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Abstract—RESTful services gained a lot of attention recently,
even in the enterprise world, which is traditionally more web-
service centric. Data centric RESfFul services, as previously
mainly known in web environments, established themselves as a
second paradigm complementing functional WSDL-based SOA.
In the Internet of Things, and in particular when talking about
sensor motes, the Constraint Application Protocol (CoAP) is
currently in the focus of both research and industry. In the
enterprise world a protocol called OData (Open Data Proto-
col) is becoming the future RESTful data access standard. To
integrate sensor motes seamlessly into enterprise networks, an
embedded OData implementation on top of CoAP is desirable,
not requiring an intermediary gateway device. In this paper
we introduce and evaluate an embedded OData implementation.
We evaluate the OData protocol in terms of performance and
energy consumption, considering different data encodings, and
compare it to a pure CoAP implementation. We were able
to demonstrate that the additional resources needed for an
OData/JSON implementation are reasonable when aiming for
enterprise interoperability, where OData is suggested to solve
both the semantic and technical interoperability problems we
have today when connecting systems.

I. INTRODUCTION

Recent advances in the typical protocol stack of Wireless
Sensor Networks (WSNs), in particular the use of IP technol-
ogy, and the demand of businesses for real-time monitoring
and real-time decision support has increased the need of
enterprise systems to interoperate directly with wireless sensor
nodes. One of the major benefits that comes with 6LoWPAN
based networking is the use of standard technologies and
common and well-understood architectures to integrate smart
objects into enterprise systems.

In a typical 6LoWPAN[1] based WSN protocol stack, there
is a trend towards applying already existing application level
protocols and paradigms. In a (networked) enterprise architec-
ture as it exists today, one can observe two main paradigms:
(Web-) services, for example, like SOAP and standardized by
a variety of standards known as WS-* and REpresentational
State Transfer (REST)[2]. REST architectures have become
particularly important in Internet of Things applications, as
sensors and actuators often can be naturally represented as
resources identified by URIs.

The Open Data Protocol (OData)[3] is a data access pro-
tocol based on widely-used technologies (HTTP, AtomPub
and JSON). Compared to the formerly predominant SOAP
services, it follows a REST-based approach for a variety of
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data sources by defining a standardized interface.
The contribution of this work is: Introducing OData into

sensor networks by presenting an implementation of the OData
protocol over the Constraint Application Protocol (CoAP)[4],
considering both standalone scenarios as well as utilizing
an intermediary. We evaluate different deployment choices
and deduce recommendations for the interaction between the
motes, an intermediary and an enterprise system.

II. RELATED WORK

Driving the World Wide Web, the best known RESTful
protocol is HTTP[5]. HTTP uses a set of standardized verbs
(for example GET, PUT, POST, DELETE) to create, retrieve,
update or delete resources. These operations are known under
the term CRUD. The HTTP protocol has been applied to sen-
sor networks and smart objects (known as ”Web of Things”).
Guinard et al. [6] adapted patterns and technologies from the
web towards smart objects. In particular, they suggest to use
REST-style HTTP and ATOM[7]/JSON[8].

Due to the verbosity of HTTP, for Sensor Networks a
protocol called Constrained Application Protocol (CoAP) has
been suggested and is currently being standardized by the
IETF[4]. CoAP shares many characteristics of HTTP like the
verbs, but is more than a simple binary scaled-down version
of HTTP. CoAP uses an interaction model similar to HTTP,
but typically acts in server and client roles. As CoAP has
been specifically designed for constrained environments it
has low overhead and low parsing complexity. Compared to
HTTP, it is designed to work with a non-reliable transport
layer (UDP) and does not rely on the transmission control
provided by TCP. The protocol, therefore, provides means
for reliable transmission and message de-duplication. Colitti
et al. [9] compare the performance of HTTP and COAP for
constrained scenarios: They showed that CoAP has lower
response time and less protocol overhead than HTTP. The
number of bytes transmitted and received with CoAP (in a
typical sensor application) was reduced to 17% compared to
HTTP. Instead of seventeen 802.15.4 packets in the HTTP
case, only two packets were needed for CoAP. The response
time of CoAP was around 1/10 of a similar HTTP call. It
has also been demonstrated that CoAP has significantly lower
energy consumption compared to HTTP[10]. CoAP is often
mentioned in conjunction with the CORE Link Format[11].
The Core Link Format is used by constrained servers to
describe the resources they host, their attributes, and further
relationships between links. Such discovery of resources is
used to provide URIs (links) for the resources hosted by the978-1-4799-4937-3/14/$31.00 c©2014 IEEE



server. The CORE Link format shares some similarities with
the Metadata information provided by OData. Webservices
with CoAP and XML compression have been investigated [12]
as an alternative to traditional SOAP-based webservices.

