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Abstract— In this paper a distributed event localization, track- localize and classify events. The basic operations of DELTA
ing, and classification framework (DELTA) is presented. An are shown in Fig. 1.
event is observed and tracked by dynamically established gups.

Relevant sensor data is collected at dedicated nodes (group (o Q Q Q
leaders) which are destined to perform all subsequent locilation :

and group organization tasks. Based on the collected sensor
data, both the event position and the signal strength(s) of o
the emitted signal(s) of the event are estimated. This enadd
DELTA to classify events based on the estimated signal emies
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A measurement-based leader election algorithm determines
. INTRODUCTION a unique group leader which is responsible for the group

Composed of hundreds or thousands of tiny, battergaintenance. Additionally, this approach facilitatesigtwork

powered sensor nodes equipped with an array of sensors dath gathering and processing on a dedicated node. Fitrely,

a wireless radio to communicate, sensor networks are edilizieader reports the tracking and localization results toseIsta-

to monitor and interact with the environment. A basic, buton which is connected to the Internet where the data idtor
challenging task for many wireless sensor network apptinat and/or further processed. Based on the gathered informatio
is the detection, tracking, and classification of events. the leader is able to estimate both the location and the eanitt

In our previous paper [24], presented at the 5th Interngignal power(s) of the event. There are two restrictions on
tional Conference on Wired/Wireless Internet Commundgei the kind of signals which can be used in the localization and
(WWIC) 2007, the focus was on the detection and trackirgjassification procedures. First, the computation of pmsit
of events. In this paper a number of substantial increme®gd signal emission power require an attenuation model for
are presented. The DELTA framework has been enhandth considered signal (e.g., sound, vibration, RSSI)or8kc
with the localization and classification logic, which base® be able to classify distinct events the signal emissiomguo
on a well-known sensor model. Nonlinear and linearizeef specific events needs to be characteristic, i.e., moress |
solutions to the localization and classification problers aconstant. Considering classification, the accurate evesit p
discussed. The associated related work has been includih is of less importance and mainly derived as byproduct in
Furthermore, the communication costs of the detection afite emitted signal power computations. For other appboati
tracking performance have been investigated. the event location might be of different interest, though.

To this date the classification of events is mainly done by For the current evaluation, the target application is terra
applying cost-intensive CSP methods. On the other handy ma&@bservation during night. DELTA detects, classifies, andks
existing event detection and tracking algorithms do withodifferent light sources (typically from flashlights) andnsis
accurate event positioning. Thus, the communication need ¢he event data, i.e. the computed event position and thelsign
be kept comparatively low but the classification of differermagnitude to a management station in a fixed network, where
events is no longer possible. In contrast, DELTA addressié data is stored and clustering algorithms are applieektol
both tasks. Moreover, DELTA is designed for sensor networkie different light sources.
consisting of small, resource-constraint, and error-pruodes. DELTA is used to detect and track single events. There are
DELTA uses the measurements of the event observationsn@restrictions on the detection and tracking of multipleres

both efficiently organize event tracking groups and acelyat as long as they occur in spatial sufficiently disjoint ardés.
the event areas overlap, further statistical techniquehiiie

The work presented in this paper was supported by the Natdampe-  necessary. Moreover, DELTA requires the the sensor nodes to
tence Center in Research on Mobile Information and Comnatipic Systems K heir | . Thi b hi d by GPS h
(NCCR-MICS), a center supported by the Swiss National Seidfoundation now their location. IS can be achieved by or any other

under grant number 5005-67322. location service ([10], [18]). Considering static netwsrkith



a predefined topology (e.g., monitoring of stockrooms), tH& Source Localization and Classification based on CSP

node positions might even be set before or while deployment.r,o |5calization of events based on energy decay models has
The next section discusses related work. The DELTA dg-\onq tradition in the signal processing community. Aceord
te.c'uon and trgckl_ng concepts are introduced in sectlpn '”ingly, these models have been adapted to wireless sensor net
D|ﬁerent Iocallzat!on methods are presented in section M/orks in a number of works ([13],[20],[11],[12],[21],[3L7]).
Section V describes the used hardware platform. Configh-common property of these approaches is their focus on the
ration data anq the evalu'atlon are provided in 'SeCtIOI"l ve T%ptimization of the localization accuracy. On the otherdan
paper ends with conclusions and future work in section Vlljoog focus is spent on network load and energy constraints.
Il RELATED WORK The disc'ussed algorithms localize sound sources, but c'ould
be substituted by any other energy decay models (e.g. light,

