
Scalable Quality of Service Support for Mobile Users

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Günther Stattenberger

aus Deutschland

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Scalable Quality of Service Support for Mobile Users

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Günther Stattenberger

aus Deutschland

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 19.12.2002 Der Dekan:
Prof. Dr. G. Jäger

Acknowledgements

This thesis has received the generous support of many individuals. I am grateful
for this support and would like to thank the following persons in particular.

First of all I owe a debt of gratitude to my supervisor, Prof. Dr. T. Braun, who gave
me the opportunity to do this research; he provided me with many new ideas and
detailed comments on the topics of this thesis. Prof. Dr. Braun also encouraged
and motivated me to publish my research work and gave me the opportunity to
present the work on several conferences, where I learned many interesting new
aspects.

I must also thank Prof. Dr. Stefan Fischer, who was willing to spend a lot of time
expertising my work and Prof. Dr. Oscar Nierstrasz for serving as co-examinator.

Acknowledgement is also due to the members of the RVS group, especially Roland
Balmer, Florian Baumgartner, Silvia Stattenberger, and Attila Weyland, for good
discussions and the pleasant and stimulating working environment and to Ruth
Bestgen for administrative support.

Finally I want to thank my family, especially my parents, who gave me the oppor-
tunity to study in the first place. Special gratitude goes to my wife, Silvia, whose
continuous support and help I needed to complete this work.

The work presented here has been performed during a project financed by NEC
Europe Ltd. and a project financed by the Swiss National Science Foundation.

Contents

Introduction 1

Difficulties of Providing QoS in Mobile Environments 3

Approaches for Solving the Different QoS Problems 6

Bandwidth Brokers for Differentiated Services 6

Quality of Service Support in Wireless Networks 6

Authentication and Authorisation 7

Handover Optimisation in Mobile IP 7

QoS Signalling Protocol . 7

Admission Control . 8

Hierarchical Bandwidth Brokers 8

QoS-aware Handovers . 9

Summary . 9

Contribution of this Thesis . 9

Structure of this Thesis . 11

I Related Internet Standards and Research Work 13

Overview 14

1 Mobile IP 15

1.1 Terminology . 16

1.2 Mobile IP Operation . 16

1.2.1 Registration . 17

i

ii CONTENTS

1.2.2 Routing . 17

1.3 Handover in Mobile IP . 19

1.3.1 Smooth Handover . 20

1.3.2 Fast Handover . 21

1.3.3 Effects of Layer 2 Technology 24

1.3.4 QoS-Aware Handover 24

2 Quality of Service 27

2.1 Integrated Services . 28

2.1.1 Components of an Integrated Services Router 28

2.1.2 The Resource Reservation Protocol (RSVP) 30

2.1.3 RSVP and Mobile IP Interworking 33

2.2 Differentiated Services . 35

2.2.1 Differentiated Services Codepoints 35

2.2.2 Service Level Agreements 36

2.2.3 Per Hop Behaviour (PHB) 36

2.2.4 Per Domain Behaviour (PDB) 38

2.2.5 DiffServ Components 39

2.2.6 DiffServ Router Types 42

2.2.7 Performance Evaluation of Differentiated Services 44

2.3 QoS-enabled IEEE 802.11 Wireless Access Networks 45

2.4 Signalling Protocol for Differentiated Services 47

2.4.1 Cross Application Signalling Protocol (CASP) 48

2.4.2 Context Transfer Protocols 49

2.4.3 Conclusion . 50

3 Network Management 51

3.1 Network Management Architecture 51

3.2 ISO Network Management Model 52

3.2.1 Performance Management 52

3.2.2 Configuration Management 53

CONTENTS iii

3.2.3 Accounting Management 53

3.2.4 Fault Management . 54

3.2.5 Security Management 54

3.3 The IEEE P1520 Standards Initiative 55

3.4 Network Management using ScriptMIB 56

3.5 Bandwidth Broker Architectures 57

3.5.1 Overprovisioning . 58

3.5.2 Hierarchical Bandwidth Broker Structures 59

3.5.3 Management of Heterogeneous Networks 61

3.5.4 Agent-Based Management 62

3.5.5 Conclusion . 62

3.6 Bandwidth Broker Implementations 63

3.6.1 BB Implementation of the University of Kansas 63

3.6.2 Implementation of the Two-Tier Architecture by UCLA . 64

3.6.3 Implementation of Policy Based Networks by TUT 64

3.6.4 Implementation of a vendor-independent BB 64

3.6.5 Conclusion . 65

3.7 Authentication, Authorisation, Accounting 65

3.7.1 AAA Architecture . 66

3.7.2 System Components of the AAA Server 67

3.7.3 AAA for the Mobile Internet 69

3.7.4 Policy-based Approaches 70

Summary 71

II Implementation and Performance Evaluation of a Diff-
Serv Implementation for Linux Routers 73

Overview 74

iv CONTENTS

4 DiffServ Implementation 75

4.1 Traffic Conditioner Modules for the Linux Kernel 76

4.2 DiffServ Router Architecture . 77

4.3 Linux Router Configuration . 80

4.3.1 Ingress Router . 80

4.3.2 Interior Router . 81

4.3.3 Egress Router . 81

5 Performance Results 85

5.1 Test Network and Evaluation Methods 85

5.1.1 Test Network Design . 85

5.1.2 Performance Measurement Procedures 86

5.2 Results . 88

5.2.1 Tests without DiffServ 88

5.2.2 UDP experiments . 89

5.2.3 TCP experiments . 94

Summary 97

III Design and Implementation of a Bandwidth Broker 99

Overview 100

6 A Generic Management API for QoS Support 101

6.1 Data Classes for the API . 104

6.2 The Router Class . 106

6.3 The Interface Class . 107

6.4 The TrafficConditioner Class 108

6.5 Dynamic C++ Classes . 109

6.5.1 Dynamic Class Loading 110

6.5.2 Autoregistration . 110

6.5.3 The Factory of Dynamic Classes 111

CONTENTS v

6.6 API Implementation for Linux Routers 111

6.6.1 API Child Classes for a Linux Router 112

6.6.2 Linux Router Class . 112

6.6.3 Ethernet Interface Class 113

6.6.4 Traffic Conditioners . 113

6.6.5 Other API Implementations 113

7 Bandwidth Broker 115

7.1 The Topology Database . 117

7.1.1 Topology Auto-detection 118

7.1.2 The Naming Service . 118

7.2 Bandwidth Management and Admission Control 119

7.3 Bandwidth Broker API Commands 119

7.3.1 Flow Establishment . 120

7.3.2 Flow Deletion . 121

7.3.3 Flow Modification . 121

7.4 Communication Subsystem for the Bandwidth Broker 122

7.4.1 The Communication Server 122

7.4.2 The Communication Client 123

7.4.3 Serialisation . 123

7.4.4 The Bandwidth Broker — Router Communication 124

7.4.5 The Bandwidth Broker — User Communication 125

7.5 Client Software and User Interface 126

7.6 Performance of the Architecture 126

7.6.1 Evaluation Scenarios . 127

7.6.2 Results . 128

7.7 Multi-ISP Support . 135

7.7.1 Backward Reservation 137

7.7.2 New Architecture Components 138

7.7.3 Signalling Protocol . 140

7.7.4 Multi-ISP-Capable Broker Commands 142

vi CONTENTS

7.8 Hierarchical Bandwidth Brokers 145

7.8.1 Advantages of a Broker Hierarchy 145

7.8.2 Operation of a Broker Hierarchy 146

7.8.3 Conclusion . 148

Summary 149

IV Providing Quality of Service to Mobile Users 151

Overview 152

8 Mobile-Specific Extensions for the Bandwidth Broker 153

8.1 Scenario Description . 154

8.1.1 Negotiation of a new SLS 154

8.1.2 Migration to a new access network 155

8.2 Extensions to the Bandwidth Broker API 155

8.2.1 Request a Flow List . 156

8.2.2 Automatic SLS Transfer 157

8.3 Inter-Domain Broker Signalling 158

9 User-initiated Handover 159

9.1 Handover in IEEE 802.11 Wireless Access Networks 161

9.1.1 Link layer handover procedure 161

9.1.2 Measurement categories 162

9.1.3 Decision points . 162

9.2 Link Layer Handover Statistics 164

9.2.1 Equipment . 165

9.2.2 Environment . 166

9.2.3 Measurements . 166

9.2.4 Analysis . 166

9.3 Implementation and Operation of the WLAN
Monitor . 167

CONTENTS vii

9.3.1 Wireless LAN Monitor operation 169

9.4 Range-Based Bandwidth Allocation 171

9.4.1 Scenario . 172

9.4.2 Renegotiation of the SLS 172

10 An AAA Architecture Extension 175

10.1 Mobile AAA with Foreign Agent 176

10.2 Integration of SLP and the AAA Architecture 177

10.3 Mobile IP Node Negotiation Procedure for DiffServ 180

10.3.1 Initial Foreign Network Access 181

10.3.2 QoS Negotiation . 185

Summary 186

Conclusion 187

New Components . 187

Signalling Messages in the Home Network 189

Signalling Messages in the Foreign Network 190

Timing Considerations . 194

Topology Updates . 195

Outlook and Future Work . 196

List of Abbreviations 199

Bibliography 203

List of Figures

I.1 A Mobile User with QoS Requirements 4

1.1 Mobile IP Triangular Routing . 18

2.1 RSVP in Hosts and Routers [21] 29

2.2 Diagram of a Normal RSVP Reservation Setup and Clearance . . 31

2.3 Split Point in a RSVP Multicast Connection 32

2.4 DiffServ Codepoint in the IP Header [124] 35

2.5 Combination of DiffServ Components in a Router [16] 39

2.6 DiffServ Router Major Functional Blocks [12] 41

2.7 A simple DiffServ Network . 43

3.1 A Typical Network Management Architecture [76] 52

3.2 Distributed AAA Model . 67

4.1 Ingress Router Implementation Architecture 79

4.2 Interior Router Implementation Architecture 79

4.3 Ingress Router Configuration . 80

4.4 Ingress Router Configuration Script 83

5.1 Testnetwork topology . 86

5.2 Delay and jitter measurements 88

5.3 Clockskew Variation . 88

5.4 Bandwidth for 5 MBit/s UDP . 90

5.5 Delay for 5 MBit/s UDP . 90

5.6 Jitter for 5 MBit/s UDP . 90

viii

LIST OF FIGURES ix

5.7 Bandwidth for 5 MBit/s UDP . 90

5.8 Delay for 5 MBit/s UDP . 90

5.9 Jitter for 5 MBit/s UDP . 90

5.10 Bandwidth for 5 MBit/s EF reservation (UDP traffic) 92

5.11 Delay for 5 MBit/s EF reservation (UDP traffic) 92

5.12 Jitter for 5 MBit/s EF reservation (UDP traffic) 92

5.13 Bandwidth for 5 MBit/s AF reservation (UDP traffic) 92

5.14 Delay for 5 MBit/s AF reservation (UDP traffic) 92

5.15 Jitter for 5 MBit/s AF reservation (UDP traffic) 92

5.16 Bandwidth for 5 MBit/s EF reservation (TCP traffic) 95

5.17 Delay for 5 MBit/s EF reservation (TCP traffic) 95

5.18 Jitter for 5 MBit/s EF reservation (TCP traffic) 95

5.19 Bandwidth for 5 MBit/s AF reservation (TCP traffic) 95

5.20 Delay for 5 MBit/s AF reservation (TCP traffic) 95

5.21 Jitter for 5 MBit/s AF reservation (TCP traffic) 95

6.1 The Bandwidth Broker Architecture 102

6.2 Overview of the API classes . 103

6.3 Service Level Description format 105

6.4 Flow Description format . 105

6.5 An application example for the abstract API classes 112

7.1 The Bandwidth Broker Architecture for an isolated network 116

7.2 Setup of the Topology Database 118

7.3 Communication Architecture for the Bandwidth Broker 122

7.4 The Router Communication Server 124

7.5 The Broker Communication Server 125

7.6 Message sequence for negotiating a new SLS 125

7.7 GUI Input Menu . 127

7.8 An exemplary tiers-generated topology 128

7.9 Flow Database Size in kB . 129

x LIST OF FIGURES

7.10 Flow Database Size for 1010 Nodes Topology 129

7.11 Memory Consumption of the Bandwidth Broker 130

7.12 Flow Setup Time of the Bandwidth Broker (Best Case) 132

7.13 Flow Setup Time of the Bandwidth Broker (Worst Case) 134

7.14 An exemplary multi-ISP scenario 136

7.15 The Bandwidth Broker Architecture for multi-ISP scenarios . . . 139

7.16 Signalling Protocol Messages . 141

7.17 New SLS Signalling Packet Format 142

7.18 Changing an Existing Flow . 144

7.19 Hierarchical Bandwidth Broker Example 146

8.1 Demo Scenario for QoS Provisioning to a mobile user 154

8.2 The New Bandwidth Broker Communication Server 156

8.3 Message sequence for SLS transfer to a foreign network 157

8.4 A scenario for inter-domain broker signalling 158

9.1 Requesting Neighbour Wireless Cells Before the Handover 160

9.2 Link layer handover message-time diagram 161

9.3 Link layer handover SNR-time diagram 163

9.4 Outline of the roaming path . 166

9.5 Signal to noise ratio when roaming with low AP density 167

9.6 Signal to noise ratio when roaming with medium AP density . . . 168

9.7 Signal to noise ratio when roaming with high AP density 168

9.8 Interaction of the Wireless LAN Monitor components 169

9.9 Wireless LAN Monitor procedure message-time diagram 170

9.10 Scenario for a QoS-aware Handover 172

9.11 New Service Level Specification Format 173

10.1 AAA Message Sequence for a Mobile Node 176

10.2 Message Sequence in SLP . 178

10.3 Message Sequence in SLP capable AAA Architecture 179

10.4 Message Sequence in Negotiation Procedure 181

LIST OF FIGURES xi

10.5 An Authentication Option Extension in an Attribute Request Mes-
sage . 181

10.6 A Key Distribution IP Option Extension 184

10.7 An Account Number Option Extension in a Service Request Mes-
sage . 184

C.8 A Mobile User with QoS Requirements 188

C.9 Communication of a Mobile User in the Home Network 189

C.10 Communication of a Mobile User in the Foreign Network 191

List of Tables

2.1 The 3 Reservation Possibilities 33

2.2 Combination with Shared Explicit 33

2.3 Assured Forwarding Codepoints 37

4.1 Router Configuration Tables . 82

7.1 The Laboratory Platforms . 129

7.2 Performance on a single host . 131

7.3 Performance on distributed hosts 131

7.4 Flow Setup Speed (Best Case) 133

7.5 Total Number of Routing Table Queries 133

7.6 Difference between Client and Broker Time per Flow Request . . 134

7.7 Flow Setup Speed (Worst Case) 135

9.1 WaveLAN/IEEE thresholds . 163

C.1 Example for the new Routing Table Format 195

C.2 The new Routing Table after the Topology Changes 196

xii

Introduction

In the last few years an astonishing amount of small, wearable electronic devices
such as laptops, personal digital assistants (PDAs), and mobile phones have been
observed. At the beginning of this trend, the former could not conveniently be
used for mobile communication, whereas the latter had not enough computational
power to solve difficult tasks. However, recently an affiliation of those initially
separated branches is noticeable: mobile phones are equipped with larger dis-
plays and powerful CPUs, whereas PDAs and laptops contain a broad variety of
communication equipment, such as Wireless LAN (IEEE 802.11) and Bluetooth
(IEEE 802.15). Due to this fact, new applications that were restricted beforehand
to fixed terminals are now becoming available to mobile users. The transfer of ap-
plications from fixed to wireless access methods nevertheless requires additional
thought: The Quality of Service (QoS) wireless networks offer varies from the
QoS usually available in wired networks:

� The bandwidth of wireless networks is much smaller than the bandwidth
of wired networks (11 MBit/s in IEEE 802.11b [171] versus 100 MBit/s or
1 GBit/s Ethernet (IEEE 802.3u and 802.3z [172])).

� The delay in a wireless network is higher, since the medium access con-
trol (MAC) protocol is different: IEEE 802.11b uses CSMA/CA (Collision
Avoidance) which adds a fixed Interframe Space (IFS) plus an additional
random backoff time before sending a packet. IEEE 802.3 uses CSMA/CD
(Collision Detection), that allows immediate sending after the medium is
found free.

� Wireless media usually suffer from a bit error rate several orders of magni-
tude higher than wired media (

�������
compared to

�����
	��
), they are subject to

interference and shadowing effects.

� Handovers between different base stations in wireless access networks cause
transmission breaks, additional latency and packet loss.

1

2 INTRODUCTION

� A wireless network uses a shared medium, the radio frequencies. Therefore,
the QoS delivery depends on the presence of other nodes in the network.

For all these reasons, Quality of Service (QoS) issues have a much higher im-
pact on applications running on a mobile device. Also, QoS guarantees are much
harder to accomplish. Several modern applications, such as multimedia streaming,
audio/video conferencing, or distance education, rely on continuous QoS provi-
sioning of the underlying network. Adaptive applications may be able to decrease
their bandwidth requirements themselves if they detect QoS degradation but this
always results in a loss of quality for the user and is therefore not desirable. In this
thesis we want to discuss the enhancements that are to be applied to the current
Internet architecture in order to provide continuous Quality of Service to mobile
users.

For that purpose we partly want to rely on already existing and well-known stan-
dards: Differentiated Services (DiffServ) [124, 16, 125] (see Section 2.2) for the
Quality of Service support and Mobile IP [50, 123] (see Chapter 1) for mobility
management. These two approaches are broadly discussed in the IETF and are
still evolving. On the other hand, simply combining the two standards does not
solve the problem: in [23] we investigate this topic and identify two key issues:
The lack of a DiffServ signalling protocol and the need of the mobile node to be
able to adapt to a large variety of possible access methods. The interoperability
of the two standards remains a problem, since they were developed independently
and do not support each other. We therefore need an entity that supports both stan-
dards and solves the interoperability problem: a mobile-aware bandwidth broker.

However, several other problems have to be considered: The access networks,
which usually are wireless in a mobile scenario, have to support service differen-
tiation and QoS as well. We do not discuss this problem in this thesis but refer
to some possible solutions in Section 2.3. Another problem is the latency of han-
dovers in the initial Mobile IP standard: since many signalling messages have
to be exchanged, the user has to suffer a significant delay until the connection is
reestablished. In Section 1.3.2 we present some existing approaches to speed up
the handover in Mobile IP and decrease the latency.

In the following we will discuss the situation of a mobile user in a network that al-
ready offers Mobile IP and Differentiated Services, but no reconciling framework.
We will also see that a simple combination of existing standards and proposals
would result in a oversized architecture that is not easily understood, implemented
and maintained. This discussion uses some of the terminology of Differentiated
Services and Mobile IP, which is explained in detail in the corresponding chapters
of Part I.

INTRODUCTION 3

Difficulties of Providing QoS in Mobile Environments

In this section we want to investigate the difficulties an imaginary mobile user
has to face if he would like to start an application, requiring a special Quality of
Service (i.e. a guaranteed bandwidth, certain delay or jitter bounds, etc.). Such
an application could for example be a video conferencing software. Furthermore,
we will see, that even more problems arise, when this mobile user moves to one
or several foreign domains and does not want to lose its initial QoS level. For our
evaluation scenario, and all other scenarios that are used as an example throughout
this thesis, we make the following assumptions:

� The Internet is separated into several, independently managed domains.

� Each node belongs to a unique domain, labelled “home domain” or “home
network”. All other domains are considered “foreign domains”.

� Mobile IP is used for supporting mobile hosts, which means home and for-
eign agents are present in each network.

� All networks support wireless access for mobile hosts. For simplicity we as-
sume that this access technology is similar to Wireless LAN (IEEE 802.11)
technology.

� All routers support Differentiated Services and implement the expedited for-
warding (EF) and assured forwarding (AF) per-hop-behaviours (PHBs) (see
Section 2.2.3 and [40, 74]).

Figure I.1 shows the initial scenario with the different entities. The shaded num-
bers in the figure refer to the numbers in the enumeration below and indicate the
location of the specific problem description. At the same time they refer to the
problem-specific solutions presented in the next section. A mobile host (MH) is
connected to a correspondent host (CH) by a bidirectional connection. For each
direction a user wants a DiffServ reservation of 500 kbit/s. Afterwards, the mobile
host moves to the two locations within a foreign access network at the bottom of
the scenario. Naturally the user is not willing to quit the communication or to suf-
fer from service degradation caused by the movement. We now want to identify
the problems of continuous user-friendly negotiation of resource reservation.

1. At the present time, DiffServ lacks a signalling protocol which enables users
to negotiate resource reservations “on the fly”. Currently, the negotiation is
a rather time-consuming task of contacting a network’s system administra-
tor via email or telephone and to negotiate the parameter settings of the edge

4 INTRODUCTION

Internet

Home Network

DiffServ Ingress Router

Home Agent

DiffServ Egress Router

Foreign Agent

Correspondent Host

2 MBit/s5.5 MBit/s
11 MBit/s

DiffServ Ingress Router

Foreign Network

Mobile Host

(3)
(4)

(6)

(7)

(7)
(8)

(2)

(1)

(3)

(7)
(5)

(4)

���
���
���

���
���
���

Figure I.1: A Mobile User with QoS Requirements

INTRODUCTION 5

routers of some domain. At its home location, the mobile user therefore has
to negotiate a fixed QoS-specification that applies to all applications the user
would like to run.

2. If several mobile hosts share a wireless access network, there is some inter-
ference between them, thus the level of QoS that can be delivered depends
on the presence of other mobile hosts and — more generally — the Quality
of Service the lower layers are able to provide.

3. Handovers might happen between access networks under different adminis-
trative control. Therefore, some trust-relationship between the mobile user
and the foreign network usually needs to be present or established: a pre-
set relationship is unlikely since it requires the knowledge of all foreign
networks a mobile host will visit on its journey in advance.

4. After the handover the mobile node suffers a large delay until its connection
is reestablished, due to the Mobile IP handover signalling. This is especially
costly, if home and foreign networks are separated by a transcontinental
link. In addition, after a handover, packets from the mobile host may start
using a new care-of-address. This might lead to difficulties recognising an
ongoing session in some forwarding functions at intermediary nodes.

5. At the new access network no DiffServ reservation is established. Due to
the missing DiffServ signalling protocol the user has to establish reserva-
tions in advance. This is difficult, since the user has to know exactly which
foreign networks he will visit. It also wastes resources, since the reserved
bandwidth is used for a short period of time only. In addition, effects of
lower layers, such as handovers to different base stations, may completely
prohibit this approach.

6. The scenario above assumes that a mobile host is always allowed to attach to
a base station. This may not be the case, either due to invalid authentication
/ authorisation or if several mobile hosts already are attached to this base
station and the local policy does not allow further visitors to prevent service
degradation for the existing connections.

7. In case of an inter-domain handover between two foreign networks (i.e. a
handover from one wireless cell in a foreign network to another wireless cell
in another foreign network) the mobile user has to suffer the same latency
as at the first handover (i.e. the Mobile IP tunnel setup and the DiffServ
reservation latency). Usually such a handover only affects a small part of
the overall path from the correspondent host to the mobile host, and should
therefore be performed much faster.

6 INTRODUCTION

8. After a handover more than one wireless cell could be chosen for associa-
tion. Yet it could be possible that only a subset of the available base stations
is able to continue the QoS support for the mobile host (e.g. there is not
enough bandwidth available in other wireless cells).

Approaches for Solving the Different QoS Problems
in Mobile Environments

Now we will evaluate how the problems mentioned above can be solved. For
almost each problem there exists a proposed solution but so far no effort has been
made to combine all the different proposals to a comprehensive framework that
offers a simple user-friendly interface for mobile users to specify and hold their
QoS requirements. Even worse, since most of the proposed solutions focus on a
specific problem, future extensibility is often neglected. This makes the effort of
combining the different proposals even heavier.

In the following sections we will shortly present the existing proposals and the
contribution of this thesis, following the enumeration used before.

1. Bandwidth Brokers for Differentiated Services

The lack of a management entity for DiffServ has been mentioned quite shortly
after the publication of the architecture [137]. In the meantime, a management
framework for DiffServ, mostly built on an entity called “Bandwidth Broker” (BB)
has been developed and implemented at several research groups [77, 92, 134, 135,
169, 193] (see also Sections 3.5 and 3.6). Unfortunately, the work so far does not
take into account the special needs of mobile users.

In this thesis we present a framework that solves these two issues: A bandwidth
broker, together with an appropriate signalling protocol, offering fast and conve-
nient flow negotiation between the mobile user and the visited access ISP will be
presented in Part III. In Part IV we will present a novel handover scheme, devel-
oped for supporting a continuous Quality of Service during the handover to a new
access network.

2. Quality of Service Support in Wireless Networks

End-to-end provisioning of Quality of Service also includes service differentia-
tion at the last hop. The last hop in mobile scenarios will usually be a wireless

INTRODUCTION 7

link. This medium is shared because of physical reasons. This problem can-
not be solved as easily as in Ethernet access networks, where modern installations
usually use switches instead of hubs, thus providing non-shared access to the first-
hop-router. Since the IEEE 802.11 standard is the most widely used today, several
proposals exist about how to enable differentiation mechanisms and QoS support
in this access technology. Some of these approaches will be discussed in Sec-
tion 2.3.

3. Authentication and Authorisation

If a mobile node visits a foreign network and asks for a certain Quality of Service,
the foreign ISP usually wants to get paid for its service. This leads directly to
the problem of Authentication and Authorisation, since we must ensure that no
one can use a service without being properly identified, that a user is actually
entitled to use the service and is willing to pay for it. The standardisation of
an Authentication, Authorisation and Accounting (AAA) framework has already
taken place [42, 179, 180, 58], the special needs of Mobile IP users, however, are
not fully taken into account. In Chapter 10 we propose an extension of the existing
AAA architecture that supports mobile users specifying their QoS requirements
in a DiffServ network.

4. Handover Optimisation in Mobile IP

The topic of optimising handovers is broadly discussed in the IETF [39, 41, 95,
97, 132, 154, 177]. However, this discussion almost exclusively focuses on min-
imising the delay and the loss of packets that results from the handover. Since
we want to combine QoS issues and mobility support we have to focus on QoS-
aware handover procedures, that are not investigated in detail within the IETF.
A new handover strategy is proposed in Chapter 9. We develop a signal quality
monitoring program that can initiate the actions needed to prepare a handover to
a new access network. This includes the reservation of sufficient resources. Our
approach additionally helps to accelerate the handover, similar to the approaches
discussed in Section 1.3.2.

5. QoS Signalling Protocol

DiffServ networks, or broadly spoken QoS enabled networks, are expected to han-
dle two different kinds of QoS granularities: per-flow QoS and per-class QoS.
Per-flow QoS is usually used in access networks and there may be subject of QoS

8 INTRODUCTION

signalling. In the core networks per-class - QoS has to be used due to scalability
reasons. In DiffServ, for example, the ingress router is the only place where per-
flow granularity is required (see Sections 2.2.5 and 4.2). A QoS signalling proto-
col has therefore to meet different demands depending on the part of the network
it is operating on. A detailed overview of the requirements for QoS signalling
protocols is given in [55]. In Sections 7.3 and 7.4 we propose our own signalling
protocol that is designed for a very high speed of communication between the
bandwidth broker and the user and between the bandwidth broker and the routers.
The performance of this protocol has been analysed in Section 7.6. Our signalling
protocol can also support mobile users by offering a new set of functions designed
to automate the reseource reservations needed when a handover occurs. This is
described in Section 8.2.

6. Admission Control

For each incoming reservation request, it has to be checked that the user is al-
lowed to reserve resources and, if this is the case, that there are enough available
resources. Checking the permissions of the user also includes checking the cor-
rectness of the provided identity. This results in a need of an AAA architecture. A
more detailed discussion of how to include an AAA framework into the scenario
is found in Chapter 10. The second question — about the availability of resources
— can be delegated to the bandwidth broker: it can, based on the care-of address
of the mobile user, decide at which access network the user is registered, and
thus keep track of the resources used in this part of its network. If a configurable
amount of resources is occupied, the bandwidth broker can reject the request.

7. Hierarchical Bandwidth Brokers

Usually a centralised approach, such as a bandwidth broker, has one serious prob-
lem: scalability. With scalability we mean the ability to perform well with an
increasing number of participants / nodes. Generally speaking, centralised archi-
tectures do not perform well within a large network, since the number of mes-
sages, states and data to be processed and stored increases rapidly with the size of
the network. However, we believe that in practice a centralised bandwidth broker
does not suffer too much from scalability problems. The performance evaluation
in Section 7.6 shows a good performance over a large range of network sizes.
Nevertheless, if this performance is too low, there is the possibility of sharing the
load between several bandwidth brokers that are organised in a hierarchical way
(see [134, 191, 193] and Section 7.8). In this case, each so-called leaf broker

INTRODUCTION 9

is only responsible for a small part of the network, aggregating the resource re-
quests while the root broker only acts on traffic aggregates. A small increment
in signalling (the messages between the root and leaf brokers) can result in a big
performance boost of the architecture, provided the location of the leaf bandwidth
brokers is chosen carefully.

8. QoS-aware Handovers

Up to now, the handover from one wireless cell to another is a pure layer 2 process:
the radio network interface card decides to which wireless cell it next associates
with no respect to upper layer protocols or applications. This can seriously down-
grade existing Quality of Service. A lot of recent research work is presently done
to accelerate the handover procedure. Unfortunately, the topic of resource reser-
vation is neglected in this discussion. We therefore propose to transfer the respon-
sibility of the handover procedure to a user program, which is aware of existing
resource reservations and can direct the handover decision in a way that violating
the QoS level is minimised. We propose to introduce a protocol between a band-
width broker and the mobile user, that ensures the availability of resources at the
new access network (if possible) and can additionally be used to pre-negotiate a
transfer of the existing reservation to the new access network (cf. Chapter 9). To
a certain extent this protocol also solves the problem of handover latency.

Summary

We can see that for many problems we encounter when looking for QoS support
for mobile users, isolated solutions exist. Unfortunately, these solutions do not
work together very well. Quite often, the support for mobile users has not been
included from the beginning and adding it later so far usually resulted in big over-
heads and complexity. We want to present an architecture that considers the needs
of mobile users from the beginning and therefore avoids complicated structures.

Contribution of this Thesis

In this thesis we will present an architecture and implementation of a central band-
width broker architecture that is able to manage large DiffServ networks and offers
a fast and convenient framework for mobile and immobile users to specify their
QoS requirements. Although many components that could be used to build such

10 INTRODUCTION

a framework already exist so far, there is no architecture that takes both, Quality
of Service and mobility, into account.

We will present a flexible bandwidth broker which is easy to use and to adminis-
ter and which will do most of the configuration work a network administrator of a
DiffServ network has to do today. Additionally our broker also offers a convenient
interface for mobile users in a way that they can specify their QoS requirements
and hold this initial QoS level during their session no matter whether they are
moving or not. The bandwidth broker is — like in many other designs — sepa-
rated into two parts: a management layer and a configuration layer. The novelty of
our approach is to introduce an object-oriented interface between the two layers.
By using the polymorphism of this interface we can hide the heterogeneity of the
network and offer a common management interface to the management layer.

The interface is built using a newly developed Application Programmers Interface
(API) for Quality of Service management (Section 6). This API can be used to
form a homogeneous image of the underlying network: each router and interface
— no matter which kind of router hardware or manufacturer — is represented by
an object-oriented class that offers a common interface for configuration. This
way, the configuration of today’s heterogeneous networks can be significantly
simplified. This topic has not yet been widely addressed in the literature.

A bandwidth broker implementation can use our API to configure heterogeneous
networks in a very simple way. Such a broker has been implemented (Section 7),
performing topology auto-detection of large networks, initialising DiffServ con-
figurations at the routers and offering a user interface for flow reservation. This
implementation has been tested (Section 7.6) and proved to be able to configure
large networks while offering a comfortable flow reservation rate. The networks in
our tests have been considerably larger than test-networks in other publications:
We have used several hundred nodes, whereas other simulation results are only
based on 3 - 20 nodes and on a very simplified topology.

The great flexibility of our architecture can be shown by adding support for hierar-
chical brokers and mobile users step-by-step (Chapters 8, 9): without changing the
internal design it is possible to provide a scalable way for Mobile IP users to ne-
gotiate reservations for all necessary links involved. Some additional commands
are necessary and can easily be added to the broker’s API. Even pre-handover
negotiation and QoS-aware handover support is possible.

Our design might be quite similar to the design of other bandwidth brokers. Yet we
have added some new functionalities into our approach that proved to be a major
advantage. The QoS management API introduces an additional software layer in
the architecture, separating the management part of the bandwidth broker from the
configuration part. Therefore the flow management can be handled independently

INTRODUCTION 11

from the router hardware. For simulation and performance evaluation even virtual
routers can be used. Several new functionalities, which are not part of the basic
bandwidth broker architecture have also been included in the implementation, e.g.
topology auto-detection, backward reservation, over-provisioning support, and a
link reservation / utilisation database.

Structure of this Thesis

This thesis consists of four parts. In the first part, existing standards and research
work related to our work is discussed and taken into account. Each of the follow-
ing parts discusses an approach to the final goal: a network where a mobile user
is able to roam freely between different access networks without suffering from
service degradation. Each part starts with a small overview that lists its contents
in detail and will clarify the connections between the components listed in this,
as well as in other parts. Similarly, each part closes with a short summary, listing
again its most important results and the effects these results will have on the other
work presented within.

The first part discusses well-known fundamental work that has mainly been pub-
lished within the IETF workgroups, as well as current research work. This related
work can be divided into three main topics: Mobile IP is discussed in Chapter 1.
Several proposals to enhance the disappointing performance of Mobile IP han-
dovers are included (Sections 1.3.1 – 1.3.4). A comprehensive introduction on
Quality of Service follows in Chapter 2. First we will introduce the two main
techniques used to implement QoS: Integrated and Differentiated Services. In
the following sections we will focus on mobility-related topics of Differentiated
Services, namely the DiffServ Support in IEEE 802.11 wireless access networks
(Section 2.3) and a signalling protocol for DiffServ (Section 2.4). The third chap-
ter is about network management from the ISO point of view. This chapter also
includes recent research work on the main topic of network management that we
are interested in: Bandwidth broker design (Section 3.5) and bandwidth broker
implementations (Section 3.6).

The second part will investigate the behaviour of Differentiated Services in a
test network. We will present our own implementation of DiffServ for Linux
Routers (Chapter 4) and show a detailed performance evaluation (Chapter 5) that
will prove the ability of DiffServ to protect high-priority flows from aggressive
background traffic.

The third part will develop a novel application programmers interface (API) for
programmers of network management software, focusing on Quality-of-Service

12 INTRODUCTION

management (Chapter 6). Based on this API, a bandwidth broker architecture and
implementation is developed and evaluated in Chapter 7.

The fourth part focuses on the changes that have to be made in the previously
introduced bandwidth broker in order to be able to support mobile users (Chap-
ter 9). In addition, an extension to the existing Authentication, Authorisation and
Accounting architecture is presented to support mobile users (Chapter 10).

Finally, in the conclusion we will come back to the example presented in the
Introduction (Figure I.1) and show, how a mobile user would be able to negotiate
a resource reservation in a network using our architecture.

Part I

Related Internet Standards and
Research Work

13

Overview

This part gives an overview of the Internet standards this thesis is built on, as well
as a selection of Internet Drafts and other publications of various other authors that
are related to the topics of this thesis. This related work can roughly be divided
into three groups:

The first group (Chapter 1) is about the Mobile IP standard (Sections 1.1 and 1.2).
The majority of publications concerning Mobile IP discusses the topic of han-
dovers. In the Sections 1.3.1 and 1.3.2 we will discuss two approaches to improve
the current Mobile IP handover in terms of packet loss and latency. These ap-
proaches have been started very shortly after the publication of the Mobile IP
standard. However, these proposals try to solve the problem in the network layer
only. More recent research work has shown, that some problems that occur during
a handover can only be solved if information from lower layers is also taken into
account (Sections 1.3.3 and 1.3.4).

The second group (Chapter 2) discusses the Quality of Service support in IP net-
works. The first two sections deal with the two main approaches : Integrated and
Differentiated Services (Sections 2.1 and 2.2). Due to the well-known scalabil-
ity problems of Integrated Services in the backbone, we focus on Differentiated
Services and evaluate the extensions needed to support mobile users in a DiffServ
network. Two important topics are handled explicitly in Sections 2.3 and 2.4: The
QoS support of wireless networks, which we expect to be common for mobile
users, and a signalling protocol for DiffServ, whose absence is the main obstacle
for fast and convenient DiffServ resource reservation.

The third group (Chapter 3) concerns the network management. Here we first
present the ISO network management architecture (Section 3.1). Afterwards we
discuss the various designs and implementations of a network management ar-
chitecture for a DiffServ network (Sections 3.5 and 3.6). In a DiffServ network, a
network management and configuration entity is often called a bandwidth broker.

14

Chapter 1

Mobile IP

The increasing number of mobile and portable devices, such as laptops, personal
digital assistants (PDAs) or mobile phones, presents problems regarding the con-
figuration and administration of networks. Predefined installations and configu-
rations of the device are not applicable to react to highly dynamic environments,
since the conditions a user may encounter are not predictable. Additionally, such
a pre-configuration and its maintenance leads to higher workload for the system
administrator as well as for the user. Perhaps the most important topic, however,
is the waste of allocated IP addresses occurring by using this approach.

An environment supporting Dynamic Host Configuration Protocol (DHCP) allows
to provide a valid IP address to a device newly attached to a network. This is a
very flexible approach, but it suffers a serious drawback whenever the user wants
to stay online while moving around. If the movement of the user causes a han-
dover by leaving one access network and connecting to another access network
(e.g. due to radio coverage), the new access network is likely to be connected to
another DHCP server. The mobile client will therefore require a new IP address.
Unfortunately this leads to a disruption of all TCP connections the mobile node
currently holds. This behaviour prohibits the use of DHCP in mobile environ-
ments with handovers. An alternative approach to this problem called Mobile IP
is provided in [48].

Mobile IP allows a network device to connect to the Internet from various access
network while maintaining a unique IP address (the home address). Obviously,
a device with an IP address connected to a foreign subnet will not be able to
communicate normally. Therefore, an additional IP address (the care-of address)
from the address space of the access network is given to the mobile device. A
special router in the home network, the home agent is responsible for capturing
traffic addressed to the home address of the mobile node and for forwarding it to

15

16 CHAPTER 1. MOBILE IP

the current care-of address. Usually the mobile node uses its own home address
as the source address of all the packets it sends.

1.1 Terminology

The following terminology is used in Mobile IP; a more detailed overview of
mobility-related terminology can be found in [113].

Home Address The static IP address owned by the mobile node. This address
does not change wherever the mobile nodes attaches to the Internet.

Care-of Address A dynamically allocated IP address which a node uses to des-
ignate its current point of attachment to the access network.

Home Agent A router in the home network of the mobile node that keeps track of
the current location of the mobile node. It also intercepts packets addressed
to the mobile node, encapsulates them in a tunnel to the current care-of
address and forwards them to the mobile node.

Foreign Agent A router in the network visited by the mobile node, which is only
needed in Mobile IP version 4. It registers the presence of the mobile node,
and forms the endpoint of the tunnel from the home agent. The foreign
agent therefore decapsulates the packets coming from the home agent and
forwards them to the mobile node via normal IP routing.

