
Content management and architectural issues of a remote learning
laboratory

Markus Wulff Patrick Lauer Torsten Braun

University of Bern, IAM
Neubrückstrasse 10

3012 Bern, Switzerland
{mwulff|lauer|braun}@iam.unibe.ch

Abstract

Internet-based distance learning requires an efficient
development and management of learning material. It
should be re-usable and it is necessary to keep the con-
tent in an open and portable format.
The infrastructure is expected to be available day and
night. Users may access the experimentation setup
from every Internet-connected work place at any time.
Therefore, reliable hard- and software configurations
must be used, which demand a low management over-
head at the same time.
This article presents concepts and implementation that
solve these issues for a remote hands-on networking
laboratory. Concepts for reducing the management
overhead, and increasing the availability of a remote
laboratory through virtualisation are presented. Fur-
thermore, a content formatting tool to support sustain-
ability of the course material is introduced.

1. Introduction

Remote teaching and distance learning are of increas-
ing importance for the education not only at univer-
sities. Online learning modules are an integral part
of many courses and complement the traditional lec-
tures. Such learning modules contain text, graphics,
animations, and hands-on exercises via remote labora-
tory access.
The advantages of this blended learning approach are
manifold. The students can access the online mate-
rial from every place where they have an Internet con-
nection and are not limited to fixed laboratory sched-
ules. Furthermore, full online courses can be provided
for students of remote learning universities or similar
institutions. The students can read the relevant texts
and do the laboratory exercises on-line, which pro-
vides a much higher flexibility. Even sharing courses
with other institutions or providing access to other user

communities is possible with an appropriate infras-
tructure.
In recent years, remote learning modules have been
used to complement the lectures for the Bachelor and
Master program at our institution. Most learning mod-
ules and infrastructure components have been devel-
oped during several e-learning projects [4, 17]. Due to
a modular course architecture, adding new modules to
the courses is fairly easy. The module repository can
be completed step-by-step, and up-to-date research re-
sults can be incorporated.
In order to ensure sustainability of the course material,
it must be updated from time to time and stored in an
appropriate repository. Updates should be done only in
this repository to prevent inconsistencies between the
stored content and the content published in a Learn-
ing Management System (LMS). Furthermore, the text
sources must be kept in a generic format, which is in-
dependent from the LMS used.
We do not host a LMS at our institute to keep the
course content for the theory part—it has been out-
sourced. However, the laboratory infrastructure is in-
stalled and maintained in-house. The general course
architecture is shown in Fig. 1. It has slightly changed
during the years. The local access control system,
which was used in earlier days, has been replaced by a
Swiss-wide Authentication and Authorisation Infras-
tructure (AAI) [1, 13]. AAI is an attribute-based ac-
cess control which enables a single sign-on system
where the user is authenticated once at his or her
home organisation. Then, checking authorisation of
requested resource accesses is based on the user at-
tributes the users home organisation provides. Thus,
all users from any AAI enabled institution can register
for an AAI enabled course by using their home organ-
isation’s account instead of getting a new user account
locally.
With the reservation system, students can book time
slots for each of the laboratory modules. If they want
to access a module with a limited number of hardware
devices, they get authorised by the reservation sys-

Figure 1. Current architecture of the e-learning laboratory infrastructure.

tem if the module was booked before by the respective
user. The reservation for a certain module can be done
over a Web based interface.
In the laboratory architecture, hands-on session mod-
ules are connected by a gateway that is called por-
tal server. Portal servers connect the module specific
hardware on one side and the user’s computer on the
other side. When the user wants to access the labora-
tory exercise, he has to authenticate himself at his AAI
home organisation, which then sends attributes of the
user to the portal of the respective resource. Based on
this information the portal decides whether or not to
grant access to the laboratory. Usually, there is one
portal server per module but it is also possible to con-
nect more than one module to a portal server. Any de-
vice that has an interface to a computer (for example a
serial interface) can be connected to a portal server.
The hands-on experiments in our laboratory are not
only used by local students. Other universities use
the infrastructure as well for their education. This re-
quires a high availability of the laboratory equipment.
Not only the experimentation devices but also the por-
tal servers and the reservation system must be up and
running at any time. In contrast to these requirements,
the administrative overhead running the exercise labo-
ratory must be kept as low as possible.
In this paper, solutions for the issues of content man-
agement and laboratory architecture are discussed. In
Section 2 a short overview about course content man-
agement is given. Furthermore, a tool for content
formatting is introduced, which can convert learning
module content into a specific format required by the
LMS used. Section 3 then discusses architectural im-

provements of the laboratory infrastructure to solve the
availability and management issues mentioned above.
Finally, a short summary concludes the paper.

