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Distributed Event Tracking and Classification In
Wireless Sensor Networks

Markus Walchli, Samuel Bissig, Michael Meer, and Torsteau

Abstract— In this paper a distributed event localization, track- © O' Q Q
ing, and classification framework (DELTA) is presented. An e :
event is observed and tracked by dynamically established gups. :
Relevant sensor data is collected at dedicated nodes (group O O Q ,
leaders) which are destined to perform all subsequent localation W, i

Management
station

and group organization tasks. Based on the collected sensor @ LEADER
data, both the event position and the signal strength(s) of O O O @ MEMBER
the emitted signal(s) of the event are estimated. This enats PASSIVE
DELTA to classify events based on the estimated signal emies By O memser
power. Existing approaches either focus on accurate but cos O O @ ‘ 'O ~=> Heartbeat
intensive collaborative signal processing (CSP) methods on less | A , Response
accurate but more cost-efficient approaches mainly focusm on essage
minimizing the communication load. DELTA bridges this gap by e g 1o A e i P

providing satisfying accuracy while keeping the network l@ad at

a reasonable level. The performance of the proposed framewlo  rig 1.  Event detection, tracking group organization, liaesion, and
is evaluated by simulation as well as by implementation on reporting with DELTA.

real hardware. In addition, problems of closed-form linear least

square solutions for the localization task are discussed.

Index Terms-Sensor networks, monitoring, tracking, signal |ocalize and classify events. The basic operations of DELTA
processing, classification, tracking. are shown in Fig. 1.
A measurement-based leader election algorithm determines
. INTRODUCTION a unique group leader which is responsible for the group

Composed of hundreds or thousands of tiny battermaintenance.Additionally, this approach facilitatesatwork

powered sensor nodes equipped with an array of sensors Jatf 9athering and processing on a dedicated node. Fitfedly,
a wireless radio to communicate, sensor networks are ediliZ’€2der reports the tracking and localization results tosz Iséa-
to monitor and interact with the environment. A basic. biion which is connected to the Internet where the data isdtor

+ and/or further processed. Based on the gathered informatio
is the detection, tracking, and classification of events. the leader is able to estimate both the location and the enitt

In our previous paper [24], presented at the 5th Internsignal power(s) of the event. There are two restrictions on

tional Conference on Wired/Wireless Internet Communizati (e Kind of signals which can be used in the localization and
(WWIC) 2007, the focus was on the detection and trackirfg@ssification procedures. First, the computation of pwsit
of events. In this paper a number of substantial incremertad signal emission power require an attenuation model for
are presented. The DELTA framework has been enhande®fh considered signal (e.g., sound, vibration, RSSIpi@kc
with the localization and classification logic, which base®® Pe able to classify distinct events the signal emissiomepo
on a well-known sensor model. Nonlinear and linearizedf SPecific events needs to be characteristic, i.e., moress |
solutions to the localization and classification problere afonstant. Considering classification, the accurate evesit p

discussed. The associated related work has been includi®f! i of less importance and mainly derived as byproduct in

Furthermore, the communication costs of the detection alitf emitted signal power computations. For other appboati

tracking performance have been investigated. the event location might be of different interest, though.

To this date the classification of events is mainly done by For the current evaluation, the target application is terra
applying cost-intensive CSP methods. On the other handyméq!ﬁ)servathn during night. D!ELTA detects, clq53|f|es, aadks
existing event detection and tracking algorithms do withogdifferent light sources (typically from flashlights) andnsis
accurate event positioning. Thus, the communication naad dhe event data, i.e. the computed event position and thalsign
be kept comparatively low but the classification of diffarefn@gnitude to a management station in a fixed network, where
events is no longer possible. In contrast, DELTA addressé data is stored and clustering algorithms are applieetonl
both tasks. Moreover, DELTA is designed for sensor network’e different light sources.

Consisting of small, resource-constraint, and error-pm{jes_ DELTA is used to detect and track Single events. There are

DELTA uses the measurements of the event observationshg@restrictions on the detection and tracking of multipleres

both efficiently organize event tracking groups and acelyat @s long as they occur in spatial sufficiently disjoint ardés.
the event areas overlap, further statistical techniquehiiie
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challenging task for many wireless sensor network apdina
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tection and tracking concepts are introduced in section IlIB. Source Localization and Classification based on CSP

Different localization methods are presented in section IV The |ocalization of events based on energy decay models
Section V describes the used hardware platform. Configilss 4 long tradition in the signal processing community.

