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Abstract. In this paper we present a new management architecture for
heterogeneous wireless sensor networks (WSNs) called MARWIS. It sup-
ports common management tasks such as monitoring, (re)configuration,
and updating program code in a WSN and considers specific charac-
teristics of WSNs and restricted physical resources of the nodes such
as battery, computing power, memory or network bandwidth and link
quality. To handle large heterogeneous WSN we propose to subdivide it
into smaller sensor subnetworks (SSNs), which contains sensor node of
one type. A wireless mesh network (WMN) operates as backbone and
builds the communication gateway between these SSNs. We show that
the packet loss and the round trip time are decreased significantly in
such an architecture. The mesh nodes operate also as a communication
gateway between the different SSNs and perform the management tasks.
All management tasks are controlled by a management station located
in the Internet.

1 Introduction

A heterogeneous wireless sensor network (WSN) consists of several different
types of sensor nodes (SNs). Various applications supporting different tasks,
e.g., event detection, localization, and monitoring may run on these specialized
SNs. In addition, new applications have to be deployed as well as new configu-
rations and bug fixes have to be applied during the lifetime. In a network with
thousands of nodes, this is a very complex task and a general management archi-
tecture is required. The questions are, how we can achieve that the monitoring,
the configuration, and the code updating can be performed on heterogeneous
sensor nodes during their life-time? How has such a heterogeneous WSN to be
structured to handle these management tasks efficiently and automatically over
the network?

In this paper, the usage of a wireless mesh network (WMN) as a backbone to
build a heterogeneous WSN is motivated. The proposed new management archi-
tecture called MARWIS supports common management tasks such as monitoring
the WSN, configuration of the WSN, and code updates.



This paper is structured as follows: Section 2 introduces related work on
management of WSNs, middleware, code distribution, and reprogramming. Af-
terwards, the management architecture MARWIS is presented, including the
description of a heterogeneous WSN using a WMN backbone (Section 3), the
specification of the infrastructural elements (Section 4), and the management
protocols (Section 5). The implementation of MARWIS is described in Section
6, the evaluation of the advantages of using WMNs as backbone for heterogenous
WSNs in Section 7. A conclusion is presented in Section 8.

2 Related Work

Most management and code distribution approaches does not support hetero-
geneous WSN environments and distribute specific code for such SN platforms.
However, advanced WSNs are typically composed of rather heterogeneous SN,
since the functionality required is highly versatile. To improve current research,
our concept adds mechanisms to support heterogeneity for management in WSNs.
In [1], we presented a short overview of the management architecture to be de-
scribed in much more detail in this paper.

MANNA [2] is a management architecture for WSNs. It provides functions
to establish configurations for WSN entities. The deployment of several manager
nodes in a hierarchical way based on clustering has been proposed. TinyCubus
[3] is a management and configuration framework for WSNs. It is based on a
clustered architecture and assigns certain roles to the SNs. Another focus of Tiny-
Cubus is code distribution, minimizing the code fragments to be distributed in
a WSN. The so-called Guerrilla management architecture [4] facilitates adaptive
and autonomous management of heterogeneous ad hoc networks.

Promising concepts to hide hardware heterogeneity in WSNs are middleware
approaches as presented in [5] based on either scripting language interpreters or
virtual machines. MiLAN [6] provides a set of middleware mechanisms for adapt-
ing the WSN to affect the application supplied performance policy. No support
for dynamic code update is included as its operation may not be changed at
run-time. Impala [7] is a middleware architecture that enables modular appli-
cation updates and offers repair capabilities for WSNs Maté [8] is a byte-code
interpreter (virtual machine) running on TinyOS and allows run-time repro-
gramming. The Global Sensor Network (GSN) [9] provides a middleware for fast
and flexible integration and deployment of heterogeneous WSN.

Surveys of software update techniques in WSNs are presented in [10], [11]
and [12]. They focus on the execution environments at the SNs, the software
distribution protocols in the network and optimization of transmitted updates.
The authors of [13] propose efficient code distribution in WSNs. The focus is the
reduction of the total amount of data for a code update by only transmitting the
differences between the old and new code. Different optimizations like address
shifts, padding and address patching are made. In [14] an incremental network
programming protocol, which uses the Rsync algorithm to find variable-sized
blocks that exist in both code images and then only transmits the differences is



presented. In [15] a scheme that uses incremental linking to reduce the number
of changes in the code and transmits the code update with a diff-like algorithm is
described. FlexCup [16] is more flexible, as the linking process is not performed at
the base station, but on the SNs. Multi-hop Over-the-Air Programming (MOAP)
[17] is a code distribution mechanism specifically targeted for Mica-2 motes. It
focuses on energy-efficient and reliable code distribution.