2. Online course content management

2.1. Overview and related activities

Several learning modules have been developed for our
e-learning projects. One of the most important design
goals of these modules is sustainability. In many cases
the modules explain fundamentals of computer net-
works, operating systems or other computer science
basics. Therefore, they are not subject to frequent up-
dates and the content can be used for lectures over
many years. Only smaller updates and corrections are
performed if necessary.
The creation of such a learning module usually takes
several weeks. Text must be written, graphics and ani-
mations must be created. It is obvious that this content
should be stored in a Learning Management System
(LMS) independent way to ensure that it can be used
with any LMS. This especially applies if the LMS is
hosted by a third party as it is not guaranteed that the
current product is supported over the next years. In
the case that a course must be migrated from one LMS
version to another or, worse, to another product this
will cause a lot of time consuming manual work.
The problem of storing e-learning in a reusable way
has been already discovered several years ago. Differ-
ent solutions have been proposed. The Sharable Con-
tent Object Reference Model (SCORM) [12] defines

a specific way of constructing Learning Management
Systems and training content so that they work well
with other SCORM conform systems. The common
goals of different versions of SCORM are as follows:
1) packaging content and 2) exchanging data at run-
time. The drawback of SCORM is that it is not sup-
ported by every LSM or the older versions of this stan-
dard only.
Many academic and other institutions are trying to
make better use of networks and databases to effi-
ciently and effectively achieve learning goals. One
of the possible ways to go is to make learning re-
sources accessible to educators and learners through
learning object repositories (LOR). LORs are repos-
itories, which organise reusable learning objects like
courses, modules, but also images, videos and text
documents in a clearly arranged way. To enable search
engines to efficiently identify learning objects, a de-
scriptive set of metadata is assigned to every object in
the LOR. The goals here are re-usability of e-learning
content, long-term archiving as well as to share teach-
ing activities and make them visible to peers and to the
public. Examples for LORs initiatives are the Switch
LOR [9] in Switzerland or the eduSource project [8]
in Canada.
If an appropriate LOR is provided in Switzerland we
will consider using it. Not only on Swiss level such
initiatives are on their way. A local LOR is also be-
ing developed at the University of Bern but this will
depend on a specific LMS that we are not using to-
day. This again shows the necessity of maintaining
learning content in a platform independent way to be
prepared for the frequent changes in today’s e-learning
landscape.

2.2. Content management

A satisfying solution for the exchange problem of
learning objects between different content manage-
ment platforms is not available until now. As stated
in the Edutech LOR feasibility study [9], the interop-
erability is not guaranteed even if standards compliant
content packages in SCORM format are exchanged.
The integration of WebCT Vista LMS [3]—which is
currently used for our courses—with any LOR causes
problems because the API only allows to export bare
content files without any course structure or other im-
portant metadata.
From today’s perspective it is advisable to store our
learning modules in a generic format and to set up a
simple but efficient content management. The solu-
tions to this content management issue should meet the
following general conditions:

• The existing text sources can be integrated with-
out significant modifications.

• New content can be created with tools that are
available in our institute and people are familiar

with (WYSIWYG HTML editors, word proces-
sors with HTML export capabilities etc.).

• It must be possible to create the content format
required by a specific LMS on demand.

• The format of the learning content allows a later
adaption to e-learning standards if required.

In order to be able to synchronise the access to the
repository and to track modifications, the use of a ver-
sion control system is advisable. Several solutions ex-
ist for this purpose. Subversion (SVN) [7] is one pos-
sibility here. It manages files and directories, and the
changes made to them, over time. This allows to re-
cover older versions of the repository data, or examine
the history of how the data changed.