Tunnel Tunnelling in this case is the process of encapsulating an IP packet inside
another (see [131, 152]). Tunnelling can also be thought of encapsulating
an ordinary IP packet inside a special (perhaps encrypted) IP packet.

Correspondent Host The communication partner of the mobile host.

1.2 Mobile IP Operation

Mobile IP agents (i.e. home and foreign agents) advertise themselves by periodi-
cally broadcasting agent advertisement messages, which are ICMP (Internet Con-
trol Message Protocol) router advertisement messages with extensions. A mobile
node may also explicitly request one of these messages by sending an agent solic-
itation message.

1.2. MOBILE IP OPERATION 17

After a mobile node receives such a message it can determine, whether it is in its
home network or in a foreign network. If the mobile node is at home, it will op-
erate normally without the use of mobility services. Additionally, any previously
registered location will be deleted by a registration request / registration reply se-
quence. If, however, the mobile node has moved to a foreign network, it obtains
a care-of-address for the foreign network. This address can be obtained either by
the foreign agent itself or by other mechanisms, such as DHCP. The latter case is
also known as co-location of the care-of-address. This has the advantage of being
independent from the presence of a foreign agent. The communication between
the mobile node and a foreign agent has to take place at the link layer, since the
mobile node’s IP address does not match the foreign subnet address.

1.2.1 Registration

Once the mobile node has a care-of-address, it can register itself at the home agent.
[48] defines two different ways of registration: the mobile node can register via a
foreign agent, which relays the registration to the mobile node’s home agent, or it
can directly register at its home agent. The first case must be used if the mobile
node got its IP address from a foreign agent. It should however, use this option,
too, if it got an IP address via DHCP but also received an agent advertisement from
a foreign agent in this subnet. On the other hand, the mobile node must directly
register at the home agent if it has not received a foreign agent advertisement or if
it returns to its home network.

After this registration procedure any datagram intended for the home address of
the mobile node will be intercepted by the home agent and tunnelled (see [131]) to
the care-of-address. The tunnel endpoint may be the foreign agent or the mobile
node itself (in case of co-located care-of-address). The mobile node will respond
to the datagram using standard IP routing mechanisms.

1.2.2 Routing

Triangular Routing

Any host that wishes to communicate with the mobile host (“Correspondent Host”)
will send all packets for the mobile host to the public IP address of the home net-
work, since it is not aware of any mobility of the mobile host. The home agent
will intercept any packets sent to mobile hosts that have registered at a foreign
network, encapsulates the packets and tunnels them to the care-of-address. The
foreign agent at the tunnel endpoint will decapsulate the packets and forward them

18 CHAPTER 1. MOBILE IP

Home Agent

Correspondent
Host

Foreign Agent

Mobile Host

Tunnel

�������
�
��

Figure 1.1: Mobile IP Triangular Routing

to the destination address via normal IP forwarding. If there is no foreign agent,
the packets are delivered to the mobile host directly. The mobile node then decap-
sulates the packets itself. The packets from the mobile node to the correspondent
node will take the route given by the normal IP routing settings. This routing op-
eration is called triangular routing, since there are three different edges involved
in the communication (see Figure 1.1).

Bidirectional Tunnelling

Internet router security guidelines recommend not to forward any IP packets out
of an Autonomous System (i.e. a local network) if they have a source address not
belonging to the Autonomous System. Since Mobile Nodes emit packets with
their home address as source address this packets will be dropped leaving the
network. This keeps them from communicating with any Internet host not in the
network they are visiting.

To circumvent this obstacle, bidirectional tunnelling is necessary. In this case
the packet to be emitted will first be tunnelled back to the Home Agent before
being “let out” on to the Internet. Bidirectional tunnelling was not foreseen in the
original Mobile-IP standard, but has been added later [123].

1.3. HANDOVER IN MOBILE IP 19

Route Optimisation

Usually detouring the packets via the home agent means wasting resources and
generates unnecessary delay. Optimising the routing by telling the correspondent
host the actual location of the mobile node is the better choice.

Mobile IPv4 route optimisation [133] is a proposed extension to the Mobile IPv4
protocol. It provides enhancements to the routing of datagrams between the mo-
bile node and the correspondent node. The enhancements provide means for a
correspondent node to tunnel datagrams directly to the mobile node or to its for-
eign agent care-of address.

Each time the home agent now receives a datagram that is addressed to a mobile
node currently away from home, it sends a binding update to the correspondent
node to update the information in the correspondent node’s binding cache. After
this binding update, the correspondent node can now tunnel packets to the mo-
bile node directly. This way direct bi-directional communication is achieved with
route optimisation. This reduces both, network load and also delays caused by
routing. The optimisation is therefore valuable to mobile nodes that visit networks
located far from their home agent.

Since both, the correspondent nodes and the foreign agents have binding caches,
that change the routing of datagrams destined to mobile nodes, the binding up-
dates must be authenticated. The authentication is performed in a similar man-
ner as in base Mobile IPv4. All binding updates contain a route optimisation or
smooth handover authentication extension. This extension contains a hash, which
is calculated from the datagram and the shared secret [133].

The correspondent node and the mobile node’s home agent need a security associ-
ation [86]. This association is used for the authentication of the binding updates.
Since the mobile node sends a binding update directly to its previous foreign
agent, they also need a security association. If the security associations are not
preconfigured, they can be established via a key management protocol.

1.3 Handover in Mobile IP

A quite important issue in mobile and wireless services is the topic of handovers.
Due to the limited range of radio transmission, a mobile user will have to connect
to several base stations during his movement. The procedure of passing all nec-
essary information from the old base station to the new one is called a handover.
Obviously, each time the user leaves the radio cell of a base station and enters
the cell of a new base station, all traffic from and to the mobile node has to take

20 CHAPTER 1. MOBILE IP

a new route. In addition some packets from a correspondent host to the mobile
host might still be routed to the old destination shortly after a handover. In order
to avoid the loss of those packets and the retransmission a transport protocol may
require, a solution has to be found to forward those packets from the old access
network to the new location. This problem is generally referred to as “smooth
handover” (cf. Section 1.3.1).

A second problem in the handover procedure is the rather large amount of sig-
nalling messages in the original Mobile IP protocol: each time the mobile node
changes the access network (i.e. radio cell) the home agent has to be notified and
all tunnels have to be rebuilt. This adds a considerable amount of delay to the
handover. In a scenario with small radio cells and thus frequent handovers (such
as UMTS, IEEE 802.11) this prohibits a useful employment of Mobile IP. Han-
dover procedures that provide a faster way to switch from one radio cell to another
are therefore called “fast handover” (cf. Section 1.3.2). Of course it is desirable
to have a combined solution to both problems described above, smooth and fast
handover. Such a handover is called “seamless”.

The fact that after a handover all packets from and to the mobile node have to
take a new route obviously has a serious impact on all resource reservation sce-
narios: The reservations in the old access network have to be cancelled and new
reservations have to be established in the new access network. The problems that
arise due to those reorganisations of the network are similar to the two cases dis-
cussed above: registering a new reservation at the bandwidth broker takes a cer-
tain amount of time and has to be considered in an overall solution for the “fast”
handover. In addition, important packets could be dropped due to non-existent
reservations shortly after the handover and perhaps have to be retransmitted. This
is quite similar to the problem solved by “smooth handover”. Sometimes it could
also happen, that no reservation is possible at the new access network. In this
case we need mechanisms to select between several access network candidates.
In addition, information about the possibility of a reservation in the candidate net-
works is needed. A handover mechanism providing this functionality is called
“QoS-aware handover”. We will discuss this in Section 1.3.4 and present our own
strategy for such a handover in Chapters 8 and 9.

In the following sections we will investigate the different proposals to improve the
handover in Mobile IP more in detail.

1.3.1 Smooth Handover

One Internet Draft [56] proposes a new handover method using the Explicit Mul-
ticast (xcast) technique for the Small Group Multicast (SGM). On the wired sec-

1.3. HANDOVER IN MOBILE IP 21

tion, control and user packets are multicasted using the xcast thechnology and
sent to the Base Stations (BS) where mobile nodes (MN) can access. Packets
are then passed on to the air-link activated between a base station and the mobile
node. For smooth handovers, [94] specifies extensions to Mobile IPv6, which
allow additional control structures that enable the transfer of the necessary state
during handovers. This state transfer allows the applications running on the mo-
bile node to operate with reduced latency, minimal disruption, and reduced packet
loss during handovers. Moreover, Mobile IPv6 regional registration [111] reduces
the binding update signalling latency and the signalling load for a mobile node
moving within the same visited domain. The latency is reduced by localising
binding updates to the visited domain and the signalling load is reduced by using
a regional-aware router for a proxy care-of-address, the regional care-of-address,
as seen by hosts outside the visited domain. This registration uses an Anycast
Address for all regional routers, creates host routes for mobile nodes at relevant
routers, allows arbitrary hierarchical topology without disclosing details to mobile
nodes roaming from other domains, specifies an optimal method for forwarding
and is compatible with smooth/fast handovers. An important issue that needs to be
considered when supporting real-time applications like VoIP in mobile networks
is the capability to provide smooth handovers. A critical requirement for smooth
handovers is to minimise packet loss as a mobile node moves between network
links. [98] defines a buffering mechanism for Mobile IPv6 by which a mobile
node can request that the router on its current subnet buffers packets on its behalf
while the mobile node completes registration procedures with the router of a new
subnet. Once the registration is complete and the mobile node has a valid care-of
address in the new network, the buffered packets can be forwarded from the pre-
vious router, thus reducing the possibility of packet loss during the transition. In
networks with limited bandwidths, such as wireless cellular networks, compres-
sion of IP and transport headers may be employed to obtain better utilisation of the
available spectrum capacity. When header compression is used along with han-
dovers in such networks, the header compression context needs to be relocated
from one IP access point (i.e., a router) to another in order to achieve seamless
operation.

1.3.2 Fast Handover

Mobile IP describes a way of how a mobile node can change its point of attach-
ment to the Internet while maintaining a unique IP address, a process referred to
as handover. During this process, there is a time period during which the Mo-
bile Node is unable to send or receive IP packets. This time period is referred
to as handover latency. In certain scenarios, the handover latency resulting from

22 CHAPTER 1. MOBILE IP

standard Mobile IP handover procedures can be greater than what is acceptable
to support real-time or delay sensitive traffic. Mobile IP was originally designed
without any assumptions about the underlying link layers over which it would op-
erate so that it could have the widest possible applicability. This approach has the
advantage of facilitating a clean separation between layer 2 (L2) and layer 3 (L3)
of the protocol stack, but it has negative consequences for handover latency. The
strict separation between L2 and L3 results in the following built-in sources of
delay:

� The mobile node may only communicate with a directly connected foreign
agent (FA). This implies that a mobile node may only begin the registration
process after a L2 handover to nFA (new FA) has been completed.

� The registration process takes some time to complete as the Registration
Requests propagate through the network. During this period of time the
mobile node is not able to send or receive IP packets.

There exist several ways to achieve a low-latency Layer 3 handover: [54] distin-
guishes between the following methods:

� pre-registration handover method

� post-registration handover method

� combined method

The pre-registration handover method allows the mobile node to be involved in
an anticipated IP-layer handover. The mobile node is assisted by the network in
performing a L3 handover before it completes the L2 handover. The L3 handover
can be either network-initiated or mobile-initiated. Accordingly, L2 triggers are
used both in the mobile node and in the foreign agent to trigger particular L3
handover events. The pre-registration method coupled to L2 mobility helps to
achieve seamless handovers between FAs. The basic Mobile IPv4 concept involv-
ing advertisement followed by registration is supported and the pre-registration
handover method relies on Mobile IP security. No new messages are proposed,
except for an extension to the Agent Solicitation message in the mobile- initiated
case.

The post-registration handover method proposes extensions to the Mobile IP pro-
tocol to allow the oFA (old FA) and nFA (new FA) to utilise L2 triggers to set
up a bi-directional tunnel between oFA and nFA that allows the mobile node to
continue using its oFA while on nFA’s subnet. This enables a rapid establishment

1.3. HANDOVER IN MOBILE IP 23

of service at the new point of attachment which minimises the impact on real-time
applications. The mobile node eventually has to perform a formal Mobile IP regis-
tration after L2 communication with the new foreign agent is established, but this
can be delayed as required by the mobile node or foreign agent. Until the mobile
node performs registration, the foreign agents will setup and move bidirectional
tunnels as required to give the mobile node continued connectivity.

The combined method involves running a pre-registration and a post-registration
handover in parallel. If the pre-registration handover can be performed before
the L2 handover completes, the combined method resolves to a pre-registration
handover. However, if the pre- registration handover does not complete within
an access technology dependent time period, the oFA starts forwarding traffic for
the mobile node to the nFA as specified in the post-registration handover method.
This provides for a useful backup mechanism when the completion of a pre- reg-
istration handover cannot be guaranteed before the L2 handover completion.

Two different handover mechanisms are proposed in [51], too:

� anticipated handover

� tunnel-based handover

In the first case the third layer initiates a handover to the new access network,
while layer 2 connectivity remains at the old access network. Predictive informa-
tion about the direction of the handover or the ability of forcing a handover to a
specific access network is necessary in this case. In the second case, the mobile
node defers the third layer handover until it is attached to the new access network.
The traffic is tunnelled using the old care-of address to the new location.

The anticipated handover is quite similar to the handover technique adopted in
our architecture, which we specify in Chapter 9: We predict the direction of the
handover based on the signal - to - noise ratio, but leave the decision to the user
(more precisely: a handover daemon) and force the handover to the chosen access
network. The fact that the user can affect the handover decision by configuring
the handover daemon is extremely important for QoS-aware handover (cf. Sec-
tions 1.3.4 and 9.4).

Another approach similar to the tunnel-based handover is presented in [82]: This
approach proposes to set up a chain of tunnels between access routers for subse-
quent handovers. To minimise the latency introduced by the chain of tunnels a
maximum tunnel length threshold is introduced. The authors claim a performance
gain compared to the anchored tunnelling handover of [51], but unfortunately nei-
ther experiments nor results are available to proof this statement.

24 CHAPTER 1. MOBILE IP

Conclusion The discussion above shows, that there are many improvements
possible to provide a good and fast handover functionality in Mobile IP. The pro-
posals can roughly be divided into two categories: a pre-handover negotiation
approach from the old access network or a tunnelling, post-handover approach
where the old care-of address is used in the new access network. The handover
procedure proposed in this thesis (cf. Chapter 9) is quite similar to some of the so-
lutions proposed for a pre-handover. Our proposal is also able to support the QoS
demands of a mobile user, which is not the case in most fast-handover functions.
However, due to the similarity it will share the benefit of low handover latency.

1.3.3 Effects of Layer 2 Technology

The Mobile IP working group has considered enhancements that significantly re-
duce the amount of service disruption involved in Mobile IP handover. The pro-
posals treated by the working group so far are based on having layer 2 information
available prior to the handover which allows the mobile node and/or the old for-
eign agent to prepare for handover in some fashion.

According to [54], a L2 trigger is a signal of a L2 event. One possible event is early
notice of a upcoming change in the L2 point of attachment of the mobile node to
the access network. Another possible event is the completion of relocation of the
mobile node’s L2 point of attachment to a new L2 access point. This information
comes from L2 programmatically or is derived from L2 messages.

The requirements of layer 2 and layer 3 interoperation are discussed in [80, 190].
The authors state, that L2 triggers like the ”link tear down” and ”link establish-
ment” can be used to indicate departure and arrival of a mobile node at a base
station. Such indications can replace L3 signal exchange and therefore expedite
the process. Timely receipt of this triggers is needed as protocol signalling needs
to take place in parallel with the handover.

In [129] the author proposes a second wireless interface to solve the problem of
smooth handovers: to prevent service interruption, a terminal with two wireless
interfaces can keep existing connections alive over one interface while searching
other frequency bands with the other. However, as the author already mentioned,
this increases the cost for a mobile terminal.

1.3.4 QoS-Aware Handover

The QoS requirements for Mobile IP are summarised in [52]:

� Minimise the interruption in QoS at the time of handover

1.3. HANDOVER IN MOBILE IP 25

� Localise the QoS (re)establishment to the affected part of the packet path in
the network

� Releasing after handover the QoS state (if any) along the old packet path

� interoperability with mobility protocols

� interoperability with heterogeneous packet paths as regards QoS paradigms

� QoS support along multiple packet paths

� interaction with wireless link-layer support for QoS

A QoS-aware handover is defined in [41] as a kind of handover that allows the mo-
bile node to change the current point of attachment to the Internet without loosing
the perceived QoS. In [41] the authors introduce a “Secondary Home Agent” that
helps to set up a new reservation while the old one is still present.

In [63] we also find a basic signalling protocol and handover description that holds
a QoS level during a handover by pre-registering the new route while staying
connected to the old access network. The performance results published by the
authors unfortunately do not handle this type of a handover.

Another approach is presented in [43]: two new services are introduced to replace
expedited forwarding (called “Mobile Premium Service”) in a mobile scenario
and to complement this new “Mobile Premium Service”. Using this new service,
only a statistical handover guarantee can be granted. This service is implemented
by reserving a certain amount of bandwidth for handovers. The second service,
called “Best Effort Low Delay Service” utilises free Mobile Premium Service
resources to offer cheap connectivity for real-time applications. However, the
connection may break if the resources are used by the Mobile Premium Service
users. A PHB for this service has been published as an Internet draft [44]. In
another publication [59] the authors propose to implement service differentiation
based on long-term traffic priorisation schemes. The authors suppose, that pre-
negotiation is not applicable since the mobility of the user is unpredictable. Also,
the user should be able to select between a priorisation level at the time when the
application is started. However, the authors do not define a signalling protocol
between the provider and the user to fulfil this task. In addition, such a signalling
protocol could be used to negotiate the necessary parameters prior to a handover
and also for directing the handover to a certain access point (for an implementation
of such a signalling protocol, see Chapter 9).

Using the Hierarchical Mobile IPv6 (HMIPv6) architecture [154] the authors
of [62] propose another QoS-aware handover (called QoS-conditionalised han-

26 CHAPTER 1. MOBILE IP

dover). This approach also demands to perform a handover only if enough re-
sources are available at the new access point. However, the authors fail to mention
what happens, if no access point can provide the necessary resources and a han-
dover has to be performed anyway (e.g. due to low signal quality). The signalling
for the QoS-conditionalised handover is combined with the binding update mes-
sages to the HMIPv6 mobility anchor point. The authors assume some kind of
QoS entities that are able to perform the necessary reservations to be distributed
in the network (at least one at each access point and each anchor point). This QoS
architecture, even though it is very important for the handover, is not mentioned
in more detail.

Although the importance of QoS-aware handovers is emphasised in several pub-
lications [114, 115], no implementation is available to the time present. Some
architectural considerations have been made so far [41, 63], but a detailed de-
scription and performance evaluation is still missing.

Chapter 2

Quality of Service

With the increased use of the Internet in many parts of every day’s life, there
has been a large focus on providing network resources to certain applications. A
new field of multimedia applications (like IP telephony or video conferencing) has
different demands on bandwidth, delay and delay fluctuations, and reliability than
traditional Internet applications (like HTTP, FTP or telnet).

In todays networks bandwidth is a big issue. More and more people use the In-
ternet for private and business applications. The amount of data transmitted by
the Internet is increasing exponentially. However, there is only one service type
available for all kinds of applications — the so-called best effort service. IP pack-
ets are forwarded hop by hop without any guarantee about bandwidth, arrival time
or even delivery. All packets have the same priority and packets that cannot be
delivered within a certain amount of time are dropped. There is no possibility to
allocate network resources or to change the priority of certain packets.

While traditional Internet applications can tolerate the lack of service discrimina-
tion, many modern multimedia applications can not. A high-quality full-screen
video transmission in MPEG2 consumes at least 2 MBit/s bandwidth and inter-
active applications, such as IP telephony, require a end-to-end delay of less than
150 ms. In fast Local-Area Networks (LANs), those requirements can usually be
fulfilled. Due to the rapidly increasing transmission capacity of optical fibres this
may soon be the case for wide-area networks (WANs), too. However, supporting
Quality of Service by only providing faster links does not completely solve the
problem: Short-lived congestion may still occur and for wireless access networks
the gain in bandwidth in the near future will not be large enough to supply the
required capacity.

Therefore, certain concepts for allocating network resources are needed to support
those modern Internet applications. The Quality of Service (QoS) an application

27

28 CHAPTER 2. QUALITY OF SERVICE

requires can be specified as a set of parameters (e.g. bandwidth, buffer usage,
priority, dropping probability, ...) of a certain flow. Here we define a flow as
a distinguishable stream of related datagrams from a unique sender to a unique
receiver that results from a single user activity and all datagrams require the same
Quality of Service.

In this chapter we will first discuss the two most important proposals for Quality
of Service delivery at the IP layer: Integrated and Differentiated Services. While
the former has its benefits in an elaborate signalling, it suffers from a big scal-
ability problem in the backbone. This problem is solved by the latter approach.
Unfortunately, DiffServ has no signalling and management framework. This topic
is addressed in Section 2.4. In Section 2.3, we will investigate the possibilities of
how to offer QoS not only at the IP layer, but also at lower layers, such as in
wireless access networks, since the successful QoS support may depend on such
assistance.

2.1 Integrated Services

Integrated Services (IntServ) define extensions to the IP network model to sup-
port real-time transmissions and to guarantee bandwidth for specific flows. For
example, a flow might consist of a video stream between a given host pair. To
establish the video connection in both directions, two flows are needed. For ex-
ample, if each flow requires a minimum of 128 kbit/s and a minimum packet delay
of 100 ms to assure a continuous video display, such a QoS can be reserved for
this connection.

The Integrated Services model was defined by an IETF working group. This Inter-
net architecture model includes the currently used best-effort service and the new
real-time service that provides functions to reserve bandwidth on the Internet.
IntServ was developed to optimise network and resource utilisation for new ap-
plications, as for real-time multimedia, which requires QoS guarantees. Because
of routing delay and congestion losses, real-time applications do not work very
well on the current best-effort Internet. Yet, video conferencing, video broadcast
and audio conferencing software need guaranteed bandwidth to provide video and
audio of acceptable quality.

2.1.1 Components of an Integrated Services Router

To support the integrated services model, a router has to be able to provide an
appropriate QoS for each flow, in accordance with the service model. The router

2.1. INTEGRATED SERVICES 29

function that provides different qualities of service is called traffic control. It
consists of the following components (see Figure 2.1):

Classifier Packet
Scheduler

Admission
control

Policy
cotrol

RSVP
process

Classifier

Appli−
cation RSVP

process

Admission
control

Packet
Scheduler

Policy
cotrol

Host Router

Routing
process

RSVP

data

Figure 2.1: RSVP in Hosts and Routers [21]

Packet scheduler The packet scheduler manages the forwarding of different pack-
et streams in hosts and routers, based on their service class, using queue
management and various scheduling algorithms. The packet scheduler has
to ensure, that the packet delivery corresponds to the QoS parameter for
each flow. A scheduler can also police or shape the traffic to conform to a
certain level of service.

Packet classifier The packet classifier identifies packets of the incoming traffic
that will receive a certain level of service. To realize effective traffic control,
each incoming packet is mapped into a specific class. All packets that are
mapped into the same class get the same level of service from the packet
scheduler. The choice of a class is based on the source and destination IP
address and port number in the existing IP packet header or on an additional
classification number, which has to be added to each packet. A class can
correspond to a broad category of flows.

Admission control The admission control contains the decision algorithm that
a router uses to determine whether there are enough resources available to
accept the requested QoS for a new flow or not. If not enough resources
are available, accepting a new flow would impact earlier granted guarantees
and therefore the new flow has to be rejected. If the new flow is accepted,
the reservation instance in the router assigns the packet classifier and the
packet scheduler to reserve the requested QoS for this flow. Admission

30 CHAPTER 2. QUALITY OF SERVICE

control is then invoked at each router along a reservation path to make a
local accept/reject decision at the time a host requires a real-time service.
The admission control algorithm must be consistent with the service model.

Policy control Admission control is sometimes confused with policy control,
which is a packet-by-packet function, processed by the packet scheduler.
It ensures that a host does not violate its promised traffic characteristics.
Nevertheless, to ensure that QoS guarantees are honoured, the admission
control will be concerned with enforcing administrative policies on resource
reservations. Some policies will be used to check the user authentication for
a requested reservation. Unauthorised reservation requests can be rejected.
As a result, admission control can play an important role in accounting costs
for Internet resources.

2.1.2 The Resource Reservation Protocol (RSVP)

The Resource ReserVation Protocol (RSVP) is the most widely used implementa-
tion of the IntServ approach. In this section we will only give a short explanation
of the RSVP basics. For a more detailed description see [21, 22, 112, 189].

Soft States All parameters that are used to specify Quality of Service are man-
aged flexibly and have only a limited time to live (TTL), which means they are
in Soft State. Therefore no explicit notification of closing a reservation is neces-
sary. All data about the reservation is saved in Soft State. This includes previous
and following RSVP routers, the flow description and the data about reserved re-
sources.

Example of a Reservation Setup To clarify the idea of RSVP we will give an
example (Figure 2.2) of a reservation setup followed by the transmission of data
and finally the clearance of reserved resources.

In this example the following can be shown:

� The Pathmessage is used to determine the route through the network. This
message is sent directly to the receiver. Additionally, it contains specifica-
tions about the flow to be reserved.

� Since the Pathmessage is sent to the receiver directly, it has to be specially
marked so that intermediary routers can intercept the message. This is done
by setting the Router Alert flag that initiates the initialisation of soft states

2.1. INTEGRATED SERVICES 31

Sender Router1 Router2 Receiver

PathTear

ResvTear

Data

Resv

Path

Figure 2.2: Diagram of a Normal RSVP Reservation Setup and Clearance

at each router. In addition, each router updates the information about the
last RSVP router in the Path message. Therefore, after the Path message
has arrived at the receiver, each router on the path knows the RSVP router
preceding itself.

Since the generated soft states have a limited TTL, the Path message has
to be repeated regularly. In order to avoid overloading the network, the in-
terval is usually set to 30 s. To protect the reservation against being cleared
because of a single loss of a Path message, the TTL of the soft states is
thrice the interval of the Path messages. By repeating Path messages it
is also possible to react to routing changes since the forwarding paths of the
Path message and the data are identical.

� Following the Path message the Resv message performs the reservation
of resources in the routers. In contrast to the Path message this message
is sent hop-by-hop to the next RSVP router (each router knows the next
hop because of the preceding Path message). At each RSVP router the
possibility of setting up the reservation is checked. If the reservation is
accepted the Resv message is forwarded, otherwise an error message is
created and sent back to the receiver.

32 CHAPTER 2. QUALITY OF SERVICE

The receiver decides about the amount of resources to be allocated. Usually,
the resources the sender has specified in the Path message are configured.
The Resv message has to be repeated periodically, too.

� As soon as the Resv message has arrived at the sender, the sender can start
the transmission of data over the newly established unidirectional reserva-
tion. If the sender transmits more data than allocated, this data is forwarded
as best-effort.

� After the transmission is finished, there are multiple possibilities to end the
reservation. The most simple one is not to repeat Path or Resv messages
any more. As soon as the soft states are not renewed they are deleted. On
the other hand one can also explicitly delete a reservation by releasing the
resources via a ResvTear message or by deleting the soft states via a
PathTear message.

Aggregation of Reservations A further property of RSVP is the support of mul-
ticast: in Figure 2.3 a router with four interfaces is shown. On the left hand side of
the interfaces are the senders (S1,S2,S3), on the right hand side are the receivers.
If sender S1 now transmits a packet to the receivers R1 and R2 the data is passed
on to two different interfaces by the router. The contrary happens to the reserva-
tions: since the receiver asks for a reservation it also decides on the amount of the
reservation. Both requests from the receivers R1 and R2 arrive at the router. If
both requests would simply be forwarded and one of the senders would not need
as much bandwidth as the other, the resulting reservation would be increased and
decreased regularly. In order to prevent this, multiple reservations at a split point
of a multicast connection are combined so that only one message is forwarded and
the reservation is as large as the biggest reservation received.

Router

S2,S3

S1 R1

R2
R3

(a)

(b)

(c)

(d)

Figure 2.3: Split Point in a RSVP Multicast Connection

In addition, RSVP supports combining reservations from multiple senders to mul-
tiple receivers. Typical application scenarios would be telephone- or video con-
ferences. One possibility would be to set up reservations for each possible sender

2.1. INTEGRATED SERVICES 33

- receiver pair. This would result in a relatively large consumption of resources.
Therefore, RSVP offers the possibility to combine multiple reservations to one.
The end-user decides, how this has to happen. There are three possibilities, shown
in Table 2.1:

Sender Choice Reservation
Separated Shared

Explicit Fixed-Filter (FF) Shared-Explicit (SE)
Wildcard — Wildcard - Filter (WF)

Table 2.1: The 3 Reservation Possibilities

It is apparent that there is — for obvious reasons — no possibility for a separated
reservation with a wildcarded sender choice. An example of how the combination
of reservations is performed is shown in Table 2.2. In this example we assume the
following connections:

� S1 � R1,R2

� S2 � R2,R3

� S3 � R2

OUT Resv IN
(a) SE(S1

�
3U �) (S1,S2)

�
U � SE((S1,S2)

�
U �) (c)

(b) SE((S2,S3)
�
3U �) (S1,S2,S3)

�
3U � SE((S1,S3)

�
3U �) (d)

SE(S2
�
2U �)

Table 2.2: Combination with Shared Explicit

We observe that at interface (d) the different senders are combined and the biggest
reservation request is taken, which means for the data from senders S1, S2, S3,
three units are reserved. Problems can arise, if all senders are transmitting at full
bandwidth at the same time. Therefore, sharing reservations is only useful if not
all senders are sending at the same time. This implies that WF and SE should only
be used for audio transmission, for video transmission FF has to be used.

2.1.3 RSVP and Mobile IP Interworking

Interoperation between RSVP and Mobile IP is investigated in [57]. The main
problem occurs, when Mobile IP operates over optimised routes: The address

34 CHAPTER 2. QUALITY OF SERVICE

translation in the binding cache creates a mismatch between the flow ID of the
packets sent from the correspondent host to the mobile host and the flow ID sig-
nalled by RSVP. The authors discuss two solutions: Modifying RSVP at both,
mobile and correspondent hosts, allows RSVP flows to be established. However,
the authors recommend to add optional objects to RSVP messages to make han-
dovers smooth and seamless. The same goal can be achieved with the second
solution, using fixed flow IDs.

Mobile RSVP (MRSVP) has earlier been proposed in [166] as an extension to
conventional RSVP. The idea was to provide QoS guarantees to mobile hosts in-
dependently of their movement throughout the access network. MRSVP suggests
to make the required resource reservations in all the locations expected to be vis-
ited by the mobile host (mobility specification). MRSVP supports two service
classes. The first one, called Mobility Independent, provides the agreed service
in every location visited by the mobile host. The second, called Mobility Depen-
dent, provides a high probability, but no guarantee, to receive the agreed service
in the locations the mobile host may visit. MRSVP supports two different reser-
vation styles. The mobile host makes active reservations from its present location
towards all the correspondent hosts it is communicating with. It also triggers the
establishment of passive reservations from all the locations it may visit. Such
reservations are made by proxy agents (remote), operating on the behalf of the
mobile host which is not present at their subnetwork. As passive reservations
are not used by the mobile host (data is not flowing through them), they may be
used temporarily by other connections of the Mobility Dependent class. When the
mobile host roams, passive reservations are switched to active and vice versa.

[168] describes an approach for providing RSVP protocol services over IP tunnels.
Currently, RSVP signalling over tunnels is not possible. RSVP packets entering
the tunnel are encapsulated with an outer IP header that has a new protocol number
and do not carry the Router-Alert option, making them virtually ”invisible” to
RSVP routers between the two tunnel endpoints. The proposed solution is to
recursively apply RSVP over the tunnel portion of the path. In this new session,
the tunnel entry point sends PATH messages and the tunnel exit point sends RESV
messages to reserve resources for the end-to-end sessions over the tunnel.

Conclusion Some feasible solutions for the interoperation of Mobile IP and
RSVP seem to be available, however, the basic drawback of RSVP — the scalabil-
ity — remains. Therefore, new solutions have to be found that provide scalability
in the backbone and cooperate with Mobile IP.

2.2. DIFFERENTIATED SERVICES 35

2.2 Differentiated Services

Differentiated Service (DiffServ) is a well known way to support Quality of Ser-
vice in the Internet. It is — unlike Integrated Services — based on the aggregation
of flows by applying rules at the edges of a DiffServ domain. An aggregate is
marked with a specific DiffServ Codepoint (cf. Section 2.2.1), which is coupled
to a certain forwarding path treatment in the domain. By restricting the service
differentiation at each hop to the few possibilities the codepoint offers, we do not
need multi-field classification at each hop any more. This is the reason why Diff-
Serv does not suffer from the scalability problem of IntServ and RSVP, since a
core router has no detailed information about how to handle each single flow but
only the information about the traffic conditioning of a very limited set of aggre-
gates.

Reservations are made for any aggregation of flows (e.g. for all flows between two
subnets). These reservations are rather static since no dynamic reservations for a
single connection are possible for scaling reasons.

2.2.1 Differentiated Services Codepoints

IP packets are marked with different priorities, either in an end system or in a
router. According to the different priority classes, the DiffServ routers reserve
corresponding shares of resources (i.e. bandwidth and buffer space). Marking the
packets is done by writing a DiffServ Codepoint (DSCP) into the Type of Service
- byte (ToS byte) of the IP header (see figure 2.4).

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

DSCP Currently
unused

Figure 2.4: DiffServ Codepoint in the IP Header [124]

36 CHAPTER 2. QUALITY OF SERVICE

Currently the first six bits of the ToS byte are used for the DSCP. All router im-
plementations should support the recommended DSCP-to-PHB mapping. A PHB
(Per Hop Behaviour, cf. Section 2.2.3) is a forwarding behaviour which a router
performs on a packet. In DiffServ such a forwarding behaviour is built of a com-
bination of several components. These components are discussed in section 2.2.5.
A chain of routers supporting the same PHB will provide an end-to-end Quality
of Service.

2.2.2 Service Level Agreements

In the initial version of the DiffServ Architecture [16] a Service Level Agreement
(SLA) describes a contract that specifies the services for a customer. Such a SLA
may include a Traffic Conditioning Agreement (TCA) which in turn is an agree-
ment specifying a set of rules of how to configure the forwarding elements of a
router, for example shapers or queues. Later, people more and more believed, that
an agreement also includes terms of pricing and other business contracts, as well
as other completely technical specifications that are not addressed by the DiffServ
Architecture (e.g. service availability). Therefore a new terminology has been
introduced to restrict their meaning only to elements addressed by DiffServ (cf.
[66]):

� A Service Level Specification (SLS) is a set of parameters and their values
which together define the service offered to a traffic stream by a DiffServ
domain.

� A Traffic Conditioning Specification (TCS) is a set of parameters and their
values which together specify a set of classifier rules and a traffic profile. A
TCS is an integral element of a SLS.

2.2.3 Per Hop Behaviour (PHB)

Several services and their corresponding codepoints have been defined in the In-
ternet community. Nowadays, DiffServ is mainly based on the two traffic classes
defined in [74] and [78]. We will now give a short overview of those two classes.

Expedited Forwarding / Premium Service

Premium Service refers to the traffic handling commonly known as expedited for-
warding which is defined in [78]. This service shall provide low delay, low loss

2.2. DIFFERENTIATED SERVICES 37

AF Classes

Clas
s 1

Clas
s 2

Clas
s 3

Clas
s 4

low 001010 010010 011010 100010
medium 001100 010100 011100 100100

high 001110 010110 011110 100110

D
ro

pp
in

g
Pr

ec
ed

en
ce

s

Table 2.3: Assured Forwarding Codepoints

and low jitter at a fixed rate. It will appear to the endpoints like a “virtual leased
line”. To fulfil those requirements, traffic marked for expedited forwarding has
to meet very short queues. Therefore it has to be ensured that there is not more
EF-traffic arriving at a router than the router settings allow to be transported. The
departure rate at each hop should be independent of the intensity of any other
traffic arriving at the router. DiffServ routers will for example give premium ser-
vice packets priority over other traffic but in this case strictly police any traffic
exceeding the negotiated limit to prevent premium service to starve any other traf-
fic. Another very important topic is that reordering of EF packets must not appear.
The recommended codepoint for the EF PHB is 101110.

Assured Service

Assured Forwarding defines a service which assures a high probability to forward
the traffic through the network as long as the bandwidth does not exceed the ne-
gotiated limit. However, any traffic exceeding the profile will be forwarded too,
but with higher probability to be dropped in case of congestion. It is also very
important, that reordering of packets of the same microflow is strictly forbidden
again.

There are four different assured service classes defined, each allocating a specific
share of resources (i.e. bandwidth and buffer space) and thus having a different
level of forwarding assurance. Within these classes packets can be marked with
three possible drop precedence values. In case of congestion the in-profile traffic
will be protected by preferably dropping packets with higher drop precedence.
An overview of the codepoint values for the assured forwarding classes is given
in table 2.3.

38 CHAPTER 2. QUALITY OF SERVICE

2.2.4 Per Domain Behaviour (PDB)

Scalable end-to-end QoS provisioning requires a definition of the behaviour of
packets when they are grouped together with other packets as they traverse the
Internet. The handling of packets within such an aggregation will be based on their
DSCP only. A Per-Domain Behaviour (PDB) is defined in [125] as the expected
treatment that an identifiable or target group of packets will receive from “edge
to edge” of a DiffServ domain. A particular PHB (or, if applicable, list of PHBs)
and traffic conditioning requirements are associated with each PDB.

Today, there exist two preliminary proposals for per domain behaviours: the vir-
tual wire PDB and the assured rate PDB. The two definitions are closely related
to the two existing PHB standards.

Virtual Wire PDB The expedited forwarding PHB [78] described above is in-
tended for use in building a scalable, low loss, low latency, low jitter, assured
bandwidth, end-to-end service that appears to the endpoints like a unshared, point-
to-point connection or ‘virtual wire.’ The virtual wire PDB [79] provides the spec-
ifications necessary on that aggregated traffic in order to meet these requirements.

Creating a virtual Wire PDB has two parts:

1. Configuring individual nodes so that the aggregate has a well-defined mini-
mum departure rate

2. Conditioning the entire DS domain’s aggregate (via policing and shaping)
so that its arrival rate at any node is always less than that node’s configured
minimum departure rate.

The first part is covered by the EF PHB. The second part is covered by [79], that
describes how one configures the EF PHBs in the collection of nodes that make
up a DS domain and the domain’s boundary traffic conditioners (see [16]).

Assured Rate PDB This PDB [148] ensures that traffic conforming to a com-
mitted information rate (CIR) will incur low drop probability. The aggregate will
have the opportunity of obtaining excess bandwidth beyond the CIR but there is
no assurance. In addition to the CIR, the edge rules may also include other traffic
parameters such as the peak information rate (PIR) to place additional constraints
for packets to which the assurance applies or to further differentiate packets which
exceed the CIR.

The possibility of obtaining excess bandwidth allows development of various
novel SLA models. For example, excess bandwidth is charged at a higher rate

2.2. DIFFERENTIATED SERVICES 39

than assured bandwidth; excess bandwidth is cheaper than assured bandwidth;
excess bandwidth is charged proportionally etc.