ration data and the evaluation are provided in section Ve T}}l\ccordingly these models have been adapted to wireless
paper ends with conclusions and future work in section Vllgansor networks in a number of works [13], [20], [11], [12],

[21], [3], [17]. A common property of these approaches isrthe
focus on the optimization of the localization accuracy. Ga t
other hand, less focus is spent on network load and energy
Existing event monitoring applications can mainly be diconstraints. The discussed algorithms localize soundcesur
vided into two categories: On the one hand, there are caentriput could be substituted by any other energy decay models
tions from the networking and communications research fiefé.g. light, seismic, etc.).
focusing on efficiency and communication load minimization Source localization and classification were extensively in
These approaches mainly support event detection and igackivestigated in the Senslt project [13], [20], [11], [12], [2The
The network is either divided into static monitoring areas dnain focus of the project was on the localization of multjple
there are spatially-restricted dynamic tracking grougdshes coexisting events. Therefore, statistical methods basdie
lished. On the other hand there are contributions from tiseries of event measurements were proposed. In [13] three
CSP research field. These works focus on localization adiferent classification algorithms, namely k-NN, maximum
classification accuracy often taking high communicaticedlo likelihood (MA), and support vector machines (SVM), were
into account. investigated. Limitations of all statistical approaches toeir
rather centralized nature and their need for a considerable
amount of data to provide statistically relevant resulte- R
A. Contributions Focusing on Networking finements of these statistical methods have been investigat
[26], [9], [2] focus on group formation. [26] divides the net n [2(.)]’ [.21]' Besides the mult|-eve_znt Iocallzanon_, suagiv_ent
. \ . . ! localization has been addressed in [11]. Four differentinen
work in predefined and static clusters, which does, in génera S . o
) . ear optimization methods for single event localization ever
not reflect the effective event occurrence topology and mlg% . ) . . .
. L considered: Exhaustive Search (ES), Multi-resolutiorr@ea
lead to organization and communication overhead. In [9] t R . . .
. . R), the Nelder and Mead simplex downhill algorithm (SD),
group is organized by a quorum-based consensus mechanism : . .
. : e and the conjugate gradient descent method (CG). To avoid
The approach requires a multi-step negotiation procedude g

o A . ocal optimums, all algorithms search the feasible sotutio
is limited to applications where the sensing range of thaeve ace by apolving the respective optimization aldorithm on
is smaller than half the communication range. In the work Y applying P P 9

of [2], tracking groups are dynamically established acirayd each point of a grid overlaying the solution space. The astho

to the target (event) velocity. The group formation bases gr?ve shown that the complexity for all but ES is about the

S S Same. They suggest to use MR, GD, or SD after having
a message-passing-like communication scheme. The group ,. : .
. : . . s applied a coarse-grained ES to reduce the solution spaee. Th
formation again requires rather high communication costs.

. ) . . computational burden of searching the solution space tin
EnviroTrack [1], [14] is a distributed event tracking algo P g P on

. ) . . sensor nodes is too high, though.

.r|thr.n, support!ng evgnt Fietect|0n and track|_ng, but noa!oc In subsequent research [12], the nonlinear optimizatian ha
ization. A moving object is tracked by dy”am'c‘?‘”y estalndid been replaced by a closed-form solution. For real time perfo
groups O.f nodes. Group Ieaders_ are d_etermmed based N ce a linearized solution appears very attractive duésto i
random timer. Once elect_ed they |m_med|ately start to OEBNlimplicity and computational efficiency (see also [10], ][22
their groups. The IeaQer 'S respc.m.s-lblle 1o report evgmaete However, the linearization requires an over-determinestesy,
data to the bgse station, an(_:i o initialize hand-over n Qase else it lacks drastic accuracy. Redundant data may often not
event leaves its tracking region. DELTA performs a similgtr s

. . _ ) g be available in sensor networks, though. In those situatéon
of basic operatlons_as Er_IV|r0Track, adding additional . nonlinear solution might still provide useful informatiarhile
such as the consideration of sensor measurements in E}{u

detect d tracking task d X t localizaii & linearized methods fail.
etection and tracking tasks and precise event locailx In [3] the nonlinear localization of single and multiple
event classification.

