesh.html

[5] “dhtmlxtree: JavaScript Tree Menu.” [Online]. Available: http://dhtmlx.
com/

[6] “ELF: Executable and Linkable Format.” [Online]. Available: http:
//www.linux-kernel.de/appendix/ap05.pdf

[7] “GloMoSim: A Scalable Simulation Environment for Wireless and Wired
Network Systems.” [Online]. Available: http://pcl.cs.ucla.edu/projects/
domains/glomosim.html

[8] “LBA: Location Based Analyser.” [Online]. Available: http://cds.unibe.ch/
research/lba/index.html

[9] “OMNeT++: Discrete Event Simulation System.” [Online]. Available:
http://www.omnetpp.org

[10] “Scalable Network Technologies, Qualnet.” [Online]. Available: http:
//www.scalable-networks.com.

[11] A. Varga, “INET Framework, an open-source communication networks
simulation package for the OMNeT++ simulation environment.” [Online].
Available: http://inet.omnetpp.org/

[12] M. Anwander, G. Wagenknecht, and T. Braun, “Management of wireless
sensor networks using tcp/ip,” in Proceedings of the International Workshop

159

https://a4-mesh.unibe.ch/
http://cds.unibe.ch/research/software.html
http://castalia.npc.nicta.com.au
http://cds.unibe.ch/research/cti-mesh.html
http://cds.unibe.ch/research/cti-mesh.html
http://dhtmlx.com/
http://dhtmlx.com/
http://www.linux-kernel.de/appendix/ap05.pdf
http://www.linux-kernel.de/appendix/ap05.pdf
http://pcl.cs.ucla.edu/projects/domains/glomosim.html
http://pcl.cs.ucla.edu/projects/domains/glomosim.html
http://cds.unibe.ch/research/lba/index.html
http://cds.unibe.ch/research/lba/index.html
http://www.omnetpp.org
http://www.scalable-networks.com.
http://www.scalable-networks.com.
http://inet.omnetpp.org/

BIBLIOGRAPHY

on Sensor Network Engineering (IWSNE’08), Santorini Island, Greece, June
2008, pp. II.1–II.8.

[13] M. Anwander, G. Wagenknecht, T. Braun, and K. Dolfus, “Beam: A burst-
aware energy-efficient adaptive mac protocol for wireless sensor networks.”
in Proceedings of the International Conference on Networked Sensing Sys-
tems (INSS’10), Kassel, Germany, June 2010, pp. 195–202.

[14] M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “Management of
Heterogenous Wireless Sensor Networks,” in Proceedings of the 6. GI/ITG
KuVS Fachgespraech Drahtlose Sensornetze (FGSN’07), Aachen, Germany,
July 2007.

[15] Atmel: ATmega128L micro-controller. [Online]. Available: http://www.
atmel.com/devices/atmega128.aspx

[16] M. Baar, E. Koeppe, A. Liers, and J. Schiller, “The ScatterWeb MSB-430
Platform for Wireless Sensor Networks.” SICS Contiki Workshop, Kista,
Sweden, March 2007.

[17] S. Bhattacharyya, “RFC 3569 An Overview of Source- Specific Multicast,”
Internet Engineering Task Force, July 2003.

[18] R. Braden, “RFC 1122 Requirements for Internet Hosts - Communication
Layers,” Internet Engineering Task Force, October 1989. [Online].
Available: http://tools.ietf.org/html/rfc1122

[19] BTnode rev3.24 Datasheet. [Online]. Available: http://www.btnode.ethz.ch/
pub/files/btnode rev3.24 productbrief.pdf

[20] BTnodes - A Distributed Environment for Prototyping Ad Hoc Networks.
[Online]. Available: http://www.btnode.ethz.ch/

[21] M. Buettner, V. Gary, E. Anderson, and R. Han, “X-MAC: A Short Preamble
MAC Protocol for Duty-cycled Wireless Sensor Networks.” ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys), Boulder, USA,
November 2006, pp. 307–320.

[22] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of Internet Transmission
Control Program,” RFC 675, Internet Engineering Task Force, December
1974. [Online]. Available: http://www.ietf.org/rfc/rfc675.txt

[23] P. Chaporkar and S. Sarkar, “Wireless multicast: Theory and apporaches,”
IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 1954–1972,
Jun 2005.

160

http://www.atmel.com/devices/atmega128.aspx
http://www.atmel.com/devices/atmega128.aspx
http://tools.ietf.org/html/rfc1122
http://www.btnode.ethz.ch/pub/files/btnode_rev3.24_productbrief.pdf
http://www.btnode.ethz.ch/pub/files/btnode_rev3.24_productbrief.pdf
http://www.btnode.ethz.ch/
http://www.ietf.org/rfc/rfc675.txt

BIBLIOGRAPHY

[24] C.-K. Chiang and C.-T. King, “Source routing for overlay multicast in wire-
less ad hoc and sensor networks,” in Proceedings of the International Con-
ference on Parallel Processing Workshops (ICPPW ’07), Washington, DC,
USA, Sep 2007, p. 75.

[25] C. D. Cordeiro, D. F. H. Sadok, J. Kelner, and P. da F. Pinto, “Establish-
ing a trade-off between unicast and multicast retransmission modes for re-
liable multicast protocol,” in Proceedings of the International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
(MASCOTS’00), San Francisco, CA, USA, Aug/Sep 2000, pp. 85–91.