Applicability of the PDB to a particular application or traffic type is not restricted.
However, it is also possible to use this PDB to create a service for an aggre-
gate consisting only of TCP microflows or non-responsive UDP microflows. The
provider may wish to create a TCP-only service for a variety of reasons such
as traffic isolation, better treatment of individual short microflows within an ag-
gregate, greater fairness among TCP and UDP microflows access to the excess
bandwidth allowed for the aggregate.

2.2.5 DiffServ Components

Each implementation of a DiffServ router consists of a combination of different
components (see Figure 2.5, [16]), which interact in a certain way to ensure the
proper forwarding of traffic according to the requirements of the individual PHB.
Not all components are required in each DiffServ node, this depends on the router
and on the service type. Those components provide different traffic condition-
ing functions that range from simple marking to complex shaping and policing
actions.

Packets
Marker

Meter

Shaper/
DropperClassifier

Figure 2.5: Combination of DiffServ Components in a Router [16]

Classifier A classifier matches packets according to its profile and forwards them
to the corresponding component for further processing. There are two types
of classifiers:

� Multi-Field Classifier: A multi-field (MF) classifier matches on a
combination of IP header fields (addresses, protocol ID, ToS byte) or
even port numbers.

40 CHAPTER 2. QUALITY OF SERVICE

� Behaviour Aggregate Classifier: Contrary to the MF classifier the
behaviour aggregate (BA) classifier only classifies on the DSCP of the
packets.

Marker Markers set the DSCP of IP packets. By setting the codepoint of pack-
ets, they are added to a traffic aggregate which provides important infor-
mation for BA classifiers. Marking can be done statically (i.e. all packets
are marked the same way) or depending on the state of some meter. This
functionality is normally used in ingress routers for tagging the traffic flow
of a single host or for re-tagging whole traffic aggregates coming from a
connected DiffServ domain.

Meter Meters measure the amount of traffic that passes by. They are located
in the forwarding chain of almost all traffic aggregates as they provide the
basic information for many DiffServ components, like markers, shapers and
policers.

Shaper Shapers delay some packets on their transmission path in order to bring
the traffic flow into compliance with some Traffic Conditioning Specifica-
tion (TCS). Those packets are stored in some queue and discarded if not
enough buffer space is available. A properly configured shaper therefore
provides some burst protection while not dropping the packets of the bursty
traffic source. The usual location of a shaper is behind a classifier at the
ingress router.

Policer Unlike the shaper a policer does not store any packets but simply drop
any packets that do not meet the traffic conditioning specification. A policer
can be implemented as a shaper with little or no buffer space. Policers are
normally used in interior- and egress routers as they rely on the traffic being
correctly shaped.

A higher-level view of a DiffServ router is presented in Figure 2.6 [12]. We can
identify several functional blocks:

Datapath An ingress interface, routing core, and egress interface are illustrated
at the centre of the diagram. The routing core moves packets between inter-
faces according to policies outside the scope of DiffServ. The components
of interest at the ingress to and egress from interfaces are the functional
datapath elements (e.g. Classifiers, Queueing elements) that support Diff-
Serv traffic conditioning and per-hop behaviours. These are the fundamen-
tal components comprising a DiffServ router.

2.2. DIFFERENTIATED SERVICES 41

Configuration and Management Interface DiffServ operating parameters are
monitored and provisioned through this interface. Monitored parameters
include statistics regarding traffic carried at various DiffServ service levels.
These statistics may be important for accounting purposes and/or for track-
ing compliance to Traffic Conditioning Specifications (TCSs) negotiated
with customers. Provisioned parameters are primarily the TCS parameters
for Classifiers and Meters and the associated PHB configuration parameters
for Actions and Queueing elements. The network administrator interacts
with the DiffServ configuration and management interface via one or more
management protocols, such as SNMP or COPS, or through other router
configuration tools such as serial terminal or telnet consoles.

Optional QoS Agent Module DiffServ routers may snoop or participate in either
per-microflow or per-flow-aggregate signalling of QoS requirements [13]
(e.g. using the RSVP protocol). Snooping of RSVP messages may be used,
for example, to learn how to classify traffic without actually participating
as a RSVP protocol peer. DiffServ routers may reject or admit RSVP reser-
vation requests to provide a means of admission control to DiffServ-based
services or they may use these requests to trigger provisioning changes for
a flow-aggregation in the DiffServ network. A flow-aggregation in this con-
text might be equivalent to a DiffServ BA or it may be more fine-grained,
relying on a multi-field (MF) classifier. Note that the conceptual model
of such a router implements the Integrated Services Model as described in
[INTSERV], applying the control plane controls to the data classified and
conditioned in the data plane, as described in [13].

DiffServ configuration
and management

interface

QoS agent (optional)
(e.g. RSVP)

core

routing classify, meter
action, queuing

egress i/fingress i/f
classify, meter
action, queuing

Management

SNMP,
COPS,
etc

QoS control

Data in Data out

Figure 2.6: DiffServ Router Major Functional Blocks [12]

42 CHAPTER 2. QUALITY OF SERVICE

2.2.6 DiffServ Router Types

A simple DiffServ Network with 2 ISPs is shown in figure 2.7. It shows the four
DiffServ Router types, that form the two DiffServ domains and connect the two
hosts and provide an end-to-end Quality of Service. This router specifications are
valid only for traffic from domain A to domain B. For traffic flowing in the oppo-
site direction the boundary routers (ingress and egress routers) change their types.
Note, that a router may also act in two ways, for example as interior router for one
traffic flow while being ingress router for another. This can be seen in figure 2.7
for the router adjacent to Host B. The next sections describe the requirements of
these four router types which follow the DiffServ architecture [16].

First Hop Router

A first hop router normally is responsible for marking incoming packets according
to its profile. This profile allows to define a DiffServ Code Point (DSCP) for each
flow specified by the six-tuple (source address / netmask, source port, destination
address / netmask, destination port, protocol, DSCP). For small networks this
functionality can be easily included in an ingress router.

Ingress Router

The configuration of the ingress router is the most complex one because at the
ingress point each flow has to be handled separately and therefore not all proper-
ties of flow aggregation are available. The ingress router has to ensure, that the
traffic entering the DiffServ domain conforms to any traffic conditioning speci-
fication (TCS) between it and the connected domain. Therefore, it will have to
perform some traffic conditioning functions like shaping or dropping.

Interior Router

Routers not located at the border of a DiffServ domain can be very simple, as the
most complex functions of classification and traffic conditioning are performed
at the ingress and egress points of the network. However an interior node may
perform some limited traffic conditioning like codepoint-remarking or policing to
ensure the proper forwarding behaviour of the traffic classes. Normally the interior
router should not have to perform any policing actions, therefore it is useful to
trace those actions to detect serious misconfigurations at the border routers.

2.2.
D

IFFE
R

E
N

T
IA

T
E

D
SE

R
V

IC
E

S
43

Egress Router

Host C

Host D

Ingress Router

Interior Router

Ingress Router

First Hop Router

Egress Router Ingress Router

Interior Router

Egress Router

Domain B

Host F

Host E
Host BDomain A

Host A

� �� �� �� �� �
� �� �� �� �� �

� �� �� �� �
� �� �� �� �

� �� �� �� �� �
� �� �� �� �� �

� �� �� �� �
� �� �� �� �

� �� �� �� �� �
	 		 		 		 	

� �� �� �� �

Figure 2.7: A simple DiffServ Network

44 CHAPTER 2. QUALITY OF SERVICE

Egress Router

An egress router can perform traffic conditioning functions on traffic leaving the
DiffServ domain depending on the TCS between it and the connected domain.
This functions normally will not depend on multifield classification but act on
a behaviour aggregate. Therefore the configuration of the egress router is less
complex than the configuration of the ingress router.

2.2.7 Performance Evaluation of Differentiated Services

Differentiated Services have been implemented for several platforms and multiple
evaluations have been published. In addition to our own implementation, that we
present in Chapter 4 and evaluate in Chapter 5, we want to present some other
evaluations in this section.

An own implementation of Differentiated services has been evaluated in [9]. This
DiffServ implementation offers three levels of QoS, and the available bandwidth
is shared between those levels in a ratio of 1:2:4. The implementation has been
performed on SUN Sparc Ultra 5 workstations. For the tests, two workstations
have been connected with a 10 MBit/s Ethernet (effective throughput: 7 MBit/s).
During the experiments the authors created 3 traffic streams (TCP and UDP) with
a larger total bandwidth than the link was able to handle (8 –10 MBit/s). The
authors were able to show, that the relative bandwidth of the three flows could be
preserved. In further experiments they were able to show this for several flows in
the same DiffServ class. If one traffic stream dynamically changed its SLS from
level 1 to level 2, the relative share of the classes has been preserved, however the
bandwidth of each single traffic stream in such a scenario can change dramatically.

In [145] the authors describe the behaviour of a DiffServ network consisting of
Cisco 7200 routers. Several traffic generators with different transport protocols
(UDP/TCP), burstiness, and application-like behaviour have been used. The au-
thors evaluated two services: Premium and Olympic Service. Those two services
are built on the EF and the AF PHB (cf. Section 2.2.3). The experiments showed
a good delay of about 1 ms for both services in a not congested scenario. If the
classes of Olympic Service are congested, the delay increases to 7 –22 ms, de-
pending on the service class. In Premium Service congestion has no effect on
the delay. Bandwidth measurements were only performed for TCP in the Bronze
class (the lowest class) of Olympic Service. The results show that the configured
amount of bandwidth is provided to the TCP stream regardless of bursts. This
holds for different queue lengths.

2.3. QOS-ENABLED IEEE 802.11 WIRELESS ACCESS NETWORKS 45

Conclusion The authors of [9] have presented an own, class-based DiffServ
implementation. They were able to show, that their implementation preserves a
relative share of the bandwidth for each class in several scenarios. However, the
bandwidth of each single traffic flow depends on the presence of other flows in its
service class. Therefore, we believe, that this implementation is not well suited
for modern multi-media applications, that rely on a constant delivery of QoS.

The second evaluation [145] has shown results for the DiffServ implementation of
Cisco routers. Similarly to [9], the authors measured DiffServ behaviour in case
of congestion within a traffic class. This is an improbable scenario, since proper
traffic conditioning at the ingress of a domain should prevent this case. The delay
results in the case of no congestion show the same behaviour as our performance
tests: there is almost no difference between EF and AF behaviour in a properly
provisioned network.

2.3 QoS-enabled IEEE 802.11 Wireless Access Net-
works

The IEEE 802.11 standard for wireless LANs is the most widely used method
for WLAN communication today. Two services exist in this standard: the dis-
tributed Coordination Function (DCF) that supports delay-insensitive data (like
FTP, e-mail) and the Point Coordination Function (PCF) which is optional and
supports delay sensitive transmissions. The former function supports equal shar-
ing of the channel between several hosts via CSMA/CA: a station with a packet
ready for transmission waits a certain interval and only transmits the packet if
the channel was idle throughout this interval. The latter function is a centralised
polling-based approach that avoids contention by polling the mobile nodes indi-
vidually for transmission. Naturally, this function offers very good possibilities to
introduce service differentiation in wireless LANs: [106] studies the PCF among
three other priorisation schemes: Distributed Fair Scheduling (DFS) [178], which
uses the backoff mechanism of IEEE 802.11 to determine which station should
send next. Each station has a backoff interval length according to its priority, so
differentiation is granted while fairness is achieved by making the interval propor-
tional to the packet size. Blackburst [153] has been designed with the main goal
of minimising delay for real-time traffic. This scheme requires a high-priority sta-
tion to access the channel at fixed time intervals. Furthermore a station may jam
(“blackburst”) the channel for a certain period of time if the medium was found
busy. This ensures the channel being free for transmission after the burst. Finally,
Enhanced DCF is included in the study, too. This access mechanism is part of the
IEEE 802.11e standard.

46 CHAPTER 2. QUALITY OF SERVICE

The authors performed some ns-2 simulations in which they show, that Blackburst
gives best performance to high-priority traffic but starves low priority traffic at
high loads. EDCF is shown to perform better than PCF but also suffers from the
starvation of low-priority traffic at high loads. Finally, DFS ensures better service
to high priority traffic and still provides low priority traffic a fair share of the
resources.

A new wireless data transfer protocol is introduced in [150]. Two new entities
— the Mobile Network Adaption Terminal and the Mobile Network Adaption
Master — are proposed. They ensure reliable data transfer, handover support and
flow control. Unfortunately, no evaluation of the protocol is included that would
allow a detailed interpretation of the benefits of the new protocol.

Another approach is presented in [1, 2]: The authors evaluate differentiation
schemes based on different parameters of the IEEE 802.11 standard: the DCF
Inter Frame Space (DIFS), Backoff Time, Maximum Frame Length, and Con-
tention Window Size. Assigning different values of those parameters to wireless
terminals provides service differentiation at the MAC layer using DCF only. This
approach has the advantage of being applicable to ad-hoc networks too, since no
centralised control is needed. In [1] the authors present some ns-2 simulations that
show how TCP and UDP flows react to those priorisation schemes. The results
show minor stability of the Backoff Time scheme and performance degradation in
noisy environments for the Backoff Time and Maximum Frame Length scheme.
Concluding, the authors propose DIFS differentiation.

The work presented in [105] follows a different approach: The authors propose to
use two different service classes called instantaneous allocation and stable alloca-
tion. Instantaneous allocation provides better throughput while stable allocation
provides better allocation stability. The cheaper instantaneous allocation class is
intended to be used for short-lived connections. On the other hand an application
can use the more expensive stable allocation class, if it is willing to trade lower
bandwidth for better allocation stability. The authors present an implementation
of those two service classes based on a Linux PC serving as an access point and the
Linux tc (traffic control) function to restrict the bandwidth. A pricing scheme is
presented and evaluated that — under certain assumptions — leads to cooperative
user behaviour.

Conclusion The discussion presented here mainly focuses on per-terminal dif-
ferentiation: a wireless terminal gets a certain priority assigned via a specific
scheme. However, a wireless terminal may not be willing to send all its traffic
with a higher priority (e.g. because of financial reasons). In [2] the authors ap-
ply differentiation schemes discussed earlier (cf. [1]) to per-flow differentiation.

2.4. SIGNALLING PROTOCOL FOR DIFFERENTIATED SERVICES 47

Unfortunately, while UDP flows show a rather good differentiation, TCP flows
perform badly because of the priority of the TCP-ACKs being constantly the pri-
ority of the base station.

2.4 Signalling Protocol for Differentiated Services

A survey of the main Internet Quality of Service protocols can be found in [149].
This paper defines several classification criteria, like scalability, complexity, and
adaptability. The existing protocols are classified as follows:

RSVP The Resource ReserVation Protocol (cf. Section 2.1.2) has two major prob-
lems: complexity and scalability. In a backbone the bandwidth consumed
by periodical refresh messages and the storage space needed to support a
large number of flows is too large.

YESSIR YESSIR (YEt another Sender Session Internet Reservations) [130] gen-
erates reservation requests by senders to reduce the processing overhead,
builds on top of RTCP, uses soft state to maintain reservation states, supports
shared reservation and associated flow merging and is backward compatible
with the IETF Integrated Services models.

Beagle Beagle [38] provides a way for applications to optimise resource alloca-
tion by expressing a wide range of policies to share resources amongst its
flows. It allows applications to allocate computational and storage resources
in the network.

COPS COPS is an out-of band protocol that is very useful for dynamic QoS
environments. The drawback of COPS is its increasing complexity for large
networks: More devices involve more PEPs (Policy Enforcement Point).
Also, the complexity of the PIB (Policy Information Base) at each PDP
(Policy Decision Point) is increasing.

The protocols discussed in this short summary unfortunately do not take into ac-
count the special needs of mobile users: the frequent changes of reservations that
result from the handovers can get a bottleneck in the protocol even if only a small
portion of the whole path is changed. Any protocol suitable for mobile users
should support handovers with as little overhead of network signalling and recon-
figuration as possible.

The main requirements of a protocol for mobile users are listed in [170]:

48 CHAPTER 2. QUALITY OF SERVICE

� Minimum changes to static nodes. A QoS protocol for mobile nodes must
leave static nodes unchanged as far as possible.

� Support for soft QoS guarantees. In a highly dynamic mobile network QoS
guarantees may not be easy to fulfil (e.g. due to external interference). Ap-
plications should be able to adapt to changing network conditions over the
wireless link.

� Minimum disruption of service. If one tried to re-establish the full path
of the reservation each time the mobile node changes the access network,
reservations would have to compete (and possibly fail) for resources. This
situation would create excessive disruptions of service and large latency.

The authors also demand a RSVP-like protocol since they want to develop a sig-
nalling protocol for an IntServ network. Their protocol works by combining pre-
established RSVP tunnels with Mobile IP. RSVP messages are encapsulated in a
tunnel connecting home and foreign agents. One big drawback of this protocol is,
that it requires modifications in Mobile IP and RSVP to support resource reserva-
tions from mobile nodes. We believe that the development of a signalling protocol
that handles mobile users without any changes in existing standard technology is
possible. Such a protocol is described in Part IV

A most detailed list of requirements for QoS signalling protocols can be found in
[55]. This Internet draft lists over 50 requirements, grouped into 11 categories.
Unfortunately, in this document the requirements for mobile users are addressed
very shortly: The only requirement is a quick re-establishment of the reservation
after a handover. The authors also propose not to perform end-to-end signalling
in such a case. Those requirements are fulfilled by our protocol.

2.4.1 Cross Application Signalling Protocol (CASP)

The Cross-Application Signalling Protocol (CASP) [147] is a general-purpose
protocol for managing states in routers and other on-path network devices. It
can be used for QoS signalling, middlebox control, topology discovery, measure-
ment data collection, active network instantiation, and any other application where
states needs to be established along a data path. CASP consists of a set of build-
ing blocks that can be used to construct protocol behaviour suited for a particular
application.

It provides a generic signalling service by establishing state along the data path
from a sender to one receiver for unicast data, or to multiple receivers for multicast
data. CASP sessions can be initiated by the sender or by the receiver.

2.4. SIGNALLING PROTOCOL FOR DIFFERENTIATED SERVICES 49

The following properties of the protocol are citations from [147]. Many other
properties are listed in the specification, here we restrict to some of the most im-
portant:

� CASP is a layered protocol with two layers, the client and messaging layer.
Each can be changed without affecting the other component.

� CASP uses the services of a reliable transport protocol that provides se-
quenced, reliable, flow- and congestion- controlled message transport be-
tween two CASP nodes.

� CASP provides a generic soft-state mechanism that can be used by all client
protocols. Soft state is only used for logical state, not to deal with packet
loss. To maintain soft state, requests are simply resent periodically by each
node.

� CASP interfaces with route change detection mechanisms; IP mobility is
also treated as a route change case.

2.4.2 Context Transfer Protocols

The topic of context transfer is discussed in detail in the IETF SeaMoby Working
Group. This group investigates possibilities to develop seamless handovers which
means handovers with both, low latency and minimal packet loss. In this case,
a context is understood as information about services in the old network, such
as AAA, header compression, and QoS. In order to obtain those services on a
new network the host explicitly has to re-establish the services by performing the
needed signalling messages from scratch [53]. This obviously will slow down the
handover process. An alternative is to transfer the context information to the new
network by using the context transfer protocol.

Such a context transfer protocol (CTP) is presented in [96]. This protocol de-
fines several messages (context transfer initiate, context transfer request, context
transfer reply, etc.) that can be used to perform the context transfer. Those mes-
sages can be used by trusted entities, such as the mobile node itself or a network
server overseeing the mobile hosts handover. The protocol fulfils the requirements
specified in [64], such as Layer 2 interoperability, flexibility (i.e. independence of
content type), security and speed, to name just a few.

50 CHAPTER 2. QUALITY OF SERVICE

2.4.3 Conclusion

Although there are many existing QoS signalling protocols, most of them do not
take into account the special needs of mobile users. The impact of frequent but
small changes of the forwarding path, as it is common in handovers, is not investi-
gated in detail. Most performance evaluations are done in a simulated network of
a very limited size only. In Chapters 7 and 8 we will present a signalling protocol
for cable-connected and for mobile users that allows fast changes in the forward-
ing path, especially in case of handovers.

The context transfer protocol is related to the possibility of our protocol to sup-
port SLS transfers from the old to the new access network (cf. Section 8.2.2). In
our actual implementation we focus on transferring QoS information coded in a
Service Level Description. This is called a QoS Profile Type (QPT) in [96]. If a
extension to additional Context Profile Types, such as Header Compression Pro-
file Types (HPT) is required, our architecture will support this by upgrading the
Service Level Description Class with the necessary information. This can be done
easily via derivation (cf. Section 6.1).

The CASP protocol is a very new protocol which takes many requirements of a
general-purpose signalling protocol into account, such as mobility service discov-
ery and multicast. However, due to its large functionality it uses a large signalling
message format and a complicated architecture. It would be useful to estimate the
benefits of this new protocol in a implementation and evaluation.

Chapter 3

Network Management

Network management is a topic that covers a broad range of possible application
scenarios. At a very low level, it is sufficient to monitor the network performance
with a protocol analyser, but in large networks, management involves distributed
databases, automatic polling of network interfaces, and high-speed workstations
to perform the necessary computations and to visualise the network topology and
performance. The Internet Architecture Board (IAB) issued a RFC [37] detailing
its recommendation, which adopted two different approaches:

� Simple Network Management Protocol (SNMP)

� ISO Common Management Information Services / Common Management
Information Protocol (CMIS / CMIP)

SNMP became most popular and is therefore now industry-wide standard for re-
porting management data for an IP based network.

3.1 Network Management Architecture

Most network management architectures are based on a similar structure and on
similar relationships between the components. Network elements, such as routers,
switches or hosts, run software that enables them to alert a central management
station when they recognise problems. Receiving these alerts the management
station executes a certain procedure, for example logging, operator notification,
automatic repair, shutdown, etc.

Management stations can by themselves poll the network elements to gather data
for monitoring, statistics etc.

51

52 CHAPTER 3. NETWORK MANAGEMENT

Agent Agent Agent

Management
Database

Management
Database

Management
Database

Network Management System (NMS)

Management
Entity

Network

Network
Management

Protocol

Figure 3.1: A Typical Network Management Architecture [76]

3.2 ISO Network Management Model

The network management model of the ISO is the primary means for understand-
ing the major functions of network management systems. It consists of five con-
ceptual areas, as discussed in the next sections [76]:

3.2.1 Performance Management

The goal of performance management is to measure and provide various aspects
of network performance, in a way that an acceptable level of internetwork perfor-
mance can be achieved. Examples of performance variables might be the network
throughput, user response time, and utilisation.

Performance management can be divided into three steps: first performance data is
gathered from the network. Second, this data is analysed to determine the normal
state of the network. Finally, appropriate thresholds are defined for each variable
in a way that exceeding this threshold indicates a serious problem. The functions
of performance management include:

� Monitor performance indicators

� Activate controls to fine-tune network performance

� Generate reports and trend analysis

3.2. ISO NETWORK MANAGEMENT MODEL 53

3.2.2 Configuration Management

The goal of configuration management (CM) is to monitor network configuration
information. CM functions identify, control, and collect data for and provide data
to networks for status accounting and auditing. Those tasks are closely related to
both fault management and performance management for long-term planning of
the network’s topology, information processing systems configuration and inven-
tory. CM functions may include:

� Initialise and terminate system operations

� Establish network connections

� Maintain real-time configuration status

� Distribute communication element network software

� Generate reports

� System administration

3.2.3 Accounting Management

Accounting management measures network utilisation parameters, so that indi-
vidual users or groups of users can be regulated appropriately. This regulation
minimises network problems (because network resources can be allocated) and
maximises fairness across all users.

Similar to performance management it is important to measure all significant utili-
sation parameters of network resources. An analysis of this results provides usage
patterns that can be used as a basis for usage limitations. Ongoing measurement
of utilisation can produce billing information as well as information to assure fair
and optimal resource utilisation.

The main steps of accounting management are:

� Specifying the usage data to collect

� Establishing and modifying accounting limits

� Collecting and storing usage data

� Controlling access and storage of usage data

� Report generation

54 CHAPTER 3. NETWORK MANAGEMENT

3.2.4 Fault Management

Fault management tries to detect, log and as much as possible automatically fix
network problems. Additionally the users have to be notified of important prob-
lems. Since faults can cause down-time or unacceptable network degradation,
fault management is the perhaps most widely implemented form of network man-
agement.

Fault management involves:

� Prediction, detection and identification of faults

� Diagnostic testing

� Fault verification

� Error and event log review

� Fault correction

3.2.5 Security Management

Security management controls the access to network resources according to local
guidelines. Its goal is to prohibit sabotage (intentionally or unintentionally) and
assure that sensitive information cannot be accessed without appropriate autho-
risation. Security management subsystems part the network into authorised and
unauthorised areas. For some users, access to any network resource is inappro-
priate, mostly because they are extern users. For other (internal) network users
access to information outside a particular department may not be allowed. Ac-
cess to human resources information has to be restricted to the users of the HR
department.

Specific tasks of security management subsystems include:

� Authentication

� Authorisation

� Encryption

� Controlling the protection mechanisms

� Controlling access to resources and security information

3.3. THE IEEE P1520 STANDARDS INITIATIVE 55

3.3 The IEEE P1520 Standards Initiative

The IEEE P1520 proposed standard [15] aims to establish an open architecture
in network control and management. The initiative sees architecture as a levelled
entity with interfaces between different layers, each of them representing a certain
resource type within the whole network architecture. The rationale behind having
interfaces between different layers is to create a distributed programmable concept
that interfaces to network abstractions that in turn allow signalling and service
programming software to be realised in a distributed software environment with
well-known paradigms. The interfaces proposed in the P1520 initiative allow
views of network and switching hardware states to be utilised by independent
and flexible signalling service creation.

In the reference model there are levels, entities in each of the levels and inter-
faces between levels. Above all of the levels there are the applications that are
directly deployed by the end users. The reference model contains four levels,
each of which presents certain kind of abstraction of services provided by the en-
tities and entity instances within levels. The uppermost level is the value-added
services level (VASL). In that level the entities are algorithms that provide end-to-
end added value to the services of lower levels.

The level below the VASL is called network generic services level (NGSL). The
scope of this level contains algorithms that take care of the functioning of the
network, for example configuration and routing algorithms. The virtual network
device level (VNDL) contains entities that are virtual representations of physical
level entities. This means that these representation of entities provide a software
interface to the physical elements that reside in the lowest, physical elements level
(PE).

The interfaces between these layers provide a descending abstraction level. On
top, the communication between the user and the VASL level provides conve-
nient features only, hiding the necessary communication. In the middle, there
are generic functions for accessing the network without explicit knowledge of the
management implementation. The lowest interface is a collection of protocols that
makes it possible to communicate with physical entities.

Our network management architecture presented in Part III follows this reference
model quite closely. The lowest layer elements (the Linux routers) are represented
by a configuration daemon running on the router. This daemon would be a VNDL-
layer element. A bandwidth broker can configure the network by using generic
commands of the QoS management API (cf. Chapter 6). The uppermost layer
consists of the user interface that offers an input menu (cf. Section 7.5) to the user
to specify its service level.

56 CHAPTER 3. NETWORK MANAGEMENT

3.4 Network Management using ScriptMIB

The SNMP Management Framework is presently composed of five major compo-
nents:

� An overall architecture, described in [71].

� Mechanisms for describing and naming objects and events for the purpose
of management (Structure of Management Information (SMI) [117, 118,
119]).

� Message protocols for transferring management information [36, 30, 19].

� Protocol operations for accessing management information [35].

� A set of fundamental applications described in [101] and the view-based
access control mechanism described in [186]

Managed objects are accessed by a virtual information store, referred to as the
Management Information Base or MIB. Objects in the MIB are defined using the
mechanisms defined in the SMI.

In [103] a part of the Management Information Base (MIB) to be used with net-
work management protocols in the Internet is redefined. In particular, a set of
managed objects that allow the delegation of management scripts to distributed
managers is described.

The ScriptMIB module defined in [103] can be used to delegate management func-
tions to distributed managers. Management functions are defined as management
scripts written in a so-called management scripting language. The MIB makes no
assumptions about the language itself and even allows distribution of compiled
native code, if an implementation is able to execute native code under the control
of this MIB.

The ScriptMIB defines a standard interface for the delegation of management
functions based on the Internet management framework. In particular, it provides
the following capabilities:

1. Capabilities to transfer management scripts to a distributed manager.

2. Capabilities to initiate, suspend, resume and terminate management scripts.

3. Capabilities to transfer arguments for management scripts.

4. Capabilities to monitor and control running management scripts.

3.5. BANDWIDTH BROKER ARCHITECTURES 57

5. Capabilities to transfer the results produced by running management scripts.

It does not address any additional topics like the generation of notifications or how
to address remote agents from a ScriptMIB implementation.

The ScriptMIB has been implemented and evaluated in [162]. This evaluation
shows, that most operations can be executed in less than 100 ms. In a highly
dynamic mobile environment with many reconfigurations this might generate a
serious bottleneck.

3.5 Bandwidth Broker Architectures

Several bandwidth brokers [128, 165, 167, 176] have been designed and devel-
oped throughout the last years since having been introduced in [126]. This initial
architecture ever since has been the basis for a large amount of further develop-
ments of management structures for DiffServ networks: most architectures are
quite similar, composed of interfaces and databases with an almost identical func-
tionality. The differences between the individual architectures are quite hidden
in the details. In addition, since then several enhancements have been added to
improve the performance of such a bandwidth broker architecture in different en-
vironments, such as large networks. We now discuss this basic architecture in
detail as our architecture is based on the same principle as well. The following
sections present more elaborate functionality added to this initial architecture to
work around some of its shortcomings.

According to [167] a bandwidth broker is defined as some kind of “oracle” that
receives a resource allocation request (RAR) from one of two sources: either a
request from an element in the domain that the broker controls, or a request from
a peer (adjacent) bandwidth broker. However, [167] does not present an inter-
domain broker protocol. The broker itself consists of three communication in-
terfaces (user/application, intra-domain and inter-domain), of a routing interface
that allows the broker to access routing information, and of a data repository that
contains SLS information, current reservations and allocations, service mapping
information, etc. However, the brokers of [128, 165, 167, 176] omit very impor-
tant functions, like dynamic SLS negotiation. Our architecture does not vary much
from this architecture but we specify the individual components in more detail and
add more functionality. Usually, the access interface to routing information is de-
scribed just very vaguely, while in our architecture there is an exact specification
of how the topology information is retrieved and stored. Additionally, in contrast
to our approach most architectures do not mention how the information in the data
repository is structured or used.

58 CHAPTER 3. NETWORK MANAGEMENT

We have also added a very flexible object oriented interface between the manage-
ment and the configuration layer of the bandwidth broker. This is a completely
new approach and has proven to be very successful in supporting various kinds of
manageable elements (i.e. router hardware from different vendors but also entire
subnetworks). W further add explicit support for mobile users, which cannot be
found in any other architecture or implementation. Since performance is a main
reason for user satisfaction, we have implemented our own signalling protocol for
SLS negotiation. Our performance evaluation shows, that we can offer a very high
speed of flow configuration, a feature that has been completely ignored in other
implementations.

Our bandwidth broker further includes functionality also implemented in other ex-
isting bandwidth broker architectures. This is discussed in the following sections.

3.5.1 Overprovisioning

One critical topic of a centralised approach is the amount of signalling messages
a central bandwidth broker has to process. [46] proposes a simple approach to
decrease the amount of reconfiguration and signalling: after a reservation re-
quest from a user the bandwidth broker usually allocates more than the requested
amount of bandwidth, hoping that subsequent requests can be admitted imme-
diately with no reconfiguration necessary. The authors call this approach path-
oriented quota-based (PoQ) bandwidth allocation. Yet simulation results show
that the call blocking rate of the approach is comparable to the centralised-only
scheme, where each flow is configured individually.

The idea of over-provisioning to reduce the configuration overhead is also pre-
sented in [134]. The authors propose a novel over-provisioning algorithm that
depends on the amount of available resources. Unfortunately neither simulation
nor experimental results about the performance of the algorithm are shown. The
problem of dividing the domain into subnetworks that are under the control of a
single bandwidth broker is not mentioned either.

In our architecture we provide a possibility to allocate more than the requested
amount of bandwidth by setting two overprovisioning parameters. This allows
a network administrator to adjust how much (in percentage and absolute values)
bandwidth may be allocated, although not explicitly reserved. None of the ar-
chitectures mentioned above provide this configurability, the algorithm is fixedly
implemented in the broker’s code without a possibility to adapt the overprovio-
sioning to the actual situation in the network.

3.5. BANDWIDTH BROKER ARCHITECTURES 59

3.5.2 Hierarchical Bandwidth Broker Structures

A hierarchical structure for bandwidth brokers is presented in [134]. The basic
architecture is similar to the one presented in the beginning of this section, and
also to our own architecture: a bandwidth broker (in this context called Resource
Control Point (RCP)) controls a set of Resource Control Agents (RCA), that in
turn are responsible for controlling and configuring routers. Communication be-
tween the single entities and the hosts is performed via a special interface, called
Application Middleware (AMW).

The hierarchy is used to reduce the interactions between the RCAs and the RCP.
Each RCP is responsible for its “children” RCPs. Initially, the available bandwidth
is distributed to the children according to a pre-defined configuration given by the
network administrator. Afterwards, the children RCPs manage this amount on
their own responsibility. If one child runs out of bandwidth it can request more
from its parent RCP.

Another hierarchical bandwidth broker architecture is presented in [193]. This ar-
chitecture is built on a basic central bandwidth broker architecture [46, 192, 191].
This broker consists of several modules, such as admission control, QoS routing
and policy control. The broker maintains a number of management information
bases (MIB) for the purpose of QoS control and management of the network do-
main (e.g. topology information base, policy information base, flow information
base). Two additional MIBs are used to maintain the QoS states of the network:
the Path QoS state information base and the Node QoS information base. The
former contains parameters (i.e. hops, schedulers, propagation delay as well as
dynamic QoS state information about different service classes) about paths be-
tween various ingress and egress routers of the network. These paths can be either
preconfigured or dynamically set up. The latter maintains information regarding
the routers in the network domain. Associated with each router is a set of static
parameters characterising the router and a set of dynamic parameters representing
the router’s current QoS state.

When a new flow arrives at an edge router, requesting a certain amount of band-
width to be reserved to satisfy its QoS requirement, the flow reservation set-up
request is forwarded by the edge router to the bandwidth broker. The bandwidth
broker then applies an admissibility test to determine whether the new flow can
be admitted or not. More in detail, the bandwidth broker examines the path QoS
state (obtained from the corresponding link states) and determines if there is suf-
ficient bandwidth available along the path to accommodate the new flow. If the
flow can be admitted, the bandwidth broker updates the path QoS state database
and link QoS state database (as well as the flow information database) to reflect
the new bandwidth reservation along the path. If the admissibility test fails, the

60 CHAPTER 3. NETWORK MANAGEMENT

new flow reservation set-up request will be rejected, and none of the QoS infor-
mation databases will be updated. In either case, the bandwidth broker will signal
the ingress edge router its decision. For a flow reservation tear-down request, the
bandwidth broker will simply update the corresponding link state database and
path state database (as well as the flow information database) to reflect the depar-
ture of the flow.

The hierarchically distributed multiple bandwidth broker architecture consists of
a central bandwidth broker (cBB) and a number of edge bandwidth brokers (eBB).
The central bandwidth broker maintains the link QoS state database and manages
quota allocation and de-allocation among the edge bandwidth brokers. Each of
the edge bandwidth brokers manages a mutually exclusive subset of the path QoS
states and performs admission control for the corresponding paths. If a flow ar-
rives at an edge router, the flow reservation set-up request is forwarded by the
edge router to the eBB that is in charge of the flow’s path. The eBB will make
admission control based on the path state it maintains such as the currently avail-
able bandwidth allocated to the path. If no sufficient bandwidth is available on
the path, the eBB requests a new quota for the path from the cBB. If the request
is granted, the eBB admits the flow and updates its path QoS state. When a quota
request fails, the eBB will simply reject the flow reservation request instead of
passing it to the cBB.

The topic of separating a network into parts and assigning a bandwidth broker
to each part is also addressed in [134]: First, the RCP should represent a set of
physical links that are topologically related. They can represent the links of a
sub-area or sub-network, for example the network of a university laboratory. If
two or more sub-areas are connected to the same router, a new RCP could be
formed including the two RCPs that represented those sub-areas. Obviously, in a
network that uses a fully meshed (or nearly fully meshed) topology, the concept of
hierarchy can not be applied. Furthermore, it is not allowed for a RCP to include a
link that is already member of another RCP of the same level: The level of a RCP
should be taken into account because the parent RCP will always include links that
are already members of its children RCPs. Also, the routing information could be
an additional input to discuss. The sub-areas of the same level of hierarchy should
not be directly linked. The local traffic for each sub-area should not use links that
are members of another RCP, otherwise this will result in a leak of resources.

The hierarchy of [134] fails to clarify the way of how the bandwidth is allo-
cated and distributed on a per-link level. The authors present an overprovisioning
scheme that is to be applied if a child RCP runs out of bandwidth. Whether this
new bandwidth is available at the congested link only or for the whole subnetwork
is not specified. In our approach (cf. Section 7.8) we solve this problem by invert-
ing the responsibility for the network: each “child” broker has the full knowledge

3.5. BANDWIDTH BROKER ARCHITECTURES 61

and control of all bandwidth and all links of its subnetwork. The “parent” bro-
ker allocates bandwidth from its children which it can allocate to inter-domain
flows. This approach simplifies the network complexity for the “parent” broker
a lot, a topic that is also not mentioned in [134]. The approach of [193] suffers
from a missing investigation of distribution of paths to the edge brokers. In a
large network especially, an edge broker should take advantage of spatial local-
ity in order to decrease configuration delay. Furthermore, it remains vague how
the bandwidth of a bottleneck link which is part of several paths through the net-
work is distributed. The topic of topology changes, that would seriously affect the
integrity of the path database is also not mentioned.

3.5.3 Management of Heterogeneous Networks

The topic of configuring heterogeneous networks is addressed in [128]: The stan-
dard of Differentiated Services specifies externally observable forwarding path be-
haviour (PHBs, cf. Section 2.2.3) only. Each vendor of a DiffServ-capable router
may implement its own mechanism to support the PHB (e.g. either a priority round
robin or a weighted fair queueing scheduler to implement Expedited Forwarding).
The authors of [128] propose an architecture similar the way Java Applets are
executed on heterogeneous clients running different operating systems: an OS-
independent code is running on a virtual machine. The authors introduce a Virtual
Configuration Manager, a program that runs at each edge router and receives a
Virtual Configuration Description, generated in the bandwidth broker and trans-
lated into the router-specific configuration of the forwarding path. The bandwidth
broker is not aware of different implementations on routers.

This approach is the contrary of our architecture which we will present in Part III:
we try to keep the program running on the routers as simple as possible. For
this reason we transfer the differentiation between the various router hardware to
the bandwidth broker. Introducing an API for QoS management (see Chapter 6)
we can translate generic router configurations to hardware-dependent commands,
which just have to be transmitted and executed. With this approach we want to
achieve a higher performance of the bandwidth broker and a smaller configuration
latency: The translation from generic to specific configuration commands will be
implemented in our architecture in a high-performance compiled language (C++)
whereas the translation in [128] is interpreted at the virtual machine running at
the router. Such an interpreter usually executes much slower than a compiled
program. Unfortunately the authors of [128] did not publish any performance
measurements.