h h _ K has b events is investigated. The positioning of multiple evests
Another approach organizing tracking groups has €Bsed on the Levenberg-Marquart algorithm, which locally

proposed in [4]. In IDSQ, a group leader incrementally Ggri ,ooq e Newton-Raphson method. Single event positioning
group members until a computgd belief state is consider H)blems are addressed by maximum-likelihood-based meth-
significant. Thg goal Of. IDSQ s to query as few Senscgds, requiring global knowledge. [17] applies a decertedi
nodes as possible t9 st get a meaningful r<_35u|t. T_he M3ttremental subgradient optimization to localize an event
draV\_/k_Jack_ of IDSQ IS the mcrem_ental querying which OIISThereby, a parameter estimate is circulated through the net
qualifies it as a solution for real-time tracking. Moreovar, work and incrementally updated until a precision threshsld

muh_tca;t/broadcast querying m_lg.ht be more eff|_C|ent. reached, or the maximum number of search steps is exceeded.
Distributed approaches providing coarse-grained node lo-

calization have been proposed in [6], [5]. Sextant [6] agwpli
Bézier regions to represent the locations of nodes andigven
To derive and update these regions, Sextant disseminate8 key problem of event detection and tracking is the com-
network properties (positive and negative connectivity-co plexity of identifying and organizing the event relevanhser
straints) in a restricted area. Drawbacks are high delags amodes in a distributed manner with as little communication
a rather low localization accuracy. In [5] a similar apprioacoverhead as possible while providing a satisfactory degree
using rectangles instead of Bézier regions is used. of accuracy. In many tracking applications the location of

Il. RELATED WORK

IIl. EVENT DETECTION AND TRACKING
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Fig. 2. State diagram of a DELTA node’s roles. TTL of the heartbeat messages from the leader set to 3.

received

the event occurrence might not be predictable. Moreovarg ii-hes to ELECTION RUNNING state and schedules a

depending on the emitted event amplitude a large evepfor according to the amplitude of the measurement, he., t

area could result. Also, the event might move fast, possily,nger an event is sensed, the shorter the timer is setn Whe

even performing a sequence of successive turnarounds. Sfhimer expires a heartbeat message is broadcast to inform
properties are difficult to predict and challenge any genetie nejghborhood about the presence of the group leader.
event detection and tracking algorithm. _All receiving nodes immediately cancel their own timer and
A c_entral feature of the DI_ELTA arc_h_ltectu_re, to qeal_w'“'become a group member. The calculation of the timer is crucia
generic and frequently changing conditions, is the SIgAIRE ¢ it yetermines the leader node. It partly depends on the use

of the sensor measurements in the group establishment gady\yare and is, therefore, described in detail in section V

maintenance tasks. Moreover, with DELTA the common as- L L .

: BT The leader node initializes and maintains several varsable
sumption that the communication range (CR) of the SN ®ncerning the newly formed group. To identify the observed
nodes is significantly higher than the sensing range (SR) 1S 9 y group.

) . : event a temporary unique event tag is set. It is used to
overcome: As soon as a leader evolves, it communicates its

) . . : S gnnounce the tracking group to the base station as well as to
state to its neighborhood. This requires some periodic-nofi .~ " : .
-Maintain group coherence. To avoid the processing of ceddat

fication. Moreover, a periodic feedback message containlr?_ﬁ . . .
information a round number is used. It is increased whenever

event information of the neighbor nodes is mandatory for t
o - e leader broadcasts a heartbeat message. Thus messages
localization and classification of the event. These feeklbac.
ith a round number smaller than or equal to the current

messages are overheard by all two-hop neighbors of e : . )
leader, which are thus implicitly informed about the exi round can be ignored. A TTL field defines the depth the

of the leader. If needed, the presence of the leader Canl%%der_information s d?sseminated into the network. Tiaelé

disseminated even deepér into the network by rebroadgasttri]Ode IS also_ respon§|ble to ensure a controlle_zd handover of

passive heartbeats (see subsection I11-B) fe Ieadersh|p once_lts ob;ervatmn of the moving evgnt.ends
' The leader will then immediately broadcast a leader reielect

) message, optionally addressing the subsequent leader, and
A. State diagram of DELTA nodes switch to IDLE state.

To localize anq track a moving eventin a distriputed manner considering DELTA applications with larger sensing ranges
some collaboration among the network nodes is needed. {f@n communication ranges, not every node that senses a
achieve this, DELTA assigns different roles to the node® Thyoying event is a direct neighbor of the leader. Accordingly
states and state changes of the individual nodes and thesr rqhese nodes cannot be addressed by the heartbeat messages.
are depicted in Fig. 2. . However, the information response (IREP) messages, which