[26] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer, D. Pfis-
terer, D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wagenknecht,
S. Fekete, A. Kröller, and T. Baumgartner, “Flexible experimentation in
wireless sensor networks,” Communications of the ACM, vol. 55, no. 1, Jan-
uary 2012.

[27] Crossbow: MICA2 Datasheet. [Online]. Available: http://bullseye.xbow.
com:81/Products/Product pdf files/Wireless pdf/MICA2 Datasheet.pdf

[28] Crossbow: MICAz Datasheet. [Online]. Available: http://bullseye.xbow.
com:81/Products/Product pdf files/Wireless pdf/MICAz Datasheet.pdf

[29] Crossbow: TelosB Datasheet. [Online]. Available: http://www.willow.co.
uk/TelosB Datasheet.pdf

[30] Crossbow: Tmote Sky Datasheet. [Online]. Available: http://www.snm.
ethz.ch/snmwiki/pub/uploads/Projects/tmote sky datasheet.pdf

[31] S. Das, H. Pucha, and Y. Hu, “Distributed hashing for scalable multicast in
wireless ad hoc networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 3, pp. 347–362, March 2008.

[32] Deliverable D4.1: First Set of well-designed Simulations, “Experiments and
possible Benchmarks. Technical Report,” June 2008. [Online]. Available:
http://www.wisebed.eu

[33] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne,
“The Announcement Layer: Beacon Coordination for the Sensornet Stack.”
European Conference on Wireless Sensor Networks (EWSN’11), Bonn,
Germany, February 2011, pp. 211–226.

[34] A. Dunkels, “Full TCP/IP for 8-Bit Architectures,” in Proceedings of the In-
ternational Conference on Mobile Systems, Applications and Services (Mo-
biSys’03), San Francisco, CA, USA, May 2003, pp. 85–98.

[35] ——, “RIME - A Lightweight Layered Communication Stack for Sensor
Networks,” in Proceedings of the European Conference on Wireless Sensor
Networks (EWSN), ser. Poster/Demo session, 2007.

161

http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.wisebed.eu

BIBLIOGRAPHY

[36] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-
level Power Profiling for Low-power Wireless Networks,” Swedish Institute
of Computer Science, Tech. Rep. T2011:05, Mar. 2011.

[37] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-Time Dynamic Link-
ing for Reprogramming Wireless Sensor Networks,” in Proceedings of the
ACM Conference on Embedded Networked Sensor Systems (SenSys’06),
Boulder, CO, USA, Oct/Nov 2006, pp. 15–28.

[38] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A Lightweight and Flex-
ible Operating System for Tiny Networked Sensors,” in Proceedings of the
29th Annual IEEE International Conference on Local Computer Networks,
ser. LCN ’04, vol. 0. Washington, DC, USA: IEEE Computer Society,
2004, pp. 455–462.

[39] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
Event-driven Programming of Memory-constrained Embedded Systems,” in
Proceedings of the 4th international conference on Embedded networked
sensor systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp.
29–42.

[40] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architec-
ture for wireless sensor networks,” in Proceedings of the ACM Conference
on Embedded Networked Sensor Systems (SenSys’07), Sydney, Australia,
Nov 2007, pp. 335–349.

[41] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the IEEE Workshop
on Embedded Networked Sensors (EmNetS’07), Cork, Ireland, Jul 2007, pp.
28–32.

[42] E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko, “Kansei: A Testbed For
Sensing At Scale.” ACM/IEEE International Conference on Information
Processing In Sensor Networks (IPSN), Nashville, Tennessee, USA, April
2006, pp. 399–406.

[43] C.-H. Feng and W. B. Heinzelman, “Rbmulticast: Receiver based multicast
for wireless sensor networks,” in Proceedings of the IEEE Wireless Commu-
nication & Networking Conference (WCNC’09), Budapest, Hungary, Apr
2009, pp. 2672–2677.

[44] Flot: Attractive JavaScript Plotting for jQuery. [Online]. Available:
http://www.flotcharts.org/

[45] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level fram-
ing,” Transactions on Networking, vol. 5, no. 6, pp. 784–803, Dec 1997.

162

http://www.flotcharts.org/

BIBLIOGRAPHY

[46] R. Flury and R. Wattenhofer, “Routing, anycast, and multicast for mesh
and sensor networks,” in Proceedings of the IEEE Computer and Commu-
nications Societies (INFOCOM’07), Anchorage, AK, USA, May 2007, pp.
946–954.

[47] Freescale Corporation: MMA7260Q XYZ Three-Axis Low g Acceleration
Sensor. [Online]. Available: http://www.freescale.com

[48] FTDI: USB Device Solutions. [Online]. Available: http://www.ftdichip.
com/

[49] L. Girod, M. Lukac, A. Parker, T. Stathopoulos, J. Tseng, H. Wang, D. Es-
trin, R. Guy, and E. Kohler, “A reliable multicast mechanism for sensor
network applications,” Center for Embedded Network Sensing, University
of California, Los Angeles, Los Angeles, CA, USA, Technical Report 48,
Apr 2005.

[50] Graphviz: A Graph Visualization Software. [Online]. Available: http:
//www.graphviz.org

[51] V. Handziski, A. Koepke, A. Willig, and A. Wolisz, “TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with Sensor
Network.” ACM/SIGMOBILE International Workshop on Multi-hop Ad
Hoc Networks (REALMAN), Florence, Italy, May 2006.

[52] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
survey of application-layer multicast protocols,” Communications Surveys
& Tutorials, vol. 9, no. 3, pp. 58–74, 3rd Quarter 2007.