Webservices, as part of a Service Oriented Architecture
(SOA), are commonly implemented using various W3C WS-*
specifications. Glombitza et al. [13] demonstrate the use of
SOAP within a sensor network as part of a business process.
Moritz et al. [14] introduced a SOAP-over-CoAP binding,
allowing to use SOAP in CoAP-based WSNs.

Alternatives to OData include GData and RDF from the
W3C. GData is a protocol from Google which shares fun-
damental ideas with OData but failed to gain widespread
adoption outside of Google. Furthermore, even inside Google
not all APIs, especially the more recent ones, follow the GData
approach.

III. ODATA

A. Overview

The Open Data Protocol (OData) is a data access pro-
tocol based on widely-used technologies (HTTP, AtomPub
and JSON). Compared to the formerly predominant SOAP
services, it follows a REST-based approach for a variety
of data sources by defining a standardized interface. OData
consists of the following four main parts:

• OData protocol: OData specifies a protocol defining how
clients can query and manipulate data sources. It supports
CRUD operations and different serialization formats:
Atom Syndication Format and JSON. OData defines a
query language as an extension of the URI. This query
language provides a set of query options that allow clients
to specify the data they are interested in.

• OData data model: The structure of the data is defined
by an abstract data model called Entity Data Model
(EDM). It can be seen as realization of the well known
entity relationship model, where data is modelled as
entities and associations among those entities. An OData
service provides a Service Metadata Document that de-
fines the EDM-based model of the service in the XML-
based Conceptual Schema Definition Language (CSDL).

• OData service: An OData service exposes a callable
endpoint that allows accessing data or calling functions.
It implements the OData protocol and uses the OData
data model.

• OData client: An OData client accesses an OData service
through the OData protocol and the known OData data
model.

B. Services, Resources and Filters

OData uses URIs to reference resources and to specify
queries. An URI as used in OData can consist of three different
parts: A service root URI, the resource path and a query.
The service root URI identifies the root of an OData service.
The resource path identifies the resource the service consumer
wants to interact with (for example a specific temperature
sensor, or some actor). Commonly, such a resource addresses
a collection of entities, e. g. several sensors, or a single entity,

Op Description Op Description

Eq Equal Not Logical Negation

Ne Not equal Add Arithmetic Addition

Gt Greater than Sub Arithmetic Subtraction

Ge Greater than or equal Mul Arithmetic Multiplication

And Logical and Div Arithmetic Division

Or Logical or Mod Arithmetic Modulo

TABLE I
ODATA OPERATORS (EXCERPT)

Function Description

bool startswith(string
p0, string p1)

Checks if string p0, starts with the string p1

int length(string p0) Length of string

string trim(string p0) Removes whitespaces at beginning and end

string toupper(string p0) Transforms to upper case

string tolower(string p0) Transforms to lower case

double round(double p0) Arithmetic rounding

double floor(double p0) next lowest integer value by rounding down

TABLE II
ODATA FUNCTIONS (EXCERPT)

like one specific temperature sensor.
A typical OData URI looks as follows:

http://services.sap.com/service.svc︸ ︷︷ ︸
service root URI

/sensor/temp︸ ︷︷ ︸
resource path

? $filter=temperature gt 20︸ ︷︷ ︸
query

The query can consist of one or more pre-defined options
(called system query options), user defined custom query
options, or service operation parameters. Service operations
are functions exposed by an OData service in a RESTful
style. These operations might require zero or more parameters,
which are passed as part of the query string. In this work we
will mainly concentrate on the built-in system query options.
We briefly introduce the most important system query options:

• orderby allows clients to request resources in a particular
order. This is comparable to an SQL orderby clause.

• top allows to retrieve only the first n-results of a result
set.