Existing event monitoring applications can mainly be d'éeismic, etc.).

vided into two categories: On the one hand, there are centrib Source localization and classification were extensively in

tions from the n(_atworking and commun_ications re_sgarch _ﬁe\lféstigated in the Senslt project ([13],[20],[11],[12L]2 The
focusing on efficiency gnd communication Ioaq m|n|m|za1|or}nain focus of the project was on the localization of multjple
These approaches mainly support event detection arwlm'g"‘Ck'coexisting events. Therefore, statistical methods bardie

The network is either divided into static monitoring are&s Qg ias of event measurements were proposed. In [13] three
t_here are spatially-restricted dynamic tracki.ng .grounal:es different classification algorithms, namely k-NN, maximum
lished. On the other hand there are contributions from tlnEeIihood (MA), and support vector machines (SVM), were

C|SP 'fr'ese.arch field. Theﬂse wokr.ks E’.Clﬁs on Ioca.llza'tgl aﬁ"fé/estigated. Limitations of all statistical approaches their
classification accuracy often taking high communicatiotio 5iher “centralized nature and their need for a considerable

into account. amount of data to provide statistically relevant results- R
I . . finements of these statistical methods have been investigat
A. Contributions Focusing on Networking in [20], [21]. Besides the multi-event localization, siagivent
[26], [9], [2] focus on group formation. [26] divides the Ret |pcalization has been addressed in [11]. Four differentinen
work in predefined and static clusters, which does, in génergar optimization methods for single event localization aver
not reflect the effective event occurrence topology and migkpnsidered: Exhaustive Search (ES), Multi-resolutiorrciea
lead to Organization and communication overhead. In [9] tl‘QMR), the Nelder and Mead Simp|ex downhill a|gorithm (SD),
group is organized by a quorum-based consensus mechanighg the conjugate gradient descent method (CG). To avoid
The approach requires a multi-step negotiation procedutle gocal optimums, all algorithms search the feasible sotutio
is limited to applications where the sensing range of themtevegpace by applying the respective optimization algorithm on
is smaller than half the communication range. In the workgch point of a grid overlaying the solution space. The astho
of [2], tracking groups are dynamically established act@d haye shown that the complexity for all but ES is about the
to the target (event) velocity. The group formation bases @ame. They suggest to use MR, GD, or SD after having
a message-passing-like communication scheme. The grejfplied a coarse-grained ES to reduce the solution spaee. Th
formation again requires rather high communication costs. computational burden of searching the solution space gn tin
EnviroTrack [1], [14] is a distributed event tracking algosensor nodes is too high, though.
rithm, supporting event detection and tracking, but noglec | sybsequent research [12], the nonlinear optimizatian ha
ization. A moving object is tracked by dynamically estaliid  peen replaced by a closed-form solution. For real time per-
groups of nodes. Group leaders are determined based ofyfhance a linearized solution appears very attractive tdue
random timer. Once elected they immediately start to omanijg simplicity and computational efficiency (see also [[23]).
their groups. The leader is responsible to report evenvaele However, the linearization requires an over-determinetesy,
data to the base station, and to initialize hand-over in t&se g|se it lacks drastic accuracy. Redundant data may often not
event leaves its tracking region. DELTA performs a similelr Spe available in sensor networks, though. In those situstéon
of basic operations as EnviroTrack, adding additionaluie oninear solution might still provide useful informatiorhile
such as the consideration of sensor measurements in {he linearized methods fail.
detection and tracking tasks and precise event localizatial In [3] the nonlinear localization of single and multiple

event classification. o . events is investigated. The positioning of multiple eveists
Another approach organizing tracking groups has begBsed on the Levenberg-Marquart algorithm, which locally

proposed in [4]. In IDSQ, a group leader incrementally (R®ri ;ses the Newton-Raphson method. Single event positioning
group members until a computed belief state is considergghplems are addressed by maximum-likelihood-based meth-
significant. Thg goal of IDSQ is to query as few SeNSQds, requiring global knowledge. [17] applies a decerteali
nodes as possible to still get a meaningful result. The Maikremental subgradient optimization to localize an event
drawback of IDSQ is the incremental querying which disrherepy, a parameter estimate is circulated through the net
qualifies it as a solution for real-time tracking. Moreovar, \york and incrementally updated until a precision threslisid

mulitcast/broadcast querying might be more efficient. reached, or the maximum number of search steps is exceeded.
Distributed approaches providing coarse-grained nods-oc

ization have been proposed in ([6], [5]). Sextant [6] applie
Bézier regions to represent the locations of nodes andigven
To derive and update these regions, Sextant disseminate8 key problem of event detection and tracking is the com-
network properties (positive and negative connectivity-co plexity of identifying and organizing the event relevanhser
straints) in a restricted area. Drawbacks are high delags amodes in a distributed manner with as little communication
a rather low localization accuracy. In [5] a similar appioacoverhead as possible while providing a satisfactory degree
using rectangles instead of Bézier regions is used. of accuracy. In many tracking applications the location of