[53] J. Hui and P. Thubert, “Multicast forwarding using trickle,” Internet
Engineering Task Force, April 2011. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-roll-trickle-mcast-00

[54] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination pro-
tocol for network programming at scale,” in Proceedings of the ACM Con-
ference on Embedded Networked Sensor Systems (SenSys’04), Baltimore,
MD, USA, Nov 2004, pp. 81–94.

[55] P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “TAR-
WIS - A Testbed Management Architecture for Wireless Sensor Network
Testbeds.” IEEE/IFIP Network Operations and Management Symposium
(NOMS), Maui, Hawaii, USA, April 2012, pp. 611–614.

[56] ——, “TARWIS - A Testbed Management Architecture for Wireless Sen-
sor Network Testbeds.” International Conference on Network and Service
Management (CNSM), Short Paper Session, Paris, France, October 2011,
pp. 1–5.

163

http://www.freescale.com
http://www.ftdichip.com/
http://www.ftdichip.com/
http://www.graphviz.org
http://www.graphviz.org
http://tools.ietf.org/html/draft-ietf-roll-trickle-mcast-00
http://tools.ietf.org/html/draft-ietf-roll-trickle-mcast-00

BIBLIOGRAPHY

[57] P. Hurni, T. Staub, G. Wagenknecht, M. Anwander, and T. Braun, “A Secure
Remote Authentication, Operation and Management Infrastructure for Dis-
tributed Wireless Sensor Network Testbeds.” First Workshop on Global
Sensor Networks (GSN’09), co-located with KiVS’09, Kassel, Germany,
March 2009.

[58] P. Hurni, G. Wagenknecht, M. Anwander, T. Staub, and T. Braun, “A
Testbed Management Architecture for Wireless Sensor Network Testbeds
(TARWIS).” European Conference on Wireless Sensor Networks (EWSN),
Coimbra, Portugal, February 2010, pp. 33–35.

[59] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion: A scalable and robust communication paradigm for
sensor networks,” in Proceedings of the ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom’00), Boston, Mas-
sachussetts, Aug 2000, pp. 56–67.

[60] ——, “Directed diffusion for wireless sensor networking,” IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 2–16, Feb 2002.

[61] L. Ji and M. S. Corson, “Differential destination multicast - a manet mul-
ticast routing protocol for small groups,” in Proceedings of the IEEE Com-
puter and Communications Societies (INFOCOM’01), Lusheng Ji, M. Scott
Corson, Apr 2001, pp. 1192–1201.

[62] D. Koutsonikolas, S. Das, Y. C. Hu, and I. Stojmenovic, “Hierarchical ge-
ographic multicast routing for wireless sensor networks,” in Proceedings
of the International Conference on Sensor Technologies and Applications
(SENSORCOMM’07), Valencia, Spain, Oct 2007, pp. 347–354.

[63] T. Kunz and E. Cheng, “Multicasting in ad-hoc networks: Comparing
maodv and odmrp,” in Proceedings of the Workshop on Ad hoc Commu-
nications (WADHC’01), Bonn, Germany, Sep 2001.

[64] J. Lee, E. Lee, S. Park, S. Oh, and S.-H. Kim, “Consecutive geographic mul-
ticasting protocol in large-scale wireless sensor networks,” in Proceedings
of the IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’10), Istanbul, Turkey, Sep 2010, pp. 2192–2197.

[65] B. N. Levine and J. Garcia-Luna-Aceves, “A comparison of reliable multi-
cast protocols,” Multimedia Syst., vol. 6, no. 5, pp. 334–348, Sept. 1998.

[66] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “TinyOS: An Operating System for
Sensor Networks.” Ambient Intelligence Part II, Springer Verlag, USA,
2004, pp. 115–148.

164

BIBLIOGRAPHY

[67] P. Levis and D. Culler, “Mate: A tiny virtual machine for sensor networks,”
in Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), San Jose,
CA, USA, Oct 2002, pp. 85–95.

[68] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and scalable
simulation of entire tinyos applications,” in Proceedings of the ACM Con-
ference on Embedded Networked Sensor Systems (SenSys’03), Los Angeles,
CA, USA, Nov 2003, pp. 126 –137.

[69] P. Levis, N. Patel, S. Shenker, and D. Culler, “Trickle: A self-regulating al-
gorithm for code propagation and maintenance in wireless sensor networks,”
in Proceedings of the Conference on Symposium on Networked Systems De-
sign and Implementation (NSDI’04), San Francisco, CA, USA, Mar 2004,
pp. 15–28.

[70] T. Liu and M. Martonosi, “Impala: A middleware system for managing auto-
nomic, parallel sensor systems,” in Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’03),
San Diego, CA, USA, Jun 2003, pp. 107–118.

[71] S. Makharia, D. Raychaudhuri, M. Wu, H. Liu, and D. Li, “Experimental
study on wireless multicast scalability using merged hybrid arq with stag-
gered adaptive fec,” in Proceedings of the IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’08),
Newport Beach, CA, USA, Jun 2008.

[72] M. Marin-Perianu and P. Havinga, “Rmd: Reliable multicast data dissemi-
nation within groups of collaborating objects,” in Proceedings of the IEEE
International Conference on Local Computer Networks (LCN’06), Tampa,
FL, USA, Nov 2006, pp. 656–663.