One sensor node is the leader of a tracking group. The leaglgsort the location and classification relevant data of toeig
is responsible for maintaining group coherence, locabnabf members, cover all nodes two hops away from the leader
the target position, and communication with the base statiq,gde. In case even larger sensing ranges are required,igepass
All direct neighbors of the leader are group members apgartheat mechanism might be used to inform nodes farther
deliver their relevant tracking and localization data te thaway about the existence of an event. Of course, this implies
leader. All other sensors are either passive members or idlgme overhead. Optimized broadcasting techniques might be
Thg passive member state has peen introduced to inform thed [7], [25]. In most cases the required heartbeat/IRER da
neighborhood of an event tracking group about a possitlychange procedure should be sufficient to cover the whole
upcoming event. Moreover, confusion caused by state sestchyant area, though. The message flow of DELTA overcomes

can be prohibited. In all states the sensor nodes peridfliche restrictionSZ < 1 or evensE < 1 asillustrated in Fig. 3
: CR CR =2 9
check their sensors to detect an event appearance. If there

is no communication going on, but an event is sensed, all
affected nodes enter the leader election state and compete
the leadership. In DELTA all roles are assigned dynamicall

The avoidance of multiple, concurrently existing tracking

oups is desirable, else network confusion and message ove
ead, in particular into the direction of the base statioightn

o . ) occur. The leader election process aims at quickly deténgin

B. Distributed leader election and group maintenance a single leader node which is able to cover a moving event
Unless an event has been sensed, all DELTA nodes as#iably. Reliability includes several aspects: The leastmuld

in state IDLE. As soon as an event is observed by a nodee able to keep its leading state as long as possible, mimigniz
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the number of reelections and hand-overs. Consequertly, itIn the simulation part of this work we will show that the
position should be close to the event location or the palihearization lacks drastic accuracy if the linear systesn i
the event is moving at. Furthermore, the leader must havet over-determined. Therefore, we reformulate Eq. 1 as a
enough battery power left to be able to bear the burden mdnlinear least square objective function

temporary increased communication and computation load. B )
Finally, the election process needs to be fast to avoid gsrio Flx,0) = Z (pi _ c ) (5)
when no leader is present. In contrast to EnviroTrack, the ’ Py I — &l

leader election delay of DELTA is deterministic (see settio | . L . . L
V), which increases the performance of DELTA. which can be minimized using nonlinear optimization meth-

ods. For DELTA we evaluate two simple optimization meth-
ods, namely Nelder-Mead's Simplex Downhill (SD) [15],
IV. EVENT LOCALIZATION AND CLASSIFICATION [16] algorithm and the Conjugate Gradient descent method

This section presents the localization and classification p (CG) [16]. Both algorithms are not protected against finding
cedures. The group establishment and maintenance algorittocal minima. Accordingly, the determination of a well-péal
introduced in the last section, provides the leader noda witarting point, respectively simplex, is crucial. Finditige
the relevant data to localize and classify an occurring evenglobal minimum is a challenging problem. Moreover, it isywer
cost-intensive and therefore not suitable for our purpases
it needs an additional search procedure (e.g., Monte Carlo)
what makes it unfeasible to be run on the sensor nodes.

In order to estimate the location of events, an adequatel) Simplex Downhill: The simplex downhill algorithm re-
sensor model is needed. Assuming that the emitted siggalires only function evaluations. A simplex is a geometrica
propagates isotropically (e.g. sound and light from poifigure that consists of N + 1 points in N dimensions. In two
sources), the received signal at a sensor node located dimensions, a simplex is a triangle, in three dimensions it
at position¢; is related to the event position according to is a tetrahedron, and so on. The simplex downhill method
the model: . starts with an initial simplex, the location of which is craic

pi = ———g tw (1) for the performance of the algorithm. Then a sequence of
e — &l geometrical operations (reflection, expansion or contragt
where c represents the amplitude of the emitted sigmna§ are applied on the simplex always aiming at minimizing it,
the attenuation degree of the considered sigwals some i.e., determining the highest point and transform it to adow
additional white gaussian noise, ajh¢l is the Euclidean norm. point. The termination criteria is met when the vector dis&@a

In some existing approaches the ratio of the event measurea step is below a certain threshold.
ments of pairs of sensors is used to compute the event lacatio 2) Conjugate Gradient Descenft a given N-dimensional
Thus, the emitted amplitude ¢ can be truncated. On the otlpgint P, not only f(P), but also the gradienV f(P) must
hand, this adds the restriction that the denominator must f® computable. The gradient f(P) is a vector field that
become zero. The equation considering two nadasd j, the points into the direction of the largest increase f@P). In
noise is considered by overdetermining the system, becomies simplest form, the minimization is in the direction of

o the local downhill gradient-V f(P) (Steepest Descent). In
Pi_ M (2) many cases however, the Steepest Descent method needs many
pi lx =&l steps to terminate. Therefore, the conjugate gradienegioe