• expand allows clients to request related resources when
a resource that satisfies a particular request is retrieved.

• select (projection) is used to select certain properties only.
• filter identifies a subset of the entries from the collection

of entries identified by the resource path. The subset is
determined by filtering out the Entries that satisfy the
expression specified by the filter query option. Some of
the operators are listed in Table I and Table II. For a
complete list please refer to [3].

• format is used to identify the data format requested by
the client.

Discovering the capabilities of an OData service is possible
through the Service Document and the $metadata information.
The service document allows to discover the locations of
the available collections of resources. It is returned when
doing a get request on the service URI. This is a must



have feature according to the OData protocol specification.
Additionally, every service should present information about
the structure and organization of all the resources. This is
done by appending a $metadata path segment to the path. The
result is in Common Schema Definition Language (CSDL)
[15] format.

IV. DEPLOYMENT OPTIONS

For exposing smart items or sensor networks towards enter-
prise systems with OData we identified several deployment
options. The three options are illustrated in Figure 1. In
this section we will discuss deployment considerations of
implementing an OData-enabled system.

The first option is illustrated in Figure 1a: OData can
be used to access whole sensor networks (Entity Model),
with a gateway as entry point. The sensor network itself is
communicating internally with a different protocol stack, that
is typically tailored towards low energy consumption or low
latency. The application logic for making requests and setting
up the sensor network to satisfy a request resides in the
gateway. The OData gateway can either be a sensor node itself,
or a platform with more computing power. This approach is
not different from any other gateway or proxy approach, as the
sensor network is completely independent from the enterprise
communication. We will not explore this option further and
instead consider only scenarios were the motes themselves
communicate through OData.

The second option is shown in Figure 1b. The enterprise
system interacts directly with single motes over the OData
protocol. This pattern is usually applied when single board
sensor platforms or embedded devices are used. While out of
scope in this paper, this is also the pattern used when mobile
phones are used as sensing devices.

As OData queries can be rather complex and might in-
volve time and energy consuming processing, we evaluated
an assisted mode. Here the OData enabled smart item can
request support from an external, most likely more powerful,
processing unit. This is illustrated in Figure 1c. The assisted
approach allows the service consumer to send arbitrary com-
plex requests to the OData-enabled mote and also makes the
service transparent, as the consumer only communicates with
a very constrained device and does not notice any differences
compared to simple OData queries. Constraining the type or
size of requests would limit the potential number of service
consumers and would make it necessary for them to ensure
certain preconditions before issuing requests to the motes.

V. ODATA STACK ON THE MOTE

OData was originally designed to work with HTTP.
Nonetheless every HTTP-like CRUD based protocol is a
suitable option for OData, as long as it can be mapped to
HTTP. A CoAP to HTTP mapping has been demonstrated
by [16]. In this work, we will base our implementation on
CoAP as a protocol to communicate with the motes directly
and HTTP only for communication with an intermediary.

In Figure 2 the standard OData stack is compared with our
CoAP-based stack. The network layer is in both cases IP-
based: IPv4/IPv6 vs. 6LoWPAN in IoT. The transport layer in
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Fig. 2. OData stack on enterprise system vs. OData stack on mote
TABLE III

TECHNICAL DETAILS OF AN IRIS MOTE

CPU ATmega1281 (8Mhz)

Serial Flash 512k Bytes

Program Flash 128k bytes

RAM 8k bytes

Current 8mA(act), 8µA(sleep)

RF power 3 dBm (typ)

a typical enterprise OData stack is the TCP protocol, while in
our IoT-Stack it is a combination of UDP for transport and
(parts of) CoAP for transmission control. On top of that there
is HTTP or CoAP, respectively. Considering the traditional
ISO/OSI stack, CoAP can be seen as a cross-layer protocol
being on one hand above the transport layer providing more or
less the same functionality as HTTP while on the other hand it
incorporates elements of TCP (transmission control, message
deduplication). On top of HTTP/CoAP the stack is identical.
Data is transported in either ATOM/XML or JSON format
while the data and resource handling is done as specified by
the OData protocol itself. An OData query in CoAP notation
looks as follows:

coap://︸ ︷︷ ︸
protocol

[a:b:c:d:e:f]/service.svc︸ ︷︷ ︸
IPv6 address of mote and service

/sensors/temperature︸ ︷︷ ︸
resource

? $filter=temp gt 20︸ ︷︷ ︸
query

Instead of HTTP, the CoAP protocol is used. We directly
address the mote through its IPv6 address which is then routed
over 6LoWPAN. The service caller is not aware that its request
goes to a mote. All other parts of the request stay the same.
The only limitation is that each request needs to fit into one
CoAP and thus one UDP packet.