IIl. EVENT DETECTION AND TRACKING



the event occurrence might not be predictable. Moreovérswitches to ELECTION RUNNING state and schedules a
depending on the emitted event amplitude a large evamher according to the amplitude of the measurement, he., t
area could result. Also, the event might move fast, possildyronger an event is sensed, the shorter the timer is sethn Whe
even performing a sequence of successive turnarounds. Stightimer expires a heartbeat message is broadcast to inform
properties are difficult to predict and challenge any genetihe neighborhood about the presence of the group leader.
event detection and tracking algorithm. All receiving nodes immediately cancel their own timer and
A central feature of the DELTA architecture, to deal witlhecome a group member. The calculation of the timer is crucia
generic and frequently changing conditions, is the sigaifde as it determines the leader node. It partly depends on thée use
of the sensor measurements in the group establishment &addware and is, therefore, described in detail in section V
maintenance tasks. Moreover, with DELTA the common as- The leader node initializes and maintains several variable
sumption that the communication range (CR) of the sensegncerning the newly formed group. To identify the observed
nodes is significantly higher than the sensing range (SR)egent a temporary unique event tag is set. It is used to
overcome: As soon as a leader evolves, it communicatesdisnounce the tracking group to the base station as well as to
state to its neighborhood. This requires some periodic- nothaintain group coherence. To avoid the processing of oeddat
fication. Moreover, a periodic feedback message containiitformation a round number is used. It is increased whenever
event information of the neighbor nodes is mandatory for thiee leader broadcasts a heartbeat message. Thus messages
localization and classification of the event. These feeklbawith a round number smaller than or equal to the current
messages are overheard by all two-hop neighbors of tfieind can be ignored. A TTL field defines the depth the
leader, which are thus implicitly informed about the existe |eader information is disseminated into the network. Tlaelé
of the leader. If needed, the presence of the leader canrwie is also responsible to ensure a controlled handover of
disseminated even deeper into the network by rebroadgastine leadership once its observation of the moving event.ends

passive heartbeats (see subsection IlI-B). The leader will then immediately broadcast a leader reielect
message, optionally addressing the subsequent leader, and
A. State diagram of DELTA nodes switch to IDLE state.

To localize and track a moving event in a distributed manner Considering DELTA applications with larger sensing ranges
some collaboration among the network nodes is needed.ﬂl"@n. communication ranges, not every node that senses a
achieve this, DELTA assigns different roles to the nodes TH#oving event is a direct neighbor of the leader. Accordingly

states and state changes of the individual nodes and thedr réhese nodes cannot be addressed by the heartbeat messages.
are depicted in Fig. 2. However, the information response (IREP) messages, which

report the location and classification relevant data of ttoaig
T —— members, cover all nodes two hops away from the leader
Stop sensing . : node. In case even larger sensing ranges are required,igepass
Stop sensing gh Hearing now leader : heartbeat mechanism might be used to inform nodes farther
5 ' : away about the existence of an event. Of course, this implies
P """""""" P some overhead. Optimized broadcasting techniques might be

St serng g " wining used ([7],[25]). In most cases the required heartbeat/|R&ER
P Tecaes  Sersmolam,  { "% exchange procedure should be sufficient to cover the whole
.............. P v , though. W Vi
_ PASSIVE MEMBER : E O eaibent event area, though. The message flow of DELTA overcomes
: G recelved | the restriction2Z < 1 or even2Z < 1 asiillustrated in Fig. 3.
Stop sensing light, : IREP CR < CR < 2 g

No new leader Some méssage Sénsing light, ~ received :
: received No message received

IDLE | Start sensing light -« «««+++-«- ELECTION RUNNING @

Fig. 2: State diagram of a DELTA node’s roles.

