CONTENT DISCOVERY AND RETRIEVAL
APPLICATION FOR MOBILE
CONTENT-CENTRIC NETWORKS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Arian Uruqi
2014

Leiter der Arbeit:
Professor Dr. Torsten Braun
Institut fOr Informatik und angewandte Mathematik

Contents

Contents i
i
{1 Paper: Content Discovery in Opportunistic Content-Centric Networks| 3
2 Automatisation Framework to Support Evaluations| 13

2.1 WirtwalMesh Platforml o oo
[2.2 Stages of the Automatisation Framework|. g
[2.2.1 Preparation: Initialize Simulation Model and Discovery Node| 15

[2.2.2 Configuration: Set Up Repository Nodes and Adjust Discovery Settings| 17
[2.2.3 Discovery: Reset Nodes, Execute Discovery and Gather Evaluation Data] 19

{3 Evaluation Challenges| 23
[3.1 VirtualMesh’s Support for Multicast| 23
3.2 Multi-Hop Communication with CCNx| 24
[3.3 Adapting the Interest Lifetime| 25

4 Summary and Future Work| 27

Bibliograp 29

List of Figures

2.1 Emulation Environment: Overview|. 14
2.2 Fl hart of th luation framework: rview] 15
[2.3 Flow chart of the evaluation framework: Preparation| 16
2.4 Network topology Star-formation-50m| 16
[2.5 Flow chart of the evaluation framework: Configuration| 18
[2.6 Flow chart of the evaluation framework: Discovery| 20
[2.7 Example directory tree of filed evaluationdata] 22
[3.1 Multi-hop communication using two multicast faces|. 24

[3.2 Multi-hop communication using two multicast faces: deadlock| 25

iii

Acknowledgement

I would like to express my gratitude to Prof. Dr. Torsten Braun for giving me the opportunity to
write a thesis in the research group Communication and Distributed Systems, which he heads.

Furthermore, I would like to thank Carlos Anastasiades for coaching me in his field of re-
search, Content-Centric Networking. He was able to motivate me and share the joy of working
in a very promising and prospering networking paradigm field, by having lively exchange with
me and letting me participate in a submission included in this report.

Last but not least, I am very thankful for the support and encouragement my family and
friends have provided, especially during periods of stress.

Abstract

Content-centric communication may yield benefits in mobile and dynamic ad hoc networks,
because communication is more resilient to individual node mobility: content can be discovered
(and retrieved) without having to locate possible content providers first. This thesis’ goal is to
explore these benefits in single-hop communication.

For this purpose, an application has been implemented using the Java API of the open source
CCN implementation CCNXx. It supports two content discovery algorithms:

First, enumeration requests retrieve a list of content names at a repository that matches the
requesting prefix and are formed using special Interest prefixes. By subsequently excluding the
ID from the responding repository supplied with the response, the request is re-expressed until
no new lists can be found and it times out. The retrieved lists are then accumulated to represent
the available content.

Second, regular Interest messages can be used for content discovery as well, by excluding
retrieved content names in subsequent Interest expressions. With this method, content is not
only discovered in repositories but also nearby caches.

Evaluations have been performed using VirtualMesh, a hybrid network emulation frame-
work. A dedicated server simulates ad-hoc networking as well as location and distance of nodes.
Message processing is performed on Xen-virtualized guest domains. Communication with other
nodes is routed through a virtual network interface on the virtual machines.

To automate application testing and finally collection of evaluation data, a framework has
been established automating the steps of initialization and program execution. For a particu-
lar node configuration, it enables automatic evaluation of CCNx applications by executing and
collecting information from CCNx applications running on the hosts.

Chapter 1

Paper: Content Discovery in
Opportunistic Content-Centric Networks

Content Discovery in Opportunistic Content-Centric
Networks

Carlos Anastasiades, Arian Uruqi, Torsten Braun
Institute of Computer Science and Applied Mathematics
University of Bern, Switzerland
{lastname } @iam.unibe.ch

Abstract— Host-based mobile ad hoc communication requires
the transmission of periodic hello beacons to identify neighbors.
Drawing conclusions from received beacons, e.g., containing
information about existence and neighbor nodes, to available
or demanded content is not possible and the gathered infor-
mation may be outdated quickly due to dynamic environment
changes. Therefore, content-centric networking results in more
flexible communication without the need of neighbor information.
Instead, information about available content is required. In
this paper, we will investigate two different content discovery
strategies and discuss their efficiency for mobile communication.
The algorithms have been implemented in the CCNx framework
and evaluated in VirtualMesh, a hybrid emulation tool for
wireless mobile ad hoc networks.

Index Terms—discovery, content-centric, opportunistic, ad-hoc
networks

I. INTRODUCTION

Content-centric networks are a new networking paradigm
for the future Internet. Routing is performed based on content
identifiers instead of IP addresses. The approach addresses
scalability, security and efficiency concerns of the current
host-based Internet architecture. Many different architectures
have been proposed, [1], [2], [3], [4], which mainly differ
in the way content is named. Hosts need to express interests
in, or subscribe to, names to get the corresponding objects
published by a content source. In this paper, we focus on the
Content-Centric Networking approach proposed in [4], which
is hereafter referred as CCN. Although current research mainly
targets wired networks, CCN has already been identified [5]
as promising approach for mobile and dynamic networks since
communication is more resilient to individual node mobility.
Instead of trying to reach a specific host, the user tries to get a
specific piece of content that can be provided from any other
node that holds the content. Most current research works target
caching, security and forwarding strategies in CCN. In this
work, we investigate a more fundamental requirement, namely,
the discovery of available content in a distributed wireless
broadcast environment. This is required in scenarios without
centralized directories where content objects are generated
dynamically and names cannot be predicted deterministically.
It enables users to learn available content objects and services
without demanding the entire content. Instead of connecting
individually to each host, the requester can express an Interest
and receive an answer from any reachable content source given

that the content is available.

The remainder of this paper is organized as follows: In
section II we shortly review the basic functionality of CCN.
Related work to CCN is reviewed in section III. Section IV
describes content discovery algorithms. Evaluation results are
presented and discussed in section V. Finally, in section VI,
we conclude our work and give prospects to future work.

II. CONTENT-CENTRIC NETWORKING

In this section, we will briefly describe the main concept of
CCN. Readers may refer to [4] for more information.

A. CCN Messages

CCN communication is based on two basic messages:
Interest and Data. Content is organized in segments similar to
chunks in BitTorrent [6]. File transfer is pull-based, and thus,
users have to express Interests in every segment to obtain the
entire content. The CCNx project [7] provides an open source
reference implementation of CCN.

CCN Host

App
Unix Sockets;

CCN Host

il A
PP Unix Sockets CCND
E -t

Fig. 1: Forwarding Architecture

1P, UDP CCND

CS|PIT|FIB CS|PIT|FIB

The core element of the implementation is the CCN daemon
(CCND), which performs the message processing and forward-
ing decisions. The connections from a CCND to other entities
or local applications are called faces. In case of applications,
the face corresponds to local Unix sockets. In case of mobile
hosts, it corresponds to UDP or TCP sockets over IP. In this
work, we use a multicast face using UDP and a multicast
address to avoid individual IP addressing of mobile nodes.