2.3. Content formatting

At an early stage of our learning content development
it became clear that a tool for automatic content for-
matting is necessary. The goal was to reduce the effort
needed to develop the learning content and to automat-
ically create the pages for the LMS in an appropriate
format. As a result the FFGF (file framework genera-
tor and formatter) [16] has been developed.
The FFGF tool is able to create the required document
structure for a learning module including the header
and footer for the pages. Furthermore, predefined tem-
plates can be provided for sections with general infor-
mation, which are automatically included in the docu-
ment. In a first step, the author has to create the table
of contents for the module. This includes the defini-
tion of the time a learner should approximately spend
for the sections. The time information is used to gen-
erate the module schedule to give the learner a clear
overview over the time limits intended by the author.
Figure 2 shows a sample schedule. In a second step,
the FFGF tool creates the document structure by gen-
erating a separate file for each section and inserting the
text from the templates provided. Now, the module au-
thor has to fill in the content into the section files (text,
pictures, animations). This is done by using HTML as
markup language. In the last step FFGF is run again
and generates now the output, which can directly be
uploaded to the LMS. The tool currently supports the
format for WebCT CE and WebCT Vista.

Figure 2. Course schedule example.

After several years of using FFGF we found some
weak points in its architecture. The main problem
is the fixed output format. It would require major
changes in the program to adapt its output generator
to another LMS document format. Another issue to be
improved is the predefined document structure. This
impedes subsequent changes to the document.
Due to the variety of mandatory changes to the current
FFGF version, a complete redesign of the tool became
necessary. The main improvements of the new pro-
gramme version must be

• Easier adaptation to different LMS platforms

• Portable solution, usable by other institutions

• Better support for document management

• Simpler document syntax for easier document
writing

Therefore, one of the main features of the new FFGF2
is its clear modular architecture. For the module au-
thor the most important feature is the automatic doc-
ument structure detection and creation of the table of
contents. It will no longer be necessary to define the
module’s table of contents in advance. The learning
module content can be written into either a single file
or split into several source files.
By keeping HTML for the markup of the text the writ-
ing of learning content can be done with a variety of
available editors. The language is well known and pro-
vides all necessary features like different font styles,
document structure and allows to include figures and
animations. It is not the goal to provide yet another
text/HTML editor nor an integrated development en-
vironment.
Figure 3 shows the architecture of FFGF2. The first
layer represents the HTML document. For some sec-
tions, like generic introductions, templates are pro-
vided. The content of these sections is the same for
every module and does not need to be rewritten every
time. The HTML processing engine analyses the doc-
ument structure and generates a XML [5] formatted
document. At this point the templates are integrated
into the document.
In the next layer the document is stored in XML for-
mat. This allows the content to be kept in a generic
manner and simplifies the conversion to other formats.
The XML format seems to be the most useful format
regarding a later adaption to e-learning standards and
the inclusion of learning object metadata.
The last component of FFGF2 is the output format-
ter. It has a generic interface combined with a plug-in
mechanism. The respective plugins to create a certain
output format can be attached here. Future changes in
the output format do no longer require changes in the
FFGF2 core. If a learning module must be formatted
for a new LMS architecture or other document formats

Figure 3. Architecture of the content for-
matting tool.

like PDF all necessary code is encapsulated in the out-
put plugin.
Once the document has been generated it is uploaded
to a LMS like WebCT. A learner who has registered
for the specific course is able to read it there, see the
included pictures, watch the animations etc. The learn-
ing module document usually contains the description
of the hands-on experiments as well. The laboratory
exercises, however, are not stored on the LMS. They
are located in our laboratory. A link in the document
leads the reader to the laboratory computer for the re-
spective experiment.

3. Laboratory infrastructure

As already described in the introduction, we currently
have one machine with a central reservation system.
Users can reserve timeslots for all instances of learn-
ing modules from this central location. Every learning
context has its own category. Multiple portals can be
part of one learning context so that multiple instances
of the same learning module can be provided in paral-
lel. Every portal is a website that offers access to the
server “behind” it, usually through Java applets. De-
pending on the learning module this can be a shell on
a machine through a SSH terminal emulator applet, a
management console on a Cisco router, an editor ap-
plet for programming exercises or any other tool that
can run in a Web browser.

3.1. Current architecture

In our laboratory setup, independent hardware for dif-
ferent learning modules is used [2, 19]. This has the
advantage that changes on one module do not affect
most of the others, but this comes at the price of ad-
ministrative overhead and underutilised hardware. We
had about 20 machines dedicated to the e-learning in-
frastructure, many of them completely idle most of the
time—most activity is concentrated on the later part of
the semester, so for about four months of a semester
the machines are not used at all. Still the machines are
powered on most of the time to provide access to all
potential users.
Recently, multiple small hardware failures occurred in
the laboratory. Because of the amount of machines the
administration requires much time. This combination
of underutilised hardware and administrative complex-
ity forced us to reassess the current laboratory setup.

