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ABSTRACT

In this paper we present a first evaluation of an application
of our intensity-based localization scheme in a real wire-
less sensor network. We implemented an object localization
and tracking algorithm that solely depends on the values
gathered by motion detectors. Based on this information
and the positions of the observing sensors, the algorithm
is not only able to track the position or trace of a moving
object by considering the positions of the closest sensor(s)
to the object, but is also able to estimate the location or
path of the object. With our approach the location of a
moving object can be estimated with minimal constraints
on both the sensor hardware and the moving object what
makes it a very lightweight approach. The applicability of
our intensity-based localization algorithm is feasible even
with the highly limited hardware implemented on existing
sensor nodes.

1. INTRODUCTION

The main goal of this work is to prove the applicability
of the intensity-based localization scheme ([12],[7]) on real
existing hardware. In [12] we have shown that event local-
ization solely based on the knowledge of the signal intensities
measured on sensor nodes is mathematically possible. How-
ever we did not prove the applicability of the algorithm on
real hardware in real physical environments with different
physical properties of different types of signal propagation
medium.

We therefore tested the applicability of our localization
scheme on the ESB sensor boards from Scatterweb [10].
These sensor boards are equipped with a number of sens-
ing devices, namely motion, temperature, vibration, light,
and sound sensors. The development and research interest
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is thereby on miniaturization and low power operation of
the sensor board hardware and is mainly focused on com-
munication and operating system issues. Consequently, the
implemented sensors are cheap and not intended to provide
advanced sensing functionality.

While analyzing the usability of the individual sensors we
encountered the problem that all implemented sensors are
so inaccurate that the intensity determination of the sensed
signals is not feasible. The sensors implemented on the ESB
sensor boards are useful to decide whether there is an event
or not, but not to determine the intensity of the event.

Being confronted with the sensing hardware constraints
mentioned above we had to find an alternative way to de-
termine the intensity of an event. We found a solution by
sampling the sensors a certain number of times in a prede-
fined interval. This solution leads to suitable results in par-
ticular when using the motion sensor. Due to these insights
we can use the passive infrared sensor (PIR) to localize and
track moving objects (humans).

The related work is discussed in section 2. A brief overview
of the intensity-based localization algorithm and a short in-
troduction to its mathematical principle is given in section 3.
In section 4 we describe the hardware platform we use for
our experiments. The results of these experiments are dis-
cussed in section 5. Conclusions and future work can be
found in section 6.

2. RELATED WORK

In the last years a number of sensor network platforms
have been proposed. The most popular platform is probably
the Mica platform from Crossbow [4]. The Mica motes are
equipped with some sensors that are however not useful in
our context. The tmote sky sensor boards [§] are again
not equipped with sensors that we could benefit from. The
BTnode platform [2] is not at all equipped with sensors.

Object localization and tracking have been investigated in
a number of approaches. The proposed schemes differ in the
way they get range estimations and how they perform event
observations. In [11] the distance of a sensor node to an
event is approximated using the time of arrival (TOA) of the
signals emitted by an event. The TOA values are routed to-
gether with the sensor node positions to a sink node, where
the location of the event is computed as the maximum of
a four-dimensional consistency function. In [13] a proba-
bilistic localization algorithm is applied where sensors with
high probabilities are queried by their responsible cluster
heads to provide detailed information about a moving ob-
ject. This approach operates fully distributed whereby the



cluster heads are responsible to forward the information they
collected to a base station or to share it with other cluster
heads. In this approach the event location is not computed,
but approximated by the position of the closest nodes that
sense it. Sextant [5] uses Bézier regions to represent the pos-
sible locations of nodes as well as of events. Positive and neg-
ative network constraints are needed to build these Bézier
regions. Consequently, these network constraints have to
be distributed in the network. For the positioning a given
number of landmarks are needed. A distributed algorithm
for object tracking has been proposed by [1]. This approach
supports event detection and tracking, but no event localiza-
tion. A moving object is thereby tracked by a moving cluster
of nodes, whereby the cluster leader dynamically changes.
Many existing localization algorithms ([11], [3]) depend on
the possibility to distinguish two kinds of signals transmitted
by an event. Thereby, the distance of the event is derived
from the time difference of arrival (TDOA) of two different
signals. For example, [11] uses the time difference of arrival
between the shock wave and the muzzle blast generated by
a gun to estimate the distance to the event. In many cases
the dependency on two different kinds of signals is restrictive
and not easy to fulfill. In contrast to these algorithms, the
algorithm discussed in the next section depends only on the
intensities derived at the sensor nodes. A similar algorithm
was proposed in [7]. The sensor and hardware requirements
of their application were however much different from ours.