3 WSN Management Scenario and Tasks

Many different applications may run in a WSN, e.g., event detection, localiza-
tion, tracking, monitoring. Therefore, different types of SNs, which might mea-
sure different sensor values and perform different tasks, are required. Existing
SN platforms in general have different radio modules, which are not interoper-
able. SNs of the same type build a sensor subnetwork (SSN), which is not able
to communicate directly to another SSN. A heterogeneous WSN is built from
several SSNs. To interconnect such a heterogencous WSN mesh nodes (MNs) are
proposed as gateways between these SSNs. A SN plugged into a serial interface
(e.g. USB) to a MN works as gateway. The wireless MNs communicate among
each other via IEEE 802.11. A possible scenario is shown in Fig. 1.
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Fig. 1. A possible scenario for heterogeneous WSNs with management devices.

Currently available sensor nodes are mainly prototypes for research purposes.
We have evaluated a number of sensor nodes and selected four of them to build a
heterogeneous WSN: ESB nodes [18], tmote SKY [19], BTnodes [20], and MICAz
[21]. For the management backbone a WMN consisting of mesh nodes with two
IEEE 802.11g interfaces, an AMD Geode 233 CPU and 128 MB RAM have been
selected. A 8 GB CompactFlash card can be attached.

The use of such an architecture with a WMN as backbone has various advan-
tages. In addition to the communication gateway functions MNs further perform
management tasks for heterogeneous WSNs. The main benefit is the ability to
communicate with different types of SNs in several SSNs. Moreover, the use of
a WMN has advantages by subdividing a huge WSN into smaller SSNs. A WSN
consisting of thousands of nodes and one base station creates many communi-
cation problems. Most of them are caused by the high number of SN hops in



larger WSNs. Subdivision into smaller SSNs limits the sensitive SN links to 3 or
4 hops to the next sensor node gateway. These results in a better communication
performance with a clearly lower packet delay, jitter and packet loss. SNs in the
vicinity of the sink preserve energy and processing power, because they do not
have to forward the whole WSN traffic. Another advantage of using a WMN is
that a new SN platform can be easily inserted into the heterogeneous WSN by
plugging a SN gateway into a MN. The IP address allocation depends on the
corresponding MN, which makes it possible to allocate similar IP address in a
physical neighborhood.

The MNs also provide management functionalities for heterogeneous WSNs.
Hence, the limited SNs have less management functions to perform, which de-
creases memory and computation requirements. In a heterogeneous WSN with
a large number of different SNs, a comprehensive management architecture is
required. In addition to the MNs, providing the management functionality, there
are one or more management stations (see Fig. 1). A user performs the man-
agement tasks with their support. From the management point of view there
are several tasks required to manage a heterogeneous WSN. In general, the
tasks can be divided into four areas: (1) monitoring the WSN and the SNs,(2)
(re)configuring the WSN and the SNs, and (3) updating and reprogramming the
SNs.

The management tasks include visualization of all SNs in the several subnet-
works at the management station. Furthermore, status information about the
SNs has to be monitored and displayed. This includes SN hardware features
(micro-controller, memory, transceiver), SN software details (operating system
versions, protocols, applications), dynamic properties (battery, free memory),
and, if available, position information. SN configuration includes configuring the
SNs, the running applications or the network. Updating and reprogramming the
SNs is a very important issue. In a large WSN manual execution of this task is
not feasible. A mechanism to handle this automatically and dynamically over
the network is required. Both the operating system and applications must be
updated, fully or partially. Mechanisms to handle incomplete, inconsistent, and
failed updates have to be provided. Aggregating and managing the sensor values
includes mechanisms to store and download the collected data from the SNs.
There are many existing mechanisms and protocols, which have been designed
for aggregating data from SNs (e.g. Directed Diffusion [25]). Therefore, in our
architecture this task is treated as optional and not as major issue.

4 Management Architecture

The architecture to manage heterogeneous WSNs efficiently contains the fol-
lowing structural elements: one or more management stations, several MNs as
management nodes, SN gateways plugged into a MN, and the different SNs.
These elements are shown in (Fig. 2).