One sensor node is the leader of a tracking group. The leade 1) HEARTBEAT 2) IREP
is responsible for maintaining group coherence, locabmadf | A la--—-—-—-—-— El -:7_”_7_”_:_:-7”
the target position, and communication with the base statio
All direct neighbors of the leader are group members and
deliver their relevant tracking and localization data t@ th
leader. All other sensors are either passive members ar idle
The passive member state has been introduced to inform thi
neighborhood of an event tracking group about a possibly
upcoming event. Moreover, confusion caused by state sestclFig. 3: Group communication in a DELTA network Wi%\% >
can be prohibited. In all states the sensor nodes peridglical and the TTL of the heartbeat messages from the leader set
check their sensors to detect an event appearance. If thers.
iS no communication going on, but an event is sensed, all
affected nodes enter the leader election state and commete f the ayoidance of multiple, concurrently existing tracking
the leadership. In DELTA all roles are assigned dynamically o ps is desirable, else network confusion and message ove
head, in particular into the direction of the base statioightn
B. Distributed leader election and group maintenance occur. The leader election process aims at quickly deténgin
Unless an event has been sensed, all DELTA nodes arsingle leader node which is able to cover a moving event
in state IDLE. As soon as an event is observed by a nodeliably. Reliability includes several aspects: The lead®uld

PASSIVE
EARTBEAT



be able to keep its leading state as long as possible, minigniz In the simulation part of this work we will show that the
the number of reelections and hand-overs. Consequertdly, lihearization lacks drastic accuracy if the linear systesn i
position should be close to the event location or the patiot over-determined. Therefore, we reformulate Eq. 1 as a
the event is moving at. Furthermore, the leader must hawenlinear least square objective function

enough battery power left to be able to bear the burden of i )
temporary increased communication and computation load. Flx,¢) = Z (m _ c ) (5)
Finally, the election process needs to be fast to avoid gerio = Ix =&l

when no leader is present. In contrast to EnviroTrack, th%. h be minimized usi i timizati the
leader election delay of DELTA is deterministic (see sefctio\év d:; Fg?TDEiTXI\T\/?Z\?aluistg]?wr:)ogiﬁgg ggtilrrnnilzZ:tilgr? rrnn:th
V), which increases the performance of DELTA. ods, namely Nelder-Mead's Simplex Downhill (SD) [15],[16]
algorithm and the Conjugate Gradient descent method
(CG) [16]. Both algorithms are not protected against finding

This section presents the localization and classification p local minima. Accordingly, the determination of a well-péai
cedures. The group establishment and maintenance algoritBtarting point, respectively simplex, is crucial. Finditige
introduced in the last section, provides the leader nodh W@lobal minimum is a challenging problem. Moreover, it iswer
the relevant data to localize and classify an occurring evencost-intensive and therefore not suitable for our purpdses

it needs an additional search procedure (e.g., Monte Carlo)

A. Measurement-based source localization what makes it unfeasible to be run on the sensor nodes.

In order to estimate the location of events, an adequate.l) Simplex Downhill: The simplex downhill algorithm re-

sensor model is needed. Assuming that the emitted sigﬁgﬂfj tﬁzlnycgjr?sﬁg&no?vl?lhiatllonsi'n/t-\s ?lm Iﬁ?ﬁ:éﬂiigﬁgn}it:@i
propagates isotropically (e.g. sound and light from poi délgmensions a simplex is a 5ian le, in three dimeﬁsions it
sources), the received signa] at a sensor nodé located ' P gie,

at position¢; is related to the event position according to 'S a tetr'ahedr(')r?,. anql so on. The swpplex dO\.Nnh.'” method
the model: starts with an initial simplex, the location of which is cralc

pi = c tw (1) for the performance of the algorithm. Then a sequence of
k=& geometrical operations (reflection, expansion or coritagt
are applied on the simplex always aiming at minimizing it,
i.e., determining the highest point and transform it to adow

the attenuation degree of the considered signals some it The terminati iteria i t when th tor di
additional white gaussian noise, aihd is the Euclidean norm. point. The termination criteria is met when the vector dista
f.a step is below a certain threshold.