62 CHAPTER 3. NETWORK MANAGEMENT

3.5.4 Agent-Based Management

A different approach of management is proposed in [90]: again, the main focus
is on the scalability problem of a centralised management architecture and the
missing support of new technologies and protocols in the SNMP management
protocol. Unlike the previously discussed architectures, this one approaches the
scalability problem by using intelligent agents that are able to perform manage-
ment functions by carrying code and executing tasks on any network node. This
architecture also addresses the heterogeneity problem of configuring a network in
a device-independent language.

This approach is based on prior work concerning VPN management in DiffServ
networks [89, 88, 91, 24]. The use of VPNs essentially simplifies the view of the
topology the broker has. However, no performance studies have been published
to show how many flow requests can be performed by the bandwidth broker. In
[90] this topic is explicitly mentioned as missing.

3.5.5 Conclusion

Most bandwidth broker architectures focus on the main problem of a centralised
bandwidth broker approach: the large amount of reconfigurations that are neces-
sary for a bandwidth broker to perform and the large number of signalling mes-
sages that follow in result. Two solutions have been proposed to this problem:
over-provisioning and hierarchy. However, both solutions suffer from drawbacks:
the former wastes bandwidth by allocating more than the requested amount, the
latter introduces more brokers and more complexity to the scenario. In the publi-
cations cited here, the presented simulation results unfortunately are not extensive
enough to thoroughly evaluate the disadvantages of those proposals. Our band-
width broker architecture will also be centralistic, yet we can show, that the scala-
bility problem is not as severe as it is assumed to be. To minimise the complexity
and signalling overhead of a hierarchical architecture, we will propose a novel hi-
erarchy structure where the root brokers have a very limited scope of duties only
(cf. Section 7.8).

Although a distributed approach using intelligent agents for network management
can solve the memory usage problem of a centralistic architecture, serious doubts
concerning consistency and setup speed remain. On the other hand, the intelli-
gence in [90] can be separated into two domains: service provisioning and han-
dling heterogeneity. Those problems can, however, equally be solved in the cen-
tralistic, object-oriented architecture we propose: The heterogeneity is mapped to
an object tree (see Chapter 6) and an intelligent algorithm for service provision-
ing is implemented into the bandwidth broker. The advantage of the centralistic

3.6. BANDWIDTH BROKER IMPLEMENTATIONS 63

approach is the performance gain of a compiled language (like C++) compared to
an interpreted script-like language. Therefore the overall flow setup speed of our
central bandwidth broker is still very high (cf. Table 7.4), while no performance
evaluation of the agent-based management architecture has yet been published.

3.6 Bandwidth Broker Implementations

An investigation in the Internet shows, that most publications just reference a very
limited number of bandwidth broker implementations. This section will focus on
the differences of the four bandwidth broker implementations most referenced
[77, 169, 92, 135], and discuss some of their characteristics and drawbacks.

3.6.1 BB Implementation of the University of Kansas

The bandwidth broker implementation of the University of Kansas follows the
basic architecture presented in Section 3.5. It consists of a broker database, a
router configuration client, a SLA client and a bandwidth allocation request client.
The broker database provides configuration and DiffServ codepoint for each SLA.

At startup the broker will load a default configuration to the network and then
wait for incoming flow reservation requests. The broker implementation supports
some heterogeneity by supporting two types of routers: a Linux-based DiffServ
router and a commercial Cisco router. Linux routers are contacted directly via a
TCP socket while Cisco routers are configured via an automated telnet session.

For flow specification and handling the broker provides a data structure containing
all information needed (i.e. source, destination, protocol, service level informa-
tion). This information is then sent to the broker via a host daemon. The broker
offers a small set of commands (sla add, sla update, sla delete, sla list) that can
be used for flow management. The host daemon receives the reply from the band-
width broker and manages all flows to set up from this host.

Unfortunately, the tests presented only consist of a very small configuration (one
router, two sources and a sink). Therefore, those tests are rather a functionality
test showing the successful setup of a DiffServ configuration at the router than
a kind of presentation of performance of the broker. Especially the question of
how many flows can be set up per second and how many routers can be managed
simultaneously remains unanswered.

64 CHAPTER 3. NETWORK MANAGEMENT

3.6.2 Implementation of the Two-Tier Architecture by UCLA

Following the two-tier architecture, the bandwidth broker implementation of the
UCLA [169] focuses on inter-domain brokering and bilateral negotiations be-
tween neighbouring domains. The bandwidth management within a single domain
is not studied and covered by the implementation. The broker itself implements
a twofold architecture: a flow database and a COPS server for communication
with a COPS client at the routers to set up configuration parameters. Flows can
be added and deleted to and from the flow database via a web interface.

On the router side, a COPS client exchanges flow information with the bandwidth
broker and a second entity labelled Forwarding Path Driver (FPD) is used to con-
figure the router. Unfortunately, detailed information on the FPD is missing. Also
this paper does not address the problem of heterogeneity. Although experiments
that show the ability of the implementation to set up DiffServ reservations are in-
cluded, results about the speed of the flow setup procedure are missing. Since the
core routers are not managed at all, the maximum topology size should not be a
constraint, but this is not mentioned either.

3.6.3 Implementation of Policy Based Networks by TUT

The implementation of the Tampere University of Technology (TUT) [92] is quite
similar to the implementation of UCLA described in Section 3.6.2. COPS is used
for communication between the bandwidth broker (here called Policy Decision
Point (PDP)) and the routers (Policy Enforcement Point (PEP)). A policy database
is accessed via LDAP. Unfortunately the contents of the policy database are hardly
mentioned. Up to now, no performance test of this implementation is available in
the web.

3.6.4 Implementation of a vendor-independent BB

The implementation of Pop et al. [135] is the only one that directly addresses
the topic of heterogeneity support by offering a vendor-independent interface for
router configuration. Unfortunately the implementation of the independence is
only examined theoretically, mentioning that SNMP or COPS might be used to
configure the routers. This paper is also the only one that presents an implementa-
tion of the difficult problem of backward resource reservation, i.e. a host requests
a flow whose source is not in the same management domain than the host itself.
The authors propose to introduce special ICMP messages that can be intercepted

3.7. AUTHENTICATION, AUTHORISATION, ACCOUNTING 65

by an edge router to trigger the reservation. In Section 7.7.1 we will present a
more detailed analysis of this problem.

3.6.5 Conclusion

Although there are many publications about bandwidth brokers in Differentiated
Services networks, most of them reference a very limited number of implemen-
tations only. In addition, those implementations are often not thoroughly tested,
especially regarding the number of routers an implementation is able to manage
simultaneously. The performance of each implementation in terms of successful
flow configurations per second has not been checked, too.

3.7 Authentication, Authorisation, Accounting

Authentication, Authorisation, and Accounting (AAA) can be defined as follows:

� Authentication is the process of identifying a user. Typically, a user proves
its identity to the system by entering a valid user name and a valid password.

� Authorisation is the process of identifying what a user can do. For example,
after logging in to a system, a user may try to issue commands. Authori-
sation determines whether the user is permitted to issue those commands.
In some systems, authorisation and authentication are merged into a single
process.

� Accounting is the process of measuring the resources a user has consumed.
Typically, accounting measures the amount of system time a user has used,
or the amount of data a user has sent and received.

By providing authentication, authorisation and accounting functions at the entry
point of the network, one can control who can connect to the network and what
they are allowed to do.

Even if we will have much more bandwidth in the future, the control of network
resource utilisation remains essential for the support of applications with special
demands and for the prevention of (malicious or accidental) waste of bandwidth.
Charging provides a possibility to control utilisation and sharing of network re-
sources. One challenge for the configuration of accounting services are hetero-
geneous metering and accounting infrastructures within provider domains. Also,
the usage of different accounting and metering solutions used in different provider

66 CHAPTER 3. NETWORK MANAGEMENT

networks complicates the sharing of configuration parameters (e.g. in mobile sce-
narios). To support mobile users in the Internet, adaptive network architectures
and management of systems depending on monitoring the activity in this sys-
tem are required. While customised user services, dynamic user behaviour, and
user as well as device mobility increase, the importance of access control, au-
thorisation, and security considerations arises significantly. Especially for dial-up
or PPP (Point-to-point Protocol) connections Authentication, Authorisation and
Accounting solutions exist in form of protocols and implementations, which inte-
grate these AAA tasks. These tasks are commonly referred to as AAA systems.
Presently, extensions to theses systems for other access scenarios like roaming or
mobile users and access control extensions to communication protocols like Mo-
bile IP are under discussion in the Internet Engineering Task Force (IETF) and
the Internet Research Task Force (IRTF). Besides these protocol and data type
parts, policies can be used as a mean for describing management goals and for the
general management of networks.

In the following two sections we present some details of the AAA architecture
with a special focus on mobile scenarios. Afterwards some additional research
work on AAA in mobile scenarios and some policy-based approaches are dis-
cussed. A self-developed extension of the AAA architecture for use in mobile
scenarios is presented in Chapter 10

3.7.1 AAA Architecture

Since an AAA framework is especially important for mobile scenarios, we will
start our discussion not with the basic AAA model but present a more advanced
model for distributed services [42]. An AAA infrastructure typically consists of
AAA servers that interact with each other using an AAA protocol. The AAA
servers authenticate users, handle authorisation requests and collect accounting
data. Figure 3.2 shows the distributed AAA model.

A user wants access to a service or to a resource at the foreign domain. A foreign
ISP’s AAA server (AAAF), which authorises a service based on an agreement
with the user home organisation, may not have enough information stored locally
to verify the credentials of the user. However, the AAAF is expected to be con-
figured with enough information to verify the client identity in collaboration with
external authorities (e.g. a AAA server of the home network). This procedure can
determine the nature of the service granted to the user.

A home domain’s AAA server (AAAH) has an agreement with the user and
checks whether the user is allowed to obtain the requested service or resource.
This server might have information required to authorise the user, which might

3.7. AUTHENTICATION, AUTHORISATION, ACCOUNTING 67

 Home Domain

 Foreign Domain

AAAFUser

AAAH

Service Equipment

Figure 3.2: Distributed AAA Model

not be known to the foreign ISP.

An attendant, such as a foreign agent, which is an interface for the mobile node to
the AAA server, often does not have direct access to the data needed to complete
the transaction. Instead, it is expected to consult an authority (typically in the
same foreign domain, e.g. AAAF) in order to request proof that the client has
acceptable credentials.

3.7.2 System Components of the AAA Server

An AAA server needs several components in order to be able to handle AAA re-
quests and supply QoS in mobile environments. With their implementation, the
AAA server can inspect the contents of the request, determine what authorisa-
tion is requested and choose one of the following options to further process QoS
requests:

� Query and retrieve policy rules from its SLA repository.

� Forward the policy component to another AAA server for evaluation.

� Let the policy be evaluated by the resource manager.

In DiffServ environments, customers are allowed to negotiate policies which de-
fine a fixed rate or a relative share of packets that have to be transmitted by the ISP

68 CHAPTER 3. NETWORK MANAGEMENT

with high priority. All these policies can be put into a SLA repository which may
reside on one AAA server or may be located elsewhere in the home network. Each
policy should contain the following items: user identification, password, service
type, QoS parameters (rate, maximum burst, etc), source IP address, destination
IP address, source port, destination port, duration of the request. For evaluation
and enforcement, each policy can also be retrieved by user name, by password, or
by other attributes.

QoS support heavily depends on the allocation of a quantifiable amount of re-
sources between a selected destination and source. However, network provi-
sioning becomes very difficult and complicated in highly dynamic environments
where the location and the QoS requirements of the end systems may change
very quickly. So, a foreign ISP’s AAA server needs to have an interface with the
bandwidth broker (BB, Resource Manager Component) to check whether the user
requirement can be satisfied or supported. As a part of the DiffServ architecture,
the bandwidth broker is a software agent that automates the SLA negotiation and
takes responsibility to allocate resources to users as requested.

Authorisation may be considered as the result of evaluating a SLA. While the pol-
icy definition typically is stored in the home domain of a visiting mobile node,
it usually depends on the availability of the resource allocation in the foreign
network whether its requirements can be satisfied or not. Due to the multiple
administrative domain nature, a mechanism to forward messages between AAA
servers is needed. Generally, any of the AAA servers involved in an authorisa-
tion transaction can retrieve or evaluate a policy (SLA) through an AAA protocol.
This protocol is expected to be able to transport both SLA definitions and the in-
formation needed to evaluate SLAs and it also has to support queries for policy
information.

A Network Access Server (NAS) is an interface for the mobile node to the AAA
server, which allows access to network services to be managed on a per-user ba-
sis. The NAS may consult the AAAF in order to request proof that the client has
acceptable credentials, to learn QoS and other network policies for the user via
the AAA service and to apply QoS policies to the packets. A NAS may be an
edge router which provides different qualities, types, or service levels to different
users based on policy and identity information [121]. A NAS is like a QoS Policy
Enforcement Point (PEP). Typically just the NAS knows the true dynamic session
state. Therefore, the service equipment must be able to notify its resource man-
ager as soon as a session terminates or the state changes in some other way. For
auditing purposes, the generic server must have some form of database to store
time-stamped events that occur in the AAA server. This database can be used to
account for given authorisations. With the help of certificates, this database could
support non-repudiation.

3.7. AUTHENTICATION, AUTHORISATION, ACCOUNTING 69

3.7.3 AAA for the Mobile Internet

In [72, 73] the authors discuss the need to enhance the existing AAA architec-
ture in order to be able to support mobile equipment. Two different aspects have
to be considered: security and economy. Based on an initial authentication and
authorisation process, the mobile devices have to be allowed to consume distinct
resources in the visited domain, for example to generate Internet traffic better than
best-effort service. In the visited domain, the service definition will probably dif-
fer from Service Level Agreements (SLA) valid in the home domain. The need of
this kind of service from a local domain requires authorisation of the mobile user,
which directly leads to authentication. In many cases, the ISP of a visited domain
only offers this service to a mobile user, if it is assured to get paid for the service.
This requires an adequate accounting and charging concept, considering the qual-
ity of the service provided in the visited domain as well as other service-relevant
characteristics. A client requiring resources of a visited domain is requested to
provide credentials, which can be authenticated before access to these resources
is permitted.

The authors propose an AAA architecture that has been derived from the generic
architecture proposed by the AAAArch group [42]. It consists of AAA Systems
that can either be an AAA server or an AAA client. The protocol to be operated
between the AAA server and the AAA client is called AAA protocol, however,
for a sufficient transfer of appropriate data it may be an enhanced version of either
RADIUS [143, 142] or DIAMETER [84, 28]. An AAA client has no services to
offer, instead it can request services only. Therefore it has to use the agent authori-
sation model [179]. An AAA server operates an interface to several Application-
specific Modules (ASM), which provide either a service (e.g. Interface to Mobile
IP, QoS, content service) or an accounting or charging functionality, which is con-
sidered as an important service on its own. The AAA server also has an interface
to external authentication modules to be able to use different authentication tech-
niques. The accounting component may get usage data input from a underlying
metering component. Accounting can be a separate service or integrated within
the service provided [195]. In case of integrated accounting, the service and ac-
counting is performed by a single component, which interfaces the AAA server
via one ASM. Charging is implemented as an external module which also commu-
nicates via an ASM with the AAA server. The charging module generates input
for a subsequent billing process.

Our own AAA architecture extension, which we present in Chapter 10, focuses
on the heterogeneity of services a mobile user might encounter when visiting a
foreign network. Therefore, we propose not to use the AAA server of the foreign
network as the first contact entity but to use the Service Location Protocol (SLP)

70 CHAPTER 3. NETWORK MANAGEMENT

instead. This provides a generic framework to include new services: for example,
after authenticating itself, the mobile user would like to negotiate a new QoS level
at the foreign network. The address of a bandwidth broker can be found in our
scenario much easier than in the scenario discussed above.

3.7.4 Policy-based Approaches

To offer services to customers, service providers have to manage distributed sys-
tems. This includes the configuration of networking devices (hardware) and the
provision of various protocol mechanisms (software). Policies define one possi-
ble approach to constrain communication in networks and to manage networks.
In [138] the traditional AAA, services are extended to contain auditing, charging,
billing and pricing services as well. This new collection of services is called ��� .
Such services are required by providers to offer transport and information services
in a commercial environment. Policy-based � � services can service descriptions
in form of policies from mechanisms and system-specific information. Further-
more, policies enable the construction of inter-domain � � services applicable to
mobile scenarios. In particular, [195] proposes to use accounting policies to con-
figure the accounting infrastructure and to use the Authentication, Authorisation
and Accounting architecture to exchange and to deploy these policies.

Several drawbacks of the traditional AAA architecture are criticised in [138]:

� Missing separation of policy decision and policy enforcement

� Complicated extensibility

� No inclusion of QoS-related support services

The architecture proposed in [138] combines the traditional Policy-based Man-
agement and AAA architectures in order to form a generic � � service architecture
to solve the problems mentioned above.

3.7. AUTHENTICATION, AUTHORISATION, ACCOUNTING 71

Summary

This part presented the three basic principles this thesis is built on to achieve
ubiquitous Quality of Service for mobile users: Mobile IP, Differentiated Services
and bandwidth brokers.

Mobile IP is a well-developed and thoroughly investigated approach to provide
mobility in the Internet. Several implementations are already available, including
open-source projects for Linux [6, 194]. Handovers have soon been recognised as
crucial for Mobile IP performance. Many proposals to improve handovers have
been made. Unfortunately, no implementation supports those recent proposals.
Another problem is the incomplete inclusion of lower-layer information. With this
information the actions needed to prevent some of the drawbacks of a handover
can be made in time. In Chapter 9 we present an implementation of a handover,
that retrieves information from the MAC layer to be able to set up reservations in
advance.

Differentiated Services is a concept to support Quality of Service in IP networks
and to avoid the scalability problems of RSVP. Differentiated Services group
packets with similar QoS requirements to a traffic aggregate in a way that they
are treated equally at the routers. The algorithms for packet treatment are not
complicated and can be applied even at high packet rates as will be shown in
Chapter 5.

Differentiated Services suffer from a big drawback: There exists neither a man-
agement framework nor a signalling protocol as it is the case for RSVP. Therefore
dynamic end-to-end reservations cannot be established. In Part III we present a
bandwidth broker architecture and a signalling protocol that enables us to spec-
ify a detailed description of our QoS requirements in a way that the broker can
configure the network accordingly.

72 CHAPTER 3. NETWORK MANAGEMENT

Part II

Implementation and Performance
Evaluation of a DiffServ

Implementation for Linux Routers

73

Overview

Differentiated Services support Quality of Service in the Internet and are — un-
like Integrated Services — based on flow aggregation. This avoids the need for
multi-field classifiers at each hop, but network resources are reserved for any kind
of traffic aggregation. This makes DiffServ a scalable technology, because only
a limited set of aggregations needs to be supported in core routers. This part
presents our implementation of Differentiated Services on Linux Routers and eval-
uates it by means of extensive performance measurements. These measurements
are taken on an end-to-end basis for single traffic aggregates. We do not study
the effect of aggregating various sources into one traffic aggregate because the
number of sources has to be very large in order to get statistically meaningful re-
sults. For the study of traffic aggregation, simulation approaches seem to be more
suited.

Our implementation of DiffServ routers on Linux PCs is described in Chapter 4.
Section 5.1.1 presents the test network built in our computer networks laboratory.
In Section 5.1.2 the measurement methods we used for detailed delay and perfor-
mance evaluation are discussed. The results obtained regarding bandwidth, delay
and jitter of 5 MBit/s UDP and TCP traffic using expedited and assured forward-
ing are shown and compared in Section 5.2.

74

Chapter 4

DiffServ Implementation

Now we will discuss some performance aspects of the Differentiated Services ar-
chitecture. This architecture, as presented in Section 2.2, promises a scalable way
of deploying Quality of Service for end users. However, the proof that DiffServ
routers really are able to provide such bandwidth guarantee still has to be given.
We have implemented Differentiated Services for Linux Routers and tested this
implementation on a test network consisting of six nodes. This may not seem
much but it is, however more detailed than most other experimental results (see
[9, 17]). In addition, a survey of existing ISP backbones showed, that such a small
hop number still is a reasonable approximation to reality (cf. Section 5.1.1).

Differentiated Services have been implemented for the Linux operating system
shortly after the first publication of the concept by ourselves [26] as well as sev-
eral other researchers [5, 17]. The implementation architecture described in [5]
is similar to our implementation, because both are based on Linux traffic control
[4, 136]. The implementations differ in details of some traffic conditioner imple-
mentations as well as in the way the implementations are configured: While [5]
is based on traffic control command only, our implementation can be configured
via tables that contain bandwidth, as well as other QoS-related parameters, such
as queue size and scheduler parameters. By changing the parameters in the ta-
bles, the parameters of the traffic conditioners are changed during runtime. This
accelerates the DiffServ configuration, simplifies the setup and helps to avoid in-
consistent configurations.

The KIDS implementation [17] does not rely on Linux traffic control, but own
queueing disciplines have been implemented. The performance measurements
of KIDS have been performed with a network consisting of one single DiffServ
router and focused on measurements of the internal implementation behaviour. No
end-to-end measurements over several routers, in particular delay measurements
have been published.

75

76 CHAPTER 4. DIFFSERV IMPLEMENTATION

4.1 Traffic Conditioner Modules for the Linux Ker-
nel

The implementation of Differentiated Services on a Linux router [26] provides a
full set of traffic conditioning modules enabling a user to set up any kind of Diff-
Serv router (i.e. boundary and core routers). Those modules include a marker, a
classifier � scheduler, service handlers for EF and AF and several queueing dis-
ciplines such as token bucket filters, FIFO and TRIO queues. All traffic condi-
tioners have been implemented as kernel modules that can be activated by the tc
command, which is part of the iproute package [99]. This command can set
the parameters of the queueing disciplines (bandwidth, buffer space ...) and can
combine the traffic conditioners to form the configuration of a particular DiffServ
router interface (boundary or interior router, see also Figures 4.1 and 4.2).

The information, which flows will get a certain service, is stored in a table within
the router’s kernel-memory. A kernel module together with a user interface pro-
gram has been developed to support creating and changing those tables during
runtime. The tables contain the source and destination subnet addresses of each
privileged flow, marking information (the DSCP) and metering limits (bandwidth
values) for the service handlers. IPv4 as well as IPv6 addresses are supported.

The service handler is the marking module of our implementation. This module
incorporates a multi-field classifier. It compares all incoming packets to the
flows held in its table and writes the according DSCP into the IP header.
Since this module has no metering functionality the dropping probabilities
of AF packets are set by the prec handler module (see below).

The dsclsfr module is a combination of a BA classifier and a scheduler. The clas-
sification procedure is executed when enqueueing a packet and forwards the
packets according to their DSCPs to one of seven traffic conditioners. Those
conditioners are intended to handle the four assured forwarding classes, ex-
pedited forwarding traffic, network control traffic and best effort traffic. The
scheduling performed by the dequeue function is a combination of prior-
ity scheduling and weighted fair queueing. The highest priority is assigned
to expedited forwarding traffic, the second highest priority to network con-
trol traffic and the third priority to the remaining five traffic classes. Those
five classes — four for assured forwarding and one for best effort — are
handled by the weighted fair queueing algorithm. The weights are config-
urable and can be specified via the command line.

The prec handler is a colour - aware two-rate three colour marker [75]. The
AF-PHB defines four independent service classes, each operating at three

4.2. DIFFSERV ROUTER ARCHITECTURE 77

levels of dropping probability. Traffic below the negotiated bandwidth limit
has the lowest probability of getting dropped (“is marked green”). A packet
is marked “yellow” (to a higher dropping probability), if it does not ex-
ceed a certain exceed-bandwidth. All other traffic is marked “red”. The
prec handler specifies the colour-part of the AF-DSCP (see [74]), while
preserving the colour of already marked incoming packets.

The premium shaper is a conditioner for metering and classifying expedited
forwarding traffic in ingress routers. According to [40] each expedited for-
warding traffic must be shaped to the negotiated rate. This module offers
the possibility of shaping a certain number of flows (currently up to 256)
independently to different bandwidth values by offering multi-field classifi-
cation based on IP addresses, port numbers and protocol ID. For each flow
a separate token bucket filter that is configured to the maximum bandwidth
/ burst size parameters has to be installed.

The TRIO queue is a modification of the well-known RED queueing algorithm
[60]. While the RED algorithm uses one dropping probability function, the
TRIO queue uses three dropping functions, one for each colour of the three
colour marker described above. By combining a properly configured TRIO
queue with the prec handler we can ensure increasing dropping prob-
ability for yellow and red packets while sustaining the order of the packets
within the AF flow.

4.2 DiffServ Router Architecture

The combination of different traffic conditioners allows us to build several Diff-
Serv router types forming the basis of our DiffServ implementation concept: An
edge router is located at the borders of a DiffServ domain. Several subtypes can
be distinguished according to the location of the router in the forwarding path:

� An ingress router as depicted in Figure 4.1 is located at the entry point of a
traffic stream into the domain and performs most of the traffic conditioning
functions. Our ingress router architecture consists of

– A multi-field classifier, that is an integral part of the marker module.
It decides which DSCP has to be written into the IP header of the
packet by the marker. Marker and Classifier are the two parts of the
service handlermodule that serves as the Marker module in the
ingress architecture. Since classification and marking of micro-flows

78 CHAPTER 4. DIFFSERV IMPLEMENTATION

may be computationally expensive, this is only performed at ingress
routers. Note, that the multi-field classification may also include pre-
viously set DSCPs, so that re-mapping of flows at the ingress is also
possible.

– A behaviour aggregate classifier (the dsclsfr module) forwarding
the packets to the correct service handler, based on the DSCP only.

– Several service handlers for the different PHBs (expedited and assured
forwarding) (the prec handler and premium shaper modules.

– A TRIO queue per AF class.

– a token bucket filter plus a FIFO queue per EF flow registered at the
ingress router.

– FIFO queues for best effort and network configuration traffic.

– A scheduler to ensure that each single service class has enough band-
width available but does not exceed the negotiated limits. This sched-
uler is part of the dsclsfr module.

� An egress router is located at the exit point of a traffic stream. It has to
ensure by traffic conditioning that the agreement about the amount of traffic
leaving the DiffServ domain is met.

� An interior router (see Figure 4.2) can take full advantage of the traffic ag-
gregation. They simply handle the traffic according to the DSCP set in the
IP header. Traffic conditioning is mainly performed to detect misconfigu-
ration and to minimise the damage caused by that (as e.g. required in [40])
The architecture of a core router is much simpler compared to an ingress
router:

– a BA classifier forwards the packets to the service handlers

– there are no AF handlers, only TRIO queues perform minimal traffic
conditioning for AF traffic

– EF traffic is directly forwarded to a special EF handler (premium-
policer): any EF traffic exceeding the limit that results from the

aggregation of different flows must be dropped (cf. [40]). This is equal
to a token bucket filter with zero queue length.

– FIFO queues for best effort and network configuration traffic

– the scheduler

4.2. DIFFSERV ROUTER ARCHITECTURE 79

Assured
Service 1

Assured
Service 2

Assured
Service 3

Assured
Service 4

Classifi−
cation

TRIO

combined WFQ

scheduler

FIFO

and priority

FIFOs + TBFs

Marker

EF
Service

Best Effort

Network
Control

Queueing Systems

Figure 4.1: Ingress Router Implementation Architecture

Assured
Service 1

Assured
Service 2

Assured
Service 3

Assured
Service 4

EF
Service

Best
Effort

Network
Control

Classifi−
cation

TRIO

combined WFQ

scheduler

FIFO

and priority

TBF

Queueing Systems

Figure 4.2: Interior Router Implementation Architecture

80 CHAPTER 4. DIFFSERV IMPLEMENTATION

FIFO

handler

prec_
handler

premium_

FIFO

TRIO

TRIO

TBFshaperdsclsfr

prec_

dstable

Flow Tables

tc module tree

serv_
handler

Figure 4.3: Ingress Router Configuration

4.3 Linux Router Configuration

4.3.1 Ingress Router

There is a major difference between the implementation architecture of the Diff-
Serv routers shown in Figures 4.1 and 4.2 and the actual arrangement of traffic
conditioners within a Linux router: While in Figures 4.1 and 4.2 all conditioners
are passed only once by each packet, the arrangement of traffic conditioners by
the tc command is a tree (see Figure 4.3), and therefore a packet has to pass each
conditioner twice. Additionally the classifier has to perform the scheduling si-
multaneously (see the description of the dsclsfr module above). The different
service classes are handled by appropriate service handlers (i.e. prec handler
or premium shaper) or directly forwarded to queues (see Figure 4.3). To in-
stall a traffic conditioner at the correct location within the forwarding path the tc
command needs three parameters: Each traffic conditioner has a unique ID (called
handle), a parent (the handle of the parent conditioner in the tree), and a
class id, which indicates the position the conditioner occupies within multiple
child conditioners. For example, if the dsclsfr in Figure 4.3 has handle 2, the
premium shaper would have parent 2 and class id 5. Those three pa-
rameters, together with other, conditioner-specific parameters (e.g. queue length)
are passed to the tc command.

4.3. LINUX ROUTER CONFIGURATION 81

Flow description information cannot be passed to the traffic conditioners via the
command line. This information is stored in tables, allocated by the dstable
module. This module can handle several table IDs and the conditioner modules
can access the tables by using the correct ID. It is therefore possible to install a
table with all EF flows and a second one with all AF flows and pass the table IDs
to the correct service handlers. The communication between the tables and the
traffic conditioning modules is done by a API provided by the dstable module.

In Table 4.1 we show, how the DiffServ tables for the dstable module are
built. The first table (the serv handler.table) contains all flows that have
to be marked at this router with the corresponding codepoint. The second table
(the premium shaper.table) only contains the expedited forwarding flows,
mapping each flow to its corresponding token bucket filter number. The band-
width limit for the flows is not included in this table but in the configuration script
(see Figure 4.4). The third table contains all assured forwarding flows and their
bandwidth limitations for the dropping precedence handler. Figure 4.4 shows,
how an ingress router has to be configured in order to support those reservations.

After we have investigated the ingress router in detail, we can handle the remain-
ing router types quite shortly, since there are no architectural differences, only the
number and the arrangement of the traffic conditioners differ. A detailed descrip-
tion of configuration with several examples of flow configuration tables and setup
scripts can be found in [156].

4.3.2 Interior Router

The interior router configuration reflects the simple architecture of Figure 4.2.
There is only a classifier (dsclsfr) and the queues. TRIO (trio) queues are
responsible to handle AF traffic, while EF traffic is strictly policed to the config-
ured limit by the premium policer module.

4.3.3 Egress Router

Egress routers can be held as simple as interior routers if there is no special nego-
tiation between two domains regarding the amount of AF traffic leaving a domain.
In such a case, additional AF handlers (prec handler) must be inserted in front
of the TRIO queues in order to limit the amount of AF traffic.

82
C

H
A

PT
E

R
4.

D
IF

FS
E

R
V

IM
PL

E
M

E
N

TA
T

IO
N

Table 4.1: Router Configuration Tables

serv handler.table

srcaddr srcmask srcport dstaddr dstmask dstport proto srcdscp outdscp lprio mprio
10.1.1.1 255.255.255.255 5005 10.1.4.2 255.255.255.255 5005 * * ps 0 0
10.1.1.1 255.255.255.255 5030 10.1.4.2 255.255.255.255 5030 * * ps 0 0
10.1.1.1 255.255.255.255 5105 10.1.4.2 255.255.255.255 5105 * * as1 0 0
10.1.1.1 255.255.255.255 5110 10.1.4.2 255.255.255.255 5110 * * as1 0 0

premium shaper.table

srcaddr srcmask srcport dstaddr dstmask dstport proto srcdscp outdscp class unused
10.1.1.1 255.255.255.255 5005 10.1.4.2 255.255.255.255 5005 * ps * 1 0
10.1.1.1 255.255.255.255 5030 10.1.4.2 255.255.255.255 5030 * ps * 2 0

precedence handler.table

srcaddr srcmask srcport dstaddr dstmask dstport proto srcdscp outdscp lprio mprio
10.1.1.1 255.255.255.255 5105 10.1.4.2 255.255.255.255 5105 * as1 * 625000 0
10.1.1.1 255.255.255.255 5110 10.1.4.2 255.255.255.255 5110 * as1 * 1250000 0

4.3.
L

IN
U

X
R

O
U

T
E

R
C

O
N

FIG
U

R
A

T
IO

N
83

Figure 4.4: Ingress Router Configuration Script

#! /bin/bash
#
TC=/usr/bin/tc
TABLE0=˜/diffserv/serv_handler.table
TABLE1=˜/diffserv/precedence_handler.table
TABLE2=˜/diffserv/premium_shaper.table
DEV0=eth1
#
dstab l 0 $TABLE0
dstab l 1 $TABLE1
dstab l 2 $TABLE2
#
$TC qdisc add dev $DEV0 root handle 1: serv_handler table_id 0
$TC qdisc add dev $DEV0 root handle 2: dsclsfr as1 0.4 as2 0.3 as3 0.1 as4 0.1 log_size 63
#
$TC qdisc add dev $DEV0 parent 2:1 handle 11: prec_handler table_id 1 dscp as1
$TC qdisc add dev $DEV0 parent 2:2 handle 12: prec_handler table_id 1 dscp as2
$TC qdisc add dev $DEV0 parent 2:3 handle 13: prec_handler table_id 1 dscp as3
$TC qdisc add dev $DEV0 parent 2:4 handle 14: prec_handler table_id 1 dscp as4
$TC qdisc add dev $DEV0 parent 2:5 handle 15: premium_shaper table_id 2 classes 2
#
$TC qdisc add dev $DEV0 parent 11:1 handle 101: trio limit 200 low_begin 0.8 low_end 1/
medium_begin 0.4 medium_end 0.6 high_begin 0 high_end 0.2
$TC qdisc add dev $DEV0 parent 12:1 handle 102: trio limit 200 low_begin 0.8 low_end 1/
medium_begin 0.4 medium_end 0.6 high_begin 0 high_end 0.2
$TC qdisc add dev $DEV0 parent 13:1 handle 103: trio limit 200 low_begin 0.8 low_end 1/
medium_begin 0.4 medium_end 0.6 high_begin 0 high_end 0.2
$TC qdisc add dev $DEV0 parent 14:1 handle 104: trio limit 200 low_begin 0.8 low_end 1/
medium_begin 0.4 medium_end 0.6 high_begin 0 high_end 0.2
$TC qdisc add dev $DEV0 parent 15:1 handle 105: tbf rate 5000kbit buffer 500kbit limit 500kbit
$TC qdisc add dev $DEV0 parent 15:2 handle 106: tbf rate 30000kbit buffer 3000kbit limit 3000kbit

84 CHAPTER 4. DIFFSERV IMPLEMENTATION

Chapter 5

Performance Results

5.1 Test Network and Evaluation Methods

5.1.1 Test Network Design

The performance measurements aim to evaluate the end-to-end performance be-
tween a sender / receiver pair interconnected by a DiffServ network. Due to
the limited resources available in a laboratory this interconnecting network is
usually very small. To be able to compare our results in relation to existing
networks we analysed the topologies of several European national research net-
works: SWITCH, the swiss education and research network [164], GEANT, the
pan-European research network [65] and the European part of the Worldcom net-
work [188]. We observed, that typically there are only very few backbone routers
(mainly 3 – 6), between an ingress and an egress router. Therefore we set up a test
network consisting of three routers: an ingress router, an interior router and an
egress router (see Figure 5.1). The egress router has the same function as the in-
terior router in such a scenario. Note that the sender-receiver relationships denote
a sender and a receiver for a traffic aggregate but not for a micro-flow. The effects
of several micro-flows competing at the edge for a single DiffServ service class is
too complex to set up with a reasonable amount of hardware resources because a
large number of senders would be needed for statistically meaningful results.

To simulate a highly congested router the network has been flooded by an ag-
gressive UDP sender, transmitting 100 MBit/s traffic to the receiver on each of its
three links. At each outgoing router interface the DiffServ traffic from the sender
has therefore to be protected against a heavy background traffic load. Since the
number of interior routers does not influence the service provisioning significantly
we can estimate the behaviour of the DiffServ traffic classes (i.e. the provision of

85

86 CHAPTER 5. PERFORMANCE RESULTS

Host A
(Sender)

First Hop − /
Ingress Router Egress Router

Interior Router

Host C
(aggressive UDP Sender)

(Receiver)
Host B

������������������������������

��

������������������������������

Figure 5.1: Testnetwork topology

bandwidth and certain delay and jitter limits) for large-scale backbones.

The nodes of our test network have been interconnected by full duplex 100BaseTx
connections. Host A transmits UDP and TCP traffic to Host B. The first hop
router marks the traffic with the EF and AF DSCP. The background traffic from
Host C has three different routes to Host B. Therefore each DiffServ router has
to drop 100 MBit/s (= 50%) of the incoming traffic at the outgoing interface (see
Figure 5.1).

5.1.2 Performance Measurement Procedures

A couple of self-programmed tools have been used for the load generation. These
allow to set various parameters, including ports, bandwidth and packet size (only
for UDP traffic). The sender program transmits a packet of the specified size, then
waits for a time t

�	� packet size
bandwidth

and transmits the next packet. Waiting can be implemented in two ways: The first
possibility is to get the actual time again and again, and send the packet as soon
as the calculated time interval has passed (busy waiting). This consumes a lot of
computing power, but gives an accuracy of about 10
 s. The second possibility is
to wait for an operating system call to resume. The main drawback of this method
is, that the accuracy of the Linux operating system is limited to 1 – 10 ms.

Both waiting algorithms have been implemented for the UDP sender, whereas
only the second has been implemented for TCP. Since the TCP implementation
queues the packets in order to form a traffic stream, higher timing accuracy would
be lost in this case. The packet payload consists of an identification number to

5.1. TEST NETWORK AND EVALUATION METHODS 87

calculate loss rates and two time-stamp fields, that have been used to calculate the
end-to-end delay and jitter as shown in Figure 5.2.

Another problem with end-to-end measurements is the measurement of delay. In
many other experiments, senders and receivers are identical machines, so that the
same clock can be used to calculate the delay between transmitting and receiving
a packet. Another alternative is to use sophisticated and expensive synchroni-
sation hardware, for example based on GPS. In our case we developed a novel
delay measurement scheme based on the estimation of the clock skew between
two independent clocks (see Figure 5.2).

Before starting the tests, a two minute period of delay measurements without
background traffic have been performed. The sender writes its local time

���
to

the first field, the receiver writes its local time
� �

to the second field and sends
the packet back to the sender. Together with the arriving time of the packet at the
sender

�
	 and assuming that the transmission time is equal in both directions (we

may assume that, since there is no background traffic and no congestion) we can
easily calculate the delay � �

�

��� � 	�� ���
	
and the clockskew � � � � � ��� � ��
Figure 5.3 illustrates the drift between sender and receiver clocks before the first
test. An obvious linear trend can be observed and assuming that this linear trend
is constant during the measurements, we can compute the delay of each single
packet. To estimate the trend, two different statistical methods were used: a stan-
dard least squares and a M-estimate method (minimising absolute deviation). The
least squares method is obviously more sensitive to data that shows a large devia-
tion from the linear trend because the error in this case is not normally distributed.
Therefore, the results of the more robust method have been used in future calcu-
lations.

