
Integration of WSNs into Enterprise Systems based
on Semantic Physical Business Entities

Matthias Thoma∗† Klaus Sperner∗, Torsten Braun † Carsten Magerkurth∗,
∗SAP (Switzerland) Inc., Althardstrasse 80, 8105 Regensdorf, Switzerland

matthias.thoma@sap.com, klaus.sperner@sap.com, braun@iam.unibe.ch, carsten.magerkurth@sap.com
†Communication and Distributed Systems, University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

Abstract—Internet of Things based systems are anticipated to
gain widespread use in industrial applications. Standardization
efforts, like 6LoWPAN and the Constrained Application Protocol
(CoAP) have made the integration of wireless sensor nodes
possible using Internet technology and web-like access to data
(RESTful service access). While there are still some open issues,
the interoperability problem in the lower layers can now be
considered solved from an enterprise software vendors’ point
of view. One possible next step towards integration of real-world
objects into enterprise systems and solving the corresponding
interoperability problems at higher levels is to use semantic web
technologies. We introduce an abstraction of real-world objects,
called Semantic Physical Business Entities (SPBE), using Linked
Data principles. We show that this abstraction nicely fits into
enterprise systems, as SPBEs allow a business object centric
view on real-world objects, instead of a pure device centric
view. The interdependencies between how currently services in an
enterprise system are used and how this can be done in a semantic
real-world aware enterprise system are outlined, arguing for the
need of semantic services and semantic knowledge repositories.
We introduce a lightweight query language, which we use to
perform a quantitative analysis of our approach to demonstrate
its feasibility.

I. INTRODUCTION

In the enterprise community real-world aware business
models and software innovations, e. g. as part of the so-called
Sensing Enterprise, gained a lot of momentum recently. One
of the main obstacles in enterprise integration is still the gap
between the specialized knowledge needed to program the
sensor nodes and add them to an enterprise backend system,
and the (business) model driven way enterprise software is
written and customized. In IoT research, one of the main
observations is that people and thus many business processes
are interested in managing the things and the properties of
the physical objects. They are not at all interested in sensor
readings. Our approach decouples the actual sensing devices
(commonly referred to as motes) from the things in our
business systems, which we call Semantic Physical Business
Entities (SPBE). These SPBEs are described in a semantic
service description language and change the programming and
integration model from pure hardware centric to a service
centric one. On the mote level two recent developments lead
to more widestream adoption in industry: (i) 6LoWPAN [1],
standardization towards IP-based protocols even on a sensor
network level and (ii) development of lightweight application-
level protocols like CoAP [2].

Our framework is based on the linked data principle, as
suggested by Berners-Lee [3]. The general idea of linked data

is to create typed links between data from different sources
and make them accessible through standardized technologies.
Linked data is described in a machine-readable way with an
explicitly defined meaning.

Explicit meaning is achieved by using ontologies; for ex-
ample for connecting the motes with the SPBEs we use the
semantic sensor network ontology (SSN) or industry-specific
ontologies. They are part of the enterprise systems’ knowledge
base and thus are, at least, reusable within one Enterprise
Resouce Planning (ERP) domain. The real world objects, or
to be more precise the properties sensed about them, will be
described by a URI (endpoint). This decouples the real world
objects from the sensing hardware, which is a big plus in an
enterprise SOA environment. The endpoint itself is a RESTful
interface and is described in a semantic service description
language that makes it semantically exploitable by the SOA
platform.

In previous work an entitiy notation for the Business Process
Modelling Notation (BPMN) was introduced [4]. This work
focuses on the conceptual embedding and the actual imple-
mentation on the lower levels. The SPBE abstraction can easily
be used within enterprise systems with standard semantic web
technologies. In the second part of the paper we concentrate
on how SPBEs can be used to interact with motes. Our
contributions in this context are: (i) Proposing SPBEs as an
abstraction to represent physical objects in enterprise systems
(ii) relate SPBEs to existing enterprise system and show a
path for seamless integration (iii) proposing an integration
platform taking several semantic repositories into account (iv)
propose a simple SQL-like language to construct RESTful
service endpoints that allow querying the properties of the
SBPEs without having to take care of specific sensing devices.
This can be seen as a semantic counterpart to sensor network
database approaches.

The remainder of this paper is structured as follows: After
relating our work to the literature in Section II, we introduce
semantic services (section III). In section IV we introduce
SPBEs. An integration strategy into existing enterprise sys-
tems is discussed in section V. We describe a custom query
language for specifying SPBEs and their deployment to motes.
Implementation details of our prototype solution are given in
section VI. We then show the feasibility of our approach by
presenting evaluation results.



II. RELATED WORK

The idea of using services as an abstraction layer for
physical objects, the so called entity services, is described in
[5] as part of service taxonomy for the Internet of Things.
We enhance these ideas, present an actual implementation and
embed it into an enterprise framework. Similar concepts of
abstracting physical objects and annotating them with semantic
web technologies have been presented by Haseman et al. [6],
following an approach where all the aggregation is done by
the backend. Their system always has a complete view on the
state of the system and aggregates the sensor data connected
to their entities. In contrast we support processing on the
actual sensor nodes beyond a simple sense and send approach.
Furthermore, we show a path for actual enterprise integration
of sensor devices. The use of linked open data for making
sensor readings available has been proposed by the sense2web
project [7], where the main objective was to make the sensor
readings web-accessible.