3. INTENSITY-BASED LOCALIZATION

In ([12],[7]) it has been shown that multilateration-based
([6],]9]) localization without the need of distance estimations
is possible. Instead of knowing the distance it is sufficient
that a sensor node is able to derive a spatio-correlated value
indicating the intensity of an event. In this section we will
shortly give the mathematical background and motivation
of our approach. Interested readers are referenced to [12].

We assume that the intensity wx derived at a sensor node
X located at (zz,zy) is related to the distance dx the sen-
sor node is away from an event E located at (ez,ey). This
relationship is formalized in the following relation:

Wx ~ —— ,a>1 (1)

d
The exponent « in (1) affects the degree of attenuation of
the measured intensity in dependence of the distance to the
source of the event.

It is crucial that the intensity cannot be used as a direct
substitute of the distance in order to estimate the position
of an event, but the ratio of the intensities measured on
two sensor nodes is inverse proportional to the ratio of their
distances to the event. To formulate this equation we addi-
tionally need the theorem of Pythagoras:

d%{ = (Iz - 61)2 + (xy - ey)2 (2)

From (2) and (1) we can derive the general equation to get
the ratio of the intensities of two sensor nodes S and S’:

(50 =€)’ + (sy—ey)” _ <WS'>‘2* (3)
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In (3) you can see that the distance estimation normally
needed by multilateration approaches is no longer used. (3)
shows that the ratio of the distances from two sensor nodes

S and S’ to the event location is inverse proportional to the
ratio of the intensities derived on both nodes. All possible
locations of the event lay on a circle, unless the ratio is
1. This case will be discussed later. In the planar case
we need at least three circles to get a unique intersection
point of these circles. Obviously, the location of the event
FE is equivalent to that intersection point. This is true at
least as long as the intensities derived at the sensor nodes
are correct, an example generated with Maple is depicted in
Figure 1.
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Figure 1: Event position as intersection of 3 circles.

In order to prove the applicability of (3), we have to show
that the denominator cannot be zero. This is however trivial
as from (3) we can conclude that the denominator can only
become zero if s, = e, and 5; = ey. This means the location
of the event is exactly at the position of sensor node S’. This
case can be excluded, as the calculation of the position of an
event is trivial if it occurs exactly at the location of a sensor
node. In all other cases, the denominator cannot be zero.

If we assume that we have enough information to build
at least three (in the planar case) instances of (3) a set of
equations can be built that can be linearized and solved with
a standard least-square approach: E = (ATA)™'ATb. E is
the location estimation of the event, A is the matrix contain-
ing the linear parts of the instances of (3) and b is a vector
containing the constant parts of the instances of (3). When
the inverse matrix cannot be calculated, the location cannot
be computed and the multilateration fails. This happens if
ws = wgs what is the case if the ratio of the intensities is
1. This constitutes however no problem, as in this case the
position of F lies on the vertical line through the middle of
SS’. The intersection of this vertical line with any of the
participating circles results in the possible locations of event
E. Consequently, in the case of wg = wgs the matrix is not
calculated and the location is estimated using the intersec-
tion of the vertical line with any two independent circles
derived from the intensities.

4. HARDWARE PLATFORM

The sensor hardware we have used for our experiments is
the ESB platform [10]. The nodes are built from standard
components, consisting of a chip with a MSP430F149 mi-
crocontroller, 2kB of RAM, 60kB flash memory, and a low
power consuming radio transceiver. Furthermore, the sensor
boards are equipped with a number of sensors such as PIR,
temperature, vibration, microphone, etc.




As already mentioned above we encountered a number of
problems when trying to get scalar values indicating the in-
tensity with which an event is sensed by the different sensors
on a ESB sensor board. This is mainly due to the minia-
turization of the implemented hardware. The sensors have
to work with at most 3 V DC and should consume as little
current as possible. Furthermore, the accuracy of the sensor
reading may depend as in the case of the microphone on the
input voltage, which varies over time.

Being confronted with such hardware constraints we de-
cided to try to simulate the intensity by sampling the sensors
a certain number of times in a predefined interval. When
using the PIR sensor, this solution led to reasonable results.
The idea of the procedure is that a moving object is more of-
ten observed by a close sensor board than by a sensor board
which is farther away. This assumption seems to be reason-
able as the trigger threshold of the PIR sensor is exceeded
the quicker the closer the moving object is. This is obvious
as in that case more infrared waves are received by the PIR
Sensor.
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Figure 2: Horizontal detection area [m?] according
to the PIR data sheet.