Now we can measure the delay and jitter during the tests (see packets 2 and 3 in
Figure 5.2): estimating the clockskew� � ��	 ����� �����
the delay of a packet is calculated by� � �

	�� ��� � � � ���
	 �
The jitter is calculated using two subsequent packets: according to [40] jitter is
defined by � ��� � � � � 	�� � � ��� ���
	�� �

88 CHAPTER 5. PERFORMANCE RESULTS

t0

t1

T0

t2

t3

T1

T2

packet 3

packet 2

packet 1

�����
�����
�����
�����
�����

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 5.2: Delay and jitter measure-
ments

−0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

−10 0 10 20 30 40 50 60

clockskew
least squares
M−estimate

time [s]

cl
oc

ks
ke

w
 [

s]

Figure 5.3: Clockskew Variation

This can be explained by Figure 5.2: packet 3 is a little bit slower (solid line)
than packet 2 (dashed line). The difference of those two packets’ speed is exactly
the expression in the definition above. Taking the absolute value we ensure, that
slower and faster packets do not average the jitter to zero.

The delay and jitter values are measured by the receiver during a configurable time
interval and the average of that values is used in the graphs shown in section 5.2.
The timescale used in the results section was 100 ms, which is a good compromise
between the need of an accurate image of the behaviour of the DiffServ network
and the limited timing accuracy of the Linux routers.

The overall duration of each test was 10 minutes to get a statistically significant
amount of data, that allows us to predict the behaviour of a Linux DiffServ router
accurately. As it can be seen from the results in Section 5.2, a duration of 10 min
for each experiment seems to be more than sufficient to achieve this goal.

5.2 Results

5.2.1 Tests without DiffServ

In order to be able to compare our results to the results achieved with best effort
forwarding, we performed some measurements without DiffServ. The throughput,
the delay and the jitter have been measured for a 5 MBit/s UDP flow from Host A
to Host B (see Figure 5.1).

During the first test there was no background traffic at all. Under these circum-
stances we can see, that the backbone of three routers creates a delay of just 1 ms

5.2. RESULTS 89

(see Figure 5.5). No packet loss can be recognised in Figure 5.4, and the jitter
is at the lowest limit of the computer’s time accuracy. For most of the time we
get a jitter lower than 2
 s. The variance of the jitter can be explained by the
randomness of the router’s interrupts only.

The second initial test was designed to test unprotected UDP traffic from Host A
to Host B against the

��� ��� �
MBit/s background traffic generated from Host C.

The flow’s bandwidth was again 5 MBit/s.

In Figure 5.7 we can see, that the background traffic of Host C causes serious
losses even to the connectionless UDP traffic. Approximately 1 MBit/s of the
sender traffic can cross the network only. This is a loss of approximately 80%.
Also, the variance of the throughput is considerably large.

The delay of the flow is approximately 28 ms (see Figure 5.8). Obviously, the
traffic always meets full queues at each router due to the constant background
traffic. Therefore, a packet has to wait until the maximum queue length has been
forwarded. Since the default queue length of the FIFO queues in the routers is 100
packets we expect a delay of

� � � � ��� � � � ��� ��� ��� � � � � ��� � 	����
Bit

��� �
MBit/s

� � � � �
ms

which shows the excellent accuracy of the delay measurement procedure. The
values in the parentheses are the payload size (1024), the UDP header size (8), the
IP header length (20) and the size of the Ethernet 802.3 header and tail (122) in
bytes.

The jitter of this flow has a lower bound of 2 ms and a high variance (see Fig-
ure 5.9). Compared to the jitter values of the last series which has been lower
by three orders of magnitude (Figure 5.6) we can see the big randomness of the
packets being enqueued or dropped in the routers. This randomness results from
the way, how the Linux-kernel internally handles incoming packets and forwards
them to the outgoing queue.

5.2.2 UDP experiments

The UDP tests have been performed with a reservation of 5 MBit/s and four differ-
ent runs, transmitting 2, 4, 5 and 10 MBit/s from Host A to Host B (see Figure 5.1)
with UDP payload size of 200, 400, 500 and 1000 bytes. The results have been
achieved by using the busy-waiting UDP sender (see section 5.1.2). Together
with the varying UDP payload this ensures a constant bit rate sender measured
over very short time intervals together with a constant packet frequency. This is
especially important for explaining the results for assured forwarding later.

90 CHAPTER 5. PERFORMANCE RESULTS

Results for UDP without DiffServ
and background traffic

0

1

2

3

4

5

6

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

5 Mbit/s UDP Sender

Figure 5.4: Bandwidth for 5 MBit/s
UDP

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

5 Mbit/s UDP Sender

Figure 5.5: Delay for 5 MBit/s UDP

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

5 Mbit/s UDP Sender

Figure 5.6: Jitter for 5 MBit/s UDP

Results for UDP without DiffServ
but with background traffic

0

1

2

3

4

5

6

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

5 Mbit/s UDP Sender

Figure 5.7: Bandwidth for 5 MBit/s
UDP

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

5 Mbit/s UDP Sender

Figure 5.8: Delay for 5 MBit/s UDP

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

5 Mbit/s UDP Sender

Figure 5.9: Jitter for 5 MBit/s UDP

5.2. RESULTS 91

Expedited Forwarding During the tests of the EF PHB all queues have been
configured to a maximum throughput of 5 MBit/s and a maximum delay of 25 ms
(this corresponds to 125000 bit queue length). This results in an increasing queue
length for faster UDP senders, but it allows bursts to a certain degree and simplifies
to compare the results.

Figure 5.10 shows the throughput for all transmission rates of 2, 4, 5 and 10 MBit/s.
We can see, that in any case the bandwidth is provided up to the negotiated limit,
regardless of the amount of EF traffic that flows through the router. This means,
that the 2 and the 4 MBit/s sender suffers almost no loss, but the 5 MBit/s sender
looses 7.66% of it’s packets, while the 10 MBit/s sender looses even 52.1% of it’s
packets. The reason why the 5 MBit/s sender looses packets, although 5 MBit/s
have been reserved, is, that the reservation is slightly lower than required, since
the application generates 5 MBit/s data while the 5 MBit/s reservation is on IP
level and includes packet headers.

The delay of the four flows is shown in Figure 5.11. As we can see, DiffServ
provides a delay of less than 5 ms as long as the sender meets the bandwidth
limitations. Most of this delay comes from the DiffServ processing inside a router.
The queueing delay in this case is negligible, since the maximum fill-state of the
queue was 2 packets. If the sender tries to transmit more traffic than allowed, the
traffic shaper in the ingress router will create a delay according to the size of its
token bucket filter. In the case of the third test (5 MBit/s Sender and 5 MBit/s
reserved) the high delay is caused by the rather long queue size that is used to
support busy traffic.

The jitter has a sharp lower bound of approximately 0.6 ms for the bandwidth
values less than 10 MBit/s and a large variance which is decreasing when sending
at a higher rate. For the 10 MBit/s sender the jitter increases to 0.8 ms but at a
smaller variance. We assume, that the token bucket filter cannot dequeue packets
in equidistant timesteps — especially at higher rates — and so causes a higher
jitter.

Assured Forwarding The parameters for the four AF test runs have been cho-
sen such that the results can easily be comprehended.This requires using a single
AF class and two precedence levels, i.e. red and green. The prec handler has
been configured to mark all excess traffic as red. Dropping of red traffic starts at
an empty queue and all packets are dropped, when the queue length has reached
a fill level of 20%. Green traffic has been dropped between queue lengths of 80%
to 100%. The queue length was 200 packets.

Figure 5.13 shows a similar behaviour for the flows below the limit but also clearly
shows the difference between EF and AF for handling out-of-profile traffic. While

92 CHAPTER 5. PERFORMANCE RESULTS

Results for UDP traffic with 5
MBit/s EF reservation

0

1

2

3

4

5

6

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.10: Bandwidth for 5 MBit/s
EF reservation (UDP traffic)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.11: Delay for 5 MBit/s EF
reservation (UDP traffic)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.12: Jitter for 5 MBit/s EF
reservation (UDP traffic)

Results for UDP traffic with 5
MBit/s AF reservation

0

2

4

6

8

10

12

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.13: Bandwidth for 5 MBit/s
AF reservation (UDP traffic)

0

0.001

0.002

0.003

0.004

0.005

0.006

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.14: Delay for 5 MBit/s AF
reservation (UDP traffic)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

2 Mbit/s UDP Sender
4 Mbit/s UDP Sender
5 Mbit/s UDP Sender

10 Mbit/s UDP Sender

Figure 5.15: Jitter for 5 MBit/s AF
reservation (UDP traffic)

5.2. RESULTS 93

traffic is strictly shaped in the former case (see Figure 5.10) we observe a signif-
icant amount of out-of-profile traffic crossing the routers in the latter case (see
Figure 5.13). This amount heavily depends on the configuration of the TRIO
queue and the sender behaviour.

We can assume, that the fill-state of the TRIO queue is very small, because we
assigned a 40% weight to the assured service class and we transmitted with a low
rate. Therefore, a sender with no or just little bursts has a higher probability of
seeing no or little queues. Its high dropping precedence traffic will also not be
dropped with a very high probability although the TRIO queue starts dropping
packets at the very beginning. It is therefore possible for the 10 MBit/s sender
to get almost 9 MBit/s across the network with a reserved rate of 5 MBit/s (see
Figure 5.13).

The delays of the four flows in Figure 5.14 show a timely constant behaviour with
values between 3 and 4 ms. The delay for senders with lower rates or exactly at
the rate of the precedence handler show a random distribution, whereas the out-
of-profile sender at 10 MBit/s has periodical oscillations. We assume, that those
oscillations are caused by the random number functions used by the TRIO queue.
The jitter for each test was about 0.5 ms at a large variance which became smaller
for higher rates (see Figure 5.15).

Summary EF is a good mechanism to guarantee bandwidth for UDP traffic even
under a heavy background load. The packets are forwarded almost without loss (�
0.001%) as long as the sender rate is below the configured rate of the traffic shaper.
The behaviour of our sender and the burst protection of the token bucket filter
resulted in some packet loss and filled the queues during the test when sending
exactly at the TBF’s limit.

The delay shows an increase from about 1 ms to about 4 ms compared to the
empty network (see Figure 5.5) but this is a large gain compared to the situation
without DiffServ, when we see a delay of about 30 ms (see Figure 5.8). The
jitter increases by three orders of magnitude when we have additional background
traffic (Figures 5.6 and 5.9) but DiffServ is — compared to best effort forwarding
— able to provide better results for the jitter by a factor of 5 – 10 (Figures 5.12
and Figures 5.9).

AF also proves to be able to protect UDP bandwidth against heavy background
traffic. There is no obvious drawback of using assured instead of expedited for-
warding for UDP traffic. The delay values are even smaller for AF traffic at a rate
directly at the negotiated limit or higher, because there is no strict shaping of the
flow that could result in filled queues. The jitter values don’t even seem to depend
on the DiffServ service type, they are almost the same for assured and expedited

94 CHAPTER 5. PERFORMANCE RESULTS

forwarding.

5.2.3 TCP experiments

The TCP tests were performed with a bandwidth reservation of 5 MBit/s, too.
Like during the UDP tests we had four test runs with TCP senders restricted to a
maximum bandwidth of 2, 4, 5 and 10 MBit/s. The TCP implementation of the
sending Host A determines the TCP payload size.

Expedited Forwarding The queue settings — especially the queue length —
had to be adjusted to the specific behaviour of TCP. Since the packet frequency
cannot be adjusted like for the UDP sender, we had to increase the queue size in
order to allow bursts. Otherwise, if the queue length is too short, TCP packets
would be dropped causing TCP’s congestion control mechanism to reduce the
bandwidth significantly below the reserved value. This would severely affect the
DiffServ tests. Therefore we used a queue, that was four times larger than the
queue used for the UDP tests. The queue length results in a constant maximum
delay of 100 ms.

The resulting bandwidth diagram for expedited forwarding with TCP shows a
very large variation (see Figure 5.16), especially for values at or above the rate
limit of the token bucket filter. This behaviour is a result of the TCP congestion
control function, which decreases bandwidth after a single packet loss. Averaging
over a time interval of 100 ms those bandwidth breakdowns can be observed in the
diagram, the use of larger intervals would smoothen the plot. For lower bandwidth
values, the influence of the congestion control is not very significant.

The delay is approximately 5 ms for the two senders with 2 and 4 MBit/s (see
Figure 5.17). Since the congestion control limits the bandwidth to values below
the rate of the token bucket filter, the queue is not filled up and therefore the delay
is also approx. 5 ms, even for the sender at the negotiated limit. In particular, TCP
senders with higher rates fill up the queue before the congestion control can limit
the bandwidth and so the maximum delay of 100 ms can occur in these cases.

The jitter values decrease with increasing bandwidth from 10 to 3 ms which can
be explained by the stream-oriented TCP service. Due to that feature it is not so
simple to influence the TCP packet size and the transmission frequency as it was in
the UDP case. The TCP sender will send a few packets at a high rate and then wait,
until the average bandwidth is below the token bucket filter’s limit. Therefore, the
queue length a TCP packet will encounter at the router is not constant for all
packets, resulting in a higher jitter.

5.2. RESULTS 95

Results for TCP traffic with 5
MBit/s EF reservation

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.16: Bandwidth for 5 MBit/s
EF reservation (TCP traffic)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.17: Delay for 5 MBit/s EF
reservation (TCP traffic)

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.18: Jitter for 5 MBit/s EF
reservation (TCP traffic)

Results for TCP traffic with 5
MBit/s AF reservation

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.19: Bandwidth for 5 MBit/s
AF reservation (TCP traffic)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

de
la

y
[s

]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.20: Delay for 5 MBit/s AF
reservation (TCP traffic)

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500 600

jit
te

r
[s

]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Figure 5.21: Jitter for 5 MBit/s AF
reservation (TCP traffic)

96 CHAPTER 5. PERFORMANCE RESULTS

Assured Forwarding The queue parameter configuration for assured forward-
ing is the same as in Section 5.2.2, because the TRIO queue length is configured
in units of packets, not bytes. Therefore, we used the same 200 packet queue as
during the UDP experiments.

Figure 5.19 shows that the bandwidth for AF is not as constant as for EF. This can
be explained by the use of a TRIO queue, that randomly drops packets, even if
the buffer is not filled up. Therefore, especially for higher bandwidth values there
is a certain probability for packet loss and in that case TCP’s congestion control
decreases the bandwidth. On the other hand, the sender is now allowed to send
more than the negotiated limit. All these issues give the large bandwidth variation
for assured service.

As long as the sender meets the rate of the prec handler, the size of the AF
delay is 6 – 7 ms (see Figure 5.20). This means that the AF traffic is marked with
low dropping precedence. For higher bandwidth, some packets will be marked
as high dropping precedence and probably get lost. The retransmission of those
packets results in a larger delay and a high delay variation. In this case, also the
jitter varies significantly (see Figure 5.21) compared to the jitter during the former
tests.

Summary The TCP results show, that even for rates below the negotiated band-
width limit of the shaper the achieved bandwidth is much more irregular than with
UDP. This is true for both, EF and AF. Averaging at a larger timescale would show
better behaviour, but for applications which need a constant bandwidth at a small
timescale the congestion control is a serious obstacle.

The delay of TCP is in the same range as the delay for UDP packets, but we have
to reserve additional buffer space that is four times larger to handle the burstiness
of the traffic. This results in high delay for higher transmission rates than negoti-
ated. The jitter values for TCP are larger than for UDP. This is mainly due to the
different algorithms we used for the sender programs. Since TCP does not allow
to specify the packet size we could not increase the packet frequency and therefore
the time between two subsequent packets could be up to 20 ms (see discussion in
section 5.1.2).

AF is not the optimal choice for TCP, because TCP cannot take advantage of
the possibility of sending out-of-profile traffic. This is due to TCP’s congestion
control, because out-of-profile packets will be dropped with a higher probability,
causing TCP to reduce the bandwidth. Therefore, we can see frequent bandwidth
breakdowns and because of retransmissions a great variance in delay will occur.

Note, that mixing TCP and UDP into a single service class is not recommended
[10, 93, 146]. The problem lies in TCP which is backing off in cases of packet

5.2. RESULTS 97

loss. This allows UDP to send as much as desired and get most of the traffic sent
through the network.

Summary

In this part we gave a short overview of our implementation of a DiffServ router
based on Linux. A short description of the available kernel modules and a de-
scription of the router’s configuration used during the performance evaluation
have been presented. During this performance evaluation we tested the behaviour
of UDP and TCP flows, that used either expedited or assured forwarding. Our
results show, that it is possible to protect certain flows against aggressive UDP
background traffic. Both, expedited and assured forwarding are able to provide
a guaranteed bandwidth together with very low delay and jitter. Compared with
today’s best effort traffic forwarding we were able to lower delay and jitter by a
factor of 5. We can conclude, that DiffServ is a reliable and scalable concept to
support Quality of Service in the Internet.

98 CHAPTER 5. PERFORMANCE RESULTS

Part III

Design and Implementation of a
Bandwidth Broker

99

Overview

In order to support mobile users and their QoS requirements we propose a novel
bandwidth broker architecture and also a QoS signaling protocol [158, 157] that
provides enough functionality to solve the problems mentioned in the Introduc-
tion and has a flexible programming interface to add arbitrary extensions in the
future. Our bandwidth broker architecture can be split into two different parts:
a management part and a configuration part. Several other architectures use this
separation, too [134, 193]. The novelty in our approach is in the interconnection
of those two layers: We propose to use an object-oriented virtual representation
of the underlying network. This interconnection is made available by the QoS
Management API [160].

The architecture presented here has been implemented in C++ and evaluated to
show which size of network can be managed. Our performance evaluation showed
a very good call admission rate (CAR) (about 0.5 ms per flow) even at large net-
work sizes (1010 nodes) [159]. As far as we know, no other bandwidth broker
implementation has been tested with such a large network.

Even if the performance evaluation showed a good performance there may be
situations where a higher CAR is required. In such an environment, distributing
the load between several bandwidth brokers can provide better performance. A
hierarchy of bandwidth brokers can be applied, where the leaf brokers manage a
small part of the network independently.

In this part we will first present the design of the QoS Management API in Chap-
ter 6: The main classes are handled in Sections 6.2 – 6.4, additional classes are
presented in Section 6.1. An example for an implementation of the API and the
use of the polymorphism of the classes can be found in Section 6.6.

Chapter 7 contains the design and implementation description of the bandwidth
broker itself. The different components are specified in Sections 7.1 – 7.4. The
performance evaluation is shown in Section 7.6. Interaction between multiple
bandwidth brokers and a hierarchical composition of bandwidth brokers are de-
scribed in Sections 7.7 and 7.8

100

Chapter 6

A Generic Management API for
QoS Support

An important task for an ISP offering guaranteed services by using the Differenti-
ated Services (DiffServ) approach to its customers is to configure the routers of its
network according to the customers’ requirements. The negotiation of technical
service parameters between the customer and the ISP, also called a Service Level
Specification (SLS), contains a description of the end-to-end Quality of Service
the customer expects to be provided (even by routers that are not in the domain
of the ISP). The resulting amount of configuration to own routers and communi-
cation to foreign networks is normally performed by an entity called a Bandwidth
Broker (BB).

In Figure 6.1 we show an example of a user requesting a certain service for a
connection across two ISP’s networks by sending a SLS to the first bandwidth
broker. This broker interprets the SLS in its management section and forms a SLS
to be forwarded to the neighbouring bandwidth broker and a Traffic Conditioning
Specification (TCS) for its own network. This TCS contains information about
how each router has to be configured (on an abstract level) and will be forwarded
to the configuration software that is able to create the corresponding configuration
commands for each involved router.

From Figure 6.1 we can see, that our bandwidth broker architecture is separated
into two layers: the management and the configuration layer. The QoS manage-
ment API is used to connect the two layers with their different functionality and
requirements. In order to specify the API we first have to specify the requirements
the broker has to fulfil:

We will now define a generic QoS management API. A bandwidth broker may use
the API to configure different types of routers within its own domain. It will be

101

102 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

Configuration
software

Configuration
software

Network A
Network B

Management Management
software software

TCS

QoS Management API

TCS

QoS Management API

Customer

SLS
Bandwidth Broker Bandwidth Broker

SLS
M

an
ag

em
en

t
la

ye
r

C
o

n
fi

g
u

ra
ti

o
n

 la
ye

r

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Configuration
Daemon

Figure 6.1: The Bandwidth Broker Architecture

an interface between the management software, which is not aware of the differ-
ent types of routers within the underlying network and the configuration software,
that is specially designed to optimally support each router type. The routers may
differ in their capabilities or configuration interfaces. The main focus is on the in-
dependence of the API from router hard- and software and on an easy extensibility
to any kind of new routers.

The independence of the API from router hardware or implementation details is
best achieved using an object oriented design where the objects representing dif-
ferent implementations are derived from a common base class. The ideal solution
for this polymorphism is to create abstract classes containing a certain set of vir-
tual functions (methods) that have to be implemented by each derived class. This
function set forms the interface by which the class can be accessed and conceals
the different implementations from the application programmer.

Management software will likely be a critical part of an ISP’s network manage-
ment system. First, performance is an important issue. To be able to handle a large
amount of user interactions together with the resulting configuration communica-
tion we have chosen C++ as the programming language offering object - oriented
concepts at high performance. But another issue is also very important: Since an

103

ISP will certainly loose both revenue and customer goodwill if its network is tem-
porarily unavailable for rebooting (e.g. to upgrade the system) this is undesirable
yet normally inevitable. An effective way to meet this challenge is using dynamic
code which ensures a up-to-date system running continuously. The use of dy-
namic C++ classes [127] combines the advantages of the object oriented design
and dynamic linking to a management system that provides permanent availabil-
ity together with the possibility to integrate new hard- or software features to the
system during runtime.

The QoS management API consists of three abstract base classes (represented in
C++ notation in Figure 6.2): the Router, the Interface and the Traffic-
Conditioner (TC). Additionally some data classes representing e.g. IP ad-
dresses or flows are used in the functions. The base classes provide a generic
interface to the programmer by their virtual functions. An application programmer
can build a virtual image of the network that is to be configured consisting of ob-
jects derived from an API-Router. A configuration application can send generic
configuration commands to each Router object. The objects will then translate
them to the hardware-specific commands that are finally sent to the router.

TrafficConditioner

int get_RoutingTable()

int configure(Interface*,string)

int get_FlowTable()

list<Flow> list_flows()

int delete_flow(Flow)

int add_flow(Flow,Type)

Interface

strstream get_options()

int get_handle()

string get_name()

string get_name()

int del_TC(TrafficConditioner*)

int add_TC(TrafficConditioner*,int,int,int)

int chg_TC(TrafficConditioner*,strstream)

int incr_SL(int, ServiceLevel)

int decr_SL(int, ServiceLevel)

IP_Address query_route(IP_Address)
set_handle(int)

int get_parent()

set_parent(int)

int get_position()

set_position(int)

Router

int configure(Flow, Type)

int change_flow(Flow,ServiceLevel)

Figure 6.2: Overview of the API classes

In the following subsections we describe the member functions of those base
classes together with the implementation-independent data classes, that are not
shown in Figure 6.2.

104 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

6.1 Data Classes for the API

IP Addresses The IP Address class is the parent class providing the common
functionalities of IPv4 and IPv6 addresses. It is an abstract base class, i.e. no ob-
jects of that class can be instantiated; only pointers or references to IP Address
objects are allowed. An IP Address object contains a version number an an ad-
dress length field together with a binary address data field in network byte order.
Since IP Address is abstract, for constructing and copying special “virtual”
constructors (see [163] pp. 424 f) are provided.

The class and all of its subclasses are declared in a namespace called IP that also
includes several boolean operators (less, equal, not equal), input/output operators
and functions for matching IP addresses with subnet masks. One important mem-
ber of this namespace is the IP::versions map. This map holds a pointer
to an object of each derived class indexed by the IP version number. This map
enables us to transfer IP address classes from one network node to another: the
sender transfers the IP version number, the address length and the address data, the
receiver can choose a correct prototype of the IP address in its IP::versions
map and call the virtual constructor of that prototype. The receiver has now a copy
of the IP Address object of the sender in a completely architecture-independent
way. This is e.g. used in the (de-)serialisation function pair for IP addresses.

IP Routing The Route class represents a basic abstract concept of an IP route.
Its only members are the destination address, a netmask and the next hop address.
It completely ignores more advanced concepts of IP routing, such as metrics. Nev-
ertheless, it is enough to help creating a image of the network topology.

The RoutingTable class is a simple extension of the STL list template. The
only new member is a subscription operator, that allows simple access to the route
towards a given destination address. This is a very intuitive approach to represent a
routing table query, and is also open for better, more performant implementations
of a routing table, not based on the rather slow STL list. Unfortunately, it is
not possible to implement the routing table using the STL map, because the key of
this map would be an IP Address. Since the STL map requires a non-reference
key type and the IP Address class is abstract (i.e. only pointers and references
to IP Address are allowed) this simple improvement cannot be performed.

Service Level Specification The ServiceLevel class is a generic service
level for a DiffServ Router. It contains mainly a bandwidth value, that specifies
the average amount of traffic of a flow. Depending on the service that is requested,
additional parameters can be specified: In detail, this class contains

6.1. DATA CLASSES FOR THE API 105

unsigned long
unsigned short
unsigned long Bandwidth

excess Bandwidth
Flags

Service Level

Figure 6.3: Service Level Description format

� a bandwidth value that specifies the average bandwidth of the flow in terms
of kbit/s,

� an excess bandwidth value that gives the amount of bandwidth a short-time
burst may need

� a realtime flag, that indicates delay and jitter sensitivity of the flow,

� a loss sensitivity flag, whether the flow is critical against packet loss or not,

Protocol IDunsigned char
Destination Portunsigned short
Destination Addressunsigned long
Source Portunsigned short
Source Addressunsigned long

unsigned short
unsigned long

FlowID
Status

Service Level slev

unsigned char DSCP

Flow Description

Figure 6.4: Flow Description format

Flow Description For the communication between the mobile host and the band-
width broker and also for inter-broker communication an abstract flow description
has to be specified. The flow description shown in Figure 6.4 can be mapped to
different QoS strategies provided by the network by bandwidth brokers as long
as the requirements of the flow are fulfilled. This packet contains the following
information to specify a flow together with a certain service level:

� Source address and source port,

� Destination address and destination port,

� Protocol ID (TCP or UDP),

106 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

� DiffServ CodePoint (DSCP)

� a status word, providing information about the status of the reservation (e.g.
in work, ready, in progress etc.)

� a flow identification number,

� a service level descriptor

The Flow class represents the concept of a flow, which is the set of packets going
from a source to a destination. The source and the destination is determined by a
(IP address , netmask , port) tuple. Each entry may also be wildcarded. Further
differentiation can be made on the transport protocol which is used and on the
DiffServ service codepoint.

A very important part of the flow description class is also the description of the ser-
vice this flow requests / possesses. This description is implemented as a separate
Service Level class (see Figure 6.3) for easy extensibility, if more elaborate
service description is needed.

The FlowTable class is an extension of the STL map template. Since each
flow possesses a unique flow identification number it’s a natural choice to use that
number as the key for the map. This FlowID is set by the bandwidth broker
that has to ensure its uniqueness. In a scenario with multiple bandwidth brokers,
each Flow ID consists of a (Broker ID, Flow ID) pair to ensure the uniqueness
of the ID not only in the own subnetwork but also in the whole network (see
Figures 7.15 and 7.17). Another advantage of the unique Flow ID will be seen in
a mobile environment, when modifications of domain-crossing flow happen more
frequently (Chapter 8).

6.2 The Router Class

The Router class provides a set of functions that every vendor of a DiffServ
router has to provide in order to be manageable by our software. Its child classes
will contain all data structures for interfaces and the routing- and flow tables.
Those data structures can be the data classes presented in Section 6.1, but also
hardware - dependent classes can be used as long as they provide an interface to
the API functions.

The set of member functions of the Router class can be divided into two parts
(see Figure 6.2): the dark marked members are used for communication with
the real world router and its interfaces and their use is restricted. Management
applications can only use the other functions to manage the router.

6.3. THE INTERFACE CLASS 107

The get type() function returns some type information about the router that can be
used by the application to develop device-specific code.

The get name() function returns the hostname of the router. The IP address is
fetched by usual DNS resolve methods.

The query route(IP Address) function returns the IP address of the next hop for
traffic to the given destination address. The translation of IP addresses to a pointer
to the corresponding Router representation can easily be made by an external
map.

The get RoutingTable() function is used to fetch the routing table from the real
world router it represents.

The get FlowTable() function is designed for getting the flow table of the router. If
there is more than one flow table in the router, they have to be mapped to a single
one. Those flow table contains information about the flows that will be handled
by the DiffServ implementation. The corresponding FlowTable data type is a
list of Flow instances (see above).

The configure(Interface*,string) function is used for sending a router configura-
tion command to the interface pointed to by the first argument. The interface
related part is held in the string argument. The Router class can choose the
way of communication and perhaps add the correct preamble to the command de-
pending on the interface type of the first argument. This function is designed to
be called by the Interface class after composing the correct command line.

The list flows() function gives a complete list of all flows that are registered at this
router.

The functions add flow(Flow, Type), delete flow(Flow), change flow(Flow, Ser-
viceLevel) are used to change the content of the router’s flow table. The Flow
data class is a router-independent flow description (see section 6.1). The Type
argument of the add flow function specifies how to configure the router type
for this flow. This parameter refers to the particular flow only. It denotes whether
the router acts as an ingress, intermediate or egress router for that flow. Those
functions can also call the Interface member functions to add the necessary
traffic conditioners and/or adapt the service level.

6.3 The Interface Class

The Interface class is designed to represent the whole set of network inter-
faces that could be part of a router. Interface objects are most likely created

108 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

by the child classes of the Router during initialisation. Each Interface pro-
vides member functions that are important for the QoS management:

The get name() function returns an identifier of the interface. This identifier could
e.g. be the name of the interface within the router.

The add TC(TC*,int,int,int) function adds a traffic conditioner to the forwarding
path of the interface. The location within the forwarding path is addressed by
the three integer parameters: each traffic conditioner has its unique identifica-
tion number called handle (the first parameter) and it is normally attached to
some other traffic conditioner, whose identification number is given as the second
parameter (the parent). If the conditioner is the root of the forwarding path
this parameter is zero. Some traffic conditioners (e.g. classifiers) can have mul-
tiple conditioners attached. This can be indexed by the third parameter (called
position). The add TC function can create the necessary traffic conditioner
together with the correct parameters, which can be calculated from the actual ser-
vice level.

The functions del TC(TC*) and chg TC(TC*,strstream) are used to change the
forwarding path of the interface. Since the information of the location of the traffic
conditioner within the forwarding path resides in the conditioner itself there is no
need for another parameter. The strstream parameter of the chg TC function
is a generic way of setting different numbers and types of parameters for different
traffic conditioners.

The two functions incr SL(int,ServiceLevel) and decr SL(int, ServiceLevel) change
the overall service level of a certain service at this interface. They increase or de-
crease the allocated bandwidth of the service and adapt the excess bandwidth or
the delay limits.

The configure(Flow,Type) function arranges the correct traffic conditioners in the
forwarding path of the interface for the given flow. The arrangement of the traffic
conditioners depends on the Type parameter, that specifies, whether the interface
should be configured as an ingress, an egress or any other type of interface.

6.4 The TrafficConditioner Class

The TrafficConditioner class represents the concept of modules that are
used in the forwarding path of an interface in order to perform the necessary ac-
tions to comply with the DiffServ Per-Hop-Behaviours [74, 78]. For QoS manage-
ment it is not necessary to simulate the exact behaviour of each conditioner. We
only need but a class for each “real-world” conditioner that knows the way how
to address its counterpart (e.g. command line syntax). The way how to compose

6.5. DYNAMIC C++ CLASSES 109

the traffic conditioners to support a certain service has to be programmed within
the Interface class. Some common rules for boundary and core routers can
be used to automate the setup of DiffServ routers.

The get name() function returns the name of the traffic conditioner.

The set handle(int), get handle(), set parent(int), get parent(), set position(int)
and get position() functions handle the location parameters of the traffic condi-
tioner within the forwarding path of an interface. The set functions are used
by the Interface::add TC member function to specify the three parameters.
The get functions can be used by any application.

The get options() function returns a string that contains the command-line op-
tions which have to be passed to a configuration command to set up this special
traffic conditioner. As traffic conditioners of different types may have multiple
and very different parameters (e.g. rate and depth for a token bucket filter or queue
weights for a weighted fair scheduler) it is the most generic way to support differ-
ent types of conditioners.

Note that there is no function for setting the parameters, because this can be eas-
ily done by the traffic conditioner’s constructor call. The command line string
can then be composed from the constructor arguments. In order to change the
parameters of already existing and installed traffic conditioners we can use the
Interface::chg TC() function.

We have chosen only one base class of traffic conditioners (traffic conditioning
blocks in [14]). Conceptually, we could have derived different kinds of blocks
from that base class, such as classifiers, meters, markers, packet schedulers, queues
etc), and we could again derive from a packet scheduler a weighted packet sched-
uler and a priority scheduler, and so on. This would lead to an inflation of classes
differing in details only. It is better to let the application programmer choose a
suitable set of traffic conditioners to manage and configure the underlying net-
work.

6.5 Dynamic C++ Classes

The main focus of the bandwidth broker design is on flexibility, extensibility and
on having generic programming interfaces and data abstraction, that allow a pro-
grammer to develop different broker algorithms using high-level commands that
hide the network topology and heterogeneity.

Nearly all those requirements can be fulfilled using the object-oriented concept of
polymorphism. In short, polymorphism is the ability of an object belonging to a

110 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

derived class to act as an object belonging to the base class. While this has already
some advantages in terms of extensibility and generic interfaces, the real power
of polymorphism is unveiled when some functions of the base class are declared
virtual or pure virtual. Thus we can provide an own version of those functions
for each derived class. This allows us the full extensibility of our software. Now
we can add new derived classes to provide whatever behaviour we desire. We
therefore have separated the interface (the base class) from the implementation.

Despite the big advantages of this technique it suffers from a drawback: we must
recompile (or at least re-link) our software after adding new components. In a
scenario that relies on a highly available system (as a bandwidth broker should
be) this is not desirable. It would be more convenient if we could load new classes
at runtime.

Here we can give only a short overview to dynamic C++ classes, a more detailed
article can be found in [127].

6.5.1 Dynamic Class Loading

Loading C++ class code at runtime has no direct support in the C++ language.
However, there is the possibility to use the mechanism to dynamically load C
code: the dl functions dlopen, dlclose and dlsym.

The dlopen function can be used to open a dynamic library at runtime. If it
is opened with the RTLD NOW flag, dlopen attempts to resolve all symbols
found in the library. In our case, this means that all objects defined in the library
are instantiated during the opening. The classes declared inside the library can be
accessed by the dlsym function. It is nevertheless impossible to know the class
name in advance. Therefore we cannot create new objects of that class directly.
The library providing the new class must also provide a way to create new objects
via a pointer to the constructor of the class.

6.5.2 Autoregistration

A set of functions returning a pointer to a newly constructed object (also called
makers) is sometimes called a factory. A very convenient and flexible way to im-
plement such a factory is using the STL map to assign key values to the functions
(e.g. the class names) and access the makers via these values. Usually the names
to access a specific class should be unique and commonly used. Therefore, it is
necessary, that the programmer of the new class assigns a name for it and that this
name is automatically registered at the factory.

6.6. API IMPLEMENTATION FOR LINUX ROUTERS 111

The key is to use a “proxy” class that does the registration for us together with the
RTLD NOW flag mentioned above. Since all defined objects are instantiated, we
only need to implement a class (the proxy) that does nothing but registering the
classes in the library at the factory.

6.5.3 The Factory of Dynamic Classes

To ensure a common behaviour of different router types and for providing a
generic configuration interface the approach of abstract base classes has been cho-
sen. However, it is very important, that different derived classes implementing the
functionality of e.g. new router types can be provided without recompiling and
even without restarting the configuration software. For this purpose, the API pro-
vides three so-called factory maps — one for each abstract base class. Those
factory maps provide the constructors of all derived classes, and the constructors
can be indexed by the class name. Encountering a new class name the map tries
to locate and open a dynamically loadable object file with that specific name. The
programmer of that file has to ensure that it will register itself at the correct factory
map at the time, when the dynamic object file is loaded by the linker. This can
be done by implementing a proxy class which performs the registration within its
constructor [127]. A LinuxRouter object can now be created by

Router* LR=factory_Router["LinuxRouter"];

6.6 API Implementation for Linux Routers

For each type of hard- or software element (i.e. routers and network cards from
different vendors or traffic conditioners with different algorithms) that is used and
managed within the network, an own class derived from one of the base classes
must be provided, that implements the functions of the API according to the needs
and the functionality of the element it represents. This set of classes must be
dynamic, so that the management application can load them during run-time. This
enables us to support network elements, that were unknown at the time when we
were compiling the management software.

Another important issue is to specify a communication interface between the API
classes and the routers. This depends on an implementation specific way to read
and/or write certain variables of the router. For example it can be achieved by
SNMP messages or command line interface (CLI) configuration for many com-
mercial routers.

112 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

Using the dynamic classes the application programmer is now able to construct a
logical image of the network he intends to manage by his application. All man-
agement is then performed by calling the API functions. Those calls are then
translated to hardware / implementation dependent function calls and afterwards
sent to the individual network elements.

6.6.1 API Child Classes for a Linux Router

Figure 6.5 illustrates how the API classes are used to derive classes for modelling
a Linux DiffServ Router, so that the application can use it and communicate with
it. Each of those child-classes must implement the API functions in a hardware-
specific way. The generic data classes (see Section 6.1) can be used to model
the important parts of a router (e.g. the routing table, the flow table or some in-
formation about the network interfaces) in a way suitable for the API. Using the
communication interface to connect to its hardware - counterpart, the child class
can execute the necessary commands and fetch and filter the desired information,
so that the generic data classes can be initialised.

R
P

C
 C

al
ls

Linux PC

R
P

C
 S

er
ve

r

PC Ethernet Interface Card

LinuxDSRouter PC Ethernet
Interface

shaper TBF

FIFO
eth2eth1eth0

C
o

m
m

u
n

ic
at

io
n

 In
te

rf
ac

e Routing
Table

Flow
Table

classifier

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 6.5: An application example for the abstract API classes

6.6.2 Linux Router Class

Any computer running the Linux operating system can easily be configured to act
as a router (i.e. it forwards packets not destined to itself). Such a computer is
referred to as Linux Router in this section. Since a Linux Router is not a com-
mercial router, we need a special communication interface to send configuration
commands and get some router settings (e.g. the routing table or a list of IP ad-
dresses).

6.6. API IMPLEMENTATION FOR LINUX ROUTERS 113

6.6.3 Ethernet Interface Class

The LinuxInterface class is an implementation of the Interface class
for a 100 MBit/s Ethernet interface for a Linux Router. This implementation
contains the information, how a DiffServ service class is set up for a Linux router.
This includes all command line syntax for the traffic conditioners as well as the
knowledge about the conditioners’ individual option syntax. In addition several
variables for bandwidth management and admission control are included, such
as the maximum link bandwidth of the interface or a maximum limit of the total
amount of EF traffic that may not be exceeded. The usage of those variables is
optional for the broker.