The query language can be seen as a semantic version of
sensor network databases: With TinyDB [8] we share the SQL-
like syntax, but otherwise differ in many ways. Our language
creates services as well as service endpoints and establishes
connection between sensors and SPBEs, while sensor network
databases mimic traditional databases and their main purpose
is the direct retrieval of data from sensor networks.

III. SEMANTIC SERVICES

A. Introduction
Services, in particular Service Oriented Architectures

(SOA), play a major role in nowadays enterprises. Tradi-
tionally, service descriptions are stored in repositories, which
serve, for example WSDL descriptions. Inputs, outputs and
effects or effected entities are not explicitly stated, only in
datatypes and naming conventions. The objective of semantic
services is to go one step further and make all this implicit
knowledge explicit.
B. Linked USDL

Linked USDL (L-USDL: Linked Unified Service Descrip-
tion Language) is the semantic successor of the original USDL
language, which was based on XML schemas. L-USDL is
based on semantic web technologies (RDF/OWL) and follows
Linked Data principles. L-USDL aims towards developing a
standard vocabulary to represent services. As services can
cover a wide range of different domains, explicit ontological
links (which is the origin of the name Linked USDL) to other
domain specific ontologies have to be created.

The objectives leading to the design of L-USDL were [9]:
1) Retain the necessary simplicity for computation as well

as for modeling purposes.
2) Reuse existing vocabularies to maximize the compatibil-

ity of related systems, reusability of previously modeled
data, and reduce engineering efforts.

3) Provide a simple yet effective means for publishing
and interlinking distributed data for automatic computer
processing.

In this work we are using the latest development version of
L-USDL that is available. Figure 1 shows the essential parts

of L-USDL.
The main entry point to L-USDL is usdl:Service. It de-

scribes a service in a way, so that it can act as an interface
between the service provider and the service consumer. As
a service is more than just a technical interface, the service
description also describes functional as well as non-functional
properties. The non-functional properties include qualitative
and quantitative values, like the precision of an actor or the
accuracy of a sensor. The pure functional/technical properties
are described by the interaction protocol (interaction points).

An usdl:InteractionPoint is an actual step to be performed
when accessing the service, like calling a CoAP based REST
interface. Classes of services can be modeled with Service-
Model, sharing common characteristics and/or properties. Fur-
thermore, usdl:ServiceOffering is shown as an example for a
connection to the business side: Service offerings can define
a price, terms and conditions, and service level agreements
(SLAs).
C. Service Result Data Representation

While our approach is generally capable to deliver data in
an arbitary format, we concentrate on the use of RDF for the
results of the service calls in this work.

IV. FROM BUSINESS OBJECTS TO SEMANTIC PHYSICAL
BUSINESS ENTITIES

A. Introduction
In this section we present the concept of Semantic Physical

Business Entities (SPBE), which, together with Semantic Ser-
vice Descriptions, are the foundation of our integration plat-
form. The core idea is to decouple business objects, as tracked
in enterprise systems, from the actual sensors monitoring
them. For an enterprise SOA user this service based approach
removes several layers of indirection. It enables direct access
to the properties of the monitored business objects.

We first elaborate on the need for semantics in enterprise
systems, and continue with introducing SPBEs in more detail.
We conclude this section by arguing for the need of domain
specific ontologies.
B. Semantics in Enterprise Systems

Semantics and even ontologies do already exist in nowadays
enterprise IT systems, nonetheless they are often hidden and
not explicitely stated as such, like the semantic web movement
does. To enable interoperability between different compo-
nents of an enterprise system, often a common vocabulary
is used. The specific modules are then based on such common
datatypes. For instance, SAP ERP systems use a Global Data
Type (GDT) directory that represents business related content
SAP wide. All elements of SOA services provided by SAP
systems are described (typed) by GDTs. A GDT is more than
just an integer or a float, but a GDT might be something rather
generic like an invoice or something very domain-specific
like AirCargoSecurityStatusCode. This implicit knowledge,
the GDT directory, currently specifies more than 5100 different
data types and is documented on more than 16000 pages.
C. Semantic Physical Business Entities

We now introduce the concept of Semantic Physical Busi-
ness Entities, which in conjunction with ontologies will make



Linked-USDL

usdl:InteractionPoint

usdl:Interface

usdl:hasInterface

usdl:Condition

usdl:hasPostcondition usdl:hasPrecondition

rdfs:Literal

usdl:hasInteractionType

rdfs:Class

usdl:receives usdl:yields

usdl:Participant

usdl:hasParticipantusdl:hasInteractionSpace

usdl:Service

usdl:hasInteractionPoint

usdl:ServiceModel

usdl:hasServiceModel

skos:Concept

usdl:hasClassification

usdl:ServiceOffering

usdl:includes

gr:Offering

rdfs:subClassOf

rdfs:subClassOf

gr:ProductOrServiceModel

rdfs:subClassOf

gr:BusinessEntity

usdl:hasAgent

usdl:Role

usdl:hasRole

Fig. 1: Linked Unified Service Description Language (Linked USDL) (Excerpt)