For the classification of the events we aim at knowingas proposed, which operates similarly as Steepest Descent
the emitted signal strength and therefore consider theakigithereby, the direction of the descent is computed slightly
amplitude. Currently, we localize light sources. Accoglin different, requiring fewer steps to terminate.
the attenuation coefficient is equal to 2 and Eg. (1) can be

A. Measurement-based source localization

rewritten as V. HARDWARE PLATFORM AND IMPLEMENTATION
Il + [1&1° — 2xTe, = < = 0 (3) PETAILS |
Pi The ESB sensor boards [19] are used for the experimental

Given N sensors, N equations of the form (3) can be formgvaluation. These nodes consist of a chip with a TI MSP430
lated. The quadratic constraints on the unknown variable microcontroller, 2kB of RAM, 60kB flash memory, and a low

can be removed by subtracting the i = 1 equation from tH@wer consuming radio transceiver (868MHz) operating at
rest (i# 1), resulting in a system of N-1 linear equations of transmission rate of 19.2kb/s by default. Furthermore, th

the form sensor boards are equipped with a number of sensors such
1 1 as luminosity, temperature, vibration, etc. The boardsehav
206 — &) x+¢ (— - —) = |&lI® +I&GI° (4) mainly two restrictions: the comparatively low transmissi
P1 Pi

rate and the resource limitations of the memory and the pro-
which can be solved with the closed-form standard lineastleaessing unit. This is basically caused by the miniaturiratf
square (LLS) method = (AT A)~1 ATb, where A is a matrix the implemented hardware. The sensors have to work with at
containing the variables of the instances of Eq. (4) and b isv@ost 3V DC and should consume as little energy as possible.
vector containing the constant parts of the instances o{4q. All experiments are based on TSL245 light sensors [8]. The
As there are n = 3 unknown variables in Eq. (4), there are nptovided light measurement software was re-implemented as
sensors needed to get a unique solution for the above sysierallows only binary decisions (light on/off), which is not
of equations. If Eqg. (2) is used to build the system of lineappropriate for our purpose. The light sensor is associated
equations, the inverse of the matrix in the LLS method miglt a interrupt-capable register. An interrupt is thrown on
not be computable due to nodes having equal coordinateseach positive edge of the output frequency of the TSL245
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Fig. 4. Output of the TAOS TSL245 infrared to frequency coter[8].

100+ :

=]
<@

(see Fig. 4). For each interrupt, a counter is incremented.
This solution implies high costs in case of high irradiance.
Therefore, the spectrum is limited to a frequency of 100kHz.
All above is just considered as maximum brightness. The
output frequency of the TSL245 in a standard office on the
desk during day is around 2kHz.

To detect moving light sources, an exponentially weighted
moving average filter has been implemented with = S . ’—_‘
aTk—1+ (1 — a)xg. The calculation of the meary, thus only 0] : : e
requires the storage of the past vaifje ; and the actual light 10 12 sl:ding e 18 20
measurement;,. A light irradiance change is considered as
significant if the currently measured value differs morentha (b) Distance 2.5 meters
a configurable threshold T from the average. Currently, T is
set to 50. The advantage of having a moving average filter
is the adaptivity to changing brightness in the environment

The moving average filter converges to the actual brighinegg oyr purpose this bandwidth is too small, as it causes high
avoiding permanent throwing of events during day, buildinggjision probabilities in case of message bursts, e.gh tiie
works, etc. In the current application, the valuecofs 0.9.  peartheat/IREP message flow of DELTA. The software was
As mentioned in section I11-B, the computation of the leadgferefore changed to run with ASK modulation and 76kbps,
election timer is crucial for the performance of DELTA. O®th \yhich consumes slightly more energy. Sending with maximum
ESB platform we calculate.th.e light irradiance every 200 MSower consumes too much energy. Therefore, the sending
for exactly 100 ms. As we limit the TSL245 output frequenciower needs to be adjusted so that the communication between
to 100kHz, we get light values from a spectrum between Qary neighboring pair of nodes is highly probable, whereas
and 10°000. Nodes with h|gh |rrad|§mce_ should compute sh@fle communication between nodes which are two hops away
delays, whereas nodes with low irradiance should compytgm each other is improbable. Neighboring nodes are placed
long delays. The delay is computed as follows: 1.25 meters away from each other. Accordingly, the sending

o
@

IS
?