3.2. New laboratory setup

As a possible solution we started evaluating virtuali-
sation methods to consolidate our hardware. This will
free hardware for parallel installations as reserves in
case of failures. Some other advantages are fast recov-
ery as a virtualised machine can be regenerated from a
backup within minutes, easy creation of new machines
and, better utilisation of hardware. Because we are
using Linux almost exclusively we had a large num-
ber of virtualisation options. Among the well-known
tools are VMWare (commercial) [15], Xen [18], Vir-
tualbox [14], Linux vserver [10], QEmu, OpenVZ and
many more. Out of this rather large number of tools we
took Xen, Virtualbox and Linux vserver into the closer
evaluation. The features these solutions offer comply
with the requirements of the targeted laboratory setup.
Virtualbox is a full machine virtualiser/emulator. It
can run arbitrary operating systems and has some in-
teresting features like a “virtual” graphics card ex-
ported over VNC to allow remote access as if it were a
local machine. The drawback is that the performance
is quite moderate and it is not as convenient to man-
age. Xen offers “paravirtualisation” where the guest
operating system gets adapted to the virtualisation en-
vironment. This limits the available operating systems
for the guest systems, but as we were already very
much focussed on Linux this was no drawback. The
advantage is a comparatively good performance, so
the amount of hardware needed should be smaller than
with other virtualisers. Linux vserver is the most lim-
ited of the three, it uses one kernel for all virtualised
instances. Within the virtual machines many functions
are disabled for security reasons (for example access to
the routing table, creation of device nodes). This limits
the use of Linux vserver, but the advantage is that all
VMs share resources like memory and the overhead is
negligible.

Due to the different requirements of the portal and ex-
perimentation computers a hybrid approach seems to
be advisable. The portal servers would be consolidated
onto one Linux vserver instance. This makes sense as
they do not use many resources. The Linux vservers
offer encapsulation so that each portal can still be man-
aged on its own. However, due to the structure of
Linux vserver it now takes only about five minutes to
create a new instance. The management is very easy
as the host offers direct file-level access to the Linux
vservers. This also allows easy backups and mainte-
nance from the host. At the same time resource usage
is low, compared to the other virtualisation systems.
Each new vserver takes about 50 MB memory when
running and idle. Consolidating all existing portals
does not cause any performance issues for the single
machine they are running on.
For the experimentation computers Linux vserver is
not an option. Access to functions like routing tables
or kernel modules is needed, so we had to find an-
other solution for those. Xen offered the best compro-
mise of flexibility and ease-of-use. We can consolidate
up to 15 virtual machines onto one server; with other
hardware we could potentially create even more virtual
machines, but there are some limits like the available
amount of main memory. If only one or two VMs are
active this may be tolerable, but in the rare case that
all virtual machines are in use they would all be very
slow. Our current server hardware is a dual-processor
machine with 2 GB RAM. It is about four times as
fast as the previous dedicated machines. Two of those
machines provide enough power to provide most of
the previous 20 dedicated machines. Installing and
managing Xen is not quite as easy as Linux vserver,
but with some site-specific documentation and support
scripts it is easy enough to work with it.
To facilitate the management we decided to add some
monitoring. Using standard SNMP we are able to
watch most relevant data points, for example proces-
sor load, memory usage, network traffic and whether a
certain service is running. For data collection and rep-
resentation we have evaluated a few monitoring appli-
cations, currently Cacti [6] is used and we are testing
Nagios [11] in parallel.
With e-mail notifications the administrators can be
warned whenever thresholds, like system load or disk
space, are exceeded. This allows preemptive inter-
vention instead of reactive administration when things
have already failed. Still most management tasks are
fully manual.
Figure 4 shows the conceptual design and separation
of the virtual machines and physical servers. On the
right side the Linux vserver host with the public por-
tals can be seen, with the cold-standby as a shadow be-
low it. On the left side the Xen hosts and their virtual
guests are shown. Both Xen and Linux vserver hosts
can be managed remotely, but only the latter needs to
be exposed to the public Internet.

Figure 4. The proposed laboratory architecture.

Some of the existing machines cannot be integrated
into the Xen virtualisation at the moment, mostly
network- and hardware-specific devices. Still we are
able to reduce the number of machines from around
20 to one portal server, two Xen machines and six non-
virtualised machines. A backup of the portal and Xen
machines is maintained on similar hardware to provide
a “manual failover” in case one should fail. In this case
the backup machine is booted and the relevant virtual
machines are started with a script. This frees a lot of
hardware for other purposes and significantly reduces
administration time.