[73] P. J. Marron, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, and
K. Rothermel, “Tinycubus: A flexible and adaptive framework for sensor
networks,” in Proceedings of the European Conference on Wireless Sensor
Networks (EWSN’05), Istanbul, Turkey, Jan 2005, pp. 278–289.

[74] P. J. Marron, D. Minder, A. Lachenmann, and K. Rothermel, “Tinycubus:
An adaptive cross-layer framework for sensor networks,” it - Information
Technology, vol. 47, no. 2, pp. 87–97, Feb 2005.

[75] M. Mauve, H. Füssler, J. Widmer, and T. Lang, “Position-based multicast
routing for mobile ad-hoc networks,” Department of Computer Science,
University of Mannheim, Mannheim, Germany, Technical Report TR-03-
004, Mar 2003.

165

BIBLIOGRAPHY

[76] Micron: Serial Flash Memory M25P80: 8 Mbit, low voltage,
serial Flash memory with 75 MHz SPI bus interface. [Online].
Available: http://www.micron.com/∼/media/Documents/Products/Data%
20Sheet/NOR%20Flash/Serial%20NOR/M25P/M25P80.pdf

[77] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “RFC
4944 Transmission of IPv6 packets over IEEE 802.15.4 networks,”
Internet Engineering Task Force, September 2007. [Online]. Available:
http://tools.ietf.org/html/rfc4944

[78] “The Network Simulator NS-2.” [Online]. Available: http://www.isi.edu/
nsnam/ns/

[79] A. Okura, T. Ihara, and A. Miura, “Bam: Branch aggregation multicast for
wireless sensor networks,” in Proceeding of the IEEE International Confer-
ence on Mobile Adhoc and Sensor Systems Conference (MASS’05), Wash-
ington, DC, USA, Nov 2005, p. 10.

[80] M. Pandey and D. Zappala, “Hop-by-hop multicast transport for mobile ad
hoc wireless networks,” in Proceedings of the IEEE International Confer-
ence on Mobile Ad-hoc and Sensor Systems (MASS’08), Atlanta, GA, USA,
Sep/Oct 2008, pp. 450–455.

[81] PC Engines GmbH: ALIX system boards. [Online]. Available: http:
//www.pcengines.ch/alix3d2.htm

[82] C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561 Ad hoc On-Demand
Distance Vector (AODV) Routing,” Internet Engineering Task Force, July
2003. [Online]. Available: http://tools.ietf.org/html/rfc3561

[83] H. N. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real de-
ployments in wsn and back,” in World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007. IEEE International Symposium on a, june
2007, pp. 1 –6.

[84] PHP: Hypertext Preprocessor. [Online]. Available: http://www.php.net/

[85] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware,” RFC 826 (Standard), Internet Engineering Task
Force, Nov. 1982. [Online]. Available: http://www.ietf.org/rfc/rfc826.txt

[86] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for
Wireless Sensor Networks.” ACM Conference on Embedded Networked
Sensor Systems (SenSys), Baltimore, USA, November 2004, pp. 95–107.

[87] J. Postel, “User Datagram Protocol,” RFC 768 (Standard), Internet
Engineering Task Force, August 1980. [Online]. Available: http:
//www.ietf.org/rfc/rfc768.txt

166

http://www.micron.com/~/media/Documents/Products/Data%20Sheet/NOR%20Flash/Serial%20NOR/M25P/M25P80.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/NOR%20Flash/Serial%20NOR/M25P/M25P80.pdf
http://tools.ietf.org/html/rfc4944
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.pcengines.ch/alix3d2.htm
http://www.pcengines.ch/alix3d2.htm
http://tools.ietf.org/html/rfc3561
http://www.php.net/
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt

BIBLIOGRAPHY

[88] ——, “Internet Control Message Protocol,” RFC 792 (Standard), Internet
Engineering Task Force, Sept. 1981, updated by RFCs 950, 4884. [Online].
Available: http://www.ietf.org/rfc/rfc792.txt

[89] ——, “RFC 791 Internet Protocol - DARPA Inernet Programm, Protocol
Specification,” Internet Engineering Task Force, September 1981.

[90] A. Quayyum, L. Viennot, and A.Laouiti, “Multipoint relaying: An Efficient
Technique for Flooding in Mobile Wireless Networks,” INRIA, Sophia An-
tipolis, France, Tech. Rep., 2000.

[91] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, “Overview of the ORBIT Radio Grid
Testbed for Evaluation of Next-Generation Wireless Network Protocols.”
Proceedings of the IEEE Wireless Communications and Networking Con-
ference (WCNC’05), New Orleans, USA, March 2005.

[92] O. Rensfelt, F. Hermans, L. Larzon, and P. Gunningberg, “Sensei-UU: a
relocatable Sensor Network Testbed.” ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation and Characterization
(WiNTECH), Chicago, USA, September 2010, pp. 63–70.

[93] L. Rizzo and L. Vicisano, “Rmdp: an fec-based reliable multicast proto-
col for wireless environments,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 2, no. 2, pp. 23–31, Apr 1998.

[94] J. Romkey, “Nonstandard for transmission of IP datagrams over serial lines:
SLIP,” RFC 1055 (Standard), Internet Engineering Task Force, June 1988.
[Online]. Available: http://www.ietf.org/rfc/rfc1055.txt

[95] B. rong Chen, K.-K. Muniswamy-Reddy, and M. Welsh, “Ad-hoc multicast
routing on resource-limited sensor nodes,” in Proceedings of the Interna-
tional Workshop on Multi-hop Ad-Hoc Networks (REALMAN’06), Florence,
Italy, May 2006, pp. 87–94.