In some existing approaches the ratio of the event measu ) . . . .
ments of pairs of sensors is used to compute the event locatio 2) Conjugate Gradient Descenft a given N-dimensional

Thus, the emitted amplitude ¢ can be truncated. On the oti‘?é’rjnt P, notb?nInyh(P), bgt also It)he. gradiean(?)k;nust
hand, this adds the restriction that the denominator must 1§ CO’T‘p“ta €. The gra lent f(P) is a vector field that
become zero. The equation considering two nadesd j, the points into the direction of the largest increase f@P). In

noise is considered by overdetermining the system, becomss Simplest form, the minimization is in the direction of
the local downhill gradient-V f(P) (Steepest Descent). In

pi_ Ix=4l" (2) many cases however, the Steepest Descent method needs many
pi  Ix=&l° steps to terminate. Therefore, the conjugate gradienepiure
For the classification of the events we aim at knowinjS Proposed, which operates similarly as Steepest Descent
the emitted signal strength and therefore consider theasigr '€reby, the direction of the descent is computed slightly
amplitude. Currently, we localize light sources. Accogljp diferent, requiring fewer steps to terminate.
the attenuation coefficient is equal to 2 and Eq. (1) can be

IV. EVENT LOCALIZATION AND CLASSIFICATION

where ¢ represents the amplitude of the emitted sigmaf

rewritten as V. HARDWARE PLATFORM AND IMPLEMENTATION
DETAILS
2 2 T C
x|+ &) —2x"6 ——=0 3 .
I Il S Pi ®) The ESB sensor boards [19] are used for the experimental

Given N sensors, N equations of the form (3) can be form@valuation. These nodes consist of a chip with a TI MSP430
lated. The quadratic constraints on the unknown variable Microcontroller, 2kB of RAM, 60kB flash memory, and a low

can be removed by subtracting the i = 1 equation from tfROWer consuming radio transceiver (868MHz) operating at
rest (i# 1), resulting in a system of N-1 linear equations of transmission rate of 19.2kb/s by default. Furthermore, th

the form sensor boards are equipped with a number of sensors such
1 1 as luminosity, temperature, vibration, etc. The boardsehav
2(6 - &) x+e (— - _> = |&)® + &7 (@) mainly two restrictions: the comparatively low transmissi
P1 i

rate and the resource limitations of the memory and the pro-
which can be solved with the closed-form standard lineastleaessing unit. This is basically caused by the miniaturiratf
square (LLS) method = (AT A)~1 ATb, where A is a matrix the implemented hardware. The sensors have to work with at
containing the variables of the instances of Eq. (4) and b isr@st 3V DC and should consume as little energy as possible.
vector containing the constant parts of the instances o{4lq. All experiments are based on TSL245 light sensors [8]. The
As there are n = 3 unknown variables in Eqg. (4), there are nptovided light measurement software was re-implemented as
sensors needed to get a unique solution for the above sysierallows only binary decisions (light on/off), which is not
of equations. If Eqg. (2) is used to build the system of lineappropriate for our purpose. The light sensor is associated
equations, the inverse of the matrix in the LLS method might a interrupt-capable register. An interrupt is thrown on
not be computable due to nodes having equal coordinateseach positive edge of the output frequency of the TSL245
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The ESB sensor boards have a TR1001 radio module imple-
mented. The provided software runs the radio with 19.2kbps.
For our purpose this bandwidth is too small, as it causes high
collision probabilities in case of message bursts, e.gh thie
heartbeat/IREP message flow of DELTA. The software was
therefore changed to run with ASK modulation and 76kbps,
which consumes slightly more energy. Sending with maximum
power consumes too much energy. Therefore, the sending
power needs to be adjusted so that the communication between
every neighboring pair of nodes is highly probable, whereas
the communication between nodes which are two hops away
from each other is improbable. Neighboring nodes are placed
1.25 meters away from each other. Accordingly, the sending
power was adjusted to cover a range of approximately 1.75
meters. The results of the sending power control evaluation
are shown in Fig. 5.

Fig. 4: Output of the TAOS TSL245 infrared to frequency

converter [8].

This solution implies high costs in case of high irradiance.
Therefore, the spectrum is limited to a frequency of 100kHz.
All above is just considered as maximum brightness. The
output frequency of the TSL245 in a standard office on the
desk during day is around 2kHz.

To detect moving light sources, an exponentially weighted
moving average filter has been implemented with =
aTk—1 + (1 — a)xg. The calculation of the meary thus only
requires the storage of the past valtje ; and the actual light
measurement;. A light irradiance change is considered as
significant if the currently measured value differs morentha
a configurable threshold T from the average. Currently, T is
set to 50. The advantage of having a moving average filter
is the adaptivity to changing brightness in the environment
The moving average filter converges to the actual brightness
avoiding permanent throwing of events during day, building
works, etc. In the current application, the valuecofs 0.9.