Figure 1 shows the processing and forwarding architecture
of CCNx. If an application on a node requests content, it
sends an Interest message via a local face to the CCND on
the local host. The CCND processes the message based on
its information in the content store (CS), the pending Interest
table (PIT) and the forwarding Interest base (FIB). Upon the
reception of the Interest, the CCND will first check if the
content is already in the CS, i.e. serving as a cache, and returns
it if available and not expired. If the content is not available, it

will check the PIT whether the same request has already been
expressed. The lifetime of an Interest will determine how long
it stays in the PIT. If it is already in the PIT, the Interest
can be discarded, because the corresponding data message
is already pending. If there is no entry in the PIT, the host
considers the FIB to check whether the host knows where
to get the content from. If there is an entry, the Interest is
inserted into the PIT and forwarded to a remote CCND, e.g.,
via the wireless channel using UDP as transport protocol. At
the remote CCND, the procedure of checking the CS, PIT
and FIB will be repeated. Content is persistently stored and
shared with others in content repositories. CCN hosts that run
a content repository can register the available prefix to their
local CCND resulting in an additional FIB entry. Every Interest
will result in at most one Data message and retransmission of
the same Interest will result in the same Data message. To
receive new content, it is required to either adapt the Interest
prefix or add already received objects in the exclude field of
the Interest.

B. Content Names

In CCN, content names follow a hierarchical structure as
illustrated in Figure 2. The ellipses correspond to name com-
ponents and the rectangles to data files. Each data file consists
of one or several segments (not depicted in the figure). There
are no restrictions on content names and they can be selected
arbitrarily. The hierarchical name structure may not indicate
the location of content objects as Figure 2 shows. Content
objects may be stored on one, multiple or all hosts. In contrast
to flat name spaces, it is not required to agree on common key-
words. These keywords should be diverse enough to describe
all possible objects but not too diverse to avoid confusions
with similar keywords. The hierarchical structure supports the
discovery with general prefixes such as IDs from specific
publishers. A user may look for specific content names relative
to the publisher’s name space, e.g., ’/publisherA/video/’ or
’/publisherA/audio/’. Content consumers may learn the naming
schemes of their favorite publishers such as BBC, iTunes or
netflix. This also enables the integration of social structures to
identify reliable content publishers.

‘ artistA H artistB eakerP ‘ 7

‘ artistC ‘ ‘sp

Fig. 2: Hierarchical Name Structure: files may be stored on
different hosts.

III. RELATED WORK

Previous work in [8] investigated the applicability of ex-
isting MANET routing protocols for mobile CCN based on
analytical models. Routing in CCN is equivalent to finding
a content source for a given name. The authors conclude that
structured solutions such as geographic hash tables should only
be used in networks without host churn whereas unstructured
flooding is beneficial in small networks with high host churn.
In CCN, Interests are routed towards content based on content-
specific routing table (FIB) entries whereas content objects
travel the same path back from where the Interest arrived. In
a broadcast domain, this would result in unbounded Interest
forwarding until the entire network is covered. CCN does
not consider any multihop suppression mechanisms to avoid
unnecessary transmissions or collisions.

In [9], CCN is applied to artificial battlefield scenarios
featuring group mobility and hierarchical network topology.
Content publishers distribute meta data of generated content
to their neighbors and domain gateways. This distributed infor-
mation is then used by requesting nodes to forward Interests to
content publishers. Additionally, a content pushing approach is
proposed to distribute information from a command center via
a backbone network to specific locations using geographical
routing. In a simple testbed, the benefits of CCN over existing
routing mechanisms such as the Optimized Link State Routing
protocol (OLSR) are shown, but CCN relies on the hierarchical
structure and meta data distribution for forwarding.

Resilience to individual node mobility independent of the
network topology can only be achieved by broadcast commu-
nication, since no individual nodes need to be configured and
any node may answer requests. Although introducing flexibil-
ity, unbounded broadcast transmission may quickly result in
broadcast storms [10]. In [5] and [11], the authors introduce
the Listen First, Broadcast Later (LFBL) algorithm, which
limits forwarding of Interest messages at every node based on
its relative distance to the content source. Additional header
fields in the messages indicate the hop distance from the
previous forwarder to the destination. These fields are modified
at every hop and messages are only forwarded by nodes closer
to the destination than the previous forwarder. Although the
approach targets the suppression of unnecessary messages, it
may not reach that goal reliably. Not protected by the author’s
signature, the distance fields may yield imprecise information
due to node mobility, particularly if messages are transmitted
from caches or in case of multicast communication.

In this work, we want to investigate content discovery
mechanisms in distributed environments that are independent
of potential subsequent file downloads. Based on the discovery
information, users may decide which content files to down-
load. We limit the communication to single-hop connections
similar to communiation in delay-tolerant opportunistic net-
works [12]. Therefore, we rely on the suppression mechanism
in CCN, which cancels a scheduled transmission if received
from the same face. Routing is replaced by the mobility
of nodes, caching and reexpression of Interests. In contrast

to peer-to-peer based communication, e.g., in delay-tolerant
networks such as Haggle [13] or PodNet [14], where all
hosts periodically transmit hello beacons to keep track of
neighboring hosts, no beaconing is required with CCN. A
host expresses an Interest in a content file and receives data
if it is available. Maintaining the neighbor list drains the
energy of mobile devices, because beacons are transmitted
periodically and independently of any data communication.
In these systems, hosts subsequently connect to neighboring
nodes to ask for available content. In case of dense urban
environments and mobility, many subsequent connections may
be required to find the desired content. In CCN, the requester
may broadcast the Interest and any host that receives it and
holds the corresponding content may respond. This may result
in a faster discovery time, which is a crucial criterion if contact
times are short.

Once the available content collections are known, a rich
set of approaches exist in literature to discover availability of
objects from these collections. Existing works in mobile ad
hoc networks (MANETS) or delay-tolerant networks (DTNs)
apply Bloom Filters [14] or attenuated Bloom Filters [15] to
increase the efficiency of content or service discovery. If the
synchronization of collections is targeted, the CCNx repository
synchronization mechanism may be applied. It is based on
a set reconciliation algorithm [16] that calculates the hashes
of collections in a structured way. Such mechanisms may
therefore optimize our discovery mechanisms, if the preferred
collections are known, but can not replace them.

IV. CONTENT DISCOVERY MECHANISMS

Content discovery mechanisms are required in distributed
environements where content objects are generated dynam-
ically and names cannot be predicted deterministically. In
the absence of centralized directories and periodic beaconing,
users need to learn available content names before selectively
requesting specific objects. This information is required to
avoid the download of all available content objects resulting
in congestion on the wireless medium.

Therefore, we describe two discovery approaches based on
name enumeration requests and regular Interests hereafter.

As motivated in section I, the algorithms target single-
hop communications. We rely on the suppression of data
transmissions in CCN, which cancels the transmission of
scheduled content if received on the same face: for example,
if another node has already responded to an Interest with
the same content object. We assume that every node runs a
repository with persistent storage extending its local temporary
cache and that these repositories are not synchronized among
each other. Although answers from secondary storage are
slower than from primary storage, additional repositories may
help if cached copies are not available anymore or too far
away.

The discovery mechanisms described in this section are
based on the same idea: the discovering node expresses an
Interest with a general prefix and waits for responses. Based
on the response, subsequent Interests may be expressed. If

no answer is received within a timeout period, the content
is assumed to be unavailable. Since Interests are broadcasted,
nodes cannot rely on MAC layer acknowledgements from the
destination as for unicast transmissions and the sender cannot
detect any collisions. Therefore, reliability functionality to
identify collisions and to differentiate them from unavailable
content needs to be performed by the requester. We achieve
this by a retransmission counter: if no answer to a discovery
request is received within the specified time, the requester
reexpresses the request until a configurable limit of trans-
mission attempts has been reached. When reaching the limit
without receiving an answer, the content is assumed to be
unavailable. In order to reduce the collision probability in the
first place, the content sources answer a discovery request after
an additional random answering delay. To adapt to dynamic
changing environments and discover newly available content,
the algorithms may be repeated periodically or based on
external events such as overheard traffic or on-demand. In
contrast to periodic beaconing the users may discover new
available content instead of new peers.