Received Packets [%]

n
?

Fig. 5. Fraction of received messages for varying sendivgepo

Ipyax — Io power was adjusted to cover a range of approximately 1.75

Atfms] 10 meters. The results of the sending power control evaluation
Around[ms] = round(i)- SAMPLE_FREQUENCY  are shown in Fig. 5.

At At < Around The maximum sending power of the TR1001 is 99. From

At = { At = At — Around ,else the evaluation we concluded that a sending power of 16 is the

best choice for the current network settings. At a distarfce o

I is the currently measured irradiancky, 4 x is the max- 1.25 meters a high fraction of packets is received, while at a
imum value of 10'000. AccordinglyAt generates a delay distance of 2.5 meters only few packets are received. $ettin
between zero and one second. The SAMEEREQUENCY is the sending power to a lower level involves too much packet
the light measurement frequency of 200ms. The round varialidss at 1.25 meters, whereas a higher level involves a tdo hig
is set to 0 when the election is initialized and then incret@én receive fraction at 2.5 meters.
each time the light value is measured (every 200ms). Theln dense networks the burst of IREP messages cannot be
computation of the delay allows the filtering of non-contime handled efficiently by CSMA with random backoff, given a
irradiance peaks as long as the value is not too high, i.e. tiielay of 2 ms to switch from receive to transmit state and the
timer does not expire before the next light measurement hgsproximately 14 ms to transmit a message. On the other hand,
been done. the leader requires only a limited number of IREP messages to

The ESB sensor boards have a TR1001 radio module impt®mpute the event position. Therefore, we implemented an on
mented. The provided software runs the radio with 19.2kbpemand slotting mechanism: Within the heartbeat message th
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leader schedules at most with » < 8, members. The leader SR/CR=3/4
learns those members from IREP messages. In all subseque
communication all addressed members respond in therfirst
14 ms according to their position in the schedule. All not

11

g
[
g _, B I
. . . T ¥ F a o S 8
scheduled members send their IREP message after this tim  §  Fidsil ot it o
. . . o 5 1
using common CSMA with random backoff. Obviously, all 5 il 11
nodes compete for the medium when a new leader has bee Lty L [ TITEA A s o d
- . . A T O TR TSN
e_lected as the leader has no neighborhood information &t tha o 0 2o 00 130 160
time. Velocity of target object in km/h
EnviroTrack = DELTA, ttl set to 1 DELTA, ttlsetto2 +

VI. EVALUATION

The evaluation is divided into two parts. In the first parg thFig. 7. Average, minimum and maximum number of groups v = 3.
detection and tracking performance of DELTA, in comparison
to EnviroTrack [1], is investigated. The choice of EnviraGk
is due to the similarity of both concepts in distributed grou
establishment and maintenance. In the second part, therperf
mance of the different localization approaches is showre Th
outcome of the localization procedure, i.e., in particula
amplitude estimates, constitute the basis for any subs¢que
classification.

A. Detection and Tracking performance of DELTA Fig. 8. Experiment setup with 25 sensor boards.

To simplify a comparison between DELTA and the original

EnviroTrack algorithm, both DELTA and EnviroTrack have

been implemented on the ESB sensor boards as well as in thE!9- 7 shows performance results if the restriction Of_g%_
OMNeT++ network simulator [23]. ratio being smaller tha is overcome. Even when considering

1) Simulated PerformanceThe simulation settings from @ atio of%, which only slightly hurts the above condition, the
the original EnviroTrack evaluations have been taken. Ta g Number of coexistent groups increases considerably fdr bot
was to track T-72 battle tanks moving through an off-roagnVrioTrack, and DELTA with the TTL set to 1. This shows
environment. For the simulations a realistic object pagither that in scenarios with higher SRs a passive heartbeat mecha-
with sharp turns nor following just a straight line, was usediSm @lone is not sufficient. Enhancing the heartbeat pureed
Just the detection and tracking performance were evaluat®dfh the IREP messages solves the problem of concurrent
DELTA has been evaluated with a TTL of 1 (just heartbeat§2ders and supplies the leader with the information neealed
like EnviroTrack) and a TTL of 2 (reporting event relevantala SUPPOrt localization and classification. The decreasingtver
and informing the two-hop neighborhood about a leader). TRE 1€aders in EnviroTrack for higher speeds is due to the
speed of the target object and the ratio between sensing ralfigPility of EnviroTrack to build groups in time.