6.6.4 Traffic Conditioners

The implementation of TrafficConditioner classes for LinuxRouters
heavily depends on the implementation of the respective modules in the Linux
kernel. All necessary information about command line syntax and options must be
available via the API interface functions of the TrafficConditioner class.
As an example we will focus the explanation on the dsclsfr class.

An exemplary command line syntax for the dsclsfr module is:

tc qdisc add dev eth1 parent 1:1 handle 2: \
dsclsfr as1 0.05 as2 0.1 as3 0.1 as4 0.1 log_size 63

The three integer numbers after the parent and handle keywords specify the
position of the conditioner in the forwarding path. Those values are passed to
the function call placing the conditioner (i.e. the Interface::add() func-
tion). Since each conditioners’ location is defined by those three values, the
TrafficConditioner class provides an interface for reading and setting. The
remaining numbers are special options for the dsclsfr. Of course, the number
of those options will vary for each different conditioner, so the only generic way
to pass options to different kinds of TrafficConditioners is via an option
string, that is parsed by the object itself. This means also, that the object instan-
tiating the TrafficConditioners (i.e. the LinuxInterface) must know
about the command line options for each conditioner it instantiates.

6.6.5 Other API Implementations

The Linux Router API implementation was not the only implementation that has
explicitly been carried out. For the performance evaluation presented in Sec-

114 CHAPTER 6. A GENERIC MANAGEMENT API FOR QOS SUPPORT

tion 7.6 we had to implement a “virtual Linux Router” class that we could multiply
start at a single Linux PC. Of course, besides the disabled execution of configu-
ration commands, the difference between the two implementations is negligible.
However, there is also the possibility to implement classes for very different router
hardware (i.e. routers from Cisco, NEC, Allied Telesyn etc.) or nodes that can
only be managed by SNMP. We did not perform such implementations, but we
shortly list the necessary steps that have to be performed:

� Implement a class derived from the Router class:

– Investigate, how to retrieve routing information from the router and
implement the get RoutingTable() function accordingly.

– Repeat the previous step for the get FlowTable() function corre-
spondingly.

– implement the configure function, that it sends the command line
formed by the Interface class to the router

� Implement a class derived from the Interface class:

– The Interface class is responsible of setting up the traffic condi-
tioners in a way that DiffServ can be supported. This is mostly done
during the initialisation.

– The Interface class must also provide a way of setup, deletion,
and modification of a single traffic conditioner.

– The Interface class must update and query the load and utilisation
databases in case of flow setup, deletion or modification.

� Implement classes derived from the TrafficConditioner class: This
might be the easiest part, since only the generic interface of the Traffic-
Conditioner class has to be changed to parse the configuration parame-
ters given to the traffic conditioner. In addition, the parameters of the con-
ditioner’s location within the forwarding path have to be adjusted.

Chapter 7

Bandwidth Broker for Large
DiffServ Networks

The QoS Management API presented in Section 6 provides an object oriented
way to configure different router hardware in a homogeneous way. It is based on
three objects (Router, Interface and Traffic Conditioner) that are
required to model a DiffServ network [16]. Those objects implement the different
configuration facilities via derivation. In this chapter we present an architecture
using the API to build a bandwidth broker able to manage large DiffServ networks.
The bandwidth broker uses those three classes to build a representation of the un-
derlying network topology. It can configure the router hardware by using common
configuration commands (such as Router::add flow). Those generic com-
mands are translated into the correct configuration scripts by the corresponding
Router instance. This solves the problem of missing router support by adding
a software layer capable to deal with various routers but hiding the differences
behind a generic interface.

The API additionally provides the necessary functionality to keep track of the
amount of bandwidth reserved for a specific DiffServ class at each interface of
each router. Therefore, the bandwidth broker is also capable to manage the band-
width in order to either minimise the configuration/signalling overhead or to deny
flows that cannot be served due to limited bandwidth resources (e.g. in a wireless
access network).

Figure 7.1 shows the bandwidth broker architecture in detail. We will first fo-
cus on the simpler case, that the bandwidth broker manages an isolated network,
i.e. all flows that have to be set up have its source and destination in the same
network/domain. We also omit admission control for this first exemplary case to
keep it as simple as possible. A policy database allowing admission control based

115

116 CHAPTER 7. BANDWIDTH BROKER

on subnet masks is presented in Section 7.7, where we develop a more elaborate
bandwidth broker architecture that is able to support multiple ISP internetworks.

Broker
Bandwidth

16275
37652
24673
14872
45768
45769
45770
45771

Pool
Flow ID

...

User
Interface

Router
Interface(virtual network)

Topology Database

Router R1
Interface 0
Interface 1

Router R2

Interface 1
Interface 2

Interface 0

...

Flow Table

Host A

Host A

Network X

...

AF3 5500

AF1 500

EF 300Host B

Host C

Network Y

Router R2
Router R4
Router R5

Utilisation Table

...

Router R2
Router R4
Router R5

Reservation Table

...

Router R1
Router R2
Router R2

400
1300
350

Router R1
Router R2
Router R2 400

1500
600

Figure 7.1: The Bandwidth Broker Architecture for an isolated network

The management layer of the bandwidth broker has to fulfil several requirements
in order to be able to configure the network:

� it has to know the topology

� it has to keep track of the resources that are currently allocated

� it has to perform call admission control

� it has to communicate with adjacent bandwidth brokers

� it has to communicate with users to negotiate resource reservations

Several building blocks are thus needed to form the management layer of the
bandwidth broker:

� topology database

� reservation and utilisation tables

� policy database

7.1. THE TOPOLOGY DATABASE 117

� flow table

� user and broker communication interfaces

The topology database naturally forms the interface between the management
layer and the virtual network. It is automatically built during the startup phase
and contains all IP routing information about the network. This information is
held in routing tables that are part of the Router objects of the virtual network.

Both communication interfaces — broker-broker and user-broker are built on
top of a TCP/IP server-client model that offers a functionality similar the the
SUN RPC model. The server offers a certain set of functions (e.g. add flow,
del flow) the client can call; the client can pass parameters to the functions and
receives a result. Broadcast functionality is included, too.

The bandwidth management part consists of the reservation and utilisation ta-
bles, together with the policy database. Those components form the decision base
about admission or rejection of a flow: a flow can only be admitted if the resulting
bandwidth utilisation on any link is lower than the limit configured in the pol-
icy database. The policy DB contains such limits for each ingress link and each
connected foreign subnet according to the contracts negotiated with neighbouring
bandwidth brokers.

The configuration layer consists of hardware - dependent configuration daemons
running one at each router. The communication between the configuration layer
and the virtual network is unspecified. Virtually any means of configuration pro-
tocol can be used (e.g. SNMP, CLI). In our implementation we use a TCP/IP
socket based protocol offering a command line interface to the Linux traffic
control configuration API. The variety of this communication is again hidden
from the management layer by the polymorphic virtual network.

7.1 The Topology Database

During the initialisation the broker automatically generates a network representa-
tion. This can be done either by reading a local topology database from the hard
disk, or by broadcasting a broker advertisement message. Each router has to reply
to this advertisement message giving its host name and its router type. We chose
this approach because of its stability against changes in the topology, although
we had to accept the resulting need of a router daemon running on each router.
Since we nevertheless depend on a router daemon to perform the configuration
commands from the bandwidth broker, this is not a big drawback.

118 CHAPTER 7. BANDWIDTH BROKER

After this step the bandwidth broker fetches all routing tables from the network. It
now has the full knowledge of the topology on the IP layer, which is sufficient for
our task (i.e. configuring DiffServ flows). In addition, all necessary traffic condi-
tioners needed to support DiffServ are already set up and a default configuration is
loaded. This default configuration simply consists of empty DiffServ reservations
at each interface.

Bandwidth
Broker

Router 1 Router 2 Router n

BROKER_ADV

BROKER_REPLY

GET_RT

SETUP_IFC

GET_RT

SETUP_IFC

...

...

GET_RT

SETUP_IFC

Figure 7.2: Setup of the Topology Database

7.1.1 Topology Auto-detection

This feature enables the bandwidth broker to detect the topology of the network
it is managing. It relies on a communication server running on each router of
the network. This server has to reply to a broadcast call answering its hostname
and the router type. This type information may for example contain the router
vendor and series and is the basis of the decision how the router is addressed for
configuration. After the broadcast the broker has a list of hostname / type pairs
and can now build an image of the topology, consisting of one Router object
per node. The correct derived type of the Router class is chosen by the router
type information, and the routing table is fetched automatically by the Router’s
constructor.

7.1.2 The Naming Service

The virtual network representation within the bandwidth broker consists of a col-
lection of pointers to Router objects. Those objects are unique and should never

7.2. BANDWIDTH MANAGEMENT AND ADMISSION CONTROL 119

be copied since they can become very large. To map the hostnames to the Router
pointers, a DNS-like service has been implemented, that returns the pointer cor-
responding to a given IP Address / hostname. This service is initialised during the
startup phase of the bandwidth broker.

7.2 Bandwidth Management and Admission Control

It is not advisable to reconfigure a router every time a flow is registered that crosses
that router. This would lead to a large communication overhead and thus signifi-
cantly decrease the overall network performance. There are some alternatives to
that approach:

One way is to over-provision the different service classes, i.e. allocate more re-
sources to a service class than there is currently reserved. This has the advantage
of reducing the signalling overhead since we do not have to reserve additional
bandwidth for each flow, but there possibly is enough bandwidth reserved for
some flows by the over-provisioning algorithm. Only when a certain threshold is
exceeded we adjust the overall reservation on the router (see also [67, 68]).

This approach has the possible drawback of wasting some of the reserved band-
width and of allowing the users of a service class to transport more prioritised
traffic than they negotiated. The latter case should not occur in a properly de-
signed DiffServ network, since traffic shaping at the ingress point inhibits the
hosts to send more than the negotiated limit. The first case, however, is also not
important for the DiffServ implementation on Linux routers, because all of the
unused DiffServ bandwidth can be used by best effort traffic and therefore is not
lost at all.

7.3 Bandwidth Broker API Commands

The bandwidth broker offers several flow handling commands to a user that hide
the heterogeneity of the network and necessary actions per router thus providing a
simple, generic configuration API. Usually these commands have a flow descrip-
tor argument and also a flow descriptor return value. The client can specify the
flow it would like to set up as a parameter to the API function call and check if
the setup was successful by looking at the flags field in the return value. Also the
flow ID is returned in the appropriate field of the returning flow descriptor. This
flow ID must be used for future reference (e.g. when using the delete or change
commands).

120 CHAPTER 7. BANDWIDTH BROKER

The client software supports a customer in contacting the bandwidth broker to
negotiate and manage resource reservations (see [158, 157]). The customer can
specify a flow description — i.e. a

�
source address, source port, destination ad-

dress, destination port, transport protocol � tuple — and additionally a service
level description. This service level description contains in its basic form just the
bandwidth and excess-bandwidth information together with two flags indicating
the necessity of the flow to be handled by a low-delay or a low-loss service. This
flow description is implemented as a separate object in the flow description class
and can therefore be adapted to new demands very easily.

7.3.1 Flow Establishment

The add flow function must be called for establishing a new flow. The function
expects a Flow object to be passed via the communication interface. If the net-
work can be configured to handle the flow, a new, unique flow ID is created, the
status of the flow is set to FLOW::ACCEPT, and the flow is returned to the calling
process via the communication interface.

To set up the flow and configure the network the following steps are performed:

� choose an appropriate DSCP. We will use the set dscp function for this
purpose.

� create a new flow ID. This function ensures, that this flow ID is unique for
the management domain of the bandwidth broker.

� perform a traceroute to get all routers that eventually need to be reconfigured

� configure the ingress router. The ingress router always has to be reconfig-
ured, as it is responsible for marking and shaping the flow. The configura-
tion is performed by the Router::add flow function.

� configure the core and egress routers. To reduce the signalling expenses the
bandwidth broker uses over-provisioning.

� the actual traffic load and the actual reservation are updated for each inter-
face involved in the flow setup

� the global flow table is updated

7.4 COMMUNICATION SUBSYSTEM 121

7.3.2 Flow Deletion

The del flow function is used for deregistering a previously installed flow. This
function expects the Flow object via the communication interface and performs
the following tasks:

� check the correctness of the flow ID and the flow.

� delete the flow from the ingress router (using Router::del flow)

� reduce the load at all core and egress routers.

� eventually adapt the over-provisioning.

� return the flow ID to the global pool

� delete the flow from the global flow table.

7.3.3 Flow Modification

The change flow function can be used for changing an already registered flow.
It is possible to change bandwidth, service level and also parts of the forwarding
path. Also this function expects a Flow class as an argument. This flow class
must contain the flow ID of the original flow in its flow id field. In particular, the
change flow function does the following:

� The original flow is fetched from the global flow table, using the flow id
variable of the new flow.

� The difference between the old and the new path is computed.

� If the ingress router has changed, the flow is deleted from the old ingress
router by the Router::del flow function, and the new ingress router is
configured via Router::add flow.

� The bandwidth used by the old flow is released and the bandwidth used for
the new flow is allocated if necessary. If there is a part of the route that is
used by both flows, we have only to update the bandwidth on that part.

122 CHAPTER 7. BANDWIDTH BROKER

Communication
Client

C
om

m
un

ic
at

io
n

C
lie

nt

Bandwidth Broker

Network

Host Bandwidth Broker

Communication
Server

Communication
Server

Communication
Server

Communication
Server

Communication
Server

C
om

m
un

ic
at

io
n

Se
rv

er

C
om

m
un

ic
at

io
n

Se
rv

er
 /

C
lie

nt

C
om

m
un

ic
at

io
n

Se
rv

er
 /

C
lie

nt

�����
�����
�����

�����
�����
�����

Figure 7.3: Communication Architecture for the Bandwidth Broker

7.4 Communication Subsystem for the Bandwidth
Broker

For the communication between the broker and the other entities (e.g. hosts, net-
work elements or other brokers) a threefold communication architecture has been
developed (see Figure 7.3): Broker-router communication, broker-user communi-
cation and broker-broker communication. The architecture is based on the server
- client model and offers a functionality very similar to the SUN RPC [120, 155]
model. Each communication server provides a set of functions a client can call.
The server executes the function with some parameters specified by the client and
delivers the result back to the client. Internally, our implementation uses RPC
function calls to carry out the communication. This can be changed to a imple-
mentation based on TCP sockets only.

7.4.1 The Communication Server

The set of functions a communication server provides is usually a subset of mem-
ber functions of a certain class (e.g. a bandwidth broker class or a Linux router
configurator class). Therefore, if we want to implement a general communication
server class, we have to deal with member functions of different classes. One so-

7.4 COMMUNICATION SUBSYSTEM 123

lution could be to establish static wrapper functions in each class and ensure, that
only one object of each class is instantiated (which would be a valid assumption
for a bandwidth broker within a network). We chose a more elegant solution to
this problem: The communication server is implemented as a template class in-
dexed by the type of the class it belongs to. This way the type of the member
functions is known to the server and it can access the member functions using
pointers.

Each communication server opens two sockets: one for unicast connections and
one for broadcast. Since we have to use UDP for the broadcast socket we can
assign the same port number to those two sockets. The port number the server
has to listen to must be provided by the correspondent main class. During the
construction of the main class all member functions of the main class that have
to be accessible from outside are inserted in a list of function pointers within the
server.

7.4.2 The Communication Client

The communication client class connects to a communication server on a given
host and port. The communication client class provides two functions, a static
broadcast function and a unicast function. Using these functions, the user can
specify a call parameter, that defines the function he would like to execute on
the remote system. In addition, a single parameter can be given to the remote
function and a result can be passed back. For binary or higher-level functions
that require more parameters, a separate data structure should be defined that con-
tains all parameters and can be passed as one single parameter. The broadcast
function contacts each communication server in the network and gathers the re-
sults in a list. This function is static, which means it does not belong to a single
instance of a communication client and therefore does not have a specified host-
name. Depending on the port number the broadcast function uses, a different class
of communication servers is called.

7.4.3 Serialisation

Serialisation is the term commonly used for converting an object into a stream
of bytes for the purposes of storing it onto the disk or transmitting it over the
network. Basically, serialising an object involves serialising each of the object’s
data members in a well-defined order. Each of the data members should support
serialisation, thus serialising a high-level data structure is done recursively.

124 CHAPTER 7. BANDWIDTH BROKER

If an object dynamically allocates memory, the amount of this memory is trans-
mitted first, to allow the client side to reconstruct the object by allocating memory
correctly. Serialisation in our scenarios therefore includes the serialisation of the
heap state of an object but not the execution stack and the register state. This
would only be necessary if we would like to serialise objects that perform long
computations, to avoid a restart of the computation from the beginning. In our
case, to transmit call parameters to functions, pure heap state serialisation is suf-
ficient.

The implementation of the serialisation consists of two function templates (one
for serialisation, one for deserialization) with specialisations for each object that is
not a built-in type. The specialisations take care of the correct memory allocation
and object dereference for higher-level objects and cannot be deduced from a
general implementation. The choice of using function templates instead of the
usual overloading of input/output operators provides a greater flexibility in the
number and type of call parameters to the serialisation functions (e.g. different
file descriptors, flags, etc.).

7.4.4 The Bandwidth Broker — Router Communication

Initialisation

get_RoutingTable()

get_FlowTable()

init_FT(list<Flow>)

Command Interpreter

execute(string)

Autoconfiguration

reply()

solicit()

Router Communication Server

managed_by()

Information Service

Figure 7.4: The Router Communication Server

Each router in the network has to provide a configuration daemon to execute the
functions needed to configure this router. This daemon is a communication server
providing the functions to the bandwidth broker. The broker calls these func-
tions each time it initialises or (re-)configures the router. The functions of the
communication server can be divided into four parts. The first part includes the
functions corresponding to the private member functions of the Router class.
These functions are only called during the initialisation. The second part consists
of one function only (the execute function) which provides a way to execute
shell commands or scripts directly at the router. It is called from the various flow
configuration functions of the bandwidth broker. The third part consists of two
functions (reply and solicit) that are used by the topology auto-detection
feature of the broker (see Section 7.1). The last part also consists of just one func-

7.4 COMMUNICATION SUBSYSTEM 125

tion that returns the name of the bandwidth broker configuring this router. This
function will be used in a multi-ISP scenario (see Section 7.7).

7.4.5 The Bandwidth Broker — User Communication

reply()
solicit()

Autoconfinguration

Bandwidth Broker Communication Server

Flow Setup API

request_FlowList()add_Flow(Flow)
del_Flow(Flow)
change_Flow(Flow)

Information API

Figure 7.5: The Broker Communication Server

The broker itself provides a communication server offering all broker commands
(cf. Section 7.3) to the user. A graphical interface offers a user-friendly way to
call the different broker commands and to keep an overview about the flows that
are currently set up.

Negotiation of a new SLS The messages that need to be exchanged between
the host and the bandwidth broker in order to set up a new SLS are shown in
Figure 7.6. The messages are exchanged using the TCP protocol. Authentica-
tion information also has to be included, but this issue is not considered in this
scenario.

Bandwidth
Broker

DiffServ
Router(s)

(1)

(3)
(4)

(2)

Client

Figure 7.6: Message sequence for negotiating a new SLS

The messages needed to negotiate a new SLS as the following:

1. The initial request message defining the Service Level of the new flow. This
message contains the data structure shown in Figure 6.4, describing the flow

126 CHAPTER 7. BANDWIDTH BROKER

specification in an abstract way. With this message, the broker can decide
on how to configure the routers in a way that best fits the current network
topology.

2. The bandwidth broker translates the abstract packet data into a concrete
router configuration. Now it tries to set up the routers that are involved
during the transmission of the flow. The bandwidth broker can also check
in advance, if there is enough bandwidth reserved to accept the flow and
reject the SLS if this is not the case (see message (4)). The API described
in [160] manages all the translation and configuration and also provides the
functionality to manage the bandwidth that is reserved.

3. Each router reports success or failure of the configuration back to the band-
width broker.

4. The bandwidth broker reports the status of the SLS back to the mobile host.
Failure can be caused by errors during the configuration or — most likely
— by a unavailable amount of bandwidth.

7.5 Client Software and User Interface

Each client that wants to contact the bandwidth broker to negotiate a reservation
needs an implementation of a communication client (cf. Figure 7.3) that calls the
correct broker functions. In order to support the user and to make the negoti-
ation more convenient, a graphical user interface (GUI) has been implemented.
The GUI offers an input menu (see Figure 7.7) where the user can fill in his re-
quirements. All other necessary actions are performed by the client software. In
particular this actions are:

� search for a bandwidth broker via broadcast calls

� call the appropriate broker API functions

� display the flows after successful reservation

7.6 Performance of the Architecture

The performance evaluation of our architecture shows how fast the bandwidth
broker can handle flow requests while managing a reasonably large network. In

7.6. PERFORMANCE OF THE ARCHITECTURE 127

Figure 7.7: GUI Input Menu

addition, we were interested in the memory consumption of the bandwidth bro-
ker, which we expect to be quite large because of the central topology and flow
databases. For the evaluation we had to emulate a large number (about 200)
of routers (more precisely: router configuration daemons) on a single PC, since
no existing DiffServ network consisting of several hundred nodes was available.
Therefore we had to restrict the actions of the router daemons: no flow tables
have been written to the kernel memory or to the hard disk, and no configuration
commands have been actually executed. Otherwise a huge overload on the PC
hosting the router daemons would arise. On the other hand these restrictions do
not compromise the reliability of our results because of the parallelism of these
actions: executing one action after another on a single machine produces a large
delay but executing them in parallel on several machines is done very fast.

7.6.1 Evaluation Scenarios

For the performance evaluation several test topologies have been created using
the tiers [45] program. This program randomly generates a topology consisting
of a single WAN with several MANs and several LANs per MAN. The number of
routers per network can be chosen. We generated seven topologies from 157 nodes
up to 1010 nodes and tested our broker with those topologies. As an example,
Figure 7.8 shows the topology consisting of 535 nodes. The routing tables were
generated by the Bellman-Ford distance vector algorithm [11, 61]. Each routing
table contains the distance (in a given metric; here: hops) to each router in the
network.

The measurements have been performed on Linux PCs in our network laboratory.
The different platforms available are listed in Table 7.1. All PCs are intercon-
nected via full-duplex 100 MBit/s Ethernet lines.

128 CHAPTER 7. BANDWIDTH BROKER

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

V
er

ti
ca

l D
is

ta
n

ce

Horizontal Distance Number of Nodes: 535

Generated Network

WAN
MAN
LAN

Figure 7.8: An exemplary tiers-generated topology

7.6.2 Results

Memory Consumption

The memory consumption of a centralised application is always a critical issue.
Our bandwidth broker relies on two databases that can grow very large: The topol-
ogy database containing the routing tables and the flow database. Of course, the
amount of memory used does not depend on the platform. Therefore, we only
present the results for one platform.

The memory consumption of the flow database is not very critical because only a
very small amount of data has to be stored per flow, and the memory consumption
of this database grows linearly with the number of flow requests (see Figure 7.10).
The actual amount of memory used per flow during the experiments with several
topologies can be found in Figure 7.9. This table shows the amount of memory
that has been used for the flow database and other allocations that have been made
during a test performing 1000 flow requests.

However, in our scenarios the routing tables will grow quadratically with the num-
ber of nodes in the topology (see Figure 7.11). This is an effect of the RIP pro-

7.6. PERFORMANCE OF THE ARCHITECTURE 129

CPU Memory Bus Clock external bus name
2x AMD Athlon 2000+ MP 2048 MB 266 MHZ DDR U3-SCSI europa

2x Pentium III 800 MHz 512 MB 133 MHz U2W-SCSI atlas
AMD K6-2 525 MHz 192 MB 100 MHz EIDE buran
AMD K6-2 400 MHz 192 MB 100 MHz EIDE challenger
Pentium II 333 MHz 192 MB 100 MHz U2W-SCSI saenger

Table 7.1: The Laboratory Platforms

Topology Size Flow DB Size (kB)
157 1596
208 1760
305 1480
535 1368
710 1620
928 1332

1010 1652

Figure 7.9: Flow Database Size in kB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000

D
B

 S
iz

e
[k

B
]

Flows

Flow Database Size

Figure 7.10: Flow Database Size for
1010 Nodes Topology

tocol, which creates a routing table entry for each router of the network. Never-
theless we can estimate, how much memory a router instance consumes when its
routing table contains a reasonable number of entries (ca. 10000 - 30000). This
is approximately the size of the routing table of a backbone router in a large ISP
network. We assume a simple quadratic equation of the form � � ��� � � �

and es-
timate the memory of a router that contains 30000 entries. As a result, only about
15 MB would be needed for such a backbone router. A workstation equipped with
4 GB memory therefore would be able to hold the topology database of more than
250 backbone routers, each having a routing table of 30000 entries. To manage
a large network consisting of 1000 backbone routers, a single server with 16 GB
memory would be sufficient. Another way would be to separate the network into
four parts and assign each part a workstation with 4 GB memory (see Section 7.7).
Larger networks can be managed accordingly (assuming the size of the routing ta-
ble does not change).

Flow Setup Time

For measuring the speed of the bandwidth broker, a small client application has
been implemented to request small flows as fast as possible. This means we send a

130 CHAPTER 7. BANDWIDTH BROKER

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 200 400 600 800 1000

M
B

yt
es

Topology Size

Memory Consumption

Figure 7.11: Memory Consumption of the Bandwidth Broker

new flow request as soon as the reply of the bandwidth broker arrives at the client.
The bandwidth broker processes the incoming requests in sequential order, since
no parallel communication server has been implemented yet. This is subject to
future work and could further improve the performance. With this application we
were able to measure the flow reservation speed. Up to 1000 flow requests have
been performed for each topology.

For timing measurements two different strategies were used. The goal is to get
the performance of the bandwidth broker. The first strategy is to measure the
time between the sending of the flow request and the receiving of the reply at the
client. To do so, a simple stopwatch timing is sufficient, therefore we used the
UNIX time command. This command measures the total (wall clock) time a
command needs for execution, as well as the “user time”, the time that is spent in
the program code, and the “system time”, the time that is spent by the system, for
example to perform I/O calls.

The second strategy is to measure each internal function call of the bandwidth
broker and to add up these times. To do so we used the Tuning and Analysis
Utilities (TAU,[151]). This is a set of tools to analyse the performance of C, C++,
Fortran, and Java programs. By using this toolkit, we were able to measure the
execution speed of the broker’s add flow function (see Table 7.6).

Performance of the Different Platforms First we will investigate, how the re-
sponse time of the bandwidth broker depends on the computing power of the host
the bandwidth broker runs on and / or on the computing power of the configurator
host. For this purpose we performed tests using all the different platforms avail-

7.6. PERFORMANCE OF THE ARCHITECTURE 131

able. The first experiments consisted of co-located tests where bandwidth broker
and configurators ran on the same machines. This eliminates possible effects of
the interconnection network. We did an experiment setting up 1000 flows on the
smallest topology (157 nodes). The following results have been achieved (see
Table 7.2):

Host Wallclock time User Time System Time
europa 0.715s 0.070s 0.060s
atlas 0.887s 0.080s 0.040s
buran 2.857s 0.220s 0.140s

challenger 3.436s 0.400s 0.140s
saenger 2.314s 0.190s 0.070s

Table 7.2: Performance on a single host

By distributing the broker and the configurator host, it can be seen (cf. Table 7.3),
that the performance of the broker host has a much higher impact on the overall
performance than the configurator host (all flow requests have been sent from host
europa):

Broker Host Configurator Host Wallclock time User Time System Time
europa challenger 0.837s 0.070s 0.050s
europa saenger 0.839s 0.090s 0.040s

challenger europa 2.813s 0.030s 0.010s
saenger europa 2.203s 0.090s 0.050s
saenger buran 2.416s 0.050s 0.010s
buran saenger 2.583s 0.020s 0.010s

enterprise challenger 2.714s 0.050s 0.020s
europa atlas 0.780s 0.080s 0.040s

Table 7.3: Performance on distributed hosts

In the last two lines it can be seen, that depending on the computing power the
influence of the interconnection network can vary. Using a reasonable fast broker
host, the interconnection network is no bottleneck and can almost be neglected.
For this reason, we performed the remaining experiments using the host europa
solely.

Best-Case Scenario The fastest response a client will get from a bandwidth bro-
ker (if we assume a positive answer) will be if there is enough bandwidth allocated
along the path already and therefore just the ingress router has to be reconfigured

132 CHAPTER 7. BANDWIDTH BROKER

(this has to be done anyway). In order to measure the performance of our band-
width broker under such circumstances we performed an initial configuration of
the network providing enough bandwidth on each link so that all subsequent flow
requests were able to be admitted after the ingress router reconfiguration. Fig-
ure 7.12 shows the results we got for each of the seven topologies:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200

S
et

up
 T

im
e

[s
]

Flows

Topology 157
Topology 208
Topology 305
Topology 535
Topology 710
Topology 928

Topology 1010

Figure 7.12: Flow Setup Time of the Bandwidth Broker (Best Case)

We can see that there is a linear correlation between the number of flow requests
and the total setup time. This denotes a constant flow setup time for a given
topology. Table 7.4 shows the speed averaged over 1000 flow requests for three
topologies.

We can also recognise a small dependency of the topology: The topologies with
710 and 1010 nodes have a slightly lower speed than the one with 928 nodes. This
can be explained if we look at the profiling results which give not only the time
of a function call but also the number of times this function has been called. In
Table 7.5 we can see that the topologies with 710 and 1010 nodes have a quite
higher number of routing table queries. This indicates a bigger diameter of the
topology which is a result of the randomness of the topology generation process.

Another interesting topic is the difference between the Client time and the Broker
time. The client measures its time starting the sending of the reservation request
up to the reception of a reply; the broker starts at the reception of the request and

7.6. PERFORMANCE OF THE ARCHITECTURE 133

Topology Size Flow Setup Speed (Flow/s)
157 2096.4
208 2036.6
305 1736.1
535 1818.1
710 1522.0
928 1785.7

1010 1451.4

Table 7.4: Flow Setup Speed (Best Case)

Topology Size Routing Table Queries Diameter
157 9368 9.36
208 11508 11.5
305 16476 16.5
535 13228 13.2
710 20536 20.5
928 12218 12.2
1010 21328 21.3

Table 7.5: Total Number of Routing Table Queries

stops when the sending the reply. This difference tells us tell the speed of the com-
munication interface. Table 7.6 shows the differences between Client and Broker
time measured, averaged over 1000 Flow requests. We can see that the differ-
ence is about 10 – 20
 s. This indicates a very high speed of the communication
interface.

Worst Case Scenario In the worst case, a bandwidth broker has to reconfig-
ure all routers along the forwarding path of a flow. This obviously results in a
higher latency but fortunately the use of overprovisioning can reduce this case
to a rare exception. To measure the bandwidth broker under such extremely bad
circumstances we disabled the overprovisioning. As a result, each router had to
be reconfigured. This case will be a rare exception. Normally a user will have a
much lower latency.

Figure 7.13 shows the results for this test. As can be seen, that the time needed
to set up a given number of flows is clearly higher than in the previous experi-
ments shown in Figure 7.12. In Table 7.7 can be seen, that the Flow Setup Speed
has dropped by almost 40%. However, taking into account the large number of

134 CHAPTER 7. BANDWIDTH BROKER

Topology Size Client Time [ms] Broker Time [ms]
157 0.477 0.451
208 0.491 0.480
305 0.576 0.554
535 0.550 0.521
710 0.657 0.640
928 0.560 0.527
1010 0.689 0.675

Table 7.6: Difference between Client and Broker Time per Flow Request

reconfigurations that have been performed, this is still quite fast. The reason is,
that reconfigurations of core routers are much simpler to be performed than set-
ting up an ingress router. A core router just needs reconfiguration of bandwidth
limitations for the service classes, whereas an ingress router needs a new traffic
conditioner to be inserted and configured (cf. Section 2.2.6).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

S
et

up
 T

im
e

[s
]

Flows

Topology 157
Topology 208
Topology 305
Topology 535
Topology 710
Topology 928

Topology 1010

Figure 7.13: Flow Setup Time of the Bandwidth Broker (Worst Case)

7.7. MULTI-ISP SUPPORT 135

Topology Size Flow Setup Speed (Flow/s)
157 1626.0
208 1538.5
305 1186.2
535 1290.3
710 970.9
928 1280.4

1010 930.2

Table 7.7: Flow Setup Speed (Worst Case)

7.7 Multi-ISP Support

If we want to support reservations crossing multiple ISP domains, that are man-
aged by different bandwidth brokers, we need several extensions to the previously
presented architecture. In the following sections we will discuss the changes in
the signalling protocol and we also need to adapt the implementation of the flow
reservation and setup procedure since we need to communicate with neighbouring
bandwidth brokers if a flow crosses several domains.

As an example we want to evaluate the scenario shown in Figure 7.14. Let us as-
sume that Host A wants to set up a bi-directional reservation from itself to Host B.
The route of this flow shall be: Router A1, Router A3, Router X1, Router X2,
Router X4, Router B1, Router B3. In addition, for simplicity and scalability rea-
sons there are only bilateral agreements between neighbouring bandwidth brokers,
i.e. only neighbouring brokers may communicate with routers or brokers of a do-
main.

Several new steps have to be performed and new problems arise in the setup and
configuration procedure:

1. After having received the flow description from Host A, Broker A has to
detect that the flow requires a domain-crossing request.

2. Broker A has to make sure, that other bandwidth brokers along the path
to Host B (Broker X and Broker B) set up the flow correctly and has to
provide them with the necessary information. This is especially important,
if the route from Network A to Network B is ambiguous: Broker X has
no knowledge of the routing within Network A and therefore cannot know
at which possible ingress router the flow from Host A to Host B enters its
domain.

136 CHAPTER 7. BANDWIDTH BROKER

Router A1
Router A3

Router A2

Router A4

Router A5

Router B1

Router B2

Router B3

Router B4

Host B

Network A

Router X3

Router X2

Router X4

Bandwidth Broker X

Network B

Network X

Router X1

Host A

Bandwidth Broker A

Bandwidth Broker B

���
���
���

���
���
���

���
���
���
���

�
�
�
�

Figure 7.14: An exemplary multi-ISP scenario

3. Brokers X and B have to set up a reservation from the ingress to the egress
of their domain.

4. Since the routing may be asymmetrical, the reservation for the reverse di-
rection must be started from Broker B.

We have implemented the solutions to those problems as follows:

1. To detect a flow request crossing or leaving the domain is quite easy: As an
example, the Naming Service of Broker A (cf. Section 7.1.2) does not know
Host B, therefore this host cannot be in the domain of Broker A. The flow
from Host A to Host B must be leaving the domain.

2. For the request of a resource reservation to neighbouring domains, Bro-
ker A constructs a new reservation request. To do so, two steps have to be
performed:

(a) Broker A discovers the first router in the next domain using the tracer-
oute command on its topology database (in our example this is Rout-
er X1). This router serves as the ingress router of the following domain

7.7. MULTI-ISP SUPPORT 137

and is inserted in the therefore newly generates Ingress Router
field of the SLS Signalling Packet (as shown in Figure 7.17, see also
Section 7.7.3).

(b) Broker A has now to detect the broker responsible for the subsequent
flow setup. To do so, it requests from the ingress router (Router X1)
the address of its bandwidth broker (Broker X).

Broker A can now send the reservation request to Broker X which in turn
can continue with the flow setup. Broker X has to perform similar actions
to form a correct reservation request to send to Broker B.

3. The knowledge of both, the source address and the ingress address allows
both Brokers X and B to set up the reservation along the correct path as well
as to perform admission control or policing based on the source address.

4. The problem of how to signal the Broker B to start the reservation for the
reverse direction is handled separately in the next section.

7.7.1 Backward Reservation

Quite a difficult topic in multi-ISP (and thus multi-broker) scenarios is the topic
of backward reservation: a user would like to reserve bandwidth for a flow from
a specific sender (perhaps a multimedia server for digital video) to itself. This
reservation is also called “receiver-initiated reservation”. In general this sender
can not be expected to be in the same domain as the user, therefore the bandwidth
broker of the server’s home domain has to be found. Since the routing may be
asymmetrical, the simple solution of setting up reservations on the known path
from the receiver to the sender is also not possible.

In RSVP all reservations are backward reservations, but in our case we prefer
not to rely on support from the foreign ISP other than provided by the bandwidth
broker. Another approach [135] uses modified ICMP echo request packets to
record the route from the sender to the receiver. Our solution does not change the
routers of the networks but is merely implemented in the code of the bandwidth
broker.

If a bandwidth broker detects a backward reservation (i.e. it can find neither the
sender’s IP address nor the ingress router’s IP address in its topology database)
it does not perform any reservation but will pass the flow request unchanged to
the next upstream bandwidth broker. It does not matter whether this is the cor-
rect bandwidth broker on the route from the sender to the receiver or not; the
only purpose is to find the correct bandwidth broker in the home network of the

138 CHAPTER 7. BANDWIDTH BROKER

sender. The path the reservation request takes is the same path a forward reserva-
tion would take, but without any changes in the routers. Finally, the reservation
request arrives at the broker of the sender. This bandwidth broker is now able
to find the correct route and to perform the necessary configurations. Afterwards
the correct downstream brokers are contacted, and finally the reservation is fully
established.

The disadvantage of this approach is, that the reservation request first has to travel
to the sender’s network before the reservation can be established. This leads to an
additional delay, but this penalty is met in other implementations, too. However,
since no reconfiguration of routers has to be done, the additional delay will be
comparably small. The main advantage of our approach is the independence of
any support from third parties; the backward reservation is implemented in the
bandwidth broker core and does not rely on special installations on the routers of
the network.

7.7.2 New Architecture Components

Figure 7.15 shows the bandwidth broker architecture for multi-ISP internetworks.
We can identify several new components:

Broker - Broker Communication Interface

An additional communication interface for broker - broker communication has to
be added. The protocol between the brokers nevertheless can be the same as in
the user-broker communication, as described in Section 7.4.5. Using this protocol
the brokers can reserve aggregations of flows by masking the source / destination
address just like any user can reserve a flow at the broker.

Policy Database

Usually it is necessary to restrict the amount of traffic entering a domain from the
outside. Thus, a policy database containing the information about the amount of
traffic foreign subnets are allowed to send is needed. This rather coarse access re-
striction can surely be improved, but it is sufficient to limit the number of users of
a bandwidth-limited access network (e.g. a wireless access point). Using this pol-
icy database we can provide admission control based on the network identification
of the sender / receiver address of a flow.

7.7. MULTI-ISP SUPPORT 139

User
Interface

(virtual network)
Topology Database

Router
Interface

Reservation Table

1500
400...

Router R1
Interface 0
Interface 1

Router R2
Interface 0
Interface 1
Interface 2

Flow Table

Host A

Host A

Network X

...

Interface
Broker

Inter

Network Y

...

Network X

Network A

AF3 5500

AF1 5000

EF 3000

Policy Database

AF3 5500

AF1 500

EF 300

Network Y

Host C

Host B

Broker
Bandwidth

Neighbour Table

...

Bandwidth Broker X

Bandwidth Broker Y192.168.10.7

192.168.0.2Router R2

Router R5

Utilisation Table

400
1300
350

...

Router R2
Router R2
Router R1

Router R5
Router R4
Router R2

Router R1
Router R2
Router R2

Router R2
Router R4
Router R5

600

18233:16275
18233:37652
18233:24673
18233:14872
18233:45768
18233:45769
18233:45770
18233:45771

Pool
Flow ID

...