A. Enumeration Request Discovery

The Enumeration Request Discovery (ERD) requires the
expression of name enumeration requests which are addressed
only to local and remote repositories. A name enumeration
request for a certain prefix requests the enumeration of first-
level names under the prefix that are locally available at the
repository. The requests are based on regular Interests but
include command markers to indicate the enumeration. Figure
3 shows a sample message exchange for the naming tree
in Figure 2. For simplicity, we do not show the command
markers that are included in the requesting prefix and the
returned enumeration name. The initial enumeration request
for the prefix /publisherA/ triggers an answer including the
next level components on both hosts, i.e., video, audio or text.
The discovering node will process the first message received
from host 1 and then reexpress the same Interest excluding
the repositoryID from host 1, which is included in the received
enumeration name and based on the repository’s public key, in
the third step. An answer to this request will be served either
by the local CCND that cached the previous answer from host
2 or by host 2 itself if the cached entry expired. We always
ask for the latest list version of the repository and let cached
name enumeration requests timeout quickly.

The discovery procedure is described by algorithm 1. To
discover the entire available name space, the algorithm starts
from the top of the name tree with the shortest possible
prefix and sequentially moves down to the leaves by increasing
the prefix with the discovered name components after every
timeout. At every iteration and level, the requesting user re-
ceives a list of available name components from the repository.
We assume that the mobile repositories are not synchronized
among each other and the content collections are not known.
Therefore, the requesting user has to address each repository
separately excluding the IDs from previous repositories to
avoid inconsistencies. If the requester does not receive an

2. Response:
IpublisherA/repositorylD2/list_version
Data: audio, text

4. Response:
/publisherA/repositorylD2/list_version
Data: audio, text

2. Response:
/publisherA/repositorylD1/list_version
Data: video, audio

Host 1 Host 2

Discovering node

1. Request: /publisherA/
3. Request: /publisherA/
Exclude: repositorylD1
5. Request: /publisherA/
Exclude: repositorylD1, repositorylD2

Fig. 3: Enumeration Request Discovery Sequence

Algorithm 1 Enumeration Request Discovery

1: p: requested starting prefix

2: L[r]: prefix list of level r, initially » = 0

3: [;: component list of ith request

4: id;: id of ith repository

5: function ENUMERATION(p, 7)

6: e: exclude = {}

7 {l;, id;} = SEND_ENUMERATION (p, €)
8 if timeout then

9

return
10: while no timeout do
11: for all components ¢; in I; do
12: q: prefix
13: p+c; —q
14: if ¢ ¢ L[r| then
15: q — Lir]
16: id; — e
17: i—i+1
18: {l;, td;} = SEND_ENUMERATION (p, €)
19: for all ¢ in L[r] do
20: ENUMERATION(q, 7 + 1)
21: return

22: function SEND_ENUMERATION(p, €)
23: broadcast enumeration Interest message with prefix p
24: and exclude list e containing all received ids

answer within a timeout period, it is assumed that no more
content is available on any reachable host on that level. The
algorithm procedes with the next component until receiving a
timeout for all leaves of the tree.

B. Regular Interest Discovery

The Regular Interest Discovery (RID) is based on the
recursive expression of regular Interest messages. The user
requests an Interest and receives the first data segment in the
response. Although this leads to overhead because only the
content name and no data is required, it is still more efficient
than retrieving all data segments in complete file downloads.

A sample sequence for the name tree of Figure 2 is shown
in Figure 4. The Interest expression in the prefix /publisherA/
will reach both hosts and trigger them to answer with the
first segment of a matching content object. After the reception
of the first segment of /publisherA/audio/music/artistA, the
discovering node requests a new name component exclud-

ing the received artistA. Since host 2 has already sent this
message in step 2, this request will not be forwarded to the
wireless medium but answered from the local CCND’s cache.
Content segments must not expire as quickly as ERD content
lists because they do not correspond to temporary repository
listings but to existing content objects. Interests may therefore
be satisfied from cache. We only discover the human readable
part of the name, i.e., neglecting versions because these may
be found by a version discovery once the name is known. The
procedure is described by algorithm 2.

2. Response:
/publisherA/audio/music/artistA/versionID/segment_0

5. Response:
/publisherA/audio/music/artistB/versionID/segment_0

2. Response:
IpublisherA/audio/music/artistC/versionID/segment_0

Host 1 Host 2

Discovering node

Request: /publisherA/
. Request: /publisherA/audio/music
Exclude: artistA
(answered from cached response of host 2 in step 2)
. Request: /publisherA/audio/music
Exclude: artistA, artistC
. Request: /publisherA/audio/music
Exclude: artistA, artistB, artistC

w

o N

Fig. 4: Regular Interest Discovery Sequence

Algorithm 2 Regular Interest Discovery

1: p: request prefix

2: L: name list, initially L = {}

3: c: received content name with c[i], ¢ = 1,...,n components
4: s: prefix size

5: function DISCOVERY(p)

6 e: exclude = {}

7 s = size(p)

8: ¢ = SEND_INTEREST (p, s, €)
9: if no timeout then

0 RECURSIVE(c, s)

1 return

12: function RECURSIVE(c, S)
13: e: exclude = {}

14: do {

15: if size(c) > s+1 then

16: RECURSIVE(c, s + 1)
17: else

18: c— L

19: if size(c) == s then
20: return

21: c[s+l] — e

22: ¢ = SEND_INTEREST (c, s, €)
23:

24 while(no timeout)

25:

26: return

27: function SEND_INTEREST(b, s, €)
28: broadcast Interest with first s components of
29: name b and exclude list e

The algorithm starts by expressing a general prefix in a
name space in the discovery function. After the reception of
the first data segment, the mechanism knows the complete
name of a content file at the leaf of the tree. By excluding the
last components of the received objects, the algorithm searches
only for new names. Because every transmitted packet contains
only one content name, other nodes that overhear the traffic
may cancel the transmission of redundant content objects. In
case of a timeout, i.e., when the limit of the transmission
counter has been reached, it is assumed that no additional
content is available and the algorithm can move up one level by
shortening the prefix by one name component and excluding
this component in the Interest. The algorithm stops after a
timeout at the initial discovery prefix, e.g., /publisherA/” when
all available next level components are excluded. Compared to
the Enumeration Request Discovery, RID quickly finds avail-
able content objects at the leaves but requires the expression
of new discovery requests for every component while ERD
starts from the root and continously discovers multiple name
components until receiving a content object.

V. EVALUATION
A. Evaluation Tools

We implemented the Enumeration Request Discovery
(ERD) and the Regular Interest Discovery (RID) algorithms
described in section IV and integrated it with the CCNx source
code v0.4.2. The implementations are evaluated by emulations
with VirtualMesh [17]. VirtualMesh is a hybrid emulation
tool that combines the real network stack and the CCNx
implementation running on virtualized hosts with simulations
of the wireless communication. The wireless communication
is simulated by the OMNeT++ [18] network simulator using
the INET framework with the default 802.11b MAC layer
implementation. All CCNx messages are broadcasted using
the default parameters and a static contention window of
32 x 20pus = 640ps. We do not consider any additional bit
error models but only transmission errors due to collisions.

B. Emulation Scenarios

The algorithms are evaluated in a static setting of 5 nodes.
Due to single-hop single-radio communication, we assume
that all nodes can directly communicate with each other. One
node, the discovering node, performs the discovery operation
and the other nodes are hosts running repositories containing
different content files. We differentiate between two basic
content distributions in our evaluations:

1) Common case: all repositories store exactly the same

content objects and

2) Distinct case: every content object is uniquely stored at

only one of the repositories.

