
SNOMC: An Overlay Multicast Protocol for
Wireless Sensor Networks
Gerald Wagenknecht, Markus Anwander, Torsten Braun

Institute for Computer Science and Applied Mathematics
University of Bern

Neubrückstrasse 10, CH-3012 Bern, Switzerland
wagen|anwander|braun@iam.unibe.ch

Abstract—Using multicast communication in Wireless Sensor
Networks (WSNs) is an efficient way to disseminate the same
data (from one sender) to multiple receivers, e.g., transmitting
code updates to a group of sensor nodes. Due to the nature of
code update traffic a multicast protocol has to support bulky
traffic and end-to-end reliability. We are interested in an energy-
efficient multicast protocol due to the limited resources of wireless
sensor nodes. Current data dissemination schemes do not fulfill
the above requirements. In order to close the gap, we designed
and implemented the SNOMC (Sensor Node Overlay Multicast)
protocol. It is an overlay multicast protocol, which supports
reliable, time-efficient, and energy-efficient data dissemination
of bulky data from one sender to many receivers. To ensure
end-to-end reliability, SNOMC uses a NACK-based reliability
mechanism with different caching strategies.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are sets of wireless sensor
nodes, on which different applications are running to support
applications such as event detection, localization, tracking, and
monitoring. Independent of the performed task an application
should be configured and continuously updated throughout
the lifetime of the sensor nodes. Configuration and updating
should be done over the air [1] and then the traffic for sensor
data retrieval differs considerably from the predominant traffic
pattern in WSNs, which is multipoint-to-point communication.
On the contrary, during a code update point-to-multipoint
communication takes place, e.g., the code update needs to
reach multiple (or all) sensor nodes. The traffic nature of the
updates is bulky in this case. Since node updates are rather
crucial, transmissions should be reliable.

Distributing data from one sender node to many receivers
can be done in different ways. The simplest one is flooding
where data is transmitted using broadcast communication.
Flooding, however, is inherently very inefficient, energy-
consuming, and unreliable. Another way is to rely on multiple
unicast connections between sender and any of the desired
receivers. In the context of WSNs, however, redundancy leads
to to higher probability of collisions, which can cause long
transmission times. Current code dissemination schemes such
as TinyCubus [2], Deluge [3], and Trickle [4] distribute code
using broadcast and without any reliability mechanism. This
leads to inefficient and unreliable code distribution. A more
efficient distribution scheme, which better fits the requirements
set by configuration and code updating, is multicast. Multicast

is able to propagate data from a single sender to many receivers
by affecting smaller numbers of sensor nodes in the network.
It is easily extendable with any kind of reliability mechanism
and it has better support for bulky traffic patterns. Thus,
multicast communication fits very well for any code update
task in WSNs. In the literature several solutions for multicast
in WSNs are proposed, but they mainly deal with multicast
routing and not with reliable and efficient data distribution.
Currently, to our knowledge, there is not a single multicast
protocol able to meet the combined set of requirements for
reliability and efficiency (in both time and energy consump-
tion) for bulky traffic patterns.

The question arises how can we design such a multicast
protocol in a WSN. How can we support end-to-end reliability
(necessary for code updates) while still keeping energy con-
sumption and delays low? In the design process several choices
need to be made including how bulky traffic is best propagated
and what is an appropriate underlying MAC protocol. Further,
we would like the multicast communication to be IP-based in
order to access the WSN via the Internet [5].

In this paper, we propose the SNOMC (Sensor Node Over-
lay Multicast) protocol, which supports the reliable transfer of
bulk data in a WSN from one sender to multiple receivers.
It is designed as an overlay multicast protocol on top of
the µIP stack from Contiki [6]. The main advantages of
SNOMC compared to previously proposed solutions are: (1)
its time- and energy-efficient manner of data distribution and
(2) the simple NACK-based mechanism supporting end-to-end
reliability.