Information and Reasoning 

Service 

Physical Resource Adapter 

O
n

to
lo

gi
es

 &
 

K
n

o
w

le
d

ge
 

R
ep

o
si

to
ri

es
 

SOA 

Sensing 
Device 

Sensing 
Device 

Sensing 
Device 

Fig. 2: Layered Architecture

this implicit knowledge explicit and directly accessible. First,
we define the term Physical Business Entity (PBE):

A Physical Business Entity is a conceptual represen-
tation of a real-world object processed by one or more
enterprise IT systems.

At this point we limited ourselves to physical objects in the
real-world, sometimes also called entities of interest. Nonethe-
less, our approach is generalizable to other kinds of entities,
that can be observed by all kinds of sensors, e. g. including
social networks.

In the literature there is no common agreement on the
definition of the terms business object and business entity.
Some authors use them interchangeably, others define business
objects as entities with logic. As we want to emphasize the
relationship with the entity concept as found in the IoT, we
choose the term semantic physical business entity, which we
define as follows:

A Semantic Physical Business Entity is a conceptual
representation of a real-world object processed by one or
more enterprise IT systems. Information about it is discov-
erable. It is described through well defined vocabularies,
that make internal and external relationships explicit.

The decoupling between the PBEs and the devices observing
it is important: An enterprise IT system’s user is usually not
interested in the value of sensor no. 0815 or sensor no. 4711,
but in the temperature of some given good or class of goods,
which could be monitored by several sensors. This abstraction,
moving away from the pure technical view concentrating on
sensing devices, towards the ”things” they monitor is one of
the main ideas in the IoT community. In section V we show
how our platform supports this abstraction.

D. Domain Specific Ontologies

It is important to note that only using semantic web tech-
nologies does not make a system smart. Data in RDF format is
still machine-readable data only, which needs to be interpreted
by reasoning algorithms. One very important prerequisite for
smart systems are domain specific ontologies: This means
the definition of common vocabularies and their relationships
describing the actual domain. Even further, domain specific
ontologies are not enough. For solving the semantic interoper-
ability problem between different systems, we need common
or standardized ontologies, or at least a mapping between
ontologies of the same domain must be possible. For example
we can have one ontology specifying: A banana is a fruit, and a

fruit is a perishable good. A second one could specify banana
as a fruto (Spanish for fruit) introducing an interoperability
problem.

V. INTEGRATION OF SEMANTIC SERVICES AND SEMANTIC
PHYSICAL BUSINESS ENTITIES INTO ERP SYSTEMS

A. Introduction

Considering interoperability as it is currently done in in-
dustry, one can observe that almost always a device-centric
approach is used: Specific modules within the enterprise
system interact with the sensing devices through proprietary
protocols. Very recently the situation has changed towards IP-
based protocols and standardized application level protocols.

One of the main challenges of innovation for an enterprise
software vendor with a huge user base is to cope with the myr-
iad of already existing code. Vendors aim towards innovation
that has a clear integration path into already existing systems,
even for more disruptive technologies. As most enterprise
systems already use service repositories as an integrated part
of their SOA environment, the integration of semantic service
descriptions would not change the paradigm of how software
is written today. Semantic Services thus could be added to
enterprise software in an incremental manner without the
need of disruptional changes. As explained in section IV-B
there is already a lot of semantics in enterprise systems. The
GDT in SAP systems can be seen as some kind of ontology.
What is needed is to make the implicitly encoded knowledge
more explicit. This would not introduce significant changes to
nowadays systems.

Business Objects are already stored in all kinds of data
stores. Here the introduction of identifiers addressing these
stores are necessary. Already existing data can be made avail-
able through service interfaces in a semantic web way. This
would not introduce any changes to existing code. Access to all
sorts of semantic entities is accomplished through semantically
described services as introduced in this work.

B. Integration Platform

Our Integration Platform is shown in Figure 3. Specialized
physical resource adapters are responsible for the communica-
tion between the motes (Figure 2) and an specific instance of
the integration platform (IPI). The only requirement we have
towards the motes is, that the IPI is notified when motes join
or leave the WSN. Optionally, the motes can have a service
description stored on them. This is necessary when third-party



Zone 1 Zone 2 

IPI IPI 
IPI 

IPI 

IPI 

WSN WSN WSN WSN 

WSN 
WSN 

WSN 

WSN 

ERP C&C SR DK 

Enterprise 

Data 

Configuration  
/ Monitoring 

Write 

Read/Write 

(a) Deployment view

Templates 

Service 
Repository 

Code generation 

MR byte code 

mrc 

GPH 

parameter 

program 

IPI 
javac 

SPBE/Query services 

(b) Code generation and service access

Entity 
Repository 

Domain knowledge 
ontologies 

SPBE 
Is desribed  
using 

is stored in 

<<URI points to>> 

Service 
Repository 

Describes 
services 

can be queried 
according to entities 

observe 
Is described using 

Describes 
services 

Self- 
descriptive 

Knowledge 
Repositories 

links  
to 

(c) Knowledge Repositories and Distribution

W3C-SSN 

ssn:observes 

ssn:SensingDevice 

ssn:observes 

Semantic 
Entity 

Repository 

Se
m

an
ti

c 
La

ye
r 

Semantic 
Service 

Repository 

Domain 
specific 

ontology 

In
te

gr
at

io
n

 L
ay

er
 

B
u

si
n

es
s 

La
ye

r 

usdl 

IPI 

SPBEQL 
Engine 

reads&controls (REST ful)  
(the physical sensors described by SSN). 