All content objects are named under the same hierarchy
level by ’/prefix/<content #>’. The discovery algorithms are
implemented as applications forwarding Interests via the local
face to the CCND. If the content is in the CCND’s cache, it
will be returned immediately without forwarding the Interest to
the wireless medium, otherwise it is forwarded to other nodes

and temporarily included in the PIT, as explained in subsection
II-A. All received content information remains valid in the
cache for the entire duration of the discovery. Before every
discovery evaluation is started, all CCND caches are cleared.
Both discovery algorithms will express Interests in the general
prefix ’/prefix/’ to discover the available content objects at all
repositories. Based on the reception of a discovery response,
the mechanism will express the next Interest excluding already
received information as explained in section I'V. The discovery
responses differ for ERD and RID: in case of ERD, it is the
ERD content list containing the available content names at the
corresponding repository. In case of RID, it is the first segment
of a content object. Therefore, ERD requires the expression
of one Interest per repository node to receive all content lists
while RID requires the expression of one Interest per available
content object. We use the default segment size of 4096 Bytes.
The Interest lifetime is set to 0.5 seconds and we perform
a retransmission of the same Interest after a retransmission
delay of 0.6 seconds if no response has been received. The
retransmission delay is slightly larger than the Interest lifetime
to ensure that the existing PIT entry has expired and the
retransmitted Interest can be forwarded by the local CCND.
If not stated otherwise, we use a retransmission limit of two
retransmissions before a timeout is assumed. Since discovery
mechanisms should not overload the medium with traffic, we
evaluate different delay parameters influencing the number of
retransmissions and the discovery time in subsection V-C. The
discovery time is defined as time until the discovering node has
discovered all content names and detected a timeout. Based
on these findings, we evaluate both discovery mechanisms
for different numbers of content objects and distributions in
subsection V-D.

C. Discovery Delays

Broadcast requests may trigger potentially many responders.
Therefore, we will evaluate different delay parameters and
their impact on retransmissions and duplicate content trans-
missions in this subsection. The evaluations apply to both
ERD and RID but due to space limitations we only show the
results for RID. The answering delay (AD) defines the interval
[AD, 3AD] within which each host randomly selects a time to
answer a request. Once scheduled, the content object stays in
the senders’ send queue until the answering delay is due; then
it is forwarded to lower layers for transmission. A long AD
may increase the individual discovery time but enables other
hosts to detect concurrent responses.

Figure 5 shows the performance of RID discovery if the
network comprises 40 different content objects, which are all
stored on all hosts, i.e. the common case. The x-axis denotes
the different answering delays in milliseconds. The figure
shows the transmitted requests and received messages at the
discovering node as well as the time to discover all content
objects, i.e. the discovery time. As expected, the number of
received content duplicates is higher with short answering
delays and decreases significantly with higher values. At an
AD of 10ms, the number of received duplicates is even higher

70 30
Interests sent ——1 #1
60 cache matches —— #2
Interest retransmissions 1 #3 | 25
50 content duplicates —— #4
® L discovery time E—3 #5 | oq
[0] x - | = = #1 iy
® 40 ey
3 15 =
[0
an 30 £
3 10 ©
20 > @ #5
10] %’ 3 7 ° 5
? #2 #3@ #4
0 b—===r= T —r R ———— T 0
10 30 50 80 100
answering delay in [ms]
Fig. 5: RID discovery of 40 content objects in the common case
7
0 Interests sent —1 #1 30
60 cache matches —— #2
Interest retransmissions #3 | 25
50 content duplicates —— #4
» discovery time E—3 #5 | oq
q’ —
o & #1 2,
g 40 i ? T =
2 q 15 =
I+ 10
20 %
10 ; Bs 5 = oS 5
= i #3L #
N S T S - E—— s Lo I
10 30 50 80 100

answering delay in [ms]

Fig. 6: RID discovery of 40 co

than the number of transmitted Interests. Because of the small
AD value, the hosts schedule their content transmission almost
at the same time not leaving enough time to detect and
suppress concurrent transmissions. As soon as the messages
are forwarded from the send queue to the lower layers, no
cancelation is possible anymore. The number of required
Interest retransmissions is suprisingly low: at an AD of 10ms,
every Interest is retransmitted at most once. For the discovery
of 40 content objects, such retransmissions occured at most
five times when using an AD of 10ms and at most once
when using an AD of 30ms or higher. Since all content
objects are stored on all hosts, every Interest will trigger
the same answer from all hosts. Given that the discovering
node’s cache is empty when starting the discovery operation,
no Interest requests can be matched from the local CCND’s
cache. Therefore, to discover 40 objects, the discovering node
transmits at least 43 Interests: 40 Interests to discover the
objects and 3 additional Interests to detect a timeout using
the retransmission limit of 2.

Figure 6 shows the results for the discovering node when
using RID discovery of 40 content objects stored uniquely at
different nodes, i.e. distinct case. Since every content object is
only stored at one node, every request with the general /prefix/

ntent objects in the distinct case

will trigger different responses from the repositories. Since the
transmitted content is not the same, the hosts do not cancel
their scheduled content transmission in case of overheard
transmissions because they cannot uniquely relate their content
transmission to the same Interest. Therefore, the discovering
node’s CCND may receive multiple content objects per Interest
but only one content object per Interest is forwarded to the
discovering application. Subsequent Interests may then be
matched from CCND’s cache and may not be transmitted over
the wireless medium anymore but the percentage of cache
matches is quite low as Figure 6 shows. The discovery time
for RID is approximately halved compared to the common
case since different hosts may reply to the same Interest with
different content objects resulting in a faster discovery.

Surprisingly, although all content objects are uniquely stored
at only one host, content duplicates occur for all AD values
in Figure 6. The reason for that is the fact that subsequent
Interests are expressed immediately after the reception of a
content object resulting in duplicates in case of unsynchro-
nized repositories. We illustrate the problem with the help
of Figure 7 where two hosts store different content objects.

An Interest in the general prefix ’/publisherA/’ triggers
different responses from both hosts. While host 1 answers

2. Response:
/publisherA/contentA

Host 1

1. Request:
IpublisherA/

3. Request:

/publisherA/

Exclude: contentA

\C) Host 2

Discovering
node

2. Response:
/publisherA/contentB

4. Response:
/publisherA/contentB

Fig. 7: Content duplicates due to unsynchronized repositories

with ’contentA’, host 2 may schedule the transmission of
’contentB’. If the discovery node would express a subsequent
Interest immediately after receiving ’contentA’ from host 1
but before receiving ’contentB’ from host2, it would address
host 2 twice. If host 2 has already scheduled the content, i.e.
removed from it’s send queue and forwarded to lower layers,
it cannot remember the previous transmission and sends a
duplicate content. Therefore, we apply an additional Interest
transmission delay (TD) at the discovering node. Whenever

a discovery response is received, the discovering node delays
the transmission of the subsequent Interest by TD. We set
TD = 2x AD, i.e. the maximum time difference between two
content transmissions. This enables the reception of answers
from other nodes before the expression of the next subsequent
Interest. If different content objects are received, the Interest
may be satisfied from the local CCND’s cache. Otherwise, it
is forwarded to the wireless medium.

Figure 8 shows the differences in transmitted Interests and
local cache matches when applying TD=2AD. It can be seen
that if TD is applied, three times more Interest requests can
be satisfied from the cache and, therefore, fewer Interests
have to be transmitted over the wireless medium. In Figure
9 the differences regarding received content duplicates and
discovery time are shown. For TD=2AD we can avoid the
reception of any duplicates relieving the wireless medium from
unnecessary transmissions. The discovery time increases only
moderately for small AD values.