[96] E. M. Royer and C. E. Perkins, “Multicast operation of the ad-hoc on-
demand distance vector routing protocol,” in Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking,
ser. MobiCom ’99. New York, NY, USA: ACM, 1999, pp. 207–218.

[97] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “Manna: A management
architecture for wireless sensor networks,” IEEE Communications Maga-
zine, vol. 41, no. 2, pp. 116–125, Feb 2003.

[98] A. Ruzzelli, M. O’Grady, G. O’Hare, and R. Tynan, “Merlin: A synergetic
integration of mac and routing protocol for distributed sensor networks,”

167

http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc1055.txt

BIBLIOGRAPHY

in Proceedings of the IEEE Communications Society Conference on Sen-
sor and Ad Hoc Communications and Networks (SECON’06), Reston, VA,
USA, Sep 2006, pp. 266–275.

[99] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic, “Gmr: Geographic multicast
routing for wireless sensor networks,” in Proceedings of the IEEE Commu-
nications Society Conference on Sensor and Ad Hoc Communications and
Networks (SECON’06), Reston, VA, USA, Sep 2006, pp. 20–29.

[100] ——, “Energy efficient geographic multicast routing for sensor and actuator
networks,” Computer Communications, vol. 30, no. 13, pp. 2519–2531, Sep
2007.

[101] ScatterWeb: Modular Sensor Board 430. [Online]. Avail-
able: http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z Finished
Projects/ScatterWeb/modules/mod MSB-430.html

[102] ScatterWeb2 Operating System - Freie Universität Berlin & ScatterWeb
GmbH. [Online]. Available: http://www.mi.fu-berlin.de/inf/groups/ag-tech/
projects/Z Finished Projects/ScatterWeb/index.html

[103] C. Schluep, “Porting contiki to the btnode sensor node platform,” Bachelor’s
Thesis, University of Magdeburg, 2009.

[104] Sensirion Sensor Company: SHT11 Digital Humidity and Tempera-
ture Sensor. [Online]. Available: http://www.sensirion.com/en/products/
humidity-temperature/humidity-sensor-sht11/

[105] Seventh Framework Programme FP7 - Information and Communication
Technologies, “Wireless Sensor Networks Testbed Project (WISEBED),”
FP7 Project 2008-2011. [Online]. Available: http://www.wisebed.eu

[106] A. Sheth, B. Shucker, and R. Han, “Vlm2: A very lightweight mobile multi-
cast system for wireless sensor networks,” in Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC’03), New Orleans,
LA, USA, Mar 2003, pp. 1936–1941.

[107] W. Si and C. Li, “Rmac: A reliable multicast mac protocol for wireless ad
hoc networks,” in Proceedings of th International Conference on Parallel
Processing (ICPP’04), Montreal, Canada, Aug 2004, pp. 494–501.

[108] J. S. Silva, T. Camilo, P. Pinto, R. Ruivo, A. Rodrigues, F. Gaudêncio, and
F. Boavida, “Multicast and ip multicast support in wireless sensor networks,”
Journal of Networks, vol. 2, no. 3, pp. 19–26, Mar 2008.

[109] J. S. Silva, T. Camilo, A. Rodrigues, M. Silva, F. Gaudencio, and F. Boavida,
“Multicast in wireless sensor networks - the next step,” in Proceedings of the
International Symposium on Wireless Pervasive Computing (ISWPC’07),
San Juan, Puerto Rico, Feb 2007, pp. 185–190.

168

http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/modules/mod_MSB-430.html
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/modules/mod_MSB-430.html
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/index.html
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/Z_Finished_Projects/ScatterWeb/index.html
http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht11/
http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht11/
http://www.wisebed.eu

BIBLIOGRAPHY

[110] SQLite: A Lightweight File-Based Database. [Online]. Available:
http://www.sqlite.org

[111] V. Srinivas and L. Ruan, “An efficient reliable multicast protocol for 802.11-
based wireless lans,” in Proceedings of the IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’09),
Kos, Greece, Jun 2009.

[112] T. Staub, “Development, testing, deployment and operation of wireless mesh
networks,” dissertation, Universität Bern, 2011.

[113] T. Staub, S. Morgenthaler, D. Balsiger, P. K. Goode, and T. Braun, “ADAM:
Administration and Deployment of Adhoc Mesh Networks,” in Proceedings
of the IEEE Workshop on Hot Topics in Mesh Networking (HotMESH’11),
Lucca, Italy, June 2011, pp. 1–6.

[114] P. Suarez, C. Renmarker, T. Voigt, and A. Dunkels, “Increasing ZigBee net-
work lifetime with X-MAC.” ACM Workshop on Real-World Wireless
Sensor Network (REALWSN), Glasgow, Scotland, November 2008, pp. 13–
18.

[115] M.-T. Sun, L. Huang, A. Arora, and T.-H. Lai, “Reliable mac layer multi-
cast in ieee 802.11 wireless networks,” in Proceedings of the International
Conference on Parallel Processing, aug. 2002, pp. 527–536.

[116] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and A. Sivakumar, “Atp:
a reliable transport protocol for ad hoc networks,” IEEE Transactions on
Mobile Computing, vol. 4, no. 6, pp. 588–603, nov.-dec. 2005.