4.1 Management Station with Management System for WMNs

The management station is divided into two parts. It consists of a laptop or
remote workstation to access a graphical user interface to control the WSN and
a management system for WMNs [22], which is connected to the Internet and
can be accessed by the remote workstation from anywhere. It includes a web
server and is shown in Fig. 2(a).
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Fig. 2. Architecture of the MARWIS elements.

The user interface displays the WSN topology with the MNs including the
subordinated SNs and information about the SNs (1 in Fig. 2(a)). The manage-
ment system for WMNs contains a small Linux distribution [22] including
all required applications, especially a HT'TPS server, which maintains different
modules to handle the requests and transmits them to MNs, SNs or CFEngine
[23], such as WSN monitor, WSN configurator, and code update man-
ager. The communication with a MN is done via TCP/IP (2). The CFEngine
distributes management data within the WMN (3).

4.2 Mesh Node with WSN Manager

The WSN manager is located on every MN provides the management func-
tionality for the different SSNs. It consists of three databases, the MARWIS
server with three program modules and the CFEngine (as shown in Fig. 2(b)).

The WSN information database stores all information about the SNs and
the WSN; such as topology (neighbours, address), and states of the SNs (battery,
memory). The program version database stores all versions of all programs
for all platforms, which can be installed on the SNs, and the sensor value
database stores all data measured by the sensors. All databases are accessible
by an API to get and store data (1 in Fig. 2(b)).

CFEngine is responsible for distributing management data within the WMN
(2). Communication within the WMN als well with the SSN is done over TCP /TP



(3). The WSN monitor module connects to the WSN information database
and to the sensor value database in order to handle the requests from the man-
agement station. It also stores data coming from the SNs into the databases.
The WSN configurator module is responsible for the configuration tasks.
It queries properties from the SNs and stores them in the WSN information
database. The code update manager module stores newly received program
images (and related information) in the program version database and notifies
the management station about available programs. Compression mechanisms
or differential patches are used to reduce the amount of transmitted data. To
execute the updating process, it transmits the image to the SN.

4.3 Sensor Node with SN Agent

As shown in Fig. 2(c), the management tasks are handled by a SN agent.
It consists of a SN monitor, a SN configurator, and a code updater. The SN
monitor handles the monitor requests by sending the values to the MN. The
SN configurator executes the configuration requests and notifies the MN. The
code updater is responsible for the code replacement on the SN. It receives the
program image of the application or operating system and performs the update
by loading the new module and replacing the old one. Finally, it informs the MN
about the success of the update. Communication within the SNs is done over
TCP/IP (1).

5 WSN Management Protocols

This section describes the management functionality in more detail. We consider
the monitoring, configuring, and the code updating as important issues of our
management architecture.

5.1 WSN Monitoring Protocol

Monitoring of the WSN can be performed in two ways. First, the management
station explores the WMN and the subordinate SSNs. Alternatively, the user
can query a selected sensor directly.

Fig. 3(a) shows how the management station queries the MNs about their
SSNs (1). The WSN monitor module queries the WSN information database (2).
Afterwards, the management station requests the current sensor values from ev-
ery subordinate SN (3), by querying the sensor value database (4). All informa-
tion from every SN is stored in the WSN information database and distributed
in the whole WMN. Thus, we have a general view over the whole heterogeneous
WSN. For displaying network topologies of SNs no additional transmissions to
the SNs are required and the querying a MN is much faster than querying a SN.

Moreover, the user can request information from a SN directly and not query
the WSN information database on the MN. This is shown in Fig. 3(b) and works
as follows: the user requests information from a SN. The request is transmitted
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Fig. 3. Monitoring the WSN.

to the queried SN (1), which sends the requested value back to the MN (2).
The WSN Monitor Module writes the new value into the database (3), and
distributes it within the WMN (4). Finally, it sends the requested value to the
WSN monitor (5).

By using a WMN as backbone the number of hops is decreased (by dividing
the WSN into SSNs). This means that the communication load of a direct re-
quest to a SN occurs mainly in the WMN. Thus, the request can be processed
much faster and more energy-efficient. Overload and congestion in WSNs are
prevented.