In the following evaluations, we set AD=50ms and
TD=2AD. This avoids all duplicates in the distinct case and
results in a low number of content duplicates in the common
case. It is not possible to avoid duplicates in the common
case completely because two senders may always select the

60 Interests sent, TD=0 — #1
Interests sent, TD=2AD #2
50 cache matches, TD=0 — #3
cache matches, TD=2AD —1 #4
[%2]
% 40 9 i T T & #1
[2}
[72]
g 30 = - = = = #4
* 20
- = - - = #2
10 %
O T T T T T T é T T T é_Y—Y—V_ﬁ_V—Y—JEYL
10 30 50 80 100
answering delay in [ms]
Fig. 8: RID discovery with TD=2AD vs. TD=0 in the distinct case
30 20
content duplicates, TD=0 — #1
25 content duplicates, TD=2AD #2
discovery time, TD=0 —1 #3
20 discovery time, TD=2AD —— #4 | 15
[%2]
o 44 =
s 15 10 <
7] - 0]
[0
: £
#* 10 é -
= T o= a#3 5
5 B 1 % i ﬂ %#1
#2
0 T T T T T T T T T T T T T T T T T T T O
10 30 50 80 100

answering delay in [ms]

Fig. 9: RID discovery with TD=2AD vs. TD=0 in the distinct case

50

Interests sent, ERD — #1 14
Interest sent, RID #2 ZH#
40 | discovery time, ERD —= #3 12
" discovery time, RID — #4 10
Q) —
30 £,
g & #4 8 ¢
[0) i ()
£ 20 6 £
H*+ =
= 4
10 L
= i . = = #13#3 2
1 4 12 20 40

content objects

Fig. 10: Comparison between ERD vs. RID in the common case.

same answering time with a certain probability depending
on the AD length. We observed in our evaluations that AD
values above 50ms do not reduce the number of received
duplicates significantly but result in a much larger discovery
time. Since in all our evaluations, retransmissions occured
very infrequently and at most once per Interest, we set the
retransmission counter limit to 1. Although higher network
congestion levels may require higher retransmission limits
to discover content, it may result in even higher congestion
aggravating the traffic situation. In highly congested networks,
we can therefore consider the corresponding content objects
as (temporarily) unavailable.

D. Enumeration Request vs. Regular Interest Discovery

In this subsection, we compare Enumeration Request Dis-
covery (ERD) and Regular Interest Discovery (RID) with
respect to time and number of transmitted and received
messages. We use an answering delay of AD=50ms and set
TD=2AD. The retransmission counter limit is set to 1 re-
transmission resulting in 2 unresponded Interest transmissions
before a timeout is detected.

The efficiency of ERD and RID is evaluated in the same
5-nodes scenario as described in subsection V-B. We consider
different numbers of content objects and content distributions,
i.e. common and distinct, in the network. All hosts either
comprise 1, 4, 12, 20, or 40 content objects. Figure 10 shows
the difference in number of transmitted Interests and discovery
time if all hosts have the same content. The x-axis denotes
different numbers of content objects. If only one content
object is available, RID is more efficient, since it cannot learn
anything new after the first request and the discovery stops
quickly. On the contrary, ERD requests the ERD content list
from all hosts. Only after checking all names on all lists, the
discovering node can be certain to have received everything.
This requires multiple discovery requests. However, due to
the general ERD request prefixes, subsequent requests for
content lists may be answered from the cache. The number
of ERD requests does not depend on the number of content
objects on hosts but the number of hosts in the vicinity.

Therefore, the number of ERD requests and the discovery
time is constant in our setting for all content configurations.
On the contrary, the number of transmitted Interest messages
and discovery responses increase significantly for RID with
increasing number of content objects. If all hosts store the
same content objects, the requester has to express an Interest
for every single content object. Since RID requests ask for
the first data segment, the transmission of the corresponding
responses requires considerably more time.

The figure showing the results in the distinct case is omitted
due to space limitations. If only one content object is stored
in the distinct case at one node, only this node will respond to
requests. Therefore, ERD performs similar to RID: only one
request needs to be transmitted. However, RID performance
degrades with increasing number of discovered content objects
due to the increased number of discovery messages similar to
the common case. As observed in subsection V-C, the same
Interest request may trigger different answers from differ-
ent hosts resulting in approximately 70% fewer transmitted
Interests compared to the common case. This results in a
slightly reduced discovery time because many packets may
be satisfied from cache and only every fourth request needs to
be transmitted.

The Enumeration Request Discovery (ERD) shows good
performance in our evaluations, because it is independent
of the number of content objects. However, the approach
depends on the number of nodes in the network that store the
requested content. Therefore, the approach may be inefficient
in mobile scenarios with many nodes. Compared to RID, the
ERD content lists of all repositories need to be processed
and accumulated to know which content names are available.
Therefore, if all hosts store the same content objects, ERD re-
quires all nodes to request and process all content lists without
learning something new. RID is more efficient to detect small
differences in collections, because it can ask specifically for
new content. Redundant information can already be excluded
in the header to avoid duplicates. RID is also faster in finding
a content object in a highly structured name space with many
name components. In our evaluations, we considered a flat

name space where ERD can perfom well. In a more structured
name space ERD would require subsequent traversing through
all name components until reaching the content objects. There-
fore, the combination of both approaches may be promising.
An initial RID request may quickly find the full name of a
content object. By expressing an ERD request with the prefix
of the received content object, a list containing other objects
may be received from one repository. Instead of reexpressing
other ERD requests, the requester may express RID requests
excluding the learned information from the received ERD
content list.

Discovery information from RID requests may stay for
a longer time in the cache compared to ERD content lists
since they correspond to existing content objects but not to
temporary repository listings. Therefore, with RID discovery
multiple nodes may collaborate and benefit from each others’
discovery operations.

Both discovery mechanisms are not optimized yet and
modifications are required to increase their efficiency. For
example, ERD content lists may be identified by the hash
of their content names instead of the repository identifiers to
avoid multiple transmissions with the same information. On
the other hand, Interests may be extended by a discovery flag,
avoiding the transmission of the entire data object.

VI. CONCLUSIONS AND FUTURE WORK

Discovery of available names is very important in mobile
CCN to learn what content is available. Users require this
information to retrieve content in subsequent transmissions.
We described two methods for content discovery: ERD is
based on name enumeration requests and RID on regular
Interests. The discovery algorithms target the wireless broad-
cast environment. Since wireless broadcast communication is
unreliable and no MAC layer acknowledgments are available,
discovery mechanisms have to account for occasional loss and
collisions. Therefore, we included a retransmission counter
that initiates a retransmission if no information is received
within a timeout period. Evaluations showed that a retrans-
mission limit of only one retransmission is enough to detect
timeouts in our scenario. This can be interpreted as additional
information being temporarily unavailable. In case of very
congested networks, more collisions may occur resulting in
higher counter limits but retransmitting discovery requests
may even aggravate the situation. Avoiding collisions and
received duplicates is another important factor for discovery.
Evaluations showed that delaying the transmission of content
objects helps reducing collisions and duplicate transmissions
but this is not enough. In case of unsynchronized repositories,
delaying the subsequent expression of discovery Interests may
reduce the number of transmitted Interests and avoid received
duplicates. ERD shows constant discovery performance in
static settings independent of the number of contents in the
network while RID decreases with the number of content
objects. On the downside, ERD transmits a request to every
node in the network and will therefore perform worse in
mobile dynamic networks with many nodes or multiple nodes

that have only a few common content objects. Since ERD
responses carry the discovery information in the data, it is
not possible to detect and suppress duplicate transmissions.
RID holds the information in the name and hosts are therefore
able to suppress duplicate transmissions. RID can efficiently
and quickly find only a few content names in a dynamic
network. As part of our future work, we target to extend
our algorithms to multi-hop communication by developping
adequate suppression mechanisms based on overheard traffic.

ACKNOWLEDGMENTS

The work presented in this paper was partially supported by
the Swiss State Secretariat for Education and Research under
grant number C10.01309.

REFERENCES

[1] M. Caesar, T. Condie, J. Kannan, and K. Lakshminarayanan, “ROFL:
Routing on Flat Labels,” in ACM SIGCOMM, Pisa, Italy, September
2006, pp. 363-374.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, and I. Stoica, “A Data-Oriented (and Beyond) Network

Architecture,” in ACM SIGCOMM, Kyoto, Japan, August 2007, pp. 181—

192.