As mentioned in section 111-B, the computation of the leader
election timer is crucial for the performance of DELTA. Orth
ESB platform we calculate the light irradiance every 200 ms
for exactly 100 ms. As we limit the TSL245 output frequency
to 100kHz, we get light values from a spectrum between 0
and 10’000. Nodes with high irradiance should compute short
delays, whereas nodes with low irradiance should compute
long delays. The delay is computed as follows:

At[ms] = 7IMA)1(O_ I
Around[ms] = round(i) - SAMPLE_ FREQUENCY

{ At , At < Around

At = At = At — Around , else

Fig. 5: Fraction of received messages for varying sending

100 — —
(see Fig. 4). For each interrupt, a counter is incremented. - ‘
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imum value of 10°000. AccordinglyAt generates a delay

between zero and one second. The SAMERREQUENCY is ~ The maximum sending power of the TR1001 is 99. From
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the light measurement frequency of 200ms. The round varialhe evaluation we concluded that a sending power of 16 is the
is set to 0 when the election is initialized and then incret@&n best choice for the current network settings. At a distarfce o
each time the light value is measured (every 200ms). The25 meters a high fraction of packets is received, while at a
computation of the delay allows the filtering of non-contine  distance of 2.5 meters only few packets are received. §ettin
irradiance peaks as long as the value is not too high, i.e. tie sending power to a lower level involves too much packet
timer does not expire before the next light measurement Hass at 1.25 meters, whereas a higher level involves a tdo hig

been done.

receive fraction at 2.5 meters.



In dense networks the burst of IREP messages cannot b&ig. 6 shows results with the CR being significantly higher
handled efficiently by CSMA with random backoff, given ghan the SR. Such scenarios are tailored to EnviroTrack and
delay of 2 ms to switch from receive to transmit state and tlzad both protocols perform equally well. DELTA performs
approximately 14 ms to transmit a message. On the other haegally well with the TTL set to 1 or 2. However, this is
the leader requires only a limited number of IREP messagestnt surprising considering the ratio between SR and CR of
compute the event position. Therefore, we implemented an C%ﬁ In such scenarios, groups can easily be organized only
demand slotting mechanism: Within the heartbeat message Iy the heartbeat mechanism. Though, if only using heartbeat
leader schedules at mast with n < 8, members. The leadermessages no localization and classification of the events is
learns those members from IREP messages. In all subsequearssible.
communication all addressed members respond in therfirst
14 ms according to their position in the schedule. All not SR/CR=3/4
scheduled members send their IREP message after this tim
using common CSMA with random backoff. Obviously, all
nodes compete for the medium when a new leader has bee
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The evaluation is divided into two parts. In the first parg th Velocity of target object in km/h
detection and tracking performance of DELTA, in comparison  EnviroTrack - DELTA, tisetto 1 - DELTA, tfisetto2 -

to EnviroTrack [1], is investigated. The choice of EnviraGk Fia. 7- Average. minimum and maximum number of drouns
is due to the similarity of both concepts in distributed grou 9. £ ge, group

: : ith SE = 3
establishment and maintenance. In the second part, therper¥v CRr  4°

mance of the different localization approaches is showre Th Fig. 7 shows performance results if the restriction ofg%

outcome of the localization procedure, i.e., in particulze . . . CR
. . . . ratio being smaller tha@ is overcome. Even when considering
amplitude estimates, constitute the basis for any subs¢que .. 3 : . I
e a ratio of 2, which only slightly hurts the above condition, the
classification. 4 . : .
number of coexistent groups increases considerably fdr bot
EnvrioTrack, and DELTA with the TTL set to 1. This shows

A. Detection and Tracking performance of DELTA that in scenarios with higher SRs a passive heartbeat mecha-

To simplify a comparison between DELTA and the originaism alone is not sufficient. Enhancing the heartbeat pureed
EnviroTrack algorithm, both DELTA and EnviroTrack havevith the IREP messages solves the problem of concurrent
been implemented on the ESB sensor boards as well as in igders and supplies the leader with the information neesled
OMNeT++ network simulator [23]. support localization and classification. The decreasingber

1) Simulated PerformanceThe simulation settings from of leaders in EnviroTrack for higher speeds is due to the
the original EnviroTrack evaluations have been taken. T g inability of EnviroTrack to build groups in time.
was to track T-72 battle tanks moving through an off-road 2) Performance in Real-World Experimenall tests have
environment. For the simulations a realistic object pagither been performed indoor in a shaded room to minimize external
with sharp turns nor following just a straight line, was usednfluences. 25 nodes have been arranged in a 5x5 grid with a
Just the detection and tracking performance were evaluate@acing of 1.25 meters. The setup is depicted in Fig. 8.
DELTA has been evaluated with a TTL of 1 (just heartbeats
like EnviroTrack) and a TTL of 2 (reporting event relevantada
and informing the two-hop neighborhood about a leader). The
speed of the target object and the ratio between sensing rang
(SR) and communication range (CR) varied. All settings have
been repeated eight times and a 95% confidence interval wa
used. The sensor network consists of 160 nodes arranged in
8 x 20 grid. The distance between any two neighbors is 100
meters.