Figure 7.15: The Bandwidth Broker Architecture for multi-ISP scenarios

Neighbour Table

As already mentioned the bandwidth broker needs to ask ingress routers from
foreign networks, about the bandwidth broker responsible to manage this foreign
network. In order to minimise the signalling traffic needed, the bandwidth broker
can save the name of a neighbouring bandwidth broker together with the corre-
sponding egress router / ingress router pair in the neighbour table.

FlowID Pool

The FlowID Pool is not a new component of the multi-ISP capable bandwidth
broker, however it had to be changed to provide not only network-wide unique
flow IDs but globally unique flow IDs. Therefore, the format of the flow IDs has
been changed to a pair of integer values, the first indicating the bandwidth broker,

140 CHAPTER 7. BANDWIDTH BROKER

which issued the ID, the second being created by the same algorithm as the one
used in the single-ISP broker.

7.7.3 Signalling Protocol

The signalling protocol has to be extended in order to help the bandwidth broker to
find the correct entry point of a flow into its network: suppose a user wants to set
up a flow from Host A to Host B, thus crossing the networks of several different
ISPs (see Figure 7.14). The user only specifies the source and the destination of
its flow (see Section 7.4). With this information, Bandwidth Broker A can set up
the flow until it reaches the border of its network (e.g. via Router A1, Router A3).
Broker A has to ask Broker X to continue with the reservation. Unfortunately,
Broker X cannot continue the flow setup without additional information: Bro-
ker X has no possibility to decide, where the flow from Host A to Host B enters
its network. There are two possibilities (Router X1 and Router X3) and one has to
know the internal routing of Network A to predict. Therefore the signalling proto-
col between the bandwidth brokers has been extended by an additional field: the
ingress router (see Figure 7.17). This field contains the IP address of the ingress
router where the flow enters a network. In the example above, the ingress router
for Network A would be Router A1, and assuming the routing mentioned above,
the ingress router for Network X would be Router X1. With this information,
Broker X can continue the correct flow setup to Host B. The same signalling has
to happen between Broker X and Broker B for the setup of the flow in Network B.

The implementation of the signalling protocol tries to minimise the amount of
signalling messages needed in case of a setup failure: when receiving a reserva-
tion request, the bandwidth broker has to ensure, that there is enough bandwidth
available for the flow request after the downstream domains have configured the
flow. If in the meantime a flow has allocated an amount of bandwidth such as the
initial request has to be rejected, all downstream domains must be notified, and
all signalling and configuration work has been useless. To avoid this, the brokers
previously check the possibility of the request being admitted before sending the
request to neighbouring bandwidth brokers: first the policy database is asked, if
the flow meets the policy of the network. Afterwards the requested amount of
bandwidth is entered in the reservation table. This is a very fast operation com-
pared to the reconfiguration of a router. Yet it ensures, that in the meantime no
new flow request can allocate the bandwidth of the pending flow request. After
the admission of the downstream domain arrives, the broker can now safely con-
figure its network, and report the successful reservation setup to the user. Using
this procedure the user is notified much faster if the reservation can’t be served.

7.7. MULTI-ISP SUPPORT 141

Host A

Broker A

Network A

Egress A

Ingress X Network X

Egress XBroker X

Ingress B

Broker B

Network B

(1)

(4)

(11)

(3)

(2)

(5)

(6)

(7)

(9)

(10)

(8)

(12)
(13)

Figure 7.16: Signalling Protocol Messages

The messages exchanged during the reservation process are summarised below:

(1) Host A sends a reservation request to its home broker

(2),(5) The broker asks the egress router’s routing table (or the neighbour table) for
the ingress router address

(3),(6) The broker asks the ingress router of the foreign network (or the neighbour
table) for the bandwidth broker of the foreign network

(4),(7) The broker forwards the reservation request with the updated ingress router
address to the neighbouring bandwidth broker

(8),(10),(12) The broker configures the network

(9),(11) The broker reports the successful completion of the setup

(13) Host A receives the report about its reservation request

142 CHAPTER 7. BANDWIDTH BROKER

Service Level slev

Protocol IDunsigned char

Source Address
Source Port
Destination Address
Destination Port

unsigned long
unsigned short

unsigned short

unsigned long

Ingress Routerunsigned long

Flow Description (II)

unsigned long FlowID
unsigned long Status

DSCPunsigned char

Figure 7.17: New SLS Signalling Packet Format

7.7.4 Multi-ISP-Capable Broker Commands

In this section we now summarise all changes made to the simple scenario de-
scribed in the beginning of this chapter in order to get the multi-ISP scenario.

Flow Establishment

The add flow command (cf. 7.3.1) is changed as follows:

� Choose an appropriate DSCP. If a DSCP is already set, map it to the DSCP
used in the own network.

� If no flow ID is set, create a new one.

� Ask the naming service, if the sender or the ingress address is part of this
domain.

– If both are unknown, this is a backward reservation. Find the egress
router to the sender.

– Get the next-hop router (i.e. the ingress of the neighbouring domain)
for the flow by looking at the egress routers routing table.

– Ask this ingress router for its managing bandwidth broker.

– Send the reservation request unchanged to the neighbouring band-
width broker.

� Ask the naming service, if the destination is part of this domain.

7.7. MULTI-ISP SUPPORT 143

– If yes, configure the flow along the path from the ingress address to
the destination address. If the ingress address is empty, use the source
address instead.

– If not:
� Find the egress router of the flow in this network.
� Get the next-hop router (i.e. the ingress of the neighbouring do-

main) for the flow by looking at the egress routers routing table.
� Ask this ingress router for its managing bandwidth broker.
� Write the ingress routers address into the ingress field of the flow

description.
� Send the reservation request to the neighbouring bandwidth bro-

ker.
� If the neighbouring bandwidth broker accepts the request, config-

ure the flow along the path in this network.
� Update the load and reservation tables.

� Update the flow table.

Flow Modification

The change flow command is a little more complicated: Yet this command
is very important in case of mobile hosts (see Part IV), if the location and/or
IP address of a host may change and existing reservations nevertheless have to
remain. Four different scenarios are possible: Changing the destination address
of a flow, or changing the source address of a flow, both as a forward or a backward
reservation. Figure 7.18 shows the different scenarios: in this figure each network
is managed by an individual bandwidth broker. In each of the four scenarios those
bandwidth brokers have to decide whether to add a part of the new branch to their
network, to delete an old branch, to change an existing part in their network, or to
do nothing at all. This decision is based on the existence of the globally unique
flow ID and on a simple comparison of the sender/ingress and receiver address.

If the broker receives a change flow command, it executes the following:

� If the flow cannot be found in the database

– If the sender address or the ingress address is part of the broker’s own
network, it sends the change flow command to the neighbouring
broker in the direction of the receiver; after a successful setup, it con-
figures the flow in the own network (this is exactly the same procedure
as setting up a new flow).

144 CHAPTER 7. BANDWIDTH BROKER

data
initial

situation

case 2

case 1

������ ����

�� ������

	
 ������

� ������ ������ ����

������ ��������

������ ����

�� ��� �

Figure 7.18: Changing an Existing Flow

– If both, sender and ingress address are unknown to the broker, it sends
the change flow request to the next broker in direction of the sender
(cf. backward reservation, Section 7.7.1).

� If the flow ID is found in the database:

– If the receiver address has changed, it sends a del flow command to
the broker in direction of the old receiver, it sends a add flow com-
mand in direction of the new receiver, and performs a change flow
in the own network.

– If the sender address or the ingress router have changed, it updates the
own flow table in a way, that the entry with the flow ID now contains
the new sender / ingress address. Afterwards it sends a del flow
command to the source bandwidth broker. Deletion of this flow will
be terminated at this broker, since the flows are no longer equal (the
new source address has been inserted before). Finally it performs a
change flow in the own network.

7.8. HIERARCHICAL BANDWIDTH BROKERS 145

7.8 Hierarchical Bandwidth Brokers

In Section 7.6 we have seen, that the performance of a single centralised band-
width broker is limited by several factors: The memory consumption for a net-
work consisting of several hundreds or even thousands of nodes is quite high.
In addition, the processing speed of a request is limited by the CPU power of
the bandwidth broker, thus only a limited number of reservation requests can be
served per second. The idea of distributing the load among several bandwidth
brokers, each managing an independent subset of a domain has already been dis-
cussed in Section 3.5.

From an architectural point of view a bandwidth broker in a hierarchy does not
differ much from a bandwidth broker in a multi-ISP environment: like a “multi-
ISP” broker such a leaf broker performs the local flow setup in its own network
independently from other brokers, and if a flow traverses another network it will
call the responsible bandwidth broker. The big difference between a broker hier-
archy and a collection of peer brokers in a multi-ISP environment is the way how
the routers in the network report to the responsible bandwidth broker: in a multi-
ISP scenario the unique address of the bandwidth broker managing the network
is returned (cf. Section 7.7), in a broker hierarchy two cases exist: if the request
comes from a router that belongs to the same (bigger) network, the address of
the leaf broker managing the subnetwork is returned. If the request comes from a
foreign network, the address of the root broker is returned. This separation keeps
the amount of signalling messages as small as possible.

7.8.1 Advantages of a Broker Hierarchy

The problem of load sharing between bandwidth brokers in a very large network
with a high reservation request frequency could be solved by simply subdividing
the network into smaller subnetworks, each managed by its own bandwidth bro-
ker. This would result in a simple multi-ISP scenario. A broker hierarchy has
the obvious drawback of introducing an additional entity that has to be considered
and more signalling is required to ensure the integrity of the network configu-
ration.However, a root bandwidth broker can decrease the amount of signalling
needed for flows crossing the network. We can see this in the example in Fig-
ure 7.19:

Each network is divided into several subnetworks, each managed by a bandwidth
broker (small black square). The upper network implements a broker hierarchy. A
Root Bandwidth Broker (big black square) is responsible for handling all external
flow requests. The root bandwidth broker does not need to know the topology

146 CHAPTER 7. BANDWIDTH BROKER

Legend:

Router
Bandwidth Broker

Subnetwork

Root Bandwidth Broker

Network X

Network Y

Network Z

Network Za
Network Zb

Network Zc

Network Ya

Network Xa

Network Xb

Network Xc

Router Yb1

Router Yb2

Network Yb
Network Yc

Router Yc1

Network Yd

Router Yd1

Router Ya1

Figure 7.19: Hierarchical Bandwidth Broker Example

as much in detail, as the leaf brokers do, but it can handle this requests with
topology knowledge of the subnetworks. Obviously such a network is much easier
to manage than the complicated fine-grained network. Thus, the management of a
network abstraction in the root bandwidth brokers has the advantage of being able
to react much faster to transitional flows than a collection of peer brokers could.

7.8.2 Operation of a Broker Hierarchy

Creating Subnetworks

A large network has to be divided into smaller subnetworks, which are to be man-
aged by a single leaf bandwidth broker each. This has to be done by a network
administrator in advance. The question of how to allocate routers to subnetworks
is quite difficult. It can only be solved with explicit knowledge of the surrounding
situation of the network. Many parameters have to be taken into account: First,
so-called “hot spots” have to be located, where many users with multiple and fre-
quently changing QoS requirements are found. Those users will cause a big load
to the bandwidth broker and thus this load has to be shared. Also the kind of the

7.8. HIERARCHICAL BANDWIDTH BROKERS 147

access networks used will influence the way the network is subdivided: in wireless
networks with small cells there is usually a high frequency of handovers. There-
fore, many reconfigurations of edge routers may be necessary. In this situation,
the grouping of some geographically and topologically close access networks may
help to diminish the signalling overhead and improving the overall performance
of the bandwidth broker hierarchy.

Initialisation of the Brokers

Each leaf bandwidth broker can initialise itself as mentioned in Section 7.1. The
root broker has a different initialisation phase: since it cannot auto-detect the
topology of the abstract network it has to read it from an external configuration
file. Since such a partitioning of the network is assumed to be stable, this is not
a drawback. The objects that form the topology database of the root broker are
also not representing routers but subnetworks, that are, however, configured via
the same configuration API like a normal router. This example again shows the
outstanding flexibility of the object-oriented interface between the management
layer of the bandwidth broker and the entities to be managed. Those entities
usually are routers, but as we have seen, they can also be entire subnetworks.

The root bandwidth broker performs an initial reservation of bandwidth between
the egress and ingress points of the subnetworks. This reservation is based on fixed
contracts with neighbouring bandwidth brokers and/or given knowledge about the
expected usage. This initial reservation and all following reservations on those
links should be big enough to minimise the signalling overhead. That means, the
Root Bandwidth Broker also acts as a client requesting a large amount of band-
width from the brokers managing the subnetworks and distributing this bandwidth
pool at its own responsibility.

For example let us assume, that in the network of Figure 7.19 all links are 100
MBit/s Ethernet links and the Root Bandwidth Broker for Network Y has the pol-
icy to initially reserve 10% of the total bandwidth for “foreign” flows. It would
then initiate three flow requests: from Router Yb1 to Router Ya1, from Router Yb1
via Router Yb2 to Router Yc1 and from Router Yb1 to Router Yd1, each request-
ing 10 MBit/s bandwidth.

Flow Establishment

To continue the example, let us now assume, that two flow requests are sent from
Network Xa to Network Yd and from Network Xa to Network Za. To simplify
the example we will not specify the host names of the sender and the receiver.

148 CHAPTER 7. BANDWIDTH BROKER

The first flow request from Network Xa to Network Yd will be sent to Broker Xa.
This broker detects, that the flow will leave its domain and initiates the flow es-
tablishment procedure as described in Section 7.7.4. Therefore it will forward the
flow request to Broker Xb, which in turn will forward it to Broker Xc. This broker
now detects, that the flow will leave its domain and thus requests the address of
the responsible broker from the ingress router of the neighbouring domain (in this
case Router Yb1). In contrast to the procedure presented in Section 7.7 the router
does not send the address of Broker Yb but — since the request comes from out-
side the domain — the address of the Root Bandwidth Broker. Therefore, the flow
request is sent to the Root Bandwidth Broker, which will use some of its initially
allocated amount of bandwidth for this flow between Router Yb1 and Router Yd1
and finally sends the flow request to Broker Yd to set up the last part of the flow
within the destination subnetwork.

The second flow request from Network Xa to Network Za will initially follow
the same path. After passing Brokers Xa, Xb and Xc it will be forwarded to the
Root Bandwidth Broker of Network Y. Now this broker detects, that the flow will
only transit Network Y (neither source nor destination address belong to network
Y), so this flow request is not forwarded to any of the leaf brokers of Network Y.
The Root Broker configures the flow from Network Yb to Yc using only its pre-
allocated bandwidth and afterwards forwards the flow request to Network Z. In
this example we can see the difference and the benefit of a broker hierarchy: In a
pure multi-ISP scenario without a hierarchy such a flow request would have to be
handled by Brokers Yb1 and Yc1, whereas in a hierarchy scenario only the Root
Broker is involved. Assuming that the subnetworks consist of several hundred
nodes each, while the subnetwork topology is very simple this results in a very
fast flow setup and decreased number of signalling messages compared to the
multi-ISP scenario.

7.8.3 Conclusion

Our approach to organise a hierarchy of bandwidth brokers differs a lot from the
ones found in the literature. Usually, the root broker manages the network in a
centralistic way and the leaf brokers allocate large amounts of bandwidth they can
distribute at their own responsibility [193, 134]. In our approach the control of
the bandwidth fully remains at the leaf brokers. The root broker just allocates an
amount of bandwidth it can distribute to reservation requests that are crossing the
network. In case of a flow going from one subnetwork to another in the same
“big” network, this has the advantage of not detouring the reservation request to
the root broker.

7.8. HIERARCHICAL BANDWIDTH BROKERS 149

Summary

In this part we presented the design and the implementation of our bandwidth bro-
ker architecture. First, in Chapter 6 the QoS management API has been presented.
This API is the important interface between the management and the configura-
tion layer in the bandwidth broker architecture. The object oriented implementa-
tion of this interface allows us to support various router hardware. In Chapter 7
the bandwidth broker architecture is explained in detail. We first presented a sim-
ple single-domain broker architecture and the associated flow reservation API. A
detailled performance evaluation showed, that this architecture is able to manage
large networks (� 1000 nodes) at a high speed (� 0.6 ms per Flow). Furthermore
we presented the necessary extensions for a broker architecture in multi-domain
networks. Several new components for this advanced architecture are discussed.
In addition, modifications in the flow setup procedure have been necessary to sup-
port receiver-driven reservations and to perform the communication with other
bandwidth brokers. Finally, a novel bandwidth broker hierarchy structure has
been presented. This hierarchy can reduce the amount of signalling needed for a
flow crossing a domain, and therefore minimise the configuration latency.

150 CHAPTER 7. BANDWIDTH BROKER

Part IV

Providing Quality of Service to
Mobile Users

151

Overview

In this part we will further develop our bandwidth broker architecture to finally
achieve the goal of being able to support the QoS demands of mobile users. This
will require several enhancements in the bandwidth broker architecture itself,
that are presented in Chapter 8. First the broker API has to be extended with a
new command to give information about existing flows to mobile users (cf. Sec-
tion 8.2). The possibility to transfer the existing reservations to a new network is
prepared as well. In addition, the inter-domain broker signalling protocol has to
be developed. This is done in Section 8.3.

As already mentioned before, the most important topic in QoS provisioning in
mobile and wireless networks is the handover procedure. A new kind of handover
is developed in Chapter 9, which allows a mobile user to pre-negotiate resource
reservations with the new network. This new handover heavily relies on informa-
tion about the current link quality, which is the only hint of a coming handover
the mobile host can get autonomously (i.e. without the help of a bandwidth bro-
ker or without additional information, like travelling speed and geographical in-
formation about the location of base stations). In Section 9.1 we therefore start
by investigating the handover procedure as it nowadays is implemented in IEEE
802.11b-compliant hardware. In several experiments in our laboratory we were
able to validate the handover parameters found in technical manuals of our hard-
ware (Section 9.2). Based on those results we implemented a monitoring daemon
that controls the signal level and interacts with the client software running on the
mobile host. This way it can negotiate resource reservation before the handover
has to be performed due to low signal quality (Section 9.3).

The mobile node will usually try to attach to the base station offering the best
signal quality. This can be done by a flow modification request to the bandwidth
broker as shown in Section 7.7.4. However, relying solely on the signal quality
may not give satisfying results in every case. Problems could occur if there are
not enough resources available at the new access network (e.g. many other users
have already reserved bandwidth). In such a case the mobile node would not be
able to perform the handover and finally the connection would abort. To prevent
this, we propose to introduce an additional parameter that specifies how hard the
user insists on getting exactly the resources specified. This value is interpreted in
percentage of how much the user is willing to degrade its service to the benefit of
the handover. The bandwidth broker might then be able to perform the necessary
reservations for the handover with a higher probability. This renegotiation of a
existing SLS is described in Section 9.4.2.

152

Chapter 8

Mobile-Specific Extensions for the
Bandwidth Broker

Now we will investigate the changes needed in the bandwidth broker architecture
to provide Differentiated Services to a Mobile IP user. A mobile user might visit
several access networks managed by different ISPs, but desires to get a certain
level of Quality of Service wherever he is connected. Since the user usually has
negotiated a Service Level Specification (SLS) with his home-ISP, there exist two
different possibilities. Either the user has to negotiate a new SLS with each new
ISP individually, or the initial SLS has to be transformed and transmitted to the
foreign networks the mobile user visits. In each case the bandwidth broker man-
aging the foreign network will then configure the network according to the SLS
of the user. In addition, we assume, that the mobile host can get a valid IP address
for each foreign network (e.g. via DHCP or foreign agent registration).

The first case does not imply any difficulties or changes in the architecture, since
there is no difference to the negotiation of a SLS with the home broker. The second
case, however, implies various extensions to the current architecture, including for
example changes in the signalling protocol format and a new inter-broker protocol.
Those extensions will be covered in the following sections.

The main reason to investigate this approach is to simplify the mobility for the
user as much as possible. While in the first case the user has maximum flexibility
to adapt to changing environmental situations (such as radio coverage, availabil-
ity of bandwidth ...), each time the user attaches to a new ISP’s network, a new
negotiation has to be performed. This includes too long an interruption in the
communication to be acceptable. The second case avoids the negotiation of a new
SLS and is therefore much faster and more convenient for the user. We should,
however, try to get some of the flexibility of the first approach, without the draw-

153

154 CHAPTER 8. MOBILE-SPECIFIC EXTENSIONS

backs of frequent user interaction.

8.1 Scenario Description

Using the small network shown in Figure 8.1 as an example, we can show the
major points where the reconfiguration happens when the mobile user establishes
a SLS at home and afterwards migrates from one access to another. This scenario
contains the home network (a home agent and a home bandwidth broker) and the
foreign network (a foreign agent and a foreign BB). In addition, a correspondent
host is connected to both networks. For simplicity we assume, that both, home and
foreign network belong to the same management domain, that they are managed
by the same bandwidth broker (e.g. running on the home agent host).

Correspondent Host

Foreign Agent

Access Point

Access Point
Mobile Host

Home Agent
Bandwidth Broker

�
�
�

�
�
�

Figure 8.1: Demo Scenario for QoS Provisioning to a mobile user

8.1.1 Negotiation of a new SLS

After registering at the home agent the mobile host can send the information about
the desired SLS to the home bandwidth broker. The negotiation starts when the
mobile user sends a packet containing the bandwidth and some high-level infor-
mation about the desired service [8] (e.g. delay-sensitivity, loss-sensitivity ...).
The broker’s communication interface translates this information to the internal,
technical-oriented flow description of the broker and submits the result to the

8.2. EXTENSIONS TO THE BANDWIDTH BROKER API 155

bandwidth broker. The bandwidth broker tries to set up the routers according to
the user’s requirements and reports success or failure back via the communication
interface.

8.1.2 Migration to a new access network

When the mobile host moves to a foreign domain it first has to get a care-of ad-
dress (CoA) by either a foreign agent or DHCP. Using this CoA, the mobile host
can now request the transfer of its home SLS to the new location. The transfer is
initiated by signalling the request to the bandwidth broker in the foreign domain.
The broker can then perform the authentication separately and afterwards contact
the home domain’s bandwidth broker to get the user’s SLS. Together with the CoA
of the mobile user, the foreign bandwidth broker can now establish the service in
the foreign network.

Alternatively the mobile user could establish a totally new SLS with the foreign
bandwidth broker without using its home SLS. The procedure is then — set aside
AAA (cf. Chapter 10) issues — identical to the procedure in the Section 7.7.

8.2 Extensions to the Bandwidth Broker API

In Figure 8.2 the new bandwidth broker API is shown. The new “Mobile Support”
part consists of three functions. Two of them are explained in detail in the follow-
ing Sections (Sections 8.2.1 and 8.2.2), the third (neighbouring ESSIDs)
will be explained in the next Chapter. This function will be used for Qos-aware
handovers.

Since Mobile IP is transparent to any correspondent host (with the exception of
route optimisation), flows that come from the correspondent host to the mobile
host will always go to the home network. This implies, that any reservation the
correspondent host has set up also ends at the home network. If the mobile host
moves to a foreign network and wants to get the same level of QoS in the foreign
network, it also has to take care of the fact, that there may be reservations it is
not aware of. Therefore we must provide a way for the mobile host to query the
bandwidth broker to deliver a list of reservations that have to be changed in order
to maintain the current QoS level.

156 CHAPTER 8. MOBILE-SPECIFIC EXTENSIONS

reply()
solicit()

Autoconfinguration

Bandwidth Broker Communication Server

Flow Setup API Mobile Support

request_FlowList()
request_SLSTransfer()

add_Flow(Flow)
del_Flow(Flow)
change_Flow(Flow) neighbouring_ESSIDs()

Figure 8.2: The New Bandwidth Broker Communication Server

8.2.1 Request a Flow List

The request function can be used to query the bandwidth broker’s global flow
table for flows matching an input mask. This input mask consists of a Flow
object and compares the source-, destination- and ingress addresses and -ports. If
any flow in the broker’s global flow table matches this input, it is appended to the
result list.

Assume, that the mobile host is attached to its home network and that there are two
reservations: one from the mobile host to the correspondent host, and one from the
correspondent host to the mobile host. When the mobile host moves to a foreign
network it has to distinguish between the following three actions, depending on
the Mobile IP routing method:

Triangular Routing: In this case the mobile host needs to establish a reservation
from its care-of-address to the correspondent host and a reservation for the
tunnel from the home agent to the CoA. The reservation from the home
address of the mobile host to the correspondent host can be released.

Reverse Tunnelling: Here the mobile host has to establish a reservation for the
tunnel from the home agent to the CoA and for the reverse tunnel from the
CoA to the home agent. The reservation for the flow between the home
address and the correspondent host must remain.

Route Optimisation In this case, the mobile host only needs to set up a reserva-
tion from the CoA to the correspondent host and can release the reservation
from the home address to the correspondent host. Since the correspondent
host will be notified that the location of the mobile host has changed, it can
update the reservation itself.

Of course this can easily be automated and is executed by a daemon monitoring
the change in the CoA and performing the necessary actions.

8.2. EXTENSIONS TO THE BANDWIDTH BROKER API 157

Mobile Bandwidth

(1)

(3)

(2)

Foreign
Bandwidth

(6)

Home

BrokerHost Broker Router(s)
DiffServ
Foreign

Router(s)
DiffServ

Home

(4)

(5)

(4)

(5)

Figure 8.3: Message sequence for SLS transfer to a foreign network

8.2.2 Automatic SLS Transfer

If the mobile user connects to a foreign domain, the SLS of its home domain has to
be transferred to the foreign network. The mobile host can check if it is connected
to a foreign network by checking for a care-of address. The message sequence for
this case is shown in Figure 8.3.

As mentioned before, the protocol shown in Figure 7.6 can also be used, for ex-
ample to change the home-SLS to adapt it to the new environment.

1. The mobile host requests the foreign bandwidth broker to transfer its home
SLS to the new location. Therefore, a special packet format is used, includ-
ing the home address of the mobile host.

2. The foreign broker asks the home broker for the SLS of the mobile host. It
has to use the home address of the mobile host for the query.

3. The home broker transmits the SLS to the foreign broker using the packet
format shown in figure 6.4.

4. The foreign broker replaces the home address of the mobile node with the
care-of address and configures the routers in its network. The home broker
reconfigures the routers in the home network to release the resources used
by the mobile user.

5. The routers report success or failure of the configuration back to the band-
width brokers.

6. The foreign broker informs the mobile host about success or failure of the
SLS transfer.

158 CHAPTER 8. MOBILE-SPECIFIC EXTENSIONS

8.3 Inter-Domain Broker Signalling

A second, more complex scenario is presented in Figure 8.4. For this scenario
the bandwidth brokers in the home and the foreign networks also need to con-
tact the bandwidth broker in the correspondent host’s network, because some of
the routers are not in the domain of the home broker. In addition to configure
the routers in their own domains, the home and foreign brokers must signal the
correspondent hosts’s broker the modified flow containing the egress router’s ad-
dress. The bandwidth broker can determine this address by tracing its topology
database (see [160]). It is important to signal the egress router’s address, because
the broker in the correspondent host’s network has to be able to determine where
the new flow enters its network. Since a bandwidth broker usually only knows the
topology of its own network and additionally the addresses of the neighbouring
egress/ingress routers, this is the only way to set up the flow between two adja-
cent domains correctly. The packet format for this message can be the same as in
the first scenario (Figure 6.4). This fact extremely simplifies the broker signalling
protocol.

If the mobile host roams toward the foreign domain, the reservation towards the
home domain has to be deleted and a new reservation towards the foreign domain
has to be established.

Bandwidth Broker

Bandwidth Broker

Correspondent Host
Bandwidth Broker

Foreign Agent

Access Point

Access Point
Mobile Host

Home Agent

���
���
���

�
�
�

Figure 8.4: A scenario for inter-domain broker signalling

Chapter 9

User-initiated Handover

In this chapter we will present a way for the mobile user to gain control of the
handover. This will enable the mobile user to take advantage of negotiating QoS
parameters prior to the handover. Using the extensions to the bandwidth broker
presented in Chapter 8, the mobile user will be able to receive Quality of Service
with minimal interruption.

For the development of this new “User-initiated Handover”, we assume, that the
mobile node uses some kind of wireless LAN access technology. The wireless
LAN technology has been in use for a long time now (over 10 years) and mature,
standardized products are available. Due to the implementation in hardware, the
link layer handover process concludes very quickly. However, most manufactur-
ers do not provide enough interface control to their products, making it difficult
to adjust or improve the wireless LAN hardware’s behavior. One of the major
concerns is, that while the wireless LAN technology and Mobile IP operate at
different layers (the first at the physical and the link layer, the latter at the net-
work layer), there is no definition for the inter layer communication between link
and network layer. In practice, this is reflected in the Mobile IP implementations
just following the behavior of the wireless LAN hardware. Of course, this leads
to delays or unwanted and unpredictable results. Yet for applications relying on
QoS in particular, the well timed transfer of network management information
(i.e. flow descriptors) to the new point of attachment is very important. Addi-
tionally, the setup of new reservations (e.g. for the tunnel between the home and
foreign agent) will take some time. Therefore, a pre-handover reservation setup
will reduce the service interruption due to a handover, thus improving the overall
service quality an access network offers.

However, to be able to precisely predict the time a handover is going to happen,
we have to get control over the link layer handover process. The most obvious

159

160 CHAPTER 9. USER-INITIATED HANDOVER

ESSID = AP2

ESSIDs = (AP1,AP3)

AP4

AP2

AP1

MN

Bandwidth Broker

AP3

roaming path
MN

Figure 9.1: Requesting Neighbour Wireless Cells Before the Handover

parameters that influence the wireless LAN hardware’s behavior are indicators of
the signal quality. These quality parameters are usually provided by the driver of
the wireless LAN hardware and can be gathered easily. This leads to the main
idea of continuously monitor the signal quality at the application layer and, upon
exceeding or falling below certain thresholds, alert concerned applications.

The mobile node may now ask the bandwidth broker for a list of neighbouring
access points (see Figure 9.1): The mobile node passes its current ESSID to the
broker (AP2). The bandwidth broker having a list of all access points in its net-
work and their locations available can in turn search for access points that are
likely to be in range of the mobile host (that is AP1 and AP3) and pass this list
of ESSIDs to the mobile node. The mobile node can now perform a search for
wireless cells offering a better radio transmission quality. It will restrict its search
to the list of ESSIDs it has received from the bandwidth broker. In Figure 9.1 the
mobile node will only find AP3. Now the mobile node can ask the bandwidth bro-
ker if any of the wireless cells it found offers enough network resources to satisfy
the SLS of the mobile user. If there are several access points available, the mobile
node will choose the one offering the best signal quality.

The implementation [181] requires access to the wireless LAN hardware, a spec-
ification of the thresholds (Section 9.2) as well as a communication interface to
other programs. With these abilities a mobile node is in control over the handover
process and can perform fast handovers.

9.1. HANDOVER IN IEEE 802.11 WIRELESS ACCESS NETWORKS 161

AP 3STA

Probe Response

Reassociation Request

Reassociation Response

AP 2

Probe Request

Probe Response

Probe Request

2.

MN switches to Ch. 2

MN switches to Ch. 13

MN switches to Ch. 7

MN switches to Ch. 7 Probe Request

(no reply)

3.

4.

5.

(no reply)

MN switches to Ch. 8 Probe Request

MN chosses AP 3

Figure 9.2: Link layer handover message-time diagram using active scanning

9.1 Handover in IEEE 802.11 Wireless Access Net-
works

WaveLAN is a commercial wireless LAN implementation from Lucent Technolo-
gies conforming to the IEEE 802.11 standard.

The following description of the link layer handover process is based on the Wave-
LAN implementation (see [108]).

The wireless LAN card permanently monitors the signal quality of its current
link to the access point. These values are compared reiteratively with predefined
thresholds and lead to appropriate actions.

9.1.1 Link layer handover procedure

When a station moves to the border of the coverage area (so-called wireless cell)
of its current access point into the coverage area of another access point (see Fig-
ure 9.1), the signal quality of the current link drops and a process called Handover

162 CHAPTER 9. USER-INITIATED HANDOVER

is invoked. It guarantees the seamless transition between different wireless cells
up to the link layer.

These steps describe the link layer handover procedure shown in Figure 9.2 in
detail:

1. A station decides (see Section 9.1.3) that the signal quality to the current
access point is poor.

2. It starts to look for other access points with the same ESSID using a sweep.

(A sweep characterizes a series of scans on different channels. These are
maintained by the station in a channel-list).

3. The station then selects the best access point found by evaluating the signal
quality.

4. It sends a reassociation request to the selected access point. The access
point determines if access can be granted.

5. If the station is allowed to access the access point, the access point sends a
reassociation response.

9.1.2 Measurement categories

When monitoring the signal quality, the Signal-to-Noise Ratio (SNR) is of sub-
stantial interest. It is based on the signal level and the noise level. The signal
level is obtained from the beacon messages sent by all access points at a rate of
ten messages per second. Information about the noise level is taken from the data
traffic the station is engaged in.

9.1.3 Decision points

A well timed identification of the station’s movements is achieved by introducing
several decision points (thresholds) based on the SNR values (see Section 9.1.2).

Table 9.1 lists the thresholds depending on the density of installed access points.
The access point density value specifies the distance between access points in
the wireless network. These values are taken from Lucent’s Technical Bulletin
023/B [109].

Carrier Detect threshold: A signal level value in dBm representing a lower limit.
A station will only accept received signals that exceed the Carrier Detect
threshold.

9.1. HANDOVER IN IEEE 802.11 WIRELESS ACCESS NETWORKS 163

AP Density
Threshold

Low Medium High

Carrier Detect [dBm] -95 -90 -85

Defer [dBm] -95 -85 -75

Cell Search [dB] 10 23 30

Out of Range [dB] 2 7 12

Delta SNR [dB] 6 7 8

Table 9.1: WaveLAN/IEEE thresholds

Time

S
ig

n
a
l-

to
-n

o
is

e
 r

a
ti
o AP 1 AP 2

Cell Search
Threshold

Delta SNR

Start
search

Stop
search

Figure 9.3: Link layer handover SNR-time diagram

164 CHAPTER 9. USER-INITIATED HANDOVER

Defer threshold: A signal level value in dBm marking a upper bound. A station
will delay its own signal to be transmitted until the incoming signal falls
below the Defer threshold, thereby not being recognized as a modem signal
anymore.

Cell Search threshold: A SNR value in dB used as lower bound. A station will
start to look for another access point as soon as the SNR falls below the Cell
Search threshold.

Out of Range threshold: A SNR value in dB describing a lower limit. A station
will be unable to receive a signal properly if the signal’s SNR falls below
the Out of Range threshold.

Delta SNR: A SNR value in dB representing a minimal distance. A station will
only change to another access point if the difference of both, the old and the
new access point’s SNRs exceed the Delta SNR.

Figure 9.3 depicts the thresholds impact in the scenario seen in Figure 9.1.

Over time the station shifts from the Wireless Cell 1 to the Wireless Cell 2.
Thereby it removes from the first access point and thus the SNR decreases more
and more. Soon the SNR falls below the Cell Search threshold, triggering the
scanning functions of the wireless LAN card. When it recognizes the second ac-
cess point, the wireless LAN card does not connect instantly to the new access
point. Instead it waits for the difference between the SNR from AP1 and AP2 to
exceed the Delta SNR. After having changed to AP2, the wireless LAN card stays
in the search state until the SNR passes the Cell Search threshold again.

If the station moves to an area without any access point coverage, the SNR falls
below the Out of Range threshold, causing more intense scans. Another reason
for not finding any access points might be an overloaded network.

9.2 Link Layer Handover Statistics

Now we want to determine and validate the Signal-to-Noise Ratio thresholds used
by wireless PCMCIA cards to initiate a layer 2 handover as described in Sec-
tion 9.1.1. As no standard thresholds have been prescribed each manufacturer
uses its own values. The threshold values for different density settings shown in
Table 9.1 are taken from Lucent’s Technical Bulletin 023/B [109].

9.2. LINK LAYER HANDOVER STATISTICS 165

The wireless equipment used in the tests is manufactured by Lucent Technologies’
Microelectronics Group 1 and available documentation allowed the verification of
the obtained results.

The AP Manager [3] provides a limited control over the threshold values to be
used. Three length values (large, medium or small) in the Distance between APs
field describe the AP density (low, medium or high) of the wireless network.

9.2.1 Equipment

The test equipment consists of two access points (Lucent WavePOINT-II V3.83)
and a Laptop acting as the mobile node, all using WaveLAN cards (Lucent Wave-
LAN/IEEE Turbo, Firmware 7.52).

A small program called iwstats has been written to gather the signal’s quality
values. These consist of the signal level, noise level and the resulting Signal-to-
Noise ratio (SNR). It runs on the mobile node and logs the accumulated data.
Iwstats is based on the Wireless Tools [175] and adds some functionality to let
the user specify the length of the gathering period and the interval between the
collection of two records. Additionally the output is formated to allow easier
evaluation of the data with gnuplot.

The channel setup for the access points provides sufficient channel separation
between two access points as described in [107].

The public access to the wireless test network has been disabled using the Close
Wireless System option in the AP Manager. This feature is non-compliant to the
802.11 standard and implements a stricter handling of association requests from
stations. More information about WaveLAN security options can be found in
[110].

Furthermore, all involved access points and the mobile node have been configured
to use the same ESSID. When the Close Wireless System option is activated, a link
layer handover can only be carried out between access points and mobile nodes
using the same ESSID. The mobile node can also be configured to connect to
any access point by omitting the ESSID specification (i.e. using the value ANY
instead) and disabling the Close Wireless System option in the concerned access
points.

1now called Agere Systems

166 CHAPTER 9. USER-INITIATED HANDOVER

roaming path

AP1

25 m
MN

AP2

Figure 9.4: Outline of the roaming path

9.2.2 Environment

The test site is located under the roof of a brick wall building. The access points
have been placed in two separate rooms, connected by a long hall. The first room
is used as standard office, the second as test lab and contains therefore lots of
technical equipment. The hall in between these two rooms is almost empty.

9.2.3 Measurements

In accordance with the available access point density settings three series of mea-
surements have been carried out, each consisting of 20 runs. The signal’s quality
parameters have been gathered at 300 ms intervals.

The roaming took place along the path shown in Figure 9.4. Commencing one
meter before the first access point (AP1) the mobile node moved in front of the
second access point (AP2) and from there - following the same path - back to the
starting point. With a walking speed of approximately 3 km/h the distance of 50
meters was covered in about 60 seconds.

The averaged results are shown in Figure 9.5, 9.6 and 9.7. They illustrate the
performance of the signal’s quality parameters (signal level, noise Level and SNR)
over time.

9.2.4 Analysis

While moving away from the AP1 the SNR decreases more and more until it
reaches the Cell Search threshold. Now the layer 2 handover process (see Sec-
tion 9.1.1) starts and as result the mobile node associates with the AP2 and thereby
connects to the foreign link. When returning back to the home link, the analogue
procedure takes place.

The altering of the handover points throughout the three graphs is due to the
changes of the access point density parameter and - at the same time - keeping

9.3. IMPLEMENTATION AND OPERATION OF THE WLAN MONITOR 167

-100

-80

-60

-40

-20

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

Home Link Foreign Link
Home
Link

closest to AP1 closest to AP2
closest
to AP1

Signal to Noise Ratio [dB]
Signal Level [dBm]
Noise Level [dBm]

Cell Search threshold = 10 dB
Delta SNR = 6 dB

Figure 9.5: Signal to noise ratio when roaming with low AP density

the experimental setup physically untouched.