II. MULTICAST IN WIRELESS SENSOR NETWORKS

Wireless sensor networks are often limited in energy, mem-
ory, and CPU power. They pose new challenges not existing
in wired networks. Hence, porting an existing IP Multicast
solution designed for wired networks to wireless sensor net-
works is impractical or even impossible. In wired networks,
routers are handling packet replication and forwarding while
clients only send and receive simple IP datagrams. To directly
port IP Multicast from wired networks to WSNs we need to
introduce the IP Multicast router functionality at each sensor
node. This would require memory and processing power that
a sensor node may lack. Even if resources are available, the
lifetime of a node will be severely affected.

There are also some differences from an architectural point
of view. Generally, we distinguish between two node types
in WSNs, namely branching nodes and forwarding nodes.
Branching nodes participate in the multicast communication,
duplicate packets, and store state information about receivers
and/or about other branching nodes. Forwarding nodes have
less or no information about the multicast state and just
forward the multicast data from one neighbor to the next one.
An example of a WSN topology with multicast is shown in
Fig. 1. Sender, branching nodes, forwarding nodes, and three
receivers (group members) are indicated.

source
node

branching
node

receiving
node

forwarding
node

Fig. 1. Roles of the nodes in a multicast scenario.

Moreover, wireless communication links have shown to
be more error prone compared to wired links. This raises
additional concerns about medium availability, collisions, and
reliability. A multicast solution for WSNs needs to address all
these issues and in particular reliability, since code updates or
other critical tasks could be solved efficiently by multicast.

III. RELATED WORK

There are different data dissemination schemes frequently
used in WSNs. One such scheme is Directed Diffusion [7]
that can be used for both multipoint-to-point and point-to-
multipoint communications. Broadcast-based data dissemi-
nation schemes are less complex but are also much more
inefficient. Pump Slowly, Fetch Quickly (PSFQ) [8] is a
reliable transport protocol and supports broadcast based code
distribution. It transmits data segments relatively slow (’pump
slowly’) and uses an aggressive NACK mechanism to fetch
missed data segments (’fetch quickly’). The aggressive NACK
mechanism can lead to congestion in the WSN. Multipoint
Relaying (MPR) [9] protocol is used to optimize broadcast-
ing. Each node in MPR requires knowledge of its two-hop
neighborhood. Based on this information, subsets of one-hop
neighbors are forced to rebroadcast given data packets. These
nodes are called multipoint relays. The multipoint relays are
chosen according to its connectivity to other nodes. MPR
does not support any reliability mechanism. TinyCubus [2] is
an adaptive cross-layer framework for sensor networks (also
broadcast-based). It deploys a role-based code distribution
algorithm that uses cross-layer information, such as role
assignments, in order to decrease the number of messages
needed to distribute code to specific nodes. It is assumed
that roles are assigned before code deployment and that the
connectivity of the network for a given role can be determined
up-front.

In [10] a multicast protocol called BAM (Branch Ag-
gregation Multicast) is presented, which supports single-hop
link-layer multicast and multi-hop multicast by doing branch
aggregation. Another multicast protocol for sensor nodes,
with support of node mobility, is VLM2 (Very Lightweight
Mobile Multicast) [11]. VLM2 provides multicast from a base
station to sensor nodes and unicast from sensor nodes to
a base station. In [12] the authors present an effective all-
in-one solution for unicasting, anycasting, and multicasting
in wireless sensor and mesh networks. RBMulticast [13] is
a stateless, receiver-based multicast protocol, which exploits
knowledge on the geographic locations of nodes to reduce
costly state maintenance. The authors of [14] adapt ADMR
(Adaptive Demand-driven Multicast Routing), a multicast pro-
tocol for mobile ad-hoc networks, on a real wireless sensor
node (MICAz). They show that protocol adaptation is not
a trivial task and a number of problems have to be solved.
At the same time, the authors of [15] analyze IP Multicast
and show that it is possible to use it in WSNs. Further,
there are several multicast solutions for WSNs based on the
geographical position of the sensor nodes [16], [17], [18]. All
of these protocols support neither end-to-end reliability nor
energy-saving mechanisms.

IV. PROTOCOL DESIGN

We aim to design a protocol that supports multicast in
WSNs in an efficient and energy-saving way. The protocol
should support bulky traffic, which is characterized by data
arrivals in bursts of, e.g., 1000 bytes. A typical example
of bulky traffic is code update when the update originates
from one sender and is intended to reach many receivers.
Since code updates are crucial for the operation of the WSN,
communication must be reliable. Additionally, we also want
that the multicast protocol runs on top of IP in order to access
the WSN via the Internet.