VI. IMPLEMENTATION

We built a prototypical implementation of our system. All
software was written in Java. We are using the Moterunner
[17][18] operating system from IBM Research for our eval-
uation. The Moterunner system allows to run java bytecode
on the motes. It provides a custom compiler optimized for
embedded systems, with a good energy profile [19], and a
custom runtime system. We are using a custom written CoAP-
18 compliant Java-based implementation on the motes. For
our experimentation we are using IRIS motes with technical
details as in Table III. It supports the base CoAP-18, as well
the blockwise transfer and observe extensions. In cases where
an assisted system is used, we were running on a Raspberry
Pi with 512MB RAM and an ARM1176JZF-S 700 Mhz CPU.
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VII. EVALUATION

In this section we perform a quantitative analysis of our
OData implementation. We are using the software and hard-
ware as described in Section VI. First, we will present the
experimental setting we used to perform our experiments
(Section VII-A). As outlined in Section IV we are currently
considering two scenarios: Direct access from the Enterprise
System to the Mote, which we evaluate in section VII-B.
Afterwards, in section VII-C we evaluate the assisted mode
by adding a more powerful system to which the motes can
delegate work.

A. Experimental Setting

All the experiments were performed with IRIS motes, with
technical details as in Table III. The motes were running the
Moterunner operating system with a 6LoWPAN network stack,
with CDMA MAC access, in a 2-hop setting. Energy mea-
surements were performed within the Moterunner simulation
environment.

The OData service we are exposing consists of one mote
with three different sensors (temperature, humidity and light),
where each has a unique ID, a name and can return a value
(data). As outlined in Section III-A, service discovery is done
through the service description and the metadata information.
The service description of our IoT-Service looks as follows:
<?xml version="1.0" encoding="utf-8" ?>
<service xml:base="http://tmpsvc.sap.com/OData.svc/" xmlns

="http://www.w3.org/2007/app" xmlns:atom="http://www.w3
.org/2005/Atom">

<workspace>
<atom:title>Default</atom:title>

- <collection href="Sensors">
<atom:title>Sensors</atom:title>

</collection>
</workspace>

</service>

The JSON representation is more compact and therefore
more suitable for constraint devices:

{"odata.metadata":"http://tmpsvc.sap.com/OData.svc/\
$metadata","value":[{"name":"Sensors","url":"Sensors
"}]}

The $metadata keyword, providing information about the
sensors looks as follows:
<?xml version="1.0" encoding="utf-8"?>
<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.

microsoft.com/ado/2007/06/edmx">
<edmx:DataServices m:DataServiceVersion="3.0" m:

MaxDataServiceVersion="3.0" xmlns:m="http://schemas.
microsoft.com/ado/2007/08/dataservices/metadata">

<Schema Namespace="Mote" xmlns="http://schemas.microsoft.
com/ado/2009/11/edm">

<EntityType Name="Sensor">
<Key><PropertyRef Name="ID" /></Key>
<Property Name="ID" Type="Edm.Int32" Nullable="false" />
<Property Name="Name" Type="Edm.String" m:FC_TargetPath="

SyndicationTitle" m:FC_ContentKind="text" m:
FC_KeepInContent="false" />

<Property Name="Data" Type="Edm.String" m:FC_TargetPath="
SyndicationSummary" m:FC_ContentKind="text" m:
FC_KeepInContent="false" />

<EntityContainer Name="APPService" m:
IsDefaultEntityContainer="true">

<EntitySet Name="Sensors" EntityType="Mote.Sensor" />
</EntityContainer>

The metadata encodes that our mote has entities of type
Mote.Sensor, which have certain properties (ID, Name and
Data) as well as corresponding datatypes. Furthermore, the
set Sensors as specified in the service description is further
defined to be type Mote.Sensor.