In Figure 2 the horizontal detection area of the PIR imple-
mented on the ESB sensor boards is depicted. The vertical
detection area of the PIR has a quite similar look. It is how-
ever not depicted as in all simulations we did, the observed
object is positioned approximately on the same altitude as
the sensor board. We have to add here that the horizontal
area coverage of the PIR is not really satisfactory. The de-
tection distance strongly depends on the angle of incidence
and there are regions where even no detection is possible.
This led to some limitations in our experiment setups that
will be discussed in the next section. However, at the mo-
ment the PIR implemented on the ESB sensor boards is the
only device we got feasible results with.

5. PERFORMANCE RESULTS

We will now discuss our experiment setups and the perfor-
mance results we got with the different tests. As discussed
in Section 4 we determine the intensity of an event sensed
by a particular sensor board by sampling the sensor board a
certain number of times in a predefined interval. To deter-
mine the interval as well as the number of samples in that

interval we first had to determine the sample interval, i.e.
the minimum time that is necessary to trigger the PIR sen-
sor by measuring spectral differences of the infrared light
while observing a moving object. By testing the PIR sen-
sors we derived a value of approximately 130 milliseconds.
Limited by this constant we set the measurement interval
to two seconds and sampled the PIR sensor 15 times in that
interval. The intensity of an event, which indicates the prox-
imity to the event, i.e. of a moving object, is the number
of times the event has been sensed within one interval, i.e.
it lies between 0 and 15. It is important to keep in mind
that the intensity is not sufficient to estimate the distance
to the moving object (see section 3). But the intersection
point of the circles derived from the ratios of the intensities
is sufficient to estimate the location of the moving object.
In order to observe a moving object for a certain amount
of time we repeated the interval ten times in one test. This
means, the observing period of a certain area was 20 seconds
in each test. All listed values remain constant throughout
all experiments.

In all experiments a loose time synchronization is needed.
All sensor boards should measure the moving object approx-
imately at the same time. As a test runs only for twenty
seconds, clock drifts within that period can be neglected.
The time synchronization is achieved by informing all ESB
sensor boards to start their monitoring period at the same
time, what is done by a broadcast message sent by the base
station. After completion of the monitoring period, all ESB
sensor boards respond with a message containing an array of
the intensities measured during the monitoring period. With
this data the base station has the necessary information to
perform the intensity-based multilateration algorithm. The
algorithm obviously considers only intensities sensed in the
same sample period to estimate an object location. In the
current state of our work we are mainly interested in the
accuracy of the computed location and see therefore no re-
striction in performing the computation at the base station.

5.1 Localization of a Human Hand Moving at
a Place

Our first experiment is somehow artificial, but we tried
to minimize the influences of the PIR detection area distri-
bution by minimizing the observing area of our sensor net-
work. Consequently, we had to minimize the moving object
as well. We placed eight sensors on a quadratic area with a
dimension of 9 square meters. The setup of the experiment
is depicted in Figure 3.

Figure 3: Experiment setup.

The sensors have been placed on a plain area where some



holes have been provided, where the hand has been plugged
through. Thus, the sensors observed only the hand. The
rest of the body was hidden from the sensors. Positions and
directions of the sensors are indicated by the black arrows
depicted in Figure 4. The moving object (human hand) was
located at the positions of the three large symbols (o, +,
x) in the different runs. In this experiment we determined
the intensity as the average of the intensities measured in
one test, i.e. in 20 seconds. This has been done because the
variations with the current PIR hardware is considerably
in the individual intervals. Each experiment was repeated
eight times at each location of the hand.
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Figure 4: Localization of three different but close by
positions of a human hand.
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Figure 5: Barycenters of the clusters built by the
position estimations.

The results of the first experiment are depicted in the
Figures 4 and 5. In Figure 4 the individual location estima-
tions of each experiment are shown, whereas the barycenters
of the location estimations computed in each individual ex-
periment are depicted in Figure 5. The distance errors of
the barycenters are 0.22 m for o, 0.18 m for +, and 0.11 m
for x. The results show that a spatial correlation of the real

location and the estimated positions of the hand is given.
The individual position estimations of the hand build more
or less disjoint clusters around the correct hand locations.
We think the results are quite promising, in particular when
considering the small distances between the different hand
locations and the detection properties of the current PIR
Sensors.