5.2 WSN Configuration Protocol

With the WSN configuration protocol the properties of the SNs as well as the
network can be configured. Examples are switching sensors on/off, or changing
routing tables. The procedure is similar to the WSN monitoring, but a configura-
tion command is included in the request. As the SN configurator has a universal
interface and hides the SN type specific characteristics, the packets with the con-
figuration commands are independent of the node type. The heterogeneity of the
WSN is hidden from the user, and therefore the configuration can be processed
without knowledge of the specific node type. One or more sensor nodes can be
targeted. When a new SN joins, first an initial network configuration is negoti-
ated. Afterwards all available data is requested from the SN by the configuration
module on the MN and propagated within the WMN.

5.3 Code Update Protocol

The code update protocol consists of three main subtasks. The new image of
an application or the operating system is uploaded and stored in the program
version database and distributed within the WMN. The management station is
notified about the programs available. Finally, the image is transmitted to the
SN performing the update. One or more sensor nodes can be targeted.

The main part of the protocol is the updating process of the SNs as shown
in Fig. 4. The program version and the SNs are selected, sent to the involved
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MNs (1), and checked by querying the WSN information database (2). The
image is taken from the program version database (3), and sent to the selected
SN (4). On the SN the update is performed (5) and acknowledged (6). The
WSN information database is updated (7) and finally the management station
is notified (8).

6 Implementation

This section describes the implementation of the first prototype of MARWIS.
Four different components have to be realized: first, the management station
with the user interface and the management system for WMNs; second,
the MNs building a multi-hop WMN and providing the above described manage-
ment functionality; third, the SN gateways to enable communication between the
WDMN and the WSN; and fourth, the different SNs running Contiki and building
the heterogeneous WSN.

The management station consists of two computers. On one a Live-CD system
is running, which contains all necessary programs and configurations to start
the management software. The other simply provides a web browser for the user
interface and connects over HT'TPS to the computer running the Live-CD. This
architecture is very flexible, because on one hand the Live-CD system requires
only minimal hardware performance and can be booted on almost every standard
computer. On the other hand, the system with the user interface can be located
somewhere in the internet and has to support just a web browser.

The user interface visualizes the topology of the networks (Fig. 5) and the
information about the SNs (Fig. 5(c)). By clicking on the hosting MN (e.g. mn01)
the corresponding sensor subnetwork is shown (Fig. 5(b). By clicking on a SN (e.g
sn01) the information about the SN, the installed sensors and the neighbors are
shown (Fig. 5(c)). By selecting an element (e.g. the operating system version)
it can be configured or an update can be initiated. The graphics are created
by Graphviz 2.12 [26] using the neighborhood data from the WSN information
database. Position data by GPS or distance estimation by radio signal analysis
can be included in the neighborhood data for Graphviz to achieve an accurate
topology illustration.

The Live-CD with the management system for WMINs contains a small
Linux distribution (kernel 2.6.14.6) including all required applications, especially
a HTTPS server for the connection with the user interface. The modules handling
the management tasks and communication to the MNs are implemented as a



Fsni
=-@BInformations
[3 sensor_node_name: tmoteSky

sn2
/< ;\\ / [ chip_name: MSP430 F1611
N (\wsnS ) [ transceiver_name: CC2420
( ) NN z [3 battery_curr_value: 35%
wsnl) A o O ip_acress: 10.0.1.1
ip_adress: 10.0.1.
\ ~ mn01 %4 — \ [3 meshnode_id: mnoz
@ ,s'm [3 os_name: Contiki
mn02 N [} os version: 2.0.1.1a
' o |Sensors
/ (\,ﬁno Sl n({ﬁo 1 [3 SH11 (temperature)
/ [3 sH13 (light)
3 & g2Neighbours
mn03 A #sn3
(a) WMN. (b) WSN. (c) SN information.

Fig. 5. User interface.

server written in C using sockets (MARWIS server). The databases are managed
with sqlite3 [27]. The API for accessing the databases is implemented in C.

The WSN information database contains the following tables: meshnodes,
meshnet, sensornodes, sensornet, sensors, swcomponents, and properties. The net-
work tables list the neighbors of a MN responsible of a SN. The properties table
is the central table, which contains the IDs of all possible properties, such as chip
name, battery, memory, sensor values, software components. The tables sensorn-
odes, sensors, and swcomponents contain the current values, and time stamps
of the according properties. The sensor value database contain also the sensors
table, and stores the whole history of the values. The program version database
contains one table, which has meta information of a program’s version (such as
name, version, platform) and the link to the file. These databases are updated
over our management data distribution system using CFEngine.