As baseline for a system that is not OData enabled we
choose pure CoAP. The message payload is in that case
encoded as comma delimited property:value pairs, such as
shown in the following code fragment:
id:0,name:temperature,data:42

A similar means of discovery as the OData service discovery
is the CoRE Link Format[11], accessible through the .well-
known/core interface. It should be noted, that CoRE Link



Format is performing Resource Discovery, while OData aims
for Service Discovery. The CoRE Link Format provides Web
Linking as specified in RFC5988[20] and can be used to
discover the links hosted by a CoAP server. It returns infor-
mation in link-header style format [20]. A minimal resource
description for a similar resource based access to the mote
could look as follows:

</temp>;rt="temperature";ct=0;if="sensor"</hum>;rt="
humidity";ct=0;if=sensor,</light>;rt="light";ct=0;if="
sensor"

First, the resource is named (e. g. /temp) then the resource
type (rt) and the ct. The rt attribute is string used to assign
an application-specific semantic type to a resource [11]. It
specifies the interface to be used. This is also an application
specific string. The ct attribute specifies the content type as
described in the CoAP specification [4].

We evaluated both compressed and uncompressed responses
for ATOM and JSON. Previous research [21] has shown
that standard compression schemes do work well on very
constrained devices, for that reason we are also applying a
LZW compression algorithm. The CoAP response did not
shrink in size, so the uncompressed version was used as
baseline. We did not use special compression schemes for
XML like EXI, as they are not supported by OData clients
and furthermore the memory was too constrained to run it
on our platform. [22] describe such a platform for Contiki
and 8kb platforms, nonetheless without the support of EXI
schema encoding or any decoding. Furthermore [22] do give
only one data point, no information on further compression
restrictions nor about the energy or memory consumption. Our
offline experiments with EXIficient, also in non schema mode,
showed that the compression of XMI was for our result set not
significantly better than the one provided by LZW. Only QA

1

was significantly better with EXI (20%), than with traditional
compression schemes. As this calculation was done offline it is
unclear if the additional EXI-overhead on mote would actually
provide a better performance or energy profile. Furthermore,
it is unclear if it would actually fit (resource-wise) on a 8kb
mote if an application level protocol like OData is used, and/or
further application logic is running on the mote.
Q1 GET coap://[]:1024/OData.svc/sensors

Q2 GET coap://[]:1024/OData.svc/sensors(0)

Q3 GET coap://[]:1024/OData.svc/sensors(0)/ID

Q4 GET coap://[]:1024/OData.svc/sensors(0)/Name

Q5 GET coap://[]:1024/OData.svc/sensors(0)/Data

Q6 GET coap://[]:1024/OData.svc/sensors?$filter=
Name ne barometric

Q7 GET coap://[]:1024/OData.svc/sensors?$filter=
Data gt 42

Q8 GET coap://[]:1024/OData.svc/sensors?$filter=
Data eq 60 and Name eq humidity

TABLE IV
QUERIES

B. Direct Access

In the following we investigate a typical IoT-scenario in
which a backend system is directly communicating with the
mote. The queries used to evaluate the properties of the system
are listed in Table IV. The computational complexity increases
with each Qi. In the rest of the paper we will reference to these
queries as Qm

i , where i is the query number as listed in Table
IV and m being either A for OData/ATOM, J for OData/JSON
and C for CoAP, with or without the compression suffix CP

The resource consumption of the on-mote implementation
is shown in Table V. The available space is the free space
left on a IRIS mote running with its runtime system, the
6LoWPAN assembly for communication and our CoAP/OData
implementation, including code for sensing temperature and
humidity. The flash usage consists of program code itself
(bytecode) and temporary data stored on the mote. As the
XML was too large to be kept in RAM, most parts are stored
on Flash and loaded into RAM on demand. Furthermore, the
service metadata document is also stored in flash.

COAP JSON ATOM

Stack Heap Flash Stack Heap Flash Stack Heap Flash

Q1 232 3284 3850 292 3460 3931 292 3552 4255

Q2 232 3252 3850 292 3432 3931 292 3476 4255

Q3 232 3244 3850 292 3436 3931 292 3408 4255

Q4 232 3248 3850 292 3440 3931 292 3496 4255

Q5 232 3248 3850 292 3448 3931 292 3416 4255

Q6 232 3364 3850 292 3524 3931 292 3616 4255

Q7 232 3316 3850 292 3500 3931 292 3524 4255

Q8 232 3404 3850 292 3528 3931 292 3548 4255

TABLE V
MEMORY CONSUMPTION (MAXIMUM, IN BYTES)

It can be seen the memory consumption of the
OData/ATOM implementation is larger than the memory con-
sumption of JSON. Nonetheless, the JSON implementation
is comparable to a pure CoAP implementation in terms of
memory. The actual payload of each of the queries is shown
in Table VI.