(SR) and communication range (CR) varied. All settings have2) Performance in Real-World Experimentl tests have
been repeated eight times and a 95% confidence interval W&EN Performed indoor in a shaded room to minimize external
used. The sensor network consists of 160 nodes arranged IRfiy€nces. 25 nodes have been arranged in a 5x5 grid with a

8 x 20 grid. The distance between any two neighbors is 1§82Cing of 1.25 meters. The setup is depicted in Fig. 8.
meters. The transmission power was reduced to 16 to restrict

communication to grid neighbors only. Two lamps, common
SR/CR=1/4 office equipment with a 25W bulb and a 40W bulb, have been
: ' used as light sources. The lamp was held about 1.5m above
ground pointing to floor 1.5m in front of the moving person.
2 The directly illuminated area was a circle with a diameter
iy of approximately two meters (25W bulb), respectively four
1 #* A L e e G meters (40W bulb). The person covered a distance of about
seven meters, walking at a constant speed of about 0.3 m/s.
0 ! The person walked along a straight line through the sensor
10 40 70 100 130 160 . . . .
Velocity of target object in km/h network (illustrated in Fig. 9). Each experiment was repédat
EnviroTrack —+«  DELTA tisetto 1 - DELTA. ttl setto2 - five times and a 95% confidence interval was used.
To see the impact of the different enhancements of DELTA,
Fig. 6. Average, minimum and maximum number of groups Wi = . a second EnviroTrack version (EnviroTrack-MA) enhanced
with the moving average filter has been implemented.

Fig. 6 shows results with the CR being significantly higher The results of the detection and tracking performance of
than the SR. Such scenarios are tailored to EnviroTrack aD&TLA and EnviroTrack are shown in Fig. 10. When the
both protocols perform equally well. DELTA performs eqyall sensing range increases (40W bulb), DELTA produces signifi-
well with the TTL set to 1 or 2. However, this is not surprisingantly fewer concurrent leaders than the original Envie@kr
considering the ratio between SR and CR %xf In such implementation. This supports the simulation results. -Con
scenarios, groups can easily be organized only by the resdrticurrent leaders produce unnecessary event reports, pngduc
mechanism. Though, if only using heartbeat messages ecanfusion while wasting energy and bandwidth. The network
localization and classification of the events is possible. load towards the base station is increased, affecting theativ

Generated groups
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Fig. 9. Event path through the sensor network. Fig. 11. Number of sent messages of the different approaches
! Envirgﬁ'J:Ak ggw — address_ed membgrs are allowed to send their IREP message.
os | EnviroTrack-MA 25W | Theoretically, setting the number of slots t(_) 3 was suff_lt:len
However, due to packet loss the current implementation on
> the ESB sensor boards required 5 slots to receive the needed
3(;% 3 IREPs. This value depends on the network structure and the
8 used hardware, though. Fig. 11 shows that for a higher SR the
. communication costs of DELTA are similar to those of Envi-
roTrack while inherently providing the information needed
the localization and classification. EnviroTrack enhaneéh
L the MA-filter was able to keep the number or sent messages
o 1 2 3 4 5 o6+ small. Obviously, no localization and classification is gibe
Number of concurrent leaders with that approach. Though, if this is not required, a hezath
(a) Tracking of a 25W bulb based approach enhanced with a MA-filter might be sufficient.
' it ik W — B. Localization Accuracy
08 | 1‘ EnviroTrack-MA 40W 1 DELTA provides the leader node with the information
needed to localize and classify an event. In a first step,
% different possible localization methods have been evatuat
g Matlab. The SD and CG methods together with a closed-form
a linearized least square (LLS) solution have been congidere
(see section V).
1) Simulation of Localization Performancéor the evalu-
ation four nodes were arranged in a square with a side length