M. Srel, T. Rinta-aho, and S. Tarkoma, “RTFM: Publish/Subscribe In-

ternetworking Architecture,” in ICT-MobileSummit, Stockholm, Sweden,

June 2008, pp. 1-8.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Network Named Content,” in 5th ACM CoNEXT,
Rome, Italy, December 2009, pp. 1-12.

[S] M. Meisel, V. Pappas, and L. Zhang, “Ad hoc networking via named

data,” in 5th ACM MobiArch, Chicago, USA, September 2010, pp. 3-8.

B. Cohen, “Incentives Build Robustness in BitTorrent,” in /st P2PEcon,

Berkely, USA, June 2003, pp. 1-5.

[71 CCNx Project. [Online]. Available: http://www.ccnx.org

[8] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the
Design of Content-Centric MANETS,” in 8th WONS, Bardonecchia,
Italy, January 2011, pp. 1-8.

[9] S.Y.Oh,D. Lau, and M. Gerla, “Content Centric Networking in Tactical

and Emergency MANETS,” in IFIP Wireless Days, Venice, Italy, October

2010, pp. 1-5.

S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm

problem in a mobile ad hoc network,” in 5th ACM/IEEE MobiCom,

Seattle, USA, August 1999, pp. 151-162.

[11] M. Meisel, V. Pappas, and L. Zhang, “Listen First, Broadcast Later:
Topology-Agnostic Forwarding under High Dynamics,” in ACITA, Lon-
don, UK, September 2010, pp. 1-8.

[12] G. Karlsson, V. Lenders, and M. May, “Delay-tolerant Broadcasting,”
IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 369 — 381, March
2007.

[13] J. Su, J. Scott, P. Hui, J. Crowcroft, E. D. Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: seamless networking for mobile
applications,” in 9th UbiComp, Innsbruck, Austria, September 2007, pp.
391-408.

[14] V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc Podcasting,”
in 4th IEEE SECON, San Diego, USA, June 2007, pp. 273-283.

[15] F. Liu and G. Heijenk, “Context Discovery using Attenuated Bloom
Filters in Ad-Hoc Networks,” in 4th WWIC, Bern, Switzerland, May
2006, pp. 13-25.

[16] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference? Efficient Set Reconciliation without Prior Context,” in ACM
SIGCOMM, Toronto, Canada, August 2011, pp. 218-229.

[17] T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: an emulation
framework for wireless mesh and ad hoc networks in OMNeT++,”
SIMULATION, vol. 87, no. 1-2, pp. 66 — 81, January 2011.

[18] A. Varga, “The OMNeT++ Discrete Event Simulation,” in ESM, Prague,
Czech Republic, June 2001.

3

—

[6

—_

[10]

Chapter 2

Automatisation Framework to Support
Evaluations

Various parameters may have an influence on content discovery mechanisms. To facilitate eval-
uations, an automatisation framework based on Linux Shell and Perl scripts has been developed.
Subsection [2.2] provides a walkthrough of this framework.

The framework essentially ensures initialization, configuration, and reset of emulation sce-
narios and network nodes. Automatisation facilitates evaluation and enables reproducible re-
sults. Arguments are lists containing different values used for evaluation.

2.1 VirtualMesh Platform

The emulation tool VirtualMesh[1]] consists of two parts: emulated nodes, which run real com-
munication software, i.e., CCNx[2]], and a model, which simulates the wireless communication
between nodes.

For this purpose, two dedicated servers are put up in operation (as shown in Figure [2.1):
‘Real’ nodes are virtualized by the Xen Hypervisor on vim-host02, whereas vim-model02 hosts
the simulation model to which the virtual machines register.

Both servers are configured in the same way: they feature two network interfaces, ethO
and ethl. The latter is used for connections to the Internet for remote access. The first interface,
eth0, is used to interconnect the machines directly. On vm-host02, this interface also functions as
bridge for the hosted virtualized instances. All simulation traffic, i.e., the encapsulated simulated
traffic, is exchanged over this bridged link between the virtualized instances and simulation
server vim-model02 in order to decrease simulation latency to a minimum.

The Linux distribution used on the servers as well as on the virtualized node instances is
Debian Squeeze (version 6.0.5). It is set up without a graphical user interface for performance
reasons.

13

ethl
e vm-host02

eth0

ethl

ethO vm-model02

Figure 2.1: Emulation Environment: Overview

14

2.2 Stages of the Automatisation Framework

As illustrated in Figure [2.2] the framework is divided into following stages: preparation of the
simulation model and discovery node, discovery execution followed by evaluation data gather-
ing, reconfiguration of repository nodes and discovery settings, and finally teardown of model
and nodes. These are described in the following subsubsections to provide an overview of the

involved processes.
start

preparation

{
v

discovery

|

/ configurations left? #
yes

ino

teardown

Figure 2.2: Flow chart of the evaluation framework: Overview

2.2.1 Preparation: Initialize Simulation Model and Discovery Node

Figure [2.3] presents all preparation steps that are used. First, all listed, running VMs on the
virtualization server vim-host02 are shut down. The current VirtualMesh emulation instance - if
existing - is stopped on the corresponding server vim-model02.

Since the network topology is static throughout all evaluations, the model is initialized with
the Star-formation-50m as illustrated in Figure 2.4} Four outer nodes (designated repositories)
are placed evenly 50m apart and around a node in the center (designated discovery node). All
nodes are in transmission range of each other.

To further improve the stability of the model, the corresponding process on host vin-model02
is assigned a higher priority.

Next, the discovery node instance is set up, which involves the following stages: First, the
virtual machine is instantiated from a shared Xen virtual machine image which differs only in

15

shut down

l

node VMs left?

,,,,, Lo - -~ |

|
| |
| |
| 1 o
! initialize
v 1 model
|
|
|
|
|
|
|
|
|
|
|
|

!

set up
discovery
node

lno

Figure 2.3: Flow chart of the evaluation framework: Preparation

Figure 2.4: Network topology Star-formation-50m

16

the host name, e.g., vinl 1, and the IP address, e.g., 10.0.0.11.

Since the single Ethernet interface on the virtual machine is already used for remote access
and connection to the model’s host itself, a virtual wireless device dedicated to simulated traffic
needs to be created. Messages sent to this interface are encapsulated and transferred to the simu-
lation model using the Ethernet interface. The encapsulated traffic is transmitted and exchanged
via the simulated network. A receiving node can then obtain the original data on its virtual in-
terface after decapsulating it. To differentiate between physical and virtual networks, the virtual
interface uses another private IP address than the physical interface.

Communication is based on multicast only, using the IANA registered multicast IP address
224.0.23.170, which is routed in the simulated network only, i.e., via the virtual interface.

The network set-up is completed by registering the emulated node with the simulation model.
This enables simulated communication between emulated nodes via their representations in the
simulation model, using the virtual wireless interface.

As alast step of the preparation phase, available patches are applied and the newest revision
of binaries such as Java executables are deployed where applicable.

2.2.2 Configuration: Set Up Repository Nodes and Adjust Discovery Settings

Evaluations are started with different configurable parameters in subsequent phases as illustrated

in Figure

Repository Count

The first parameter that is considered is the number of repositories in the evaluation. If multiple
evaluations are scheduled with a varying number of repository nodes, the repository counts need
to be organized in ascending order. This way, existing repository nodes can be reused and
supplemented with new nodes.

For example, let “01;04” be the repository counts to evaluate: In the first round, one repos-
itory is set up and evaluated. The next configuration uses four repositories, i.e., the already
existing one from before and three new ones.

Repository nodes are set up similarly to the discovery node, i.e., the single node available
in every configuration designated to execute the content discovery. The set-up is described in
detail in subsection [2.2.1] Connection of repository nodes to the simulation model is tested by
pinging the IP address of the discovery node bound to the model, i.e., the IP address assigned to
the virtual interface.

Content Distribution Type

The second parameter is the content distribution type. We define two types: common and dis-
tinct.