4. Conclusions

Two issues of our current e-learning infrastructure
have been discussed. The new content formatting tool
helps to maintain the sustainability of the course mate-
rial by supporting an easier migration to new learning
management platforms. A simplified document han-
dling makes the creation of learning content more con-
venient for the learning module author and simplifies
subsequent changes to the document structure.
By storing the learning modules in the XML format
under a version control system the maintenance over-
head is decreased. All changes are now made inside
this repository and by using the formatting tool any
course module can be retrieved on demand and con-
verted into the desired format. This prevents inconsis-
tencies if the same module is used in several courses.
The migration and virtualisation of our hardware has
been a success for us. The necessary hardware has
been reduced by more than 50% and the utilisation of
hardware could be increased. At the same time we

have a much better scalability—the single portal ma-
chine still has spare capacity to set up more portals
if needed. We have not had any failures to test the
failover capability, but we expect that our reaction time
will also be much better than the “hours to days” reac-
tion time of the old infrastructure.
The mix of virtualisation methods may be unusual, but
it offers us optimal flexibility with only a small docu-
mentation overhead. With the help of documentation
and support scripts it takes a few minutes to learn how
to create a new virtual machine and then only a short
time to setup and configure is required. Compared
to the old infrastructure this is a huge improvement
in productivity. At the same time we use less power
and less space. While it is not applicable everywhere,
virtualisation offers tools to consolidate underutilised
machines and increases the availability at no extra cost
apart from the migration itself. Backup and recovery
become faster and easier.

References

[1] A. Baier, T. Bernoulli, T. Braun, C. Graf, and U. Ultes-
Nitsche. Case study of the usage of an authentication
and autorization infrastructure (aai) in an e-learning
project. In Information Security South Africa (ISSA
2006), Sandton, South Africa, July 2006.

[2] A. Berqia, A. Diop, and J. Harms. A virtual labora-
tory for practical exercises. In Proceedings of Interna-
tional Conference on Engineering Education, Manch-
ester, UK, August 2002.

[3] Blackboard Inc. WebCT Vista (Blackboard). http:
//www.blackboard.com/us/index.Bb. last
visited: December 2007.

[4] T. Braun, M.-A. Steinemann, and A. Weyland. VI-
TELS – an e-learning course on computer networks
and distributed systems. SWITCH journal, 2:32–35,
November 2003.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
F. Yergeau, and J. Cowan. Extensible Markup Lan-
guage (XML) 1.1, W3C Recommendation. http:
//www.w3.org/TR/xml11/, August 2006.

[6] Cacti. http://www.cacti.net. last visited: Jan-
uary 21, 2008.

[7] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pi-
lato. Version Control with Subversion. O’Reilly Me-
dia, Inc., first edition, June 2004.

[8] eduSourceCanada. http://www.edusource.
ca/english/home_eng.html, 2007.

[9] Edutech. Learning object repository – test results
of feasibility study. http://edutech.ch/lms/
2006LOR/index.php, 2006.

[10] Linux-vserver Virtualization Software. http://
linux-vserver.org/. last visited: December 6,
2007.

[11] Nagios. http://www.nagios.org. last visited:
November 30, 2007.

[12] SCORM – Sharable Content Object Reference Model.
http://www.scorm.com. last visited: December
5, 2007.

[13] SWITCH (The Swiss Education and Research Net-
work). AAI – Authentication and Authorization In-
frastructure: System and Interface Specification, 2004.

[14] Virtualbox Virtualization Software. http://
virtualbox.org/. last visited: December 6,
2007.

[15] Vmware Virtualization Software. http:
//vmware.com/. last visited: December 6,
2007.

[16] A. Weyland and T. Braun. OSLab Module Author
Guide. Technical Report IAM-06-004, University of
Bern, IAM, July 2006.

[17] M. Wulff and T. Braun. OSLab: An interactive operat-
ing system laboratory. ERCIM News, 71:46–47, 2007.

[18] Xen Virtualization Software. http://xen.
xensource.com/. last visited: December 6, 2007.

[19] S. Zimmerli, M.-A. Steinemann, and T. Braun. Re-
source management portal for laboratories using real
devices on the internet. ACM Computer Communica-
tion Review, 33(3):127–135, July 2003.