Business expert 

models 

m
o

d
el

s 
u

si
n

g 

Business 
Rules Business Rules 

Component 

Enterprise SOA platform 

SPBE 
Services 

invokes 

creates 

invokes 

C&C 

describes 

PRA 

(d) SPBE in an enterprise framework

Fig. 3: Semantic Enterprise Integration Platform

smart objects (SPBE with a sensor attached) join the domain
of an enterprise. Information from the motes is then used in the
information and reasoning parts of the system, supported by
ontologies and domain knowledge. The dependencies between
the SPBE and the knowledge repositories are shown in more
detail in Figure 3(c).

Access to services and provisioning of services is handled
by the service layer. The service layer consists of the service
repository and (if needed) proxies to access the services. Such
a proxy could be a HTTP to CoAP conversion. Furthermore,
utilizing the business information and reasoning layer, the
system might provide additional higher level services based
on SLAs, reasoning (e. g. ontology based virtual sensors) or
the connection of entities and (virtual) sensor data.

The deployment view of our envisioned semantic enterprise
integration platform is shown in Figure 3(a). The actual IPIs
are deployed to different (geographical or logical) zones and
control one ore more motes. They are responsible for reading
data from them or setting their state in case of an actuator.

C. SPBEQL: SPBE Query Language

SPBEQL is a lightweight query language for establishing
connections between SPBEs and the sensors measuring their
properties. The creation of the language has been inspired
by SQL and particularly by its subset GQL (Google Query

Language) [10]. SPBEQL is currently tailored towards sensor
data only. It supports a create service statement with the
purpose to create a service endpoint that can be used to retrieve
sensed data about one or more SPBEs:
CREATE [ALL] SERVICE [MODE] FOR
[SELECT statement]

MODE :== PUSH | PULL

DELETE SERVICE URI;

The ALL keyword, if specified, causes the system to create
distinct service endpoints for all SPBEs involved in the SE-
LECT statement, otherwise only one service endpoint for the
whole select is created.

The MODE property can either be push or pull. In push
mode the sensors regularly send data to the endpoint (if
applicable) thus making sure that data is available sooner, but
it might be not the most recent one. In PULL mode the service
values are fetched at the moment the request is executed.
Additionally, the system is able to delete services.

The actual properties of interest are specified using an SQL-
like SELECT statement with the following syntax:
SELECT ([AGGOPP] SENSED_PROPERTY)+ [FOR SPBE] WHERE
<CONDITION> [HAVING] [WITH [CollectionInterval] [AND] [

CollectionTime]];

AGGOPP :== AVG | COUNT | MIN | MAX | SUM



The SENSED PROPERTY is derived from the W3C Se-
mantic Sensor Network (SSN) ontology1, the SPBEs are stored
in a separate knowledge repository. Services are described
in L-USDL2 glueing SSN and the business domain specific
ontologies together. It can be sensed from known sensing
devices (motes) or originate from any other Linked Open Data
source. We currently support the following aggregation func-
tions: AVG (arithmetic mean), COUNT (number of values),
MIN, MAX and SUM. We specify a keyword CollectionTime
(ct), which determines for which time frame the data from
the sensors should be collected, and CollectionInterval (ci),
which determines how often new sensor readings should be
acquired.

The following code demonstrates creating a service endpoint
for getting the temperature of a given temperature zone:
CREATE SERVICE PUSH FOR
SELECT AVG MIN MAX temperature FOR SPBE e WHERE
e:hasLocation:city = "Zurich" AND
e:is_an = "temperature zone"’
WITH CollectionInterval = 30s AND CollectionTime = 60s

Mapping conditions to ontologies is done by pattern match-
ing. Navigation in the semantic graph is therefore possible
without prefixes (like ssn: or usdl:), as long as the identifiers
are unique. In contrast to query languages that return a result
set, the CREATE statement returns an URI allowing to access
the specified service and retrieving a result set in RDF. The
system also creates a service description for that particular
service and adds it to the enterprise service repository.

We choose our own query language for complexity and ex-
perimentation reasons. It gives us full control over a language
with medium complexity. We would not have that with a query
language like SPARQL. Furthermore, we want to be open
to extensions and new ideas, which are easier to implement
in an SQL-like framework. In future work we will explore
the possibility of using OData and SPARQL as further query
languages and the use of moving aggregation functions.
D. Service Deployment Planning

There are currently two different ways of tackling the
aggregation and sensemaking of data. On one hand, there is
the growing big data community, that favours a sense, send
and store approach, where aggregation is done later on the
backend systems. On the other hand, influenced by the needs
of the traditional embedded world, others favour data fusion
on the mote to reduce the data to be transmitted. The actual to
be preferred approach, of course, depends on the requirements
and the environment of the application.