5.2 Localization of a Person Moving at a Place

In this second experiment we tried to localize a person
moving with an approximately constant moving pattern at
the same place. The person thereby moved at a speed of
about SkTm. We placed ten ESB sensor boards in a corridor
with five sensor boards on each side of the corridor. The
sensor boards were placed 90 centimeters above the ground.
Positions and directions of the sensor boards are again de-
picted as black arrows in Figure 6. The moving person was
located at the positions of the three big symbols (o, x, +) in
the different runs. The average of the intensities measured
in one test was again used as the overall average during that
test due to the same reasons as above. The estimation of the
location of the person at a particular position was performed
eight times.
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Figure 6: Location estimation of a person constantly
moving at two places.

The results in 6 show again that a spatial correlation be-
tween the real location of the person and the estimated po-
sitions exists. The high variation of some estimations of
location (o) compared to the results for location (x) are
astonishing. We assume that the difference is founded by
the varying lighting conditions in the room. Variations in
the detection area distributions between the individual sen-
sors could be another reason. What we wanted to show is
however the spatial correlation between the estimations and
the real location of the person. Due to the arrangement
of the sensor boards in this experiment, the localization of
an event is only adequate in one direction. Therefore, we
identified variations for events that where not located close
to the middle line. This impact is caused by the spatial
detection distribution of the PIR sensors.

5.3 Tracking of a Moving Person

The first two experiments have shown that the localiza-



tion of a moving object is possible as long as the sensors are
deployed densely enough. In this last series of experiments
we tried to track a person moving along a predefined path.
Therefore we placed again ten ESB sensor boards in a cor-
ridor with five sensor boards on each side of the corridor.
Due to the limited range of the PIR detection area we re-
duced the corridor width to four meters. The sensor boards
were placed 90 centimeters above the ground. Positions and
directions of the individual sensor boards are depicted in
Figure 7. The person moved along a path which is indi-
cated by the solid line. The person started in all runs at the
left side of the corridor. Furthermore, the test person tried
to move as constant as possible in all runs. As the person
moves along the path during the observation period, the de-
termination of the intensity as the averaged sensed intensity
within one test run, as done in the experiments above, makes
no sense. Instead we repeated each experiment eight times
and took the average of the intensities determined in the
according intervals of the individual runs. Thus we got ten
location estimations for the path, one for each measurement
interval.
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Figure 7: Tracking of a person moving along a path.

Figure 7 shows the results of the person tracking experi-
ment. The location estimations effectively build a path, but
the position estimations along the path are a little concen-
trated to the horizontal center of the corridor. This effect
is due to the fact that there are no sensor boards placed
further than the left and right borders. Consequently, as
long as the moving object is close to the border its location
estimation is shifted to the horizontal center as it is sensed
by more nodes close to the horizontal center. This is not a
property of the multilateration method, but of the sensing
capabilities of the PIR sensors. Nevertheless, even with this
restriction the localization and tracking of moving objects
works as shown by the results we gained so far.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that an intensity-based lo-
calization on existing sensor boards is under certain restric-
tions possible. In particular the network density and the
locations of the deployed sensor boards have a big influence
at the localization accuracy and at the detection area where
the localization is feasible. It is important to note that the

goal of this work was not to present a final and operating
tracking architecture, but to give a proof of applicability
of our localization scheme. We have identified the sensing
limitations of the current sensors implemented on the ESB
sensor boards and proposed a solution for the PIR sensor.
By using this PIR sensor we were able to measure the in-
tensity of a moving object on the sensor boards. We have
shown that a location estimation by using solely passive in-
formation and without the need of distance estimations is
not only theoretically, but also in practice possible.

On the other hand we note that with the PIR sensors
currently implemented on the sensor boards accurate local-
ization in advanced applications is only restricted practica-
ble. Nevertheless, we think that an intensity-based localiza-
tion with more appropriate hardware would be promising.
Another issue that could improve a real application of our
approach is hardware calibration.

In our future work we will look for sensors which are capa-
ble of measuring real scalar intensities. We will also consider
other sensors like microphones. Obviously with microphones
and other sensors that depend on signal transmissions we
will have to deal with reflections, directions, and so on that
introduce a number of new difficulties. We will have to in-
vestigate the tracking of concurrently moving objects, what
has not yet been considered as it does rather depend on
classification techniques than on the exact event location
prediction investigated in this work.
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