[117] Texas Instruments: 16-Bit Ultra-Low Power MSP430 Microcon-
trollers. [Online]. Available: http://www.ti.com/lsds/ti/microcontroller/
16-bit msp430/overview.page

[118] Texas Instruments CC1020: Single-Chip FSK/OOK CMOS RF Transceiver.
[Online]. Available: http://www.ti.com/product/cc1020

[119] Texas Instruments CC1020: Single Chip Ultra Low Power RF
Transceiver for 315/433/868/915 MHz SRD Band . [Online]. Available:
http://www.ti.com/product/cc1000

[120] Texas Instruments CC2420: Single-Chip 2.4 GHz IEEE 802.15.4
/ ZigBee-ready Radio RF Transceiver. [Online]. Available: http:
//www.ti.com/product/cc2420

[121] Tutornet University of Southern California, “A Tiered Wireless Sensor
Network Testbed.” [Online]. Available: http://enl.usc.edu/projects/tutornet

169

http://www.sqlite.org
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page
http://www.ti.com/product/cc1020
http://www.ti.com/product/cc1000
http://www.ti.com/product/cc2420
http://www.ti.com/product/cc2420
http://enl.usc.edu/projects/tutornet

BIBLIOGRAPHY

[122] G. Wagenknecht, M. Anwander, and T. Braun, “Hop-to-Hop Reliability in
IP-based Wireless Sensor Networks - a Cross-Layer Approach,” in Proceed-
ings of the International Conference on Wired/Wireless Internet Communi-
cations (WWIC’09), Enschede, The Netherlands, May 2009.

[123] ——, “Marwis: A management platform for heterogeneous wireless sensor
networks,” Ercim News, vol. 5031/2008, no. 6, January 2009.

[124] ——, “Demo: MARWIS - a Management Architecture for Heterogeneous
Wireless Sensor Networks,” in Proceedings of the IEEE 36th Conference
on Local Computer Networks (LCN’11), Demo Session, Bonn, Germany,
October 2011. [Online]. Available: http://www.ieeelcn.org/prior/LCN36/
lcn36demos.html

[125] ——, “Performance Evaluation of Reliable Overlay Multicast in Wire-
less Sensor Networks,” in Proceedings of the International Conference on
Wired/Wireless Internet Communications (WWIC’12), Santorini, Greece,
June 2012, pp. 75–78.

[126] ——, “SNOMC: An Overlay Multicast Protocol for Wireless Sensor Net-
works,” in Proceedings of the Annual Conference on Wireless On-demand
Network Systems and Services (WONS’12), Courmayeur, Italy, January
2012, pp. 75–78.

[127] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and
S. Morgenthaler, “MARWIS: A Management Architecture for Heteroge-
neous Wireless Sensor Networks,” in Proceedings of the International Con-
ference on Wired/Wireless Internet Communications (WWIC’08), Tampere,
Finland, May 2008, pp. 177–188.

[128] G. Wagenknecht, M. Anwander, M. Brogle, and T. Braun, “Reliable Mul-
ticast in Wireless Sensor Networks,” in Proceedings of the 7. GI/ITG
KuVS Fachgespraech Drahtlose Sensornetze (FGSN’08), Berlin, Germany,
September 2008.

[129] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, “Psfq: A reliable
transport protocol for wireless sensor networks,” in Proceedings of the
ACM international Workshop on Wireless Sensor Networks and Applica-
tions (WSNA’02), Atlanta, GA, USA, Sep 2002, pp. 1–11.

[130] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a Wireless
Sensor Network Testbed.” ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks (IPSN), Los Angeles, USA, April
2005, pp. 483–488.

[131] J. Wu, P. Havinga, S. Dulman, and T. Nieberg, “Eyes Source Routing Pro-
tocol for Wireless Sensor Networks.” European Conference on Wireless
Sensor Networks (EWSN’04), Berlin, Germany, January 2004.

170

http://www.ieeelcn.org/prior/LCN36/lcn36demos.html
http://www.ieeelcn.org/prior/LCN36/lcn36demos.html

BIBLIOGRAPHY

[132] W. Xiangli, L. Layuan, and W. Wenbo, “An energy-efficiency multicast rout-
ing algorithm in wireless sensor networks,” in Proceeding of the ISECS In-
ternational Colloquium on Computing, Communication, Control, and Man-
agement (CCCM’08), Guangzhou City, China, Aug 2008, pp. 572–576.

[133] W. Ye, J. Heidemann, and D. Estrin, “An Energy Efficient MAC Proto-
col for Wireless Sensor Networks.” IEEE International Conference on
Computer Communications (INFOCOM), New York, USA, June 2002, pp.
1567–1576.

[134] W. Zhang, X. Jia, C. Huang, and Y. Yang, “Energy-aware location-aided
multicast routing in sensor networks,” in Proceedings of International Con-
ference on Wireless Communications, Networking and Mobile Computing,
vol. 2, Sep 2005, pp. 901–904.