In this work we suggest a heuristic that can either create a
sense-and-send (S&S) style placement, or performs a greedy
placement of aggregation functionality as close to the sensors
as possible. A S&S approach, as done for example by Hase-
man et al. [6], has the advantage of an easy implementation.
The authors of [6] did not perform an evaluation in terms of
energy efficiency. Our experiments show that a S&S approach
is sufficient when dealing with sensing devices that are not
battery powered or have to send data very infrequently. Oth-
erwise, the energy profile of an node aggregation is better.

1http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
2http://www.linked-usdl.org/

We distinguish three types of services: (i) Data Gathering
Services (DGSs), (ii) Aggregation and Forwarding Services
(AFSs) and (iii) SPBE Services. DGSs are responsible for the
actual sensing of data. They are hosted on the mote and gather
data. AFSs aggregate or forward data from one or more DGS.
Finally, the SPBE service is the endpoint that gives access to
the sensed properties of the actual physical business entity.
These endpoints are described with Service Descriptions and
stored in the Enterprise Service Repository. An actual service
can have more than one of these roles. In some cases the
SPBE services can be placed directly on one of the motes,
sometimes this is even desired, as in the case of a moving
intelligent container. Often the SPBE access point is on one
IPI. There is no aggregation done over multiple IPIs. The IPI
with most motes attached to it is selected as the endpoint and
all other IPIs are sending their data to it.

The services are then placed on the motes following a
resource-aware heuristic. The proposed heuristic expects tree
routing, but is otherwise independent of the underlying routing
as long as a tree can be build, for example by introducing an
overlay routing based on shortest distances. We define:

A predecessor tree P (M,E), consisting of communication
links E and motes m ∈ M. The subset Ms ⊆ M are the
motes sensing data for the current query. Each mote has a
set of available resources C consisting of tuples R (storage,
processing). As the WSN might perform other tasks as well,
there is an initial setting of these values. We define a mapping
Φ(M)→ S, that maps a mote m to a set of services s ∈ S =
SDGS ∪ SAFS ∪ SSPBE . For each service s ∈ S there is a
function ρ(S)→ R returning the needed resources.

As synchronization primitive we use epoch based barrier
synchronization [11]. Without limiting the generality, we use
beacon based time synchronization [12]: The used Moterunner
(MR) [13] platform uses 6LoWPAN with tree routing and
TDMA medium access, where the edge mote has a-priori
knowledge of the send/receive frame timings.

We define a slack vector w as follows:
w =

[
t1 t2 ... tn

]τ
, ti > 0,∀mi : w(i) = ti.

The slack vector w is used for timing the aggregation points.
Each ti defines the time an aggregation point is waiting for
data, until it closes an epoch. Later arriving data from a
previous epoch is invalid. Applications, in which this later
data has still a meaning, can turn off invalidation. The larger
ti is the more robust is this particular aggregation point against
packet loss.

We try to aggregate data on the motes whenever possible,
in order to decrease the energy needed (by reducing the
number of transmissions) and the response time. The problem
of placing services in the WSN corresponds to the task
embedding problem, which is known to be NP-hard [14].

In the following we sketch the greedy placement heuristic
(GPH) used for placing services on the tree P :

1: procedure CC(m ∈ M, s ∈ S) . Check constraints
2: v ← ρ(s)
3: if ∀vi ≤ C(m)i then
4: update(C(m)); return true
5: return False
6: end procedure
7: procedure LCA(a, b ∈ M) . Least common ancestor
8: c← leastCommonAncestor(a, b) . details omitted



9: return c
10: end procedure
11: procedure GPH
12: for all mi ∈ Ms do . Set DGS
13: s← cs(mi) . Create service
14: Φ(mi) := s
15: SDGS ← SDGS ∪ {s}
16: cc(mi, s)
17: Ml ← sort(Ms) by level desc
18: for all mi ∈ Ml do . Set AFS
19: for j = 1..(|Ml| − i) do
20: m← LCA(mi,mi+j)
21: s← cs(m) . Create service
22: if !cc(m,s) then . Find slot
23: f ← false
24: while ((!f) & m!=EdgeMote) do
25: p← m.parent
26: f ← cc(p, s)
27: m← p

28: if (!f) then . No slot found
29: m← IPI
30: AggregationOnIPI(mi,mi+j )
31: Φ(m) := s
32: SAFS ← SAFS ∪ {s}
33: end procedure

In a nutshell, the algorithm first places all DGSs to the
respective motes, then sorts the motes by level and places the
AFS using the least common ancestor (LCA) algorithm [15]
to the closest ancestor in adherence of the constraints. This
can also be the IPI.