The CFEngine is designed to keep installations and configuration files in
large computer networks up to date. In our approach, it distributes the topology
and collected sensor data in the WMN. Therefore, a directory with files to share
is specified in each MN. New files to distribute are copied into this directory. A
neighbor node checks for new files and downloads them if necessary. Thus, the
information is propagated through the whole network. Scripts can be executed
handling the propagated data, e.g., write them into the according databases.
MNs provide enough memory to store all this data (ca. 100MB for a 1000-node
WSN running during one year with a measurement cycle of one hour).

On the MNs the same software as on the Live-CD system is running, except
for the HTTPS server with PHP. The modules handling the management tasks
and communication are also implemented in C. To communicate with the SSN a
Serial Line Interface Protocol (SLIP) over the Linux TUN/TAP kernel module
is used. SLIP connects the IP layer of the MN directly to the IP layer of the SN
gateway. The SN gateway can communicate directly with the SSN.

Contiki [24] is running on the SNs as a operating system. The code updater
on the SN is responsible for the code replacement. Contiki works with loadable



modules to allow replacing only parts of the operating system or applications.
Except for the Contiki kernel, all modules can be replaced at run-time. The
system has to be rebooted for kernel updates. The newly written applications
have to fulfill just small constraints. To start and finish the application the
functions _init() and _fini() are required and the application has to be complied
as ELF (Executable and Linkable Format) loadable. The standard ELF or CELF
(Compact ELF) is used. In contrast to ELF files CELF files are represented with
8 and 16-bit data types, which is adequate for 8-bit micro-controllers. Therefore,
CELF files are usually half the size of the corresponding ELF file, but cannot
be loaded by a standard ELF file handler. The code updater listens to the TCP
port 6510 for new images of applications. On the MN side a small program is
running, which sends a given image to port 6510 at a selected IP address.

After reception the referenced variables are checked and functions of the new
application are linked and relocated by the Contiki dynamic Link Editor (CLE)
and the application is copied to the ROM. Then the code updater starts the
application using the _init() function.

7 Evaluation

The further away a SN is located from the base station the higher the packet
loss and the round trip time (RTT) are. Retransmissions for lost packets usually
increase RTT and jitter. In our network architecture the WMN builds a fast
backbone. Every SN in our network can connect with an average hop count
of 2 to 3 hops to a mesh node. For investigation of the additional RTT and
packet loss for increased hop count in WSN and WMN, we made experiments
with ICMP echo request (ping). RTT time was evaluated with one, two and
three hop sensor node and mesh node links. As MNs, an AMD Geode 233 CPU
and 128 MB RAM with two 60 mW IEEE 802.11g interfaces, were used. The
SN network tests were made with tmote sky nodes running a standard Contiki
installation, as these SN platform features the fastest radio module (CC2420 with
1mW transmission power) and the highest amount of RAM. The SNs and MNs
are located in different rooms. They are placed in such distance from each other
distance between them is far from each other distanced that a node can only
communicate with its one hop neighbors. Two hop neighbors are just recognized
as interferences.

Fig. 6(a) shows the different RTT times over 500 measurements. An addi-
tional SN hop causes over 50 times longer RTT than a MN hop. Fig. 6(b) shows
the packet loss over 500 packets, which is also much higher than on a mesh link.
Although the measured values strongly depend on the hardware used as well
as on the operating system and the communication protocols, the difference be-
tween a mesh and a sensor node hop is obvious. A large WSN with more than
a dozen hops will be unserviceable. Moreover, it is possible to connect different
SSNs with a WMN. With a MN backbone and directional antennas it is also
possible to connect distant SN networks. Measurement where the sensor nodes



are located within one room on one table are not realistic, less than the 1% of
the packets get lost.
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Fig. 6. Evaluation.

8 Conclusion

Most of the existing management approaches for WSNs are not dealing with
heterogeneity. MARWIS, a management architecture for heterogeneous WSNs,
solves this drawback. We showed that a complex heterogeneous WSN can be
managed in an efficient way by using WMNs forming a backbone. We evaluated
that the packet loss and the RTT is decreased significantly using a WMN as
backbone, which is a precondition for an efficient management of heterogeneous
WSNs. The MARWIS architecture with the modules and the used protocols
provides the monitoring, the reconfiguration and the code updating of SNs in
large heterogeneous WSN.
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