Fig. 8: Experiment setup with 25 sensor boards.
SR/CR=1/4
3 T

The transmission power was reduced to 16 to restrict
communication to grid neighbors only. Two lamps, common
office equipment with a 25W bulb and a 40W bulb, have been
used as light sources. The lamp was held about 1.5m above
ek ground pointing to floor 1.5m in front of the moving person.
The directly illuminated area was a circle with a diameter
0 ' of approximately two meters (25W bulb), respectively four

10 40 70 100 130 160 .

Velocity of target object in km/h meters (40W bulb). The person covered a distance of about
EnviroTrack — =+ DELTA tisetto1 - DELTA, tti setto2 - - seven meters, walking at a constant speed of about 0.3 m/s.

) o . The person walked along a straight line through the sensor

Fig. 6: Average, minimum and maximum number of groupgetwork (illustrated in Fig. 9). Each experiment was repeat

H SR — 1 . . . .
with CR ~ 1 five times and a 95% confidence interval was used.

Generated groups
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Fig. 9: Event path through the sensor network.

To see the impact of the different enhancements of DELTA,
a second EnviroTrack version (EnviroTrack-MA) enhanced

with the moving average filter has been implemented.

DELTA 25W mm
EnviroTrack 25W messss

08 | EnviroTrack-MA 25W

Probability

0 1 2 3 4 5 6+
Number of concurrent leaders

(a) Tracking of a 25W bulb

DELTA 40W s
EnviroTrack 40W e

08 | EnviroTrack-MA 40W

Probability

0 1 2 3 4 5 6+
Number of concurrent leaders

(b) Tracking of a 40W bulb

Fig. 10: Fraction of concurrent leaders.

The performance of EnviroTrack enhanced with the moving
average filter is nearly as good as with DELTA. The fast
convergence of the MA filter at the border of the sensing
area suppresses many nodes close to that border from being
elected. However, EnviroTrack still has the drawback that
neither localization nor classification is possible. Mo
there is a slightly higher fraction of time without any leade
The increased number of state switches caused by the moving
average filter in combination with the additional internaltes
of EnviroTrack lead to this behavior. The communicationtgos
of DELTA and EnviroTrack are indicated in Fig. 11.

250

IREPs  mm——
Heartbeats m—

N
=3
3

Number of sent messages
. .
o 3 3 g
)
N
1 1

E ET ET
MA-25W  MA-40W 25W 40W MA-25W  MA-40W
Configuration

Fig. 11: Number of sent messages of the different approaches

In order to make the localization and classification of the
event, the reception of 3 IREP messages is required. The
number of sent IREP messages can be restricted by the number
of assigned slots. As soon as all slots are assigned, only the
addressed members are allowed to send their IREP message.
Theoretically, setting the number of slots to 3 was sufficien
However, due to packet loss the current implementation on
the ESB sensor boards required 5 slots to receive the needed
3 IREPs. This value depends on the network structure and the
used hardware, though. Fig. 11 shows that for a higher SR the
communication costs of DELTA are similar to those of Envi-
roTrack while inherently providing the information needed
the localization and classification. EnviroTrack enhaneét
the MA-filter was able to keep the number or sent messages
small. Obviously, no localization and classification is gibke
with that approach. Though, if this is not required, a hesatb
based approach enhanced with a MA-filter might be sufficient.

B. Localization Accuracy

DELTA provides the leader node with the information
needed to localize and classify an event. In a first step,
different possible localization methods have been evatuat
Matlab. The SD and CG methods together with a closed-form
linearized least square (LLS) solution have been congidere
(see section V).

1) Simulation of Localization Performancéor the evalu-
ation four nodes were arranged in a square with a side length

The results of the detection and tracking performance of 125 cm. An event was placed randomly within this square.
DETLA and EnviroTrack are shown in Fig. 10. When th&he localization was performed 200 times with a confidence of
sensing range increases (40W bulb), DELTA produces signi#i5%. Both, SD and CG require well located starting points. Fo
cantly fewer concurrent leaders than the original Enviewkr SD the simplex is located at the center of area of the sensing
implementation. This supports the simulation results. -Conodes and their measurements. For CG the center of area only
current leaders produce unnecessary event reports, pngduds sufficient. Noise of the sensor measurements is modeled as
confusion while wasting energy and bandwidth. The netwoddditional white gaussian noise (AWGN). The noise level has
load towards the base station is increased, affecting teeatlv been increased from zero to 50%, in steps of 10%. The results

network lifetime.

are shown in Fig. 12.
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Fig. 13: Location estimation accuracy of SD and LLS.