While setting the slack vector is application specific and can
take link and application specific characteristics into account,
one possibility is to set it by the calculated time to collect data
from the corresponding lower level services (DGS or AFS),
multiplied by a factor βi to compensate packet loss. The slack
vectors typically increase in each level of the tree from leave
to root, as the next level of AGS needs to wait for the results
of their feeding AGS. In case of synchronous TDMA-based
medium access control we can easily calculate the values for
each AFS slack vector value ti, with corresponding DGS with
slack values tn...tm (without limiting the generality), Collec-
tionTime ct and maximum transmission time ttmax(mi,mj)
from mote mi to mote mj . This leads to the following values
for the DGS and AFS service slack values:

tn = ct ∗ β1, βi ≥ 1

ti = max(tn, .., tm)+

(max(ttmax(mn,mi)..ttmax(mm,mi)) ∗ βi), βi ≥ 1

Motes can join or leave the WSN at any time. When a new
mote joins, the system integrates it by deploying a DGS if
necessary, and determines the next possible AFS by applying
the LCA algorithm. In cases, in which motes, that still have
children (according the the current routing) leave the network,
the MR platform will try to create a new tree. From an IPI
point of view, motes reattaching to the tree are like new motes.
They will look for an existing AFS and feed their data to
it. If an SPBE endpoint leaves the network the system will
create a new one on the IPI and change the service repository
accordingly. If a mote that has no direct path to a SPBE
endpoint joins, the endpoint is also moved to the IPI and all
components accessing the service will get a service redirection
response.
E. Service Creation and Deployment

Once the deployment plan has been calculated, the plat-
form creates the corresponding services. We create on-mote

services in Java, compile them (see Figure 3(b)) and deploy
them according to the mapping Φ, as calculated by the
greedy placement heuristic. Currently we are using CoAP
over 6LoWPAN for communication. Code generation is done
with a parameterized template system. The services themselves
are parameterized as well, so that the important parameters
CollectionTime, the slack time and the corresponding AFS
can be changed during run-time.

F. Service Access

An application can access the created service through the
service URI. Furthermore, the service can be queried through
the service repository. Each service is accessible through a
CoAP RESTful interface and over HTTP via a CoAP proxy
on the IPI. Both endpoints are stored in the service repository
for consumption by service consumers. All calls are RESTful
(GET) and return RDF triples. A DELETE to the service
would remove the service, just as the delete service statement
in SPBEQL. With a POST to special resources as /ct or /st
the collection time (ct) and the slack vector (st) be changed.

VI. PROTOYPE IMPLEMENTATION

We built a prototype implementation and performed quan-
titative evaluations. All code is written in Java. The platform
is based on Java7. On the motes we use IBM Researchs’ MR
platform [13], with an improved version of their 6LoWPAN
protocol. It uses a custom byte code and it has been shown
that the platform has a very good tradeoff between using a
VM and energy consumption [16].

We created a custom CoAP-14 implementation. We use
the endpoint descriptions to generate code for specific REST
services and add a small CoAP library with minimal overhead.
CoAP uses a stop-and-wait congestion control algorithm,
which needs only very limited resources for bookkeeping.

VII. EVALUATION

In this section we perform a quantitative analysis of our
SPBE-aware integration platform. In particular we evaluated
the response times of services created by SPEQL as well as
the energy consumption of the complete system. Furthermore,
we experimented with external RDF data sources and their
integration into the platform.

A. Evaluation Scenario

We assume a retail scenario, in which all relevant infor-
mation (store, goods, properties of stores and goods) are kept
in semantic repositories. We connect these to form SPBEs
and create services for them. In the stores different perishable
goods are stored in different temperature zones tzi. The whole
store is monitored by a WSN connected to one IPI. The WSN
is monitoring this tzi and has information about the goods in
each particular temperature zones. The data sources used are
as follows:

1) The tzi are stored an repository. It is linked to the
particular store, which has a specific location.

2) The goods in each tzi are also stored in an enterprise
repository as part of the retail system.

3) We have a dataset of locations, which allow to query for
geolocations, e. g. for all stores of the chain in Zurich.



Fig. 4: Scenario
TABLE I: Technical details of an IRIS Mote

CPU ATmega1281 (8Mhz) Serial Flash 512k Bytes Program Flash 128k bytes

RAM 8k bytes Current 8mA(act), 8µA(sleep) RF power 3 dBm (typ)

As shown in Figure 3(d) the business experts formulates
the process in a business modeling language, which uses
the semantic repositories. Based on that the system creates
business rules (BRs). These BRs then trigger the generation
of SPBEQL statements, which in turn generates software to be
deployed on the motes and on the IPIs. The generated services
used by the business process are semantically described and
stored in the semantic service repository. The modeler needs
no knowledge about the WSN or any particular sensing device.