Query ATOM ATOM/CP JSON JSON/CP COAP

Q1 1643 906 191 156 63

Q2 604 443 110 105 23

Q3 99 96 74 74 4

Q4 94 88 85 84 13

Q5 87 82 76 76 4

Q6 1643 908 191 127 63

Q7 1199 734 148 100 39

Q8 761 523 108 108 18

TABLE VI
PAYLOAD SIZE (IN BYTES)

For each query Q1...Q8 we measured the service access
time, i. e., the time from issuing a request by the service
consumer until the answer has been decoded. The results (av-



Fig. 3. Service access time (in ms, blockwise-transfer with block size 64
Byte) for queries Q1 to Q8 sorted by QA

n payload size

Fig. 4. Service access time (in ms, blockwise-transfer with block size 64
Byte) for queries Q1 to Q8 (compressed) sorted by QA

n payload size

eraged over 100 runs) are shown in Figure 3 for uncompressed
data and in Figure 4 for compressed data. For small result sets
the difference between the three formats is negligible. Larger
data sets change the situation. Compression decreases the
service access time considerably. CoAP and OData/JSON stay
at low service access times, but the ATOM format increases
the service access time very fast because of the amount of
data to be transmitted. Compression does not help much in
case of ATOM. The CoAP block size also affects the service
access time. A 6LoWPAN packet, even if fragmented, has
shown to be more efficient than the CoAP block option in
our experimental setting, which did not suffer from high
packet loss rates. Nonetheless, in cases of packet loss or when
fragmentation is not available or exceeds the fragmentation
capabilities of the system, CoAP blockwise transfer is to be
used. The relationship between CoAP block sizes and the
resulting service access times are shown in Figure 5. In case
of a pure CoAP response, the response always fitted into one
IEEE 802.15.4 frame, so there was no fragmentation of pure
CoAP packets.

In Figure 6 and Figure 7 we show the energy consump-
tion of OData/ATOM, OData/JSON and CoAP once for a
blocksize of 64 bytes and 256 bytes. The energy consumption
evaluations were performed within the moterunner simulation
environment. It is measured in mAs serving 100 requests each.
The energy consumption of JSON is comparable to CoAP,
when reasonable block sizes are chosen. Smaller blocksizes
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lead to more data transfer for the block requests and responses,
as well as more computation to process these requests. The
advantage of a smaller blocksize is increased reliability and in
case of very lossy network increased throughput. The ATOM
response needs most energy, for the obvious reason of more air
time, but also as there are many transfers from flash memory
to RAM.

C. Assisted Mode

OData requests can be very computation and memory
intensive, or might even be beyond the capabilities of the mote,
like complex floating point operations. As a countermeasure
to such exceptional cases or uncommon uses of the system
with arbitrary complex requests we implemented an ”assisted
mode”, that means that we provide a dedicated system with
more processing power. Without this assisted mode the mote
would otherwise have to return an error code, indicating that
the request exceeds its resources or the service consumer
would have to wait for the request beyond reasonable duration
and most likely outside of any timeout period.
Q9 GET coap://[]:1024/OData.svc/sensors?$filter=

substringof("temp",Name) eq true

Q10 GET coap://[]:1024/OData.svc/sensors?$filter=
filter=concat(concat(Name,’,’),Area)
eq temperature,Bern

Q11 GET coap://[]:1024/OData.svc/sensors?$filter=
filter=concat(concat(concat(Name,’,’),Name
,’,’),Area) eq temperature,humidity,Bern=3

TABLE VII
COMPLEX STRING QUERIES

We evaluated more complex queries, including string opera-
tions and storing information on the mote’s persistent storage,
but still within reasonable limits for the mote to execute.
Table VII shows the three additional queries. Q11 utilized the
persistent memory for string operations.