171

List of Publications

Refereed Papers (Journals, Conferences, Workshops)

• Gerald Wagenknecht, Markus Anwander, Torsten Braun: Performance Eval-
uation of Reliable Overlay Multicast in Wireless Sensor Networks, 10th In-
ternational Conference on Wired/Wireless Internet Communications (WWIC’12),
Santorini, Greece, June 6 - 8, 2012

• Philipp Hurni, Markus Anwander, Gerald Wagenknecht, Thomas Staub, Torsten
Braun: TARWIS - A testbed management architecture for wireless sensor
network testbeds, IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS’12), Maui, Hawaii, USA, April 2012

• Gerald Wagenknecht, Markus Anwander, Torsten Braun: SNOMC: An Over-
lay Multicast Protocol for Wireless Sensor Networks, 9th Annual Conference
on Wireless On-demand Network Systems and Services (WONS’12), Cour-
mayeur, Italy, January 2012

• Geoff Coulson, Barry Porter, Ioannis Chatzigiannakis, Christos Koninis,
Stefan Fischer, Dennis Pfisterer, Daniel Bimschas, Torsten Braun, Philipp
Hurni, Markus Anwander, Gerald Wagenknecht, Sandor Fekete, Alexander
Kröller, Tobias Baumgartner: Flexible Experimentation in Wireless Sensor
Networks, Communications of the ACM, Vol. 55, Nr. 1, January 2012

• Gerald Wagenknecht and Markus Anwander and Torsten Braun: Demo:
MARWIS - a Management Architecture for Heterogeneous Wireless Sensor
Networks, IEEE Conference on Local Computer Networks (LCN’11), Demo
Session, Bonn, Germany, October 2011

• P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, T. Braun: TARWIS -
A Testbed Management Architecture for Wireless Sensor Network Testbeds,
International Conference on Network and Service Management (CNSM’11),
Paris, France, October 2011

• Markus Anwander, Gerald Wagenknecht, Torsten Braun, Kirsten Dolfus:
BEAM: A Burst-Aware Energy-Efficient Adaptive MAC Protocol for Wire-
less Sensor Networks, Seventh International Conference on Networked Sens-
ing Systems, Kassel (INSS’10), Germany, June 2010,

• Philipp Hurni, Gerald Wagenknecht, Markus Anwander, Torsten Braun: A
Testbed Management Architecture for Wireless Sensor Network Testbeds

173

BIBLIOGRAPHY

(TARWIS), 7th European Conference on Wireless Sensor Networks (EWSN’10),
Coimbra, Portugal, February 2010

• Gerald Wagenknecht, Markus Anwander, Torsten Braun: Hop-to-Hop Re-
liability in IP-based Wireless Sensor Networks - a Cross-Layer Approach,
International Conference on Wired/Wireless Internet Communications 2009
(WWIC’09), Enschede, The Netherlands, May 2009

• P. Hurni, T. Staub, G. Wagenknecht, M. Anwander, T. Braun: A Secure
Remote Authentication, Operation and Management Infrastructure for Dis-
tributed Wireless Sensor Network Testbeds, First Workshop on Global Sen-
sor Networks (GSN’09), co-located with KiVS, Kassel, Germany, March
2009

• Gerald Wagenknecht, Markus Anwander, Torsten Braun: MARWIS: A Man-
agement Platform for Heterogeneous Wireless Sensor Networks, Ercim News,
Vol. 5031/2008, Nr. 76, January 2009,

• Gerald Wagenknecht, Markus Anwander, Marc Brogle, Torsten Braun: Reli-
able Multicast in Wireless Sensor Networks, 7. GI/ITG KuVS Fachgespräch
Drahtlose Sensornetze (FGSN’08), Berlin, Germany, September 2008

• Markus Anwander, Gerald Wagenknecht, Torsten Braun: Management of
Wireless Sensor Networks using TCP/IP, International Workshop on Sen-
sor Network Engineering (IWSNE’08) at the 4th IEEE/ACM International
Conference on Distributed Computing in Sensor Systems, Santorini Island,
Greece, June 2008

• Gerald Wagenknecht, Markus Anwander, Torsten Braun, Thomas Staub,
James Matheka, Simon Morgenthaler: MARWIS: A Management Architec-
ture for Heterogeneous Wireless Sensor Networks, 6th International Con-
ference on Wired/Wireless Internet Communications (WWIC’08), Tampere,
Finland, May 2008,

• Markus Anwander, Gerald Wagenknecht, Thomas Staub, Torsten Braun:
Management of Heterogenous Wireless Sensor Networks, 6. GI/ITG KuVS
Fachgespräch Drahtlose Sensornetze (FGSN’07), Aachen, Germany, July
2007

Unrefereed Papers (Technical Reports, Project Deliverables)

• Geoff Coulson, Gerald Wagenknecht, Markus Anwander, et al.: Report on
the Integration of the Software Infrastructure, WISEBED Deliverable D2.3,
June 2010

• M. Brogle, S. Serbu, D. Milic, M. Anwander, P. Hurni, C. Spielvogel, C.
Fautsch, D. Harmanci, L. Charles, H. Sturzrehm, G.Wagenknecht, T. Braun,
T. Staub, C. Latze, R. Standtke: BeNeFri Universities Summer School on
Dependable Systems, Schloss Münchenwiler, Switzerland, September 2009,
IAM-09-006

174

BIBLIOGRAPHY

• M. Brogle, D. Milic, M. Anwander, G. Wagenknecht, M. Waelchli, T. Braun,
R. Kummer, M. Wulff, R. Standtke, H. Sturzrehm, E. Riviere, P. Felber, S.
Krenn, C. Ehret, C. Latze, P. Hurni, and T. Staub: BeNeFri Universities
Summer School on Dependable Systems, Quarten, Switzerland, November
2008, IAM-08-003

• Torsten Braun, Ulrich Ultes-Nitsche, Marc Brogle, Dragan Milic, Patrick
Lauer, Thomas Staub, Gerald Wagenknecht, Markus Anwander, Markus
Waelchli, Markus Wulff, Carolin Latze, Michael Hayoz, Christoph Ehret,
Thierry Nicola: RVS Retreat 2007 at Quarten, December 2007, IAM-07-004