We created endpoints for a specific store in Zurich, with
four distinct temperature zones, with 12 sensing sensors in
each zone (see Figure 4). The endpoint delivers the maximum,
minimum and the average temperature of all sensor readings.
Based on this information the retail system does make deci-
sions on the price of the specific goods (dynamic pricing). We
used ci = 5s and ct = 20s and averaged the results over 100
runs for each experiment.
B. Evaluation Setup

We conducted our experiments in a close to real-world setup
in a living lab and with simulation support. The evaluations
were done using IRIS Motes with technical details as in Table
I. We used the MR platform [13] with its simulation and
profiling tools. The MR platform uses a 6LoWPAN TDMA
MAC protocol that builds up a multi-hop tree. The whole
network can be known, as the parent nodes send control
messages to the edge mote as soon as they discover and add
a new child or loose connectivity to one of their children.
C. Experiments

Table II shows the measured times needed to setup the
system. The duration from issuing a SPBEQL statement to a
complete system (without programming 3, but with compiling)
is around 28s. The total time needed to set up the system
depends mainly on the programming of the motes, as there is
no multicast mechanism each mode has to be programmed
individually (multicast). This is a limition of the current
system. Unicast/Broadcast programming techniques, like the
SNOMC protocol [17], exist. A multicast mechanism would

3Programming in this case means transfering the bytecode to the mote and
storing it on flash memory

speedup the overall system setup time. Configuration of the
services on the motes can then be done via the REST interface.

In Table III we show the memory usage of the three service
types. The actual memory needed depends on the data to be
stored on mote. Its upper bound can be easily calculated per
epoch and is used in the GPH.

After the initial set up, we measured the response times
for a service endpoint on the gateway mote, and compared
that to a service endpoint on the IPI. As shown in Figure 9,
in pull mode the system needs around 20s for data gathering
plus an overhead for communication. In push mode the data
is immeadiately available after an initial data gathering round.

0,03 
0,06 
0,13 
0,25 
0,50 
1,00 
2,00 
4,00 
8,00 

16,00 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 

re
sp

o
n

se
 t

im
e

 [
s]

 

request issue time [s]  

push (on mote) pull (on mote) push (on IPI) 

min:  207/20139/42 
max: 1237/22429/21189 
median: 319/21418/60 
mean: 4108/21392/3924 
(in ms, for push/pull/push IPI) 

25,00 

min:  207/20247/42 
max: 420/22429/192 
median: 255/21831/56 
mean: 278/21488/58 
(starting from second 22) 

Fig. 9: Response times for request issued at request time t (log2 scale)

The response times for a running system are shown in
Figure 7 for a service endpoint on a mote, on a mote at level
2 in a tree, as well as on the IPI via CoAP and HTTP. We
accessed the CoAP and HTTP interfaces with a machine on
the same local subnet, which handled other traffic as well. The
data we got from the WSN was relatively stable, while for the
communication over Ethernet we observed some peaks.

The energy profile of our prototype is shown in Figure 6.
We measured (by simulation) the system in pull mode, in push
mode, and a S&S counterpart with all motes sending data to
the IPI. The aggregation approach showed to be more energy
efficient, as the computation time for the aggregation needed
less energy than the additional transmission and receive cycles
needed in the S&S approach. Pull is more energy efficient, for
small request rates, for the price of longer response times.

As explained in section V-C the system allows to include
external RDF data as sensor readings. We set up a second IPI
with a single mote attached to it. Instead of adding the second
IPI to the platform directly we publish the sensor readings as
RDF data to a local server and to a server on the Internet.
We added both servers as external RDF sensor sources to our
system and measured the service response times (Figure 5)
for the whole system and the external sources. In push and
pull mode with an endpoint on the IPI, the influence of the
two external sources on the system is negligable, both for
local and remote data sources as long as ct is large enough
to compensate the latency. As soon as the WSN responds
faster than the external sensor source the picture changes.
In cases were the freshness of data is most important the
latency of the Internet connection becomes cruical and the
latency (CollectionTime) of the whole system would have to
be increased to get accurate data.

Finally, we tested how the system reacts towards change of
the underlying sensing infrastructure: We removed one AFS



0,02 

0,03 

0,06 

0,13 

0,25 

0,50 

1,00 

2,00 

4,00 

8,00 

16,00 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 

R
e

sp
o

n
se

 t
im

e
 [

s]
 

request issue time [s] 

push (on mote) pull (on mote) push (on IPI) Mote (local) Mote (inet) 

Fig. 5: Service Response times for external sensor sources

Sink AFS / FW DGS 

Push 9241 9585 14422 

S&S 9539 9706 14429 

Pull 1R 8753 8929 9354 

Pull 8R 9480 9695 12927 

8500 

9500 

10500 

11500 

12500 

13500 

14500 

En
e

rg
y 

[m
A

s]
, 1

0
m

in
 

+1
.2

4
7

%
 

+0
,0

4
%

 

+3
.1

2
4

%
 

Fig. 6: Energy consumption (in mAs, 10min)

t σ

Generate mote services 2520 350

Compile mote services 8410 2123

Compile IPI service 4120 210

Program mote 39200 5213

Query Service Repository 123 51

Query SPSE 661 94

Query geolocations 472 53

SPBEQL to System 28320 4476

TABLE II: Average system
setup time t and std. deviation
σ in ms

L1.CoAP L2.CoAP IPI.CoAP IPI.HTTP

20
0

40
0

60
0

80
0

10
00

12
00

Fig. 7: Service Response Time (in ms)