The energy consumption measurements of the more com-
plex queries are shown in Figures 8 and 9. As can be
seen, apart from reducing the computational complexity which
might not even allow the mote to execute the query, the energy
consumption of the assisted mode is only slightly higher due
to the additional communication needed.

The service access times (averaged over 100 runs) are shown
in Table VIII. As shown, from a service access time point-



Fig. 6. Energy consumption (in mAs, 100 requests, blocksize 64 Byte)
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Fig. 7. Energy consumption (in mAs, 100 requests, blocksize 256 Byte)
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Fig. 8. Energy consumption (in mAs, 100 requests, blocksize 64 Byte)

of-view, the assisted mode was faster for Q11 and nearly
as performant as some OData operations that have a high
computational complexity (like string operations) with a lot
of memory accesses. When ATOM and JSON are used, which
usually is the case in such deployments, string operations
utilizing the mote’s persistence storage is a costly operation
which the server can effortlessly handle with a negligent over-
head, enabling the client to experience faster service access
time. The small overhead introduced by the roundtrip times
for sending a request to the assistance system, processing it
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Fig. 9. Energy consumption (in mAs, 100 requests, blocksize 256 Byte)

there, and sending the response back compared to performing
all operations on the mote, shows that using an assistant
system can be firmly used for processing arbitrary queries.
This approach alleviates both the computational load on the
mote and increases the QoS provided to the service consumer
as the mote is less likely to experience performance issues.

VIII. CONCLUSIONS

We evaluated the OData protocol as an end-to-end solution
for the integration of REST-based sensor networks into enter-



ATOM/CP JSON/CP CoAP
Avg σ Avg σ Avg σ

Q9 (mote) 2392.22 29.27 781.72 28.78 521.40 33.94

Q9 (assisted) 2521.35 25.21 795.12 19.39 648.36 46.31

Q10 (mote) 2602.92 41.13 780.56 21.35 524.42 32.46

Q10 (assisted) 2805.13 22.13 826.54 24.89 642.60 17.79

Q11 (on mote) 2115.16 39.21 893.62 22.75 579.28 17.77

Q11 (assisted) 2095.65 31.42 824.13 27.32 532.02 19.93

TABLE VIII
SERVICE ACCESS TIMES (IN MS), AVERAGE AND STANDARD DEVIATION σ

prise IT systems. We concentrated on direct communication
with the Mote, because a gateway solution is no different
than any other gateway-based proxy. Nonetheless, it is no-
table that the OData entity abstraction fits a typical sensor
network usage very well, including abstracting the topology
and the sensors (or actors) as entities. This makes OData an
appropriate abstraction for systems that can be seen as sensor
network databases. Querying the sensor network becomes
easily possible, as well as accessing temporal data, and can
be done in a standardized RESTful way, which is immediately
accessible by other applications.

Within a very constrained environment, as provided by the
IRIS platform with its limited RAM, the differences between
the resource usage in terms of memory, processing time and
energy consumption of OData/JSON, compared to a pure
CoAP solution, was small. XML processing should be avoided
whenever possible though. JSON was superior to ATOM in
almost every aspect. Transmission of large ATOM files should
be even if compressed, whenever possible, redirected to a
system with more performance capabilities. For really limited
devices, when further business processes are running on the
mote or as a countermeasure for arbitrary complex queries,
we evaluated adding an assistance system. From a resource
consumption point of view and from a general IoT point
of view the assisted mode should be avoided. However, we
were able to show that the penalty of using such a system
is often comparable to do the entire processing on the mote,
when feasible. In some cases, especially when long running
or energy intense operations would have to be executed on the
mote, the assisted mode has a slight advantage from a resource
and response time point of view. Furthermore, the compression
schemes on these platforms should have only a very small
fingerprint. When running business processes on motes it is
not feasible to spend most of the RAM on compression or de-
compression, especially when also intermote communication
should be possible as an option. OData/JSON proved to be a
valid alternative to pure CoAP solutions, providing enterprise
and other systems direct access to data-driven IoT-devices. In
contrast to a pure CoAP solution, direct and transparent access
is possible. Now, for an enterprise system a sensor node or
a wireless sensor network is nothing more than just another
datasource. It can be used in business processes like any other
datasource, without a need for adapters or special low-level
information.
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