• Markus Anwander, Gerald Wagenknecht, Torsten Braun: Sensor Node Plat-
form and Middleware for Management of Wireless Sensor Networks, June
2007, IAM-07-003

• Markus Anwander, Gerald Wagenknecht, Torsten Braun: Energy-efficient
Management of Heterogeneous Wireless Sensor Networks, April 2007, IAM-
07-002

175

Curriculum Vitae

Personal Details

Name Gerald Wagenknecht

Date of Birth January 2, 1978

Address Waldstätterstrasse 12

CH-3014 Bern, Switzerland

Hometown Görlitz, Germany

Nationality German

Education

2007-2013 PhD Student & Researcher in Computer Science, Com-
puter Networks and Distributed Systems Group, University
of Bern, Switzerland

2005 Master of Science in Computer Science (Diplom-
Informatiker), Technical University of Cottbus, Germany

1997-2005 Study of Computer Science at the Technical University of
Cottbus, minor fields in Economics and Quality Management

1992-1997 Mathematisch-Naturwissenschaftliches Gymnasium Görlitz,
Germany, Emphasis on Physics and History

176

� � � � � � � ���	

���������	
������
���������

�������������

��	������������

�	����������

!�"#��������� ���	������� �����������$�����	�	��������

%�	�����������	�

���	��&����������	�

&"#���������#�����	' ������ �"#�����������	 �����	������(��)���	���������������������������

�����������*����������	+	�#��
�������	�����'�����,-�	��"#���������������������*�������

��	�������,�����'�#����"#��������"#��������+��"#��	
�������	������	'������������)�����

��������	����������	�����./����	+�0�!�"#�	���������1���	+	���(����
���2	�����033/�

4�������5��(����	�	�+���6�	+���������)�1����������������	�(�����#�����%�	�������"#	��	���	

7�	�$�	��

5�	���"#��)	

Wagenknecht, Gerald

07-119-969

Informatik

Energy-efficient Management of Heterogeneous

Wireless Sensor Networks

Prof. Dr. Torsten Braun

Bern, 26.03.2013

X

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Problem Statement
	Contributions
	Thesis Outline

	Related Work
	Hardware Platforms
	PC Engines ALIX
	Crossbow Tmote Sky / TelosB
	Scatterweb Modular Sensor Board
	Crossbow MICAz
	BTnode

	Operating Systems
	ADAM
	Contiki Operating System

	Evaluation Platforms
	OMNeT++ Network Simulation Framework
	Wisebed WSN Testbed Controlled by TARWIS
	Energy Measurement

	Multicast in Wireless Sensor Networks
	Multicast Routing
	Multicast Transport

	Data Dissemination Protocols
	Directed Diffusion
	Pump Slowly, Fetch Quickly (PSFQ)
	Flooding
	MPR

	Contiki Protocol Stack
	Link Layer Protocols
	Network Layer Protocols

	Management of Wireless Sensor Networks
	Management Frameworks
	Code Dissemination Protocols

	Conclusions

	I SNOMC: A Overlay Multicast Transport Protocol for Wireless Sensor Networks
	Protocol Design and Architecture
	Introduction
	Protocol Design on Application Layer
	Protocol Description
	Joining Phase
	Data Transmission Phase and Caching
	End-to-End Reliability

	Conclusions

	SNOMC Implementation
	Introduction
	SNOMC Implementation in OMNeT++
	Protocol Stack
	Protocol Operation
	CC2420 Radio
	Data Structures and Messages

	SNOMC Implementation in Contiki OS
	Joining Procedure
	Data Transmission Procedure
	Fragmentation, Caching, and Buffer
	SNOMC Control/Sender Process and Packet Queues

	Conclusions

	SNOMC Evaluation
	Introduction
	SNOMC Evaluation of Simulation Results
	Protocol Stack
	Simulation Scenarios
	Transmission Times
	Number of Transmissions
	Energy Consumption

	SNOMC Evaluation in Real-World Testbed
	Protocol Stack
	Experimentation Scenarios
	Transmission Times
	Number of Transmissions
	Energy Consumption

	Comparison of Simulated and Real-World Results
	Conclusions

	II MARWIS: A Management Architecture for Wireless Sensor Networks
	Management Architecture and Protocol Design
	Introduction
	Management Scenario and Tasks
	Management Architecture
	Management Station with Management System for Wireless Mesh Networks
	Mesh Node with MARWIS Server
	Sensor Node with SN Agent

	WSN Management Protocols
	WSN Monitoring Protocol
	WSN Configuration Protocol
	WSN Code Update Protocol

	Conclusions

	Implementation of MARWIS and Demonstrator
	Introduction
	MARWIS Server Implementation
	Management Modules
	Database Implementation

	Management Station with Graphical User Interface
	Sensor Node Agent Implementation
	Addressing
	Sensor Node Monitor
	Sensor Node Configurator
	Code Updater

	MARWIS Demonstrator
	Conclusions

	SNOMC Integration into MARWIS
	Introduction
	Architecture
	Implementation
	Implementation of SNOMC on Wireless Mesh Nodes
	Adaptation of the MARWIS Graphical User Interface

	Evaluation
	Evaluation Scenario
	Time-Efficient Communication
	Energy-Efficient Operation

	Conclusions

	Conclusions and Outlook
	Addressed Challenges
	Main Contributions and Summary
	Outlook

	Bibliography
	List of Publications
	Curriculum Vitae