of 125 cm. An event was placed randomly within this square.
The localization was performed 200 times with a confidence of
95%. Both, SD and CG require well located starting points. Fo
SD the simplex is located at the center of area of the sensing
Fig. 10. Fraction of concurrent leaders. nodes and their measurements. For CG the center of area only
is sufficient. Noise of the sensor measurements is modeled as
additional white gaussian noise (AWGN). The noise level has
network lifetime. been increased from zero to 50%, in steps of 10%. The results
The performance of EnviroTrack enhanced with the movireye shown in Fig. 12.
average filter is nearly as good as with DELTA. The fast The results show that the LLS method does neither work sat-
convergence of the MA filter at the border of the sensingfactorily considering the computation of the positiontio¢
area suppresses many nodes close to that border from baingnt nor its emitted signal amplitude. Almost indepenigent
elected. However, EnviroTrack still has the drawback th&itom the noise level, the position error is always about 40%
neither localization nor classification is possible. Mar@o of the transmission range, i.e., the grid length in this acen
there is a slightly higher fraction of time without any leade The signal amplitude error is even worse. The problem of the
The increased number of state switches caused by the moving method is illustrated in Fig. 13. To improve readabijlity
average filter in combination with the additional internitss only 50 out of 200 estimations are depicted.
of EnviroTrack lead to this behavior. The communicationtsos Only little affected by the noise level, the majority of the
of DELTA and EnviroTrack are indicated in Fig. 11. LLS estimations is close to the center of the sensing area.
In order to make the localization and classification of th€he distance errors (lines between the exact event position
event, the reception of 3 IREP messages is required. Téred their estimations in Fig. 13) are accordingly high. The
number of sent IREP messages can be restricted by the nundmmuracy of the LLS method is improved if the system is over-
of assigned slots. As soon as all slots are assigned, only tretermined, i.e., if more than four sensor nodes are used in

0 1 2 3 4 5 6+
Number of concurrent leaders

(b) Tracking of a 40W bulb
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Fig. 13. Location estimation accuracy of SD and LLS.

the scenario above. This implies more communication load.
Moreover, the probability of receiving the needed inforioat
is decreased (see section VI-A.2). In Fig. 14 results with 6

TABLE |
DISTANCE ERROR AND STANDARD DEVIATION

sensing nodes are shown. The two additional nodes are placed _ 25 Watt 40 Watt

at the positions (175,125) and (175,250). Poz'fon 1:; - | ;14 2/; — [ 523
The performance of the L_LS methqd is better in an over- 52 385 5.5 1494 391

determined system, though it does still not reach the perfor P3 5.3 0.85 213 011

mance of the nonlinear methods. In conclusion, both SD and P4 3.69 1.6 5.04 1.68

CG outperform the LLS method in all scenarios. Moreover,
with a nonlinear solution it is possible to solve the local-
ization and classification problem with a minimum amount
of information, which implies less communication load and a Considering the distance of 125 cm between two neighbor
higher success probability. Based on its good performamcenodes, a maximum mean location estimation error of 21 cm,
the simulations and its simplicity, the Simplex Downhil{s at location P1 using the 40 Watt bulb, is acceptable. The SD
algorithm was implemented on the ESB sensor boards. method performs best for locations inside the square. The
2) Localization Performance in Real-World Experiments:performance is decreased if the event position is very close
For the real-world experiments the same setup as for tifea@ sensor node. The standard deviation in all experiments i
simulations was used. The SD algorithm has been adapu&fy small.
from [16]. In contrast to the simulations, the event was not Apart of the position, the SD method also computes the
randomly placed in the event area, but at specific positioregnitted signal strength of the event source. For the classifi
P1(250, 250), P2(250,188), P3(188,188), and P4(219,21&tion of events this value is even more important than the
The sensor node locations)(and the event locations{ are event position, as it is, assumed to be, characteristicHer t
shown in Fig. 15. event. The mean amplitude computed for the 25 Watt bulb
Again two light sources of 25 Watt and 40 Watt have beds 1.71 - 10~% with a standard deviation df.246 - 1075, On
used. Each location estimation has been performed 50 timén& other hand, the mean amplitude of the 40 Watt bulb is
The localization was performed two times per second. TRe38-10~6 with a standard deviation 0f452-10~5. Obviously,
distance error meang:( and the standard deviations)(of the resulting spectrums of both events are disjoint and can
the localization tests are shown in table I. therefore be used for classification.
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Distance Error

100 ‘ ‘ : in terms of communication load and accuracy. The accuracy

“A sD of the event localization might be improved using customize
» CG hardware. The TSL245 implemented on the ESB sensor boards
Q-Ls is an infrared to frequency converter and, therefore, net be
suited for visible light.
In future work we will make use of the computed event char-
acteristics. In particular of the computed amplitudes. eBas
o -9 on training sets of different event sources at differentnéve
locations, classes of event amplitudes can be learnedeTher
fore, clustering mechanisms, e.g., a fuzzy k-means cluaster
algorithm, might be applied at the base station. In presefce
20 30 40 50 events with multiple characteristics, e.g., sound andatibn,
AWGN [%] the cluster learning procedures could even be used to design
(a) Distance Error advanced classifiers such as a fuzzy logic controllers (FLC)
. . This FLC system could then be distributed to the sensor nodes
Absolute Emitted Signal Strength Error . . . i .
200; enabling online in-network classification.
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