There are several approaches towards the design of a relia-
bility multicast solution for WSNs. On the one hand, we can
distinguish between overlay multicast [19] and IP Multicast,
which differ in the protocol layer, on which they are imple-
mented. IP Multicast is implemented on the network layer.
Overlay multicast is implemented on the application layer.
Furthermore, we can choose between a sender-driven and a
receiver-driven formation of the multicast group. In the sender-
driven approach, the sender decides on the receiving nodes (the
participants in the multicast group) while in the receiver-driven
approach the receiving nodes decide themselves whether they
want to receive data or not.

We use UDP as transport protocol. It does not support
any reliability since it is stateless, but it benefits from low
complexity. Acknowledgments on the application layer can be
positive or negative and inform about the reception status of
messages. Caching is a convenient way to have content closer
to the requesting side and hence decreases delays. There are
three possibilities for where to cache data: on sender nodes,
on branching nodes or on all intermediate nodes (forwarding
and branching).

The SNOMC (Sensor Node Overlay Multicast) protocol
applies an overlay multicast approach able to operate in both
sender-driven mode and receiver-driven mode. SNOMC uses
UDP as transport protocol and to ensure reliability SNOMC
uses a simple NACK-based mechanism with all three caching
modes.

In the following we describe the technical details of
SNOMC operations, including joining a multicast group and
transmitting to the group. Each of the three caching possibili-
ties is considered. A distribution tree can be built only after the
receiver nodes have joined a multicast group. This can happen
in two different ways, namely, sender-driven or receiver-
driven. We begin with the description of the sender-driven
approach. In a sender-driven approach the sender decides,

S B R1 R2

join_ack(rec_1)
join_ack(rec_2)

F

join(rec_lst)

join_ack(rec_lst)

join(rec_lst) join(rec_lst)
join(rec_lst)

1 2 3

4

Fig. 2. SNOMC: Joining phase, sender driven mode.

type rec_lst mc_id source_id branch_id

(a) join and join ack messages

type mc_id frag_no last_frag_no frag

(b) data message

type frag_norec_lst

(c) nack message

type rec_lst

(d) data ack
message

Fig. 3. SNOMC: messages.

which nodes should be in the multicast group as receivers.
The join procedure is shown in Fig. 2. First, the sender S
creates a join message (cf. Fig. 3(a)), which contains the list
of receivers, the group id, and the sender address. Next, the
sender transmits this join message to its next-hop neighbor (1).
The next-hop becomes a forwarding node F when all receivers
can be reached via one next-hop neighbor (2). It becomes a
branching node B when the receivers are reached via different
next-hop neighbors. The receiver list is split accordingly
and transmitted to the respective next-hop neighbors. The
branching node adds its address into the branch id field of
the join message (3). When a join message reaches a receiver
R it confirms the join by transmitting a join ack message
(cf. Fig. 3(a)) back to the last branching node, written in the
branch id of the join message. The branching node waits for
the join ack messages of all subordinate receivers (R1 and
R2), combines these messages into one, puts its own address
as branching node into the message and transmits it back to
the sender node (or to the next branching node upstream on
the path towards the sender) (4). The sender node knows all
branching nodes and can later establish an overlay connection
to them.

S B R1 R2

join(rec_lst)

join(rec_1)
join(rec_2)

F

join_ack(rec_lst)

join(rec_lst)

join_ack(rec_1)
join_ack(rec_2)

1
2

3 4

Fig. 4. SNOMC: Joining phase, receiver driven mode.

In a receiver-driven approach the receivers themselves de-
cide whether they want to be in a multicast group. The join
procedure is shown in Fig. 4. Each receiver transmits a join
message to the next upstream neighbor into the direction
towards the sender according to the routing table (1). The
neighbor node collects all incoming join messages and be-
comes a branching node or a forwarding node. If the node is a
branching node, it adds its own identity to the appropriate field
in the join message to inform the sender node about its role as
branching node. Afterwards, the node transmits the message
further to the sender node (2). The sender node collects
all join messages and creates a join ack message with the
receiver list, its own address as sender id and the collected
branch id. The join ack message is transmitted towards the
receivers (3). The branching node splits the join ack message
and transmits the messages to the according receivers (4).