In the common case, all repositories, i.e., the repository application on the corresponding
nodes, offer synchronized content. This means that all repositories contain exactly the same
content objects. Repositories use an image called the repo file, which persists all repository
related informations such as repository ID and offered content objects, i.e., binary data including

17

I
,,,,,,, S |

set up repo
node(s)

{

v
load
repositories

/ generic parameters left?

/| yes

an

content counts left?

an

yes

/ repository counts left?

|
|
|
|
|
!
| distribution types,
|
|
|
|
|
|
|

Figure 2.5: Flow chart of the evaluation framework: Configuration

18

CCNx meta data like content names, signatures and so on. By starting all repositories with the
same, distributed repo file, content is ensured to be entirely common.

In the distinct case however, the content objects are unique throughout all possible reposito-
ries, thus, every content is stored uniquely at only one repository. The content objects, numbered
in the form ¢/, ¢2, etc. and backed by generated binary data, are distributed subsequently to dif-
ferent repositories.

Content Count

The third parameter is the content count, which defines how many files are included in the repos-
itories. File sizes are uniformly distributed but do not have a significant impact on discovery
because only the content name and possibly the first data segment are required.

Content objects are either made available on all repository nodes simultaneously, i.e., com-
mon case, or distributed evenly among them, i.e., distinct case. The content count should be a
multiple of the repository nodes count in the distinct case so that the same number of content
objects can be stored in each repository.

Only when both properties (distribution type and content count) are defined, the repository
can be initialized and loaded.

Other Parameters

The remaining parameters are independent of the repository configuration and only affect the
discovery and the ccnd configuration.

Forwarding of content on multicast faces can be delayed by a random time interval to reduce
duplicated transmissions. The content-send delay, i.e., answering delay AD defines the range of
these time intervals, i.e., the maximum delay and is a ccnd configuration parameter.

Parameters concerning the discovery are described in subsection Interest lifetime,
retransmission threshold, retransmission delay, transmission delay and discovery algorithm.

2.2.3 Discovery: Reset Nodes, Execute Discovery and Gather Evaluation
Data

As shown in the overview in Fig. [2.5] discovery follows the repository setup.
Each evaluation run consists of the preparation for and the execution of the discovery ap-
plication itself. Data is gathered after all configured runs have been finished. This process is

visualized in Fig.

Reset CCNx

To ensure that each evaluation run is independent from previous runs, the cache needs to be
cleared after each run. This is performed by stopping and restarting the ccnd on all nodes.
Several configurations are provided to the nodes: the list of repository nodes is used
by the discovery node in its application’s context to control the repositories’ data gath-
ering. The parameter answer delay AD is exported as CCNx’s environment variable
CCND_DATA_PAUSE_MICROSEC that is read by the ccnd on start-up.

19

I
I
! |
I
| ”
| 175} |
I 15 |
| >~ |
I
| !
I > o~ I
= > [>T I
|| & k5 25 o| £ !
| — = > S| 85 |
7" C — [72) Q o < O F-+1->
, - Q Q O = S I
, 2 2 5 .2 s |
| 5 = kS 13 !
I = ”
I
! !
L r

\\\\\\

Figure 2.6: Flow chart of the evaluation framework: Discovery

20

The location of the ccnd log file and the verbosity level are also specified with exported
CCNx environment variables CCND_LOG and CCND_DEBUG respectively. As of now, how-
ever, they’re not configurable through parameters but rather need to be (statically) specified in a
special file on the host running the framework.

If the verbosity level is set to 30, it means to “include Interest messages (2) and details (16),
content messages (4) and matching details (8)”. Inherently, all basic messages are included with
any non-zero level. If discovery times are evaluated, logging of debug information should be
avoided by setting the debug level to zero.

After the debugging level is set, the faces need to be configured with the ccnd configuration
utility ccnde. Discovery is performed via multicast and, therefore, a multicast face needs to be
configured. It uses the IP address 224.0.23.170 and port number 59695.

Execute Discovery

A number of introduced configuration parameters affect the discovery algorithm and are thus
provided as application parameters. The Interest lifetime (IL) defines, how long an expressed
Interest is valid and kept pending. After it has timed out, the application can retransmit the
Interest message up to a configured number of times as defined by the retransmission threshold.
The retransmission delay (RD) defines the delay between subsequent Interest expressions. All
Interest expressions can be additionally delayed through the transmission delay (TD) parameter.
Content is discovered using the configured discovery algorithm.

Furthermore, the content count is supplied as a parameter so that the application knows
if it has discovered all content names. This information is only used for sanity check since an
application assumes that it has discovered all content objects after the number of retransmissions
of the same Interest, due to timeouts, reaches the threshold.

Immediately before and after the discovery method call, the application requests all nodes
(including its host) to store ccnd log and status informations. The log is reset before and pre-
served after the discovery, thus only the relevant logging during the method call is preserved.
Snapshots for the status of all faces before and after the discovery are preserved as well. Num-
bers relevant to the method call are obtained as differences between these records. Furthermore,
additional discovery run informations such as the discovery time, total number of discovered
content names, number of retransmissions etc. are logged at the discovery node.

Data Gathering

As illustrated in Figure when all evaluation runs have finished, ccnd log and status files, as
well as the discovery run information are collected on all nodes. Data is collected per configu-
ration run and then aggregated.

The raw data is stored on vm-host02 in a specific folder hierarchy where names correspond
to used evaluation parameters. Figure shows a sample directory hierarchy.

21

L 4-repos
| common-distribution
| 04-contents
| common-distribution

[030ms-AD
| default 60ms-TD
L 0500ms-IL
| common-distribution
| 1-retries
L IRD-usage
| default_100ms_RTdelay

DISCOVERY

[vml l.tgz

REPOSITORIES
vml2.tgz
vml3.tgz
vml4.tgz
vml15.tgz

Figure 2.7: Example directory tree of filed evaluation data

22

Chapter 3

Evaluation Challenges

As examinations of the involved mechanisms have shown, both the emulation tool VirtualMesh
and the open-source networking implementation CCNx need to be modified and extended in
order to render the intended evaluations possible.

3.1 VirtualMesh’s Support for Multicast

One of the first hurdle to overcome was unexpected and concerning the emulation framework’s
abilities to simulate multicast networking. Ethernet frames transmitted via the multicast face
were never transmitted and consequently never received by other nodes.

Graphically debugging the simulation framework OMNeT++[3]], which VirtualMesh is
based on, revealed problems regarding multicast communication in the Inet framework that pro-
vides the link layer to OMNeT++.

Nodes in the VirtualMesh simulation do not join the multicast group and are thus unable to
receive the multicast Ethernet frames sent to the multicast address, e.g., the IANA registered
multicast address for CCNXx.

To enable multicast communication, the class leee80211Mac in the inet framework repre-
senting the data link layer needed to be modified. Transmission has been rendered possible by
sending all multicast packets to the broadcast address. Listing shows the adaptation in code
released on July 23, 2010. The called method isMulticast() has a bug in this code release, which
prevents it to properly detect multicast MAC addresses. The patch is documented and included
on the attributive digital medium.

a/linklayer/ieee80211/mac/leee80211Mac . cc 2010—07—22 20:10:17.000000000 +0200
+++ b/linklayer/ieee80211/mac/leee80211Mac. cc 2012—03—29 22:40:04.000000000 +0200
@@ —253,6 +253,11 @@

ASSERT (! frame—>getReceiverAddress () .isUnspecified ());
if (frame—>getReceiverAddress().isMulticast()) {

frame—>getReceiverAddress () .setBroadcast();
//frame—>setReceiverAddress (¥ ff: ff: ff:ff:ff:ff”);

e

}

// fill in missing fields (receiver address, seq number), and insert into the queue
frame—>setTransmitterAddress (address);
frame—>setSequenceNumber (sequenceNumber) ;

Listing 3.1: Ieee80211Mac.cc patch

23

An alternative approach would require a modification at the receiver to detect multicast pack-
ets. This hasn’t been followed due to IGMPv2 group membership messages being exchanged as
a result, which in mobile CCNx communication are of little use.