Flash Stack Heap

DGS 923 256 2348

AFS 800 234 2205

SPBE 810 245 2218

TABLE III: Memory con-
sumption (in byte)

0 

10 

20 

30 

40 

50 

60 

70 

Reprogramming Switching Reallocation IPI 

ti
m

e
 [

in
 s

] 

Service Repository 

Code generation and 
deployment 

RESTful 
reprogramming 

Reprogramming 

Fig. 8: Service reallocation time (in s)

below the edge mote. The system then recreates a tree. The
new AFS node, which has only a DGS service on it, now
needs to be reprogrammed. This takes almost 40s, as shown
in Figure 8. If the AGS is already installed on the mote
aggregation infrastructure, changes can be performed more
easily: In such cases only a few REST calls have to be issued
by the Command and Control (C&C) module. Whenever
possible programming of motes is to be avoided. Here the
system is available after around 10s (σ = 3.3s). In a second
experiment, we forced a service reallocation from the edge
mote to the IPI. The C&C issues a command to the current
endpoint to respond with service temporarily unavailable. At
the same time it will compile and deploy a new endpoint to
the IPI and updates the service repository. The former endpoint
from now on will respond with a service redirected code.

VIII. SUMMARY

We presented Semantic Physical Business Entities as an
abstraction for gathering data about business entities. It de-
couples the entities from the actual sensing devices and
enables writing applications without any knowledge about the
underlying hardware. Interoperability and machine-readability
is achieved through ontologies and common vocabularies. Data
is gathered and aggregated by an integration platform using a
query language. The platform compiles the services depending
on the query. These services are described by semantic service
descriptions and are fully controllable through a RESTful
interface. Feasibility experiments demonstrated that SPBEs
can be integrated into enterprise systems with reasonable
energy consumption, set up and response times.

ACKNOWLEDGMENT

The research on this topic received funding from the Eu-
ropean Commission under grant 257521 (IOT-A) and grant
285248 (FI-WARE). We would like to thank the Moterunner
Team at IBM Research, especially Marcus Oestreicher, as well
as our students Theano Mintsi and Michael Gede for their
valuable support.

REFERENCES

[1] Z. Shelby and C. Bormann, 6LoWPAN: the wireless embedded internet.
Wiley, 2011, vol. 43.

[2] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained Appli-
cation Protocol (CoAP), Internet-Draft,” 2011.

[3] T. Berners-Lee, “Linked Data - Design Issues,” 2006.
[4] K. Sperner, S. Meyer, and C. Magerkurth, “Introducing entity-based

concepts to business process modeling,” in BPMN. Springer, 2011.
[5] M. Thoma, S. Meyer, K. Sperner, S. Meissner, and T. Braun, “On IoT-

services: Survey, Classification and Enterprise Integration,” 2012 IEEE
International Conference on the Internet of Things, vol. 0, 2012.

[6] H. Hasemann, O. Kleine, A. Kröller, M. Leggieri, and D. Pfisterer,
“Annotating real-world objects using semantic entities,” in Wireless
Sensor Networks. Springer, 2013, pp. 67–82.

[7] M. Iqbal, H. B. Lim, W. Wang, and Y. Yao, “A service oriented model
for semantics-based data management in wireless sensor networks,” in
Advanced Information Networking and Applications. IEEE, 2009.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Transactions on Database Systems (TODS), vol. 30, no. 1, 2005.

[9] J. Cardoso, C. Pedrinaci, T. Leidig, P. Rupino, and P. De Leenheer,
“Open semantic service networks,” 2012.

[10] A. Zahariev, “Google app engine,” Helsinki University of Technology,
2009.

[11] S. Shang and K. Hwang, “Distributed hardwired barrier synchronization
for scalable multiprocessor clusters,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 6, no. 6, 1995.

[12] H. Dai and R. Han, “Tsync: a lightweight bidirectional time synchroniza-
tion service for wireless sensor networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 8, no. 1, 2004.

[13] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and
I. Romanov, “Mote runner: A multi-language virtual machine for small
embedded devices,” in SENSORCOMM’09. IEEE, 2009.

[14] Z. Abrams and J. Liu, “Greedy is good: On service tree placement for
in-network stream processing,” in ICDCS 2006. IEEE, 2006.

[15] M. A. Bender and M. Farach-Colton, “The lca problem revisited,” in
LATIN 2000: Theoretical Informatics. Springer, 2000, pp. 88–94.

[16] A. Caracas, C. Lombriser, Y. Pignolet, T. Kramp, T. Eirich, R. Adels-
berger, and U. Hunkeler, “Energy-efficiency through micro-managing
communication and optimizing sleep,” in 8th International Conference
on Sensor, Mesh and Ad Hoc Comm. and Networks. IEEE, 2011.

[17] G. Wagenknecht, M. Anwander, and T. Braun, “Snomc: an overlay
multicast protocol for wireless sensor networks,” in Wireless On-demand
Network Systems and Services (WONS), 2012 9th Annual Conference on.
IEEE, 2012, pp. 75–78.