Propagating data from sender to receivers is done using the
overlay connections established as result of the join procedure.
The chosen caching strategy causes the establishment of the
overlay connections. If data is cached on every intermediate
node (sender, forwarding, and branching nodes) the overlay
connections are established between them. If data is cached
on sender or branching nodes, the overlay connections are
established between sender, branching nodes, and receivers.

S B R1 R2

nack(frag_2)

data_ack(rec_2)

F

data(frag_1)

data_ack(rec_lst)

data(frag_1)
data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

nack(frag_2)
data(frag_2) data(frag_2)

data_ack(rec_1)

1

2

3

4
5

6

Fig. 5. SNOMC: Transmission phase, caching on sender node.

The caching strategy on the sender node is depicted in
Fig. 5. The sender node fragments the data and caches them.
Afterwards it transmits data messages (cf. Fig. 3(b)) to the
next branching node using the overlay connection (1). The
branching node duplicates the data message and transmits
the duplicates to the receivers or to the next branching nodes
respectively (2). Eventually, a receiver collects all fragments. If
a fragment gets lost the receiver detects a gap in the fragment
sequence and requests the missing fragment. The receiver
generates a nack message (cf. Fig. 3(c)), which is sent towards

the sender (3). Since the sender node has the fragment in
the cache, it retransmits it towards the requesting receiver
(4). If the receiver finally gets all fragments successfully, it
confirms this with a data ack message (cf. Fig. 3(d)) (5). The
branching nodes accumulate all incoming data ack messages
into a combined data ack message towards the sender (6).

If data is cached not only at the sender node, but also at
the branching node the protocol operation changes slightly
as shown in Fig. 6. The sender node again fragments data,

S B R1 R2

nack(frag_2)

data_ack(rec_2)

F

data(frag_1)

data_ack(rec_lst)

data(frag_1)
data(frag_1)

data(frag_2)

data(frag_2)

data(frag_2)

data(frag_3)
data(frag_3)

data(frag_3)

data(frag_2)

data_ack(rec_1)

1

2

3

5

6

4

Fig. 6. SNOMC: Transmission phase, caching on branching node.

caches them and transmits them to the next branching node
(1). The branching node duplicates the data, in addition it
caches them and transmits them to the according receivers
(2). The benefit of this additional caching is that if a receiver
detects a fragment as lost it can request it directly from the
branching node (3). The branching node will then read the
fragment from the cache and retransmit it to the according
receiver (4). The confirmation with a data ack message (5),
(6) works identically as in the other caching modes.

If data is cached at every intermediate node (forwarding
and branching nodes), the overlay connections change such
that every node knows its predecessor and successor in the
distribution tree. If a receiver detects a missing fragment,
it requests the fragment from its predecessor node. If the
latter has the fragment cached, it retransmits it. Otherwise it
forwards the nack message upstream along the distribution
tree until a node is found where the fragment was cached.

V. EVALUATION

In an initial evaluation, we compared the SNOMC pro-
tocol to other common protocols such as Flooding, MPR,
TinyCubus, Directed Diffusion, UDP, and TCP in terms of
transmission time and energy consumption. We implemented
the protocols in the OMNeT++ simulator and run the sim-
ulations in a 6x6 grid with one sender and three receivers.
To ensure end-to-end reliability we added a simple NACK-
based reliability mechanism to all protocols (except TCP).
Preliminary results show that SNOMC outperforms the other
protocols. It transmits 1000 bytes to three receivers two times
faster than UDP, four times faster than TCP, and five to ten
times faster than Directed Diffusion, TinyCubus, MPR, and
Flooding. Moreover, SNOMC saves three times more energy

than UDP, four times more than TCP, and 15 to 20 times more
than Directed Diffusion, TinyCubus, MPR, and Flooding.