3.2 Multi-Hop Communication with CCNx

The focus of the content-centric networking paradigm as elaborated by Van Jacobson et al.[4]
lies on wired networks with multiple interfaces and unicast faces. Whereas the implemented
suppression mechanisms are applicable to single-hop networks, such as in access point based
wireless mesh networks, they may not be applicable in multi-hop ad-hoc networks.

Interest messages are forwarded based on the Forwarding Information Base FIB, which can
be configured using the daemon configuration tool ccndc. Content messages that are received in
response to Interest messages travel back to the requester on the face the Interest was received.
This information is stored in the pending Interest table PIT. If a forwarded Interest doesn’t get
answered within its lifetime, it is removed from the PIT.

Interest messages cannot be forwarded on the face they were received from. By adding a
second multicast face, which differs in port numbers only, Interest messages can propagate on
alternating faces, thus enabling multi-hop communication.

We will explain this with an example in Figure [3.1] Transmitted Interest messages are de-
noted by solid arrows, content messages by dashed ones. Message flow in the upper half is
forwarded on face 1 and in the lower half on face 2. In this scenario, node a receives an Interest
message on face 1. If it is unable to answer the request, it can forward the Interest message
on face 2. Node b, which receives the message on face 2, can forward it on face 1 and so on.
On the way back, responding content would arrive on face 1 at node b and leave it on face 2,
corresponding to the faces where the Interests were received and forwarded.

1 _1_
@i ’
2 2

Figure 3.1: Multi-hop communication using two multicast faces

However, multi-hop communication via two configured multicast faces is tricky in case of
mobility. Consider the changed message flow as illustrated in Figure[3.2] Node a has an entry
in the PIT for the defined IL as in the previous example. While waiting for matching content,
node b moves out of range and node ¢ comes into range of node a. Node c receives matching
content on face 2 and forwards it on face 1 according to its PIT entry. The requested content
hence arrives on face 1 at node a instead of face 2 and can therefore not be forwarded to face 1
because it is already received from face 1.

Therefore, the content would be cached at node a but not further forwarded. A requester
would need to re-express the Interest in the content and send it to node a to retrieve the cached

24

content from a.

Figure 3.2: Multi-hop communication using two multicast faces: deadlock

Multi-hop ad-hoc communication would require adaptation of existing suppression mech-
anisms, which are beyond the scope of this thesis. Therefore, we focus only on single-hop
communication.

3.3 Adapting the Interest Lifetime

The Interest lifetime IL is a property of the Interest message and can therefore be adapted in
every Interest message.

An unanswered Interest message is removed from the PIT after the IL time has passed.
Received Interests are not forwarded in case of existing PIT entries to avoid duplicate Interest
transmissions. Thus, the IL has a direct effect on when Interests can be reexpressed.

Especially when discovering content in one-hop distance, the default IL of four seconds is
too long: if content is available, most Interests are answered within 10ms on average. Modifying
the IL to perform faster reexpressions can considerably reduce discovery times.

With CCNx release 0.8.1 as of October 9th, 2013 and any previous releases, the Java API
does not support the encoding of the IL bytes set, leaving it at the default value as logged by the
cend. This is due to the Interest class instance method encode(XMLEncoder encoder), which is
called on serialization of the Interest message and encodes all Interest properties but the IL. Cus-
tomizing the IL through the API has thus no effect on the actual Interest lifetime. By extending
the Interest encoding, the customized IL is considered and read by the ccnd. Listing [3.2] shows
the patch based on CCNx release 0.4.2.

—— a/cenx —0.4.2/javasrc/src/org/ccnx/cen/protocol/Interest. java 2011—12—07 21:03:35.000000000 +0100
+++ b/cenx —0.4.2/javasrc/src/org/ccnx/cen/protocol/Interest. java 2012—05—04 05:46:21.046021391 +0200
@@ —552,6 +552,9 @@

if (null != nonce())

encoder. writeElement (CCNProtocolDTags . Nonce, nonce());

+

if (null != interestLifetime())
+ encoder.writeElement (CCNProtocolDTags. InterestLifetime , interestLifetime ());

encoder. writeEndElement () ;

Listing 3.2: Interest.java patch

25

Chapter 4

Summary and Future Work

Two discovery algorithms have been developed and evaluated.

The Enumeration Request Discovery ERD uses Interests with a specialized prefix, append-
ing a command marker to the prefix. These Interest messages are answered with lists of next
name components for a given prefix. The repository ID supplied in the response’s content name
identifies lists from different repositories and can be used to exclude the retrieved list in future
requests.

ERD is advantageous in rather static environments, with highly distinct content distribution
among nodes. In such scenarios, the content awareness increases rapidly with subsequent re-
quests. Since retrieved lists of matching name components are supplied as data, already retrieved
enumerations can be excluded only using the sender repository’s ID and list version. However,
it is not possible to know prior to receiving the list, whether it contains new information.

The Regular Interest Discovery RID uses Interests with non-specialized prefixes, which re-
trieve the first data segment of a matching content object. RID proves to be useful in potentially
dynamic environments, where content is ‘popular’ among repositories, i.e., available on numer-
ous nodes. These popular content objects are discovered only once and can then be excluded
effectively in any future requests, independent of the number of copies in other repositories.
While discovery only operates with content names, regular Interests retrieve the first data seg-
ment as well, which can be considered as overhead because it is not required to discover content
names.

In future work it may be beneficial to include the list’s hash in the response’s content name,
so that responses to ERD requests from different repositories with the same content can be
omitted. Otherwise, two synchronized repositories could respond with the same list of content
names but it would be treated as different content because of a different repository ID. In this
case, when using a hash to identify content lists, a repository may not respond to a request with
exactly the same list. Such enumerations with meaningful content names could be retrieved by
appending a different command marker to the prefix.

The option to skip the inclusion of data in responses (possibly using additional flags in the
Interest message) may decrease data overhead and network load of discovery when using RID,
but it requires the modification of Interest messages.

Combining both discovery approaches may be beneficial. For example, a regular Interest
for prefix ccnx://ccnx.org/data/music/ may retrieve a content object named /... J/Michael Jack-

27

son/Greatest Hits/Thriller. Assuming that the found track is included in a music album, an ERD
request for the prefix ccnx://ccnx.org/data/music/Michael Jackson/Greatest Hits/ could retrieve
a list of available file names on the answering repository, i.e., available tracks for this album.
Other missing tracks could be discovered from other repositories via RID requests excluding all
discovered tracks from the ERD request.

28

Bibliography

[1] T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An Emulation Framework for Wire-
less Mesh and Ad-Hoc Networks in OMNeT++,” SIMULATION, vol. 87, pp. 66-81, 2011.

[2] Project CCNXx. [Online]. Available: http://www.ccnx.org
[3] OMNeT++. [Online]. Available: http://www.omnetpp.org

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” pp. 1-12, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

29

http://www.ccnx.org
http://www.omnetpp.org
http://doi.acm.org/10.1145/1658939.1658941

	Contents
	List of Figures
	Paper: Content Discovery in Opportunistic Content-Centric Networks
	Automatisation Framework to Support Evaluations
	VirtualMesh Platform
	Stages of the Automatisation Framework
	Preparation: Initialize Simulation Model and Discovery Node
	Configuration: Set Up Repository Nodes and Adjust Discovery Settings
	Discovery: Reset Nodes, Execute Discovery and Gather Evaluation Data

	Evaluation Challenges
	VirtualMesh's Support for Multicast
	Multi-Hop Communication with CCNx
	Adapting the Interest Lifetime

	Summary and Future Work
	Bibliography