The results show that the LLS method does neither work sat-
isfactorily considering the computation of the positiontioé ization and classification problem with a minimum amount
event nor its emitted signal amplitude. Almost indepenigentof information, which implies less communication load and a
from the noise level, the position error is always about 40%igher success probability. Based on its good performamce i
of the transmission range, i.e., the grid length in this acen the simulations and its simplicity, the Simplex Downhill4(B
The signal amplitude error is even worse. The problem of tlaggorithm was implemented on the ESB sensor boards.

LLS method is illustrated in Fig. 13. To improve readabijlity 2) Localization Performance in Real-World Experiments:
only 50 out of 200 estimations are depicted. For the real-world experiments the same setup as for the

Only little affected by the noise level, the majority of thesimulations was used. The SD algorithm has been adapted
LLS estimations is close to the center of the sensing aréeom [16]. In contrast to the simulations, the event was not
The distance errors (lines between the exact event positisandomly placed in the event area, but at specific positions:
and their estimations in Fig. 13) are accordingly high. The1(250, 250), P2(250,188), P3(188,188), and P4(219,219).
accuracy of the LLS method is improved if the system is oveThe sensor node locations)(and the event locationx) are
determined, i.e., if more than four sensor nodes are usedshmown in Fig. 15.
the scenario above. This implies more communication load.Again two light sources of 25 Watt and 40 Watt have been
Moreover, the probability of receiving the needed inforimat used. Each location estimation has been performed 50 times.
is decreased (see section VI-A.2). In Fig. 14 results with The localization was performed two times per second. The
sensing nodes are shown. The two additional nodes are plad@&iance error meansg: and the standard deviations)(of
at the positions (175,125) and (175,250). the localization tests are shown in table I.

The performance of the LLS method is better in an over- Considering the distance of 125 cm between two neighbor
determined system, though it does still not reach the perfarodes, a maximum mean location estimation error of 21 cm,
mance of the nonlinear methods. In conclusion, both SD aatllocation P1 using the 40 Watt bulb, is acceptable. The SD
CG outperform the LLS method in all scenarios. Moreovemethod performs best for locations inside the square. The
with a nonlinear solution it is possible to solve the localperformance is decreased if the event position is very close
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Absolute Emitted Signal Strength Error dust environments with small radio ranges and high sensing

ranges. The leader election procedure of DELTA is adaptive,
quick and precise. Using the sensor readings improves both,

200¢

< L

%’160 the event detection and the tracking performance. The imple
& 1200 mentation of a moving average filter allows the suppression
g of bad located sensor nodes. Though, the convergence of the
D gol _‘o_.--é filter needs to be considered.

= ' Saa DELTA supports accurate in-network event localizationeTh

L%’ 40! -~ evaluation has shown that a nonlinear algorithm is bestlsiait

in terms of communication load and accuracy. The accuracy

0 i ” 0 = of the event IocaIization_ might be improved using customhize
AWGN [%] hardware. The TSL245 implemented on the ESB sensor boards
is an infrared to frequency converter and, therefore, nat be
(b) Signal Strength Error suited for visible I|ght

In future work we will make use of the computed event char-
Fig. 14: Accuracy of LLS, SD, and CG in an over-determineg@cteristics. In particular of the computed amplitudes. eBas
system. on training sets of different event sources at differeninéve
locations, classes of event amplitudes can be learnedeTher
fore, clustering mechanisms, e.g., a fuzzy k-means cluaster

TABLE I: Distance Error and standard deviation algorithm, might be applied at the base station. In presefce

25 Watt 40 Watt . . I .
Bosiion ] o ] o events with multiple characteristics, e.g., sound andatiobn,
PT 18.43 014 5001 03 the cluster learning procedures could even be used to design
P2 3.86 0.59 14.94 321 advanced classifiers such as a fuzzy logic controllers (FLC)
P3 6.3 0.85 4.13 0.11 This FLC system could then be distributed to the sensor nodes
P4 3.69 1.6 5.04 1.68 enabling online in-network classification.
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