VI. CONCLUSION

We propose the Sensor Node Overlay Multicast (SNOMC)
to support reliable, time-efficient, and energy-efficient dissem-
ination of bulky code data from one sender node to many
receivers. To ensure end-to-end reliability we designed and
implemented a NACK-based reliability mechanism. Further,
we propose different caching strategies to avoid costly end-
to-end retransmissions. We conclude that SNOMC can offer a
robust, high-performing solution for the efficient distribution
of code updates in a WSN.

REFERENCES

[1] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, S. Mor-
genthaler: MARWIS: A Management Architecture for Heterogeneous
Wireless Sensor Networks. WWIC’08, Tampere, Finland, May’08.

[2] P. J. Marron, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, and
K. Rothermel: TinyCubus: A Flexible and Adaptive Framework for
Sensor Networks. EWSN’05, Istanbul, Turkey, Feb’05.

[3] J. W. Hui, D. Culler: The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale. SenSys’04, Baltimore, MD,
USA, Nov’04.

[4] P. Levis, N. Patel, S. Shenker, D. Culler: Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks. NSDI’04, San Francisco, CA, USA, Mar’04.

[5] M. Anwander, G. Wagenknecht, T. Braun: Management of Wireless
Sensor Networks using TCP/IP. IWSNE’08, Santorini, Greece, Jun’08.

[6] A. Dunkels, B. Grönvall, T. Voigt: Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors. EmNetS’04, Tampa, FL,
USA, Nov’04.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva:
Directed Diffusion for Wireless Sensor Networking. ACM/IEEE Trans-
actions on Networking, 11(1):2-16, 2002.

[8] C. Y. Wan, A. T. Campbell, L. Krishnamurthy: PSFQ: A Reliable
Transport Protocol for Wireless Sensor Networks. WSNA’02, Atlanta,
GA, USA, Sep’02.

[9] A. Quayyum, L. Viennot, and A. Laouiti: Multipoint relaying: An
Efficient Technique for Flooding in Mobile Wireless Networks. INRIA,
Sophia Antipolis, France, Tech. Rep., 2000.

[10] A. Okura, T. Ihara, and A. Miura: BAM: Branch Aggregation Multicast
for Wireless Sensor Networks. MASS’05, Washington, DC, USA, Nov’05.

[11] A. Sheth, B. Shucker, and R. Han: VLM2: A Very Lightweight Mobile
Multicast System For Wireless Sensor Networks. WCNC, New Orleans,
LA, USA, Mar’03.

[12] R. Flury, and R. Wattenhofer: Routing, Anycast, and Multicast for Mesh
and Sensor Networks. INFOCOM’07, Anchorage, Alaska, USA, May’07.

[13] C. H. Feng, and W. B. Heinzelman: RBMulticast: Receiver Based
Multicast for Wireless Sensor Networks. WCNC’09, Budapest, Hungary,
Apr’09.

[14] B. Chen, K. Muniswamy-Reddy, and M. Welsh: Ad-Hoc Multicast
Routing on Resource-Limited Sensor Nodes. REALMAN’06, Florence,
Italy, May’06.

[15] J. S. Silva, T. Camilo, P. Pinto, R. Ruivo, A. Rodrigues, F. Gaudncio,
F. Boavida: Multicast and IP Multicast Support in Wireless Sensor
Networks. Journal of Networks, 3(3), 19-26, 2008.

[16] D. Koutsonikolas, S. Das, Y. C. Hu, and I. Stojmenovic: Hierarchical
Geographic Multicast Routing for Wireless Sensor Networks. SENSOR-
COMM’07, Valencia, Spain, Oct’07.

[17] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic: Energy Efficient Geo-
graphic Multicast Routing for Sensor and Actuator Networks. Computer
Communications, 30(13), 2519-2531, 2007.

[18] J. Lee, E. Lee, S. Park, S. Oh, and S. H. Kim: Consecutive Geo-
graphic Multicasting Protocol in Large-Scale Wireless Sensor Networks.
PIMRC’10, Istanbul, Turkey, Sep’10.

[19] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, N. D. Georganas
A Survey of Application-Layer Multicast Protocols Communications
Surveys & Tutorials, 9(3), 58-74, 2007