Any fluctuations (e.g. local peaks) in the graphs can be most often ascribed to
surrounding objects made of interfering material.

The graphs show that the thresholds listed in Table 9.1 on page 163 are accurate
values and will therefore be included in the development process of the mobile-
controlled handover (see Chapter 9.3).

9.3 Implementation and Operation of the WLAN
Monitor

[Implementation and Operation of the WLAN Monitor] The necessary functional-
ity to keep track of the SNR behaviour and alert the user to perform the necessary
pre-handover actions a Wireless-LAN monitoring program has been developed
and implemented [181]. Here we will only give a short overview of the operation
of this program.

The implementation was done in C++ and consists of two seperate daemons: The
first provides the data transmission from the bandwidth broker’s mobile client
to the Wireless LAN Monitor, the latter is responsible for the data transmission

168 CHAPTER 9. USER-INITIATED HANDOVER

-100

-80

-60

-40

-20

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

Home Link Foreign Link
Home

link

closest to AP1 closest to AP2
closest
to AP1

Signal to Noise Ratio [dB]
Signal Level [dBm]
Noise Level [dBm]

Cell Search threshold = 23 dB
Delta SNR = 7 dB

Figure 9.6: Signal to noise ratio when roaming with medium AP density

-100

-80

-60

-40

-20

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

Home Link Foreign Link Home Link

closest to AP1 closest to AP2 closest to AP1

Signal to Noise Ratio [dB]
Signal Level [dBm]
Noise Level [dBm]

Cell Search threshold = 30 dB
Delta SNR = 8 dB

Figure 9.7: Signal to noise ratio when roaming with high AP density

9.3. IMPLEMENTATION AND OPERATION OF THE WLAN MONITOR 169

mobile
client

wlmonrpcd wlmonsd

Shared
Memory

Mobile Node

Shared Memory access function

RPC function

Wireless LAN Monitor

Figure 9.8: Interaction of the Wireless LAN Monitor components

to bandwidth broker’s mobile client and for the monitoring the signal’s quality
parameters of the mobile node, where all three programs are running on (see Fig-
ure 9.8). For interprocess communication between the different programms RPC
calls as well as shared memory has been used.

9.3.1 Wireless LAN Monitor operation

The cycle of the Wireless LAN Monitor’s components interacting with the mo-
bile client of the bandwidth broker are described with the following steps and
illustrated in Figure 9.9.

To synchronize the shared memory access of the wlmonsd and the wlmonrpcd the
first character in the shared memory field has been turned into a status flag.

1. When the Wireless LAN Monitor Service Daemon (SD) is started, it invokes
the Wireless LAN Monitor Remote Procedure Call Daemon (RPCD).

2. The bandwidth broker’s mobile client (BBMC) passes an ESSID list to the
RPCD.

3. After reception, the RPCD requests the transfer of the list to the SD.

4. The SD acknowledges the request and hereon the RPCD places the list into
the shared memory and confirms the transfer’s completion.

170 CHAPTER 9. USER-INITIATED HANDOVER

mobile client wlmonrpcd wlmonsd

WLM_LIST

CLIENT_ALERT

WLM_SCAN

CLIENT_ESSIDS

WLM_CHANGE

Shared Memory access function

RPC function

ESSIDs

01

2.

4.

3.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1.

c

a

s

n

k

l

s
ta

tu
s

fl
a
g

Figure 9.9: Wireless LAN Monitor procedure message-time diagram

9.4. RANGE-BASED BANDWIDTH ALLOCATION 171

5. Having awaited the confirmation, the SD now reads the list from the shared
memory.

6. Assuming that the signal quality falls below the predefined threshold (e.g.
because the mobile node may have moved), the SD alerts the BBMC.

7. Next the BBMC sends an order to scan for better serving access points to
the RPCD, which in turn places a specific mark in the shared memory to be
read by the SD.

8. The SD becomes aware of the request mark and starts to scan other wireless
cells identified by their ESSID from the list.

9. After finishing the scans, the SD informs the BBMC about the results by
passing a list of indices. Sorted descending by signal quality, each index
represents an ESSID from the original list submitted by the BBMC.

10. The BBMC sends an order to change the wireless cell with a certain delay
to the RPCD.

11. After having waited for the specified delay, the RPCD announces the re-
quests to change to the SD.

12. When the SD acknowledges the request, the RPCD puts the index, to which
the SD should change to, as unsigned character in the shared memory.

13. The SD reads the index and carries out the change of the ESSID.

9.4 Range-Based Bandwidth Allocation

We have introduced a mechanism that allows us to initiate a pre-handover SLS ne-
gotiation in order to achieve continuous QoS support in wireless access networks.
The current implementation allows us to select an access point out of a list the
bandwidth broker provides. We now want to present certain criteria to ensure the
best possible QoS for a mobile user roaming several wireless access networks.

The scenario we want to investigate consists of a mobile host that would like to
communicate while moving through the coverage areas of several wireless access
points (AP). Each of those access points offers different QoS levels. Given the
initial QoS requirements of the mobile user, a decision to which wireless cell the
mobile host connects has to be made. If the mobile user has fixed QoS require-
ments that must be kept, the mobile host may not be able to change to a wireless

172 CHAPTER 9. USER-INITIATED HANDOVER

cell offering a better SNR. Perhaps, if the signal quality is too low for communica-
tion, no access point at all can serve the user’s requirements. If, however, the user
allows a certain deviation of the QoS specifications, we may be able to choose the
best access point from a bigger list of possible candidates.

9.4.1 Scenario

As in Section 9 we assume, that all wireless cells have a unique identification
number (the ESSID). Figure 9.10 shows the scenario more in detail: A mobile user
reserves a flow requiring 2.5 MBit/s bandwidth at the bandwidth broker. Since the
first wireless cell provides a maximum bandwidth of 5.5 MBit/s, this flow can be
set up. Afterwards the mobile user moves over to the second and third wireless
cell, providing 11 MBit/s and 2 MBit/s respectively. Performing the first handover
is easy, since more bandwidth than required is available. If, however the mobile
user moves to its final location, the service initially granted cannot be satisfied any
more. Section 9.4.2 will cover this problem more in detail.

Correspondent Host

Bandwidth Broker

5.5 MBit/s

11 MBit/s 2 MBit/s

2.5 MBit/s

���
���
���

�
�
�

Figure 9.10: Scenario for a QoS-aware Handover

9.4.2 Renegotiation of the SLS

Each time, a handover occurs, the bandwidth broker has to guarantee, that the
new wireless cell is able to fulfil the requirements of the new user. If no wireless
cell capable to serve the new flow is in range, a renegotiation of the SLS has to
be performed in order to maintain the connectivity of the user. Otherwise, the

9.4. RANGE-BASED BANDWIDTH ALLOCATION 173

mobile user would not be able to perform a handover and finally move out of the
transmission range of the base station, unable to communicate any more. To avoid
this, during the pre-handover negotiation (see Section 9) the BB will also propose
some wireless cells, that have not enough resources to serve the flow. The mobile
host can now choose the best wireless cell available to attach. This choice may
consider parameters outside the scope of networking, for example geographical
information.

unsigned long
unsigned short
unsigned long Bandwidth

excess Bandwidth
Flags

Service Level

double weight

Figure 9.11: New Service Level Specification Format

The decision of the bandwidth broker which cells to propose is based on an addi-
tional entry in the SLS description: the weight field (see Figure 9.11). This newly
introduced value will be interpreted as a percentage value, how far the mobile user
is willing to deviate from its initial service level specification. If for example the
value of weight equals 0.2, any wireless cell offering more than 80% of the spec-
ified bandwidth will be proposed. Given the values of Figure 9.10 and a weight
of 0.2 the third cell could just be proposed to the mobile host, thus providing
connectivity at the mobile host’s final destination.

174 CHAPTER 9. USER-INITIATED HANDOVER

Chapter 10

An AAA Architecture Extension for
Providing DiffServ to Mobile IP
Users

Throughout the discussion of our bandwidth broker architecture and the exten-
sions for mobile users (Chapters 6 – 8) we neglected the topic of security. In a
mobile scenario, however, this topic gets more and more important. Usually, an
ISP will not offer its resources to a foreign user for free. Therefore, accounting
mechanisms have to be implemented if the support for mobile users is desired. To
prevent abuse and fraud, this automatically leads to authentication and authorisa-
tion.

In this chapter we will discuss, how an AAA architecture, like the ones presented
in Section 3.7, could be modified or extended to fit the requirements of a mobile
user requesting Quality of Service in a foreign domain.

In Section 10.1 we present a simple architecture and message sequence for AAA
in a Mobile IP scenario using a foreign agent. This architecture is derived from the
roaming pull model for distributed services [179]. In Section 10.2 we discuss, that
it is necessary to depend the reception of a care-of address on valid authentication
and authorisation. A new architecture is developed by combining the Service
Location Protocol (SLP) with the traditional AAA architecture. Of course in such
a scenario the access to the bandwidth broker has to be restricted, too. This is
discussed in Section 10.3.2.

175

176 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

10.1 Mobile AAA with Foreign Agent

We now apply the roaming pull model [179] to a Mobile IP scenario which is
one of the main usages of the roaming pull model. Furthermore we specify the
messages that are exchanged between the mobile host and the entities of the AAA
architecture. After a mobile user arrives in a foreign domain, the following mes-
sages have to be exchanged in order to provide connectivity to the user:

1.

6.

2. 5.

3. 4.

 Home Domain

 Foreign Domain

AAAFUser

AAAH

Foreign Agent

Figure 10.1: AAA Message Sequence for a Mobile Node

1. The user visiting a foreign network wants to use a certain level of QoS.
Therefore it requests a quantifiable amount of resources between a selected
destination and itself. First, he/she needs to issue a registration request to
the foreign agent, including the authentication information. At this point the
mobile node still has not yet gained access to the network, as it still doesn’t
have a valid care-of-address. Thus it can not send the requests to the home
AAA server directly.

2. The foreign agent parses this request and forwards the authentication infor-
mation to the foreign service provider’s AAA server (AAAF).

3. By receiving the registration of the mobile node, the AAAF checks the
realm part of the NAI provided by the mobile node to see whether the mo-
bile node belongs to its own network. The Network Access Identifier (NAI)
Extension [27] is the user ID submitted by the client during authentica-
tion and has the format of username@realm. The purpose of the NAI is

10.2. INTEGRATION OF SLP AND THE AAA ARCHITECTURE 177

to uniquely identify the mobile node. Usually the authentication informa-
tion of a mobile user cannot not be validated locally. Therefore the AAAF
needs to contact the appropriate external authority (AAAH) to evaluate the
request. This AAAH (the AAA server of the home domain) is found with
help of the NAI.

4. The AAAH looks up the corresponding policy in its SLA repository based
on the user name and forwards it to the AAAF for evaluation.

5. Once the authorisation has been obtained by the AAAF, it decides whether
to accept a user with the specific parameters or not. The AAAF will notify
the foreign agent about the result.

6. After a successful authorisation of the mobile node, the service equipment
has to set up a policy enforcement and to tell the user that the required
service is available. Now, the foreign agent is able to continue the Mobile
IP registration procedure without further involvement of the AAA servers.

10.2 Integration of SLP and the AAA Architecture

The main drawback in the Mobile IP AAA architecture described above is that
it depends on the existence of a foreign agent: A foreign agent is not always
available in foreign network environments. Sometimes the mobile node uses some
other automatic configuration mechanisms to get a new IP address such as IPv6
stateless address autoconfiguration [173] or DHCP. However, valid IP addresses
are also network resources. If any mobile node is allowed to get an IP address by
automatic address configuration, it can do anything at will. This has a tremendous
impact on the network security. Therefore we need to make specific restrictions
on methods to obtain an IP address. To do so, it is necessary to further develop
an AAA architecture which is working in a uniform manner for IPv4/IPv6 no
matter whether the foreign agent exists or not. In order to solve these problems
we integrate the Service Location Protocol (SLP) [69] into our architecture.

SLP simplifies the discovery and selection of network services such as printers etc.
There are three components involved in SLP: User Agents (UA) acquire service
handlers for user applications; Service Agents (SA) advertise service handlers;
Directory Agents (DA) collect service handlers in a local network. The signalling
procedures are illustrated in Figure 10.2.

1. The DA periodically multicasts DA advertisements to indicate its presence
to all SAs and UAs.

178 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

Service
Agent

Service
Agent

Service
Agent

Agent
Service

Directory
Agent

User Agent

1

2

3 4 5 6

Figure 10.2: Message Sequence in SLP

2. The SAs advertise themselves by registering at a DA. The registration in-
formation includes a list of all the keywords and attribute-value pairs that
describe their service. Registration information also includes a time-to-live
after which the service information is removed by the DA. Explicit dereg-
istration can also remove service information. The DA has to return an
acknowledgement or a deregistration message on receipt of a registration.

3. Whenever a client application requests a type of service, the user agent will
send an attribute request to the DA to find out the characteristics of a partic-
ular service.

4. The DA sends an attribute reply which gives a list of available services
matching the requested information.

5. The client chooses a service out of this list and the UA sends a service
request to notify the DA of its choice and acquires a service handler (i.e.,
service addresses and access information).

6. The DA sends a service reply to the user agent to provide the service han-
dler.

Finally, the client application can communicate directly with the SA, the DA’s
assistance is no longer needed. In order to make the Mobile IP AAA architecture
independent of the foreign agent, we further make an extension by deploying SLP
as shown in Figure 10.3. A mobile node can search any service agent which is
available in a foreign domain (such as foreign agent, DHCP server, printer etc.)
via SLP according to the user’s requirements.

10.2. INTEGRATION OF SLP AND THE AAA ARCHITECTURE 179

Directory Agent

FA DHCP

AAAF

 Foreign Domain

User

AAAH

 Home Domain

Printer

1
2

3 4

5

6

7

Figure 10.3: Message Sequence in SLP capable AAA Architecture

1. The foreign agent and the DHCP advertise themselves by registering at a Di-
rectory Agent, which periodically multicasts DA advertisements. Note that
it is required in advance to disable the stateless autoconfiguration in IPv6
routers. Once the mobile node receives a DA advertisement, it will send an
attribute request to obtain an IP address, which includes the authentication
information.

2. The DA acts like a guard having the responsibility of authentication. In
particular, it has to make sure that only valid mobile users can freely use
resources or services and leave the other malicious users outside. Before
the DA answers the query of the mobile user, it first needs to check whether
the identity of the mobile user is valid. Then, the authentication phase be-
gins. In order to accelerate this procedure, the DA needs to have a database
with the valid visitors. This information can be dynamically obtained via
the AAA service. By receiving an attribute request the DA checks its user
database to see if there has been a record of this user according to the user-
name part of the NAI provided by the mobile node. If it is not available, the
DA is expected to forward authentication and NAI information to the local
AAA server.

3. The AAAF first checks the realm part of the NAI to see whether the mobile
user belongs to its own network. If the user is a visitor, it contacts the

180 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

external AAAH to further verify the user identity.

4. QoS specifications are typically located in the home AAA server, which
may be indexed by username, password etc. Therefore, the home AAA
server checks the validity of the user identity based on the confidential infor-
mation, then gives a proper response to the foreign AAA server. Of course,
it needs to forward the SLA policy in its positive reply to the foreign do-
main in order to facilitate the later authorisation, to minimise latency, and
to avoid too frequent control message exchange if the mobile user micro-
moves between different subnets in the same ISP domain.

5. If the foreign AAA server receives a positive reply from the home AAA
server, it will store the SLA specification to establish a customer record
in its database. Meanwhile it will inform the DA about the authentication
result.

6. As soon as the DA is informed about the user validity, it will add the user
information to its user records database. If this user wants to re-use the
various network services at a later time again, the DA can then assure the
identity by directly checking the database and no time-consuming authen-
tication is needed anymore. Now, the DA can send an attribute reply that
gives a list of the available services able to allocate an IP address, such as a
foreign agent or DHCP.

7. The client agent of a mobile computer chooses automatically or manually
one service, gets a service handler from the DA and then contacts a foreign
agent or DHCP to get an IP address. Each SA has to contact the AAAF to
further authenticate the user’s identity for more security. Finally, the mobile
node will issue a registration request to require access to the network.

10.3 Mobile IP Node Negotiation Procedure for Diff-
Serv

In order to achieve a complete impression about the way our extended AAA ar-
chitecture works in detail and how various components interact with each other
to establish Differentiated Services for a Mobile IP node, this section will give a
more detailed description of the message sequence shown in Figure 10.4.

10.3. MOBILE IP NODE NEGOTIATION PROCEDURE FOR DIFFSERV 181

1

2

 3
4

5
6

7

89

10
11

12

 13

14

3

5

AAAB

AAAF

BB Printer

DA

FADHCP FA BB

DAHA

DHCP Printer

AAAH

DiffServ

Figure 10.4: Message Sequence in Negotiation Procedure

10.3.1 Initial Foreign Network Access

1. In order to obtain a temporary connectivity, IP address, subnet mask, de-
fault router, DNS server, and other informations are required. As soon as
a mobile node receives a DA advertisement, it will send an attribute re-
quest to obtain an IP address. Because the foreign ISP needs to assure that
he/she will pay for the connectivity, the user has to send some confidential
information such as username, password, ID etc. to identify himself/herself.
This information should be encrypted with the AAAH’s public key and ap-
pended as an option extension to every attribute request message sent to the
DA (Figure 10.5). These authentication information tends to be valid for a
long period, is difficult to forge, and has a strong authentication process to
establish the owner’s identity. It can be considered as a passport to identify
the owner. Meanwhile, in order to map the home domain and facilitate the
later distribution of the shared key between AAAF and mobile node, the
mobile node’s NAI extension and its public key also need to be included.

Confidential Information

Security Parameter IndexLengthType=1111

Figure 10.5: An Authentication Option Extension in an Attribute Request Mes-
sage

2. The DA checks its user database to see whether there is a record of this

182 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

user according to the username part of NAI. If it is not available, the DA is
expected to forward the authentication data, NAI and mobile node’s public
key information to the local AAA server.

3. The AAAF also needs to have the two following tables in addition to the
SLA repository with the native customers.

- A visiting record table with all mobile nodes who are presently vis-
iting this foreign domain. Each item in this table has to contain the
following information: the username part of the NAI, account num-
ber and shared key which is produced by the AAAF for the valid user,
mobile node’s public key and the SLA specifications. The item has a
lifetime that is setup appropriately by the network operator.

- The other table is a security association table with all foreign domains
this AAAF has established security associations with. Each item in
this table has to contain the following information: foreign domain
name, IP address of AAAF, IP address of AAAH, shared key.

Usually, if a mobile user moves into a new domain, the AAA has no corre-
sponding record to verify him/her. Therefore, it will contact the appropriate
external AAA server (AAAH). By reading the realm portion of the NAI, the
AAAF can determine if and where to the information should be forwarded.
The basic operation is as follows:

� The AAAF first checks the realm part of the NAI to see whether the
mobile user belongs to its own network or not. This is in case the
mobile user micro-moves around in different subnets of the same ad-
ministrative domain. If the user is a native customer, it will directly
decrypt the authentication option with its own private key and check
the validity of the user in its SLA repository.

� If the mobile user is a visitor, the AAA has to check its visiting record
table according to the username of the NAI in order to see whether a
record about this mobile user already exists or not. If his/her record
is available, this user has been authenticated before and he/she is ac-
cepted as is a valid user.

� If the record is not available, the mobile user is a newcomer. The
AAAF then needs to further check the security association table to see
if a security association between the local AAA server and the AAA
server of the home domain indicated by the NAI of the mobile user
exists already.

10.3. MOBILE IP NODE NEGOTIATION PROCEDURE FOR DIFFSERV 183

� If so, the AAA server directly sends the authentication option exten-
sion of the IP packet to the AAA server in the home domain (AAAH).
The AAAH uses its private key to decrypt the authentication informa-
tion (e.g. user name and password) and checks the validity of the user
identity in its SLA repository. For valid users, the AAAH returns a
copy of the SLA specification which needs to be encrypted with the
shared keys between the AAAF and the AAAH. Here, the security
association is assumed to be a trust relationship by which the AAA
server in the foreign domain can make sure the AAAH will definitely
pay for the services used by the mobile users who belong to it.

� Otherwise, support from the AAAB is required. If the AAAF has an
interface to the AAAB, it can send the authentication option extension
and NAI extension of the IP packet to the AAAB.

4. The AAAB checks the realm part of the NAI to see if it is able to map this
domain name into an IP address of an AAA server. If it is not possible,
the AAA broker has to reject the service to the mobile node in the foreign
network by giving a negative response to the AAAF. Otherwise, the AAA
broker needs to send an inquiry message including this authentication op-
tion extension to the AAAH in order to require a copy of the authorisation
message from the home domain.

5. The AAAH is responsible for storing all user names and SLA specifications
about the mobile users who belong to this home domain. If the AAAH
receives the inquiry message from the AAAB, it will decrypt the authenti-
cation with its private key and look up its SLA repository. This database
not only contains the user’s identification but also specifies the maximum
amount and type of traffic the user can send and/or receive. Finally, the
AAAH checks the security association table, uses a proper key (AAAB’s
public key or the shared-key between the AAAH and the AAAF) to encrypt
the SLA information and sends the result to the correspondent node (the
AAAF or the AAAB). Of course it here refers to the AAA broker.

6. The AAA Broker will decrypt the received message and send a packet to
the AAAF. It encrypts the result with its private key and adds it to the IP
packet as IP Authentication Header [7]. This packet is more like an entry
visa, because it is typically issued by a different authority than the passport
issuing authority and it does not have as long a validity period as a passport.
The structure of this packet is a digitally signed set of attributes defining the
DiffServ service level of the mobile user when at home.

7. If the AAAF receives a positive reply from the external AAA server (AAAH

184 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

or AAAB), it will decrypt the message with the proper key and store this
SLA specification to establish a customer record in its visiting record table.
Meanwhile it will establish an account number and generate a shared key
for this valid user. This information should be encrypted with the mobile
node’s public key and appended as a key distribution IP option extension
(Figure 10.6) to the message the AAAF sends to inform the DA of the result
of authentication.

Type=2222 Length Security Parameter Index

User’s Account Number And Shared Key Information

Figure 10.6: A Key Distribution IP Option Extension

8. As soon as the DA is informed about the validity of the user, it will add
the user information (the username of the NAI) to its user records database
and send an attribute reply to the mobile node. This message includes the
original key distribution IP option and gives a list of available services for IP
address allocation, such as foreign agent or DHCP servers. Note that each
item in the user records database of the DA also has a restricted lifetime.
Therefore, a periodical refreshment is necessary.

9. The mobile node first decrypts the key distribution IP option with its private
key to achieve its account number and shared key in the AAAF. The UA
on the mobile node chooses one service and gets a service handler from the
DA. Finally, the mobile node will directly issue a service request message to
the corresponding SA. In each service request message sent to the SA, the
mobile node has to offer the NAI extension and its account number option
extension shown in Figure 10.7. This account number has to be encrypted
with the shared key between the mobile node and the AAAF.

Type=3333 Length Security Parameter Index

User’s Account Number in the AAAF

Figure 10.7: An Account Number Option Extension in a Service Request Message

10. Each SA has to contact the AAAF to further authenticate the user’s identity
for more security. If a SA receives the service request from the mobile node,
it first has to send the NAI and the user’s encrypted account number to the
AAAF.

10.3. MOBILE IP NODE NEGOTIATION PROCEDURE FOR DIFFSERV 185

11. According to the username of the NAI, the AAAF uses the appropriate key
to decrypt and check the validity of the user’s account number. If the ac-
count number is consistent with the information in its visiting records table,
the AAAF will inform the SA to supply the desired service to the mobile
node. Otherwise, the AAAF will send a negative response to the SA and
ask it to reject the request of this user.

12. For a valid user, the SA (now a foreign agent or DHCP server), will allocate
an IP address for the mobile node and deliver it in its service reply.

13. After this, the mobile node will continue with the Mobile IP registration
procedure and inform the home agent about its current location.

14. Finally, the home agent sends a registration reply to the mobile node indi-
cating that the registration was successful and now access to the network is
possible.

10.3.2 QoS Negotiation

After the mobile node has successfully got access to the network, it might further
desire to get QoS. When we introduced our signalling protocol in Section 7.7.3
we assumed, that the host sending a reservation request has a valid IP address and
is allowed to set up a QoS reservation. This might not hold in a mobile scenario
where the mobile host is unknown to the foreign domain. The mobile node has to
authenticate itself following the procedure presented earlier in this section.

First, the mobile node has to find an available SA providing Differentiated Ser-
vices via the DA. The SA specifies what types of Differentiated Services are sup-
ported in this foreign domain. The basic operation is as follows:

� The mobile node sends an attribute message to the DA to request QoS.

� When the DA finds the record of the mobile node in its user database based
on the username of the NAI, the DA will assume that this user has already
been authenticated and subsequently send an attribute reply to the mobile
node, which gives the IP address of the SA supplying DiffServ, such as a
bandwidth broker.

� Then, the mobile node communicates with the bandwidth broker to negoti-
ate its QoS level. For that purpose the mobile node can use the signalling
protocol presented in Section 7.7.3. The bandwidth broker contacts the
AAAF to further verify the user with the same procedure described above

186 CHAPTER 10. AN AAA ARCHITECTURE EXTENSION

(initial foreign network access). For a valid user, the bandwidth broker will
perform the reconfigurations and negotiations with the other bandwidth bro-
kers needed to configure the reservation. At the same time, the bandwidth
broker also sends a signal to the AAAF to trigger an accounting procedure.

In this example we can see, that after a successful authorisation and authentication
the full signalling protocol presented in the preceding chapters can be used.

Summary

In this part we focused on the needs of mobile users if they want to maintain an
initial QoS level during roaming through several foreign domains. In Chapter 8
we were able to show, that with a few small additions, the multi-domain band-
width broker architecture is ready to support mobile users. In Section 8.2 we
present new functions in the broker API which enable a mobile user to perform
the necessary reservations. An additional function to support the mobile node’s
QoS-aware handover has been used in Chapter 9. By using this handover tech-
nique, the mobile node is notified as soon as the signal quality is too low to stay
connected any longer. To achieve this, several daemons have been implemented
to permanently monitor the signal quality and to notify the client software. The
client then has the possibility to set up a new reservation at the bandwidth broker
for the new subnetwork. To improve the chances of a successful handover, the
mobile node also has the option to diminish the amount of the reservation.

The last chapter of this part deals with security architectures needed for mobile
scenarios. We combine the existing AAA architecture with the SLP and this way
can assure that no mobile user without valid authentication and authorisation gets
access to a network.

Conclusion and Outlook

In order to summarise our work we would like to come back to the scenario pre-
sented in the Introduction (Figure I.1). In this scenario we pointed out the prob-
lems a mobile user has in todays networks if he/she wants to sustain an initially
negotiated QoS level. Based on this scenario we want to develop a figure of how
these problems could be solved with the bandwidth broker framework developed
in this thesis. The new components we want to add to the existing infrastructure
are shown in Figure C.8 and their interaction is shortly described in the following
section. Showing all the signalling protocols and all the messages used to config-
ure a resource reservation and to sustain a QoS level in one single figure would
lead to a figure too complicated and too overloaded. In the following Sections we
will therefore split the figure into two figures, one showing the home and one the
foreign network. In addition to simplify the figures we will skip the Mobile IP
registration procedure, since we did not change anything in it. We will also only
show the most important communication channels and refer to the description
given or to the section where this topic is handled in detail.

New Components

We can see several components newly introduced in the scenario: bandwidth bro-
kers and AAA servers, one for each network or subnetwork, and configuration
daemons (CD) running at each DiffServ router. The bandwidth brokers control
and manage the routers in their networks (here represented by a single DiffServ
ingress router) but also all wireless access points, as it is shown in the “virtual
network” picture of the brokers. The control of the access points allows a broker
to perform admission control based on the access point, i.e. reject a flow if the
wireless cell is already overloaded. Each time the broker receives a reservation
request from a unknown host, it asks the AAA server, if the host is allowed to

187

188 CONCLUSION

Internet

Home Network

Home Agent

Foreign Agent

Correspondent Host

2 MBit/s5.5 MBit/s
11 MBit/s

Foreign Network

Mobile Host

Home Bandwidth Broker
Home AAA Broker

DiffServ Ingress Router

DiffServ Ingress Router

DiffServ Egress Router

CD

CD

CD

���
���
���

���
���
���

Figure C.8: A Mobile User with QoS Requirements

CONCLUSION 189

Internet

Home Agent

Correspondent Host

Mobile Host

Home Bandwidth Broker
Home AAA Broker

DiffServ Ingress Router

DiffServ Egress Router

Bandwidth Broker

Home Network

CD

CD

(4)

(5)

(2)

(1)

(3)

���
���
���

�
�
�

Figure C.9: Communication of a Mobile User in the Home Network

allocate resources. If the answer is positive, the bandwidth broker prepares a con-
figuration for the DiffServ routers and sends it to the configuration daemons. The
daemons configure the routers according to the commands of the broker.

Signalling Messages in the Home Network

The messages that are needed to set up a new reservation for a mobile host in its
home network may be summarised as follows (cf. Figure C.9):

1. Registration at the AAA Broker The mobile host authenticates itself in
order to prove its authorisation to set up a reservation. It gets the address
of a AAA broker by asking a Directory Agent (not included in the picture)
and registers at the AAA broker. The mobile host receives a valid IP ad-
dress and the address of the bandwidth broker where it can specify its QoS
requirements (cf. Section 10.3).

2. QoS negotiation with the bandwidth broker The mobile host sends a ser-
vice level specification to the bandwidth broker to request the transfer of
its home SLS to the foreign network. The broker will check in its pol-
icy database whether the flow can be admitted or not (cf. Section 7.7.2).
Afterwards it will forward the reservation request to the next downstream
bandwidth broker.

190 CONCLUSION

3. Downstream setup of the reservation The reservation request is now for-
warded from one bandwidth broker to the next downstream broker as de-
scribed in Sections 7.3.1 or 7.7. The brokers have a list of neighbouring
brokers available, either built via signalling or explicitly configured by the
network administrator. The configuration of the own network is performed
after all downstream domains have already configured the flow in order to
avoid useless configurations. The bandwidth is nevertheless allocated at the
beginning, this way the successful configuration can be granted.

4. Configuration of the own network After the successful reservation in the
downstream domains the broker configures the own network. It will query
its topology database to find the routers that possibly need reconfiguration.
The load table and the reservation table show, if the routers really have to
be reconfigured. Finally the configuration is created and sent to the config-
uration daemons.

5. Reply to the user After a successful configuration the user is notified. If
somewhere the configuration fails, the user gets a negative reply. Since no
configuration at all is performed in this case, the negative answer is much
faster.

Signalling Messages in the Foreign Network

For the example of signalling in a foreign network we will assume, that all net-
works now implement a hierarchical bandwidth broker architecture (cf. Section 7.8).
Furthermore we assume that there exists a reservation from the correspondent host
to the mobile host’s home network which needs to be prolonged to the foreign
network. Finally, the wireless access networks in the foreign network might be
overcrowded and not enough bandwidth is available in all wireless cells. We will
also investigate, how the protocol can deal with that situation.

The signalling in this scenario is much more complicated: First we need a change-
flow request in a multi-ISP scenario (cf. Section 7.7.4) to change the existing

flow from the mobile host to the correspondent host. Second, we need a backward
reservation (i.e. initiated by the mobile host) from the home network to the new
care-of address for the Mobile IP tunnel. This signalling will all happen within a
broker hierarchy.

The mobile host will first connect to the foreign network at location (A). At this
point the authentication procedure is performed and access is granted. Now the

CONCLUSION 191

Internet

Correspondent Host

DiffServ Egress Router

Bandwidth Broker

Root Bandwidth Broker

Leaf Bandwidth BrokerLeaf Bandwidth Broker Leaf Bandwidth Broker

Root Bandwidth Broker
Intermediary

AAA Broker

Home AAA Broker

Home Bandwidth Broker

Home Agent

CD

CD

(A)

(B)
(C)

AP X

AP Y
AP Z

(1)

(2)

(3)
(4)

(4)
(3)

(4)

(3)
(4)

(9)

(5)
(6)

(7)

���
���
���

���
���
���

Figure C.10: Communication of a Mobile User in the Foreign Network

192 CONCLUSION

mobile host can perform all necessary steps to establish all reservations. This way
it has exactly the same QoS level it had in the home network. Afterwards the
mobile host will proceed to location (B). At this point a intra-domain handover,
which means a handover within the same subnetwork, has to happen. Finally the
mobile host moves to location (C). Here we have an overlapping of three wireless
cells. Two of them are quite crowded, so that there may not be enough bandwidth
available. On the other hand, the third cell is the one offering the worst signal-to-
noise ratio, since the access point is a good distance off. Here the mobile user can
decide (e.g. by specifying decision parameters to a handover daemon) which QoS
parameter is of greatest importance.

If the mobile user follows the path starting from (A) via (B) to (C), the following
signalling messages have to be exchanged:

1. Registration at the AAA Broker The mobile host authenticates itself at
the foreign AAA Broker.

2. Validation of the authentication Since the mobile host is unknown in the
foreign network the AAA Broker has to check the validity of the authen-
tication of the mobile host at the AAA Broker of the mobile host’s home
network.

3. Change the existing reservation The existing reservation from the mobile
host to the correspondent host has to be changed to reflect the new care-of
address of the mobile node. The change request establishes a new reserva-
tion and travels upstream until it finds the split point of the two paths. At
this point the old branch to the home network is deleted (cf. Section 7.7.4).
Note, that in a broker hierarchy this request starts at the leaf broker in the
foreign network, bypasses the root broker of the foreign network (since it is
not a crossing flow, see Section 7.8) and directly goes to the neighbouring
root bandwidth broker. The rest of this flow changing procedure only affects
root brokers with the exception of the home network. This is a big reduction
of signalling messages and therefore strongly affects the total setup speed.

4. Reservation for the Mobile IP tunnel If a mobile host wants to get the
same QoS level it had in its home network it also has to take care of a
reservation for the Mobile IP tunnel, if there exists a reservation from the
correspondent host to the home network. Since Mobile IP is transparent to
the correspondent host (except of explicit binding update messages in the
route optimisation operational modus) the mobile host has to take care of
this reservation itself. This is a receiver-initiated (or backward) reservation
(cf. Section 7.7.1). Again the request is started at the leaf broker in the

CONCLUSION 193

foreign network, goes directly to the neighbouring root broker and is passed
upstream until it reaches the home broker. This broker can now start to
set up the reservation. Again we can see, that by having broker hierarchies
the number of brokers involved and thus the number of signalling messages
necessary is greatly reduced.

5. Intra-domain handover When the mobile host travels to point (B), it has to
perform an intra-domain handover. The necessity of performing a handover
is recognised by the SNR-monitoring daemon running on the mobile host
(cf. Section 9.3). The mobile host will thereupon scan the available wireless
cells, find a new one and query the bandwidth broker if it is possible to
perform a handover to this cell while maintaining the QoS level. Since the
cell is not crowded, the broker gives a positive reply and the handover can
be performed. Note, that there are no reconfigurations necessary at all, since
the forwarding path has not changed. Nevertheless, the bandwidth broker
has to be notified since it has to keep track of the utilisation of the wireless
cells in order to admit / reject future resource reservations in this cell.

6. Inter-domain handover in a broker hierarchy When the mobile host ar-
rives at point (C) it has to perform another handover. Again the mobile
host will scan for available cells. This results in three possible access points
(APs X, Y, and Z). This list is passed to the bandwidth broker.

7. Admission control The bandwidth broker queries the utilisation and policy
databases if the flow can be admitted. If necessary, it can also query other
bandwidth brokers.

8. QoS-aware handover decision The bandwidth broker passes a list of pos-
sible access points back to the user. In our example this list may exclude
AP X, since there is no more bandwidth available due to the number of mo-
bile hosts already attached to the access point. AP Y might be included due
to a higher availability of bandwidth or the service degradation parameter
(cf. Section 9.4.2). We now want to assume, that AP Y offers only 90%
of the bandwidth the mobile user would like to reserve. The user has now
two possibilities: It can accept the service degradation for the benefit of
a good signal-to-noise ratio, or it chooses the higher bandwidth, but has a
lower signal-to-noise ratio. This decision is not an easy one to make and it
may require additional information to make a good choice. One possibility
could be for the bandwidth broker to provide the geographical location of
the access points. The mobile host could then easily predict a travelling
path, if such a route is not already configured by the user. In our exam-
ple, a prediction would most likely propose AP Z for attachment, whereas a

194 CONCLUSION

preconfigured route could go north and choose AP Y instead.

9. Handover between leaf brokers The necessary changes of resource reser-
vations for this handover affect the leaf brokers in this hierarchy only. Redi-
recting the reservation requests to the root broker would only result in ad-
ditional signalling and yield no performance benefit. The changing of the
reservations to the new care-of address is therefore performed as previously
described (cf. Section 7.7.4).

Timing Considerations

Now we want to estimate the latency a mobile user has when performing a han-
dover from its home network to a foreign network. Of course this delay heavily
depends on the distance between the home and the foreign network: if those net-
works are separated by a transcontinental link, the delay of one single signalling
message can be 40 ms and more. This again signifies the importance of manag-
ing handovers locally as far as possible, as it is described in the previous section.
The fact, that handover latency depends on delays that are outside the scope of a
bandwidth broker, or more generally out of the QoS framework, means, that we
can only estimate the amount of latency additionally caused by our framework.

Bandwidth Broker

The latency added by our bandwidth broker hierarchy mainly depends on two
parameters: the number of bandwidth brokers that are involved and the possibility
of a fast reservation (where only the ingress router has to be reconfigured). The
size of the topology the individual bandwidth brokers manage does not influence
the result in a significant way (cf. Section 7.6). The worst case, in which every
router along the path has to be reconfigured is negligible as it hardly ever occurs.
We may therefore assume, that the majority of the users has an increased latency
which is the sum of all latencies of bandwidth brokers along the path This latency
is approximately 0.5 ms per broker. If we take into account, that a broker can
manage more than 1000 nodes, the additional delay due to QoS signalling will
not be more than 5 ms, even for transcontinental distances. Compared to the link
delay of 40 – 200 ms, this is almost negligible.

Usually the biggest amount of handovers can be performed locally, which means
that only one or two bandwidth brokers are involved and need to be informed. In
this case, the additional latency will be approximately 1 – 2 ms. In this case the

CONCLUSION 195

delay introduced by the broker is of the same magnitude as the link delay which
is also about 2 ms for an IEEE 802.11b access network.

Topology Updates

Throughout this thesis we assumed the topology to remain static after the startup
of the bandwidth broker. This allowed us to simplify the design of the topology
and the reservation databases. However, this assumption may not be valid in a
large network over a longer interval of time. Although the routes to popular desti-
nations seem to be reasonable stable — despite the large number of BGP(Border
Gateway Protocol) updates [139] — it might happen that a route changes while a
reservation is still relying on the forwarding given by this route. We now want to
shortly discuss possible solutions to this problem, which has not been solved in
any bandwidth broker implementation yet.

The problem of changes in the routing is mainly caused by the aggregation of
flows in the core routers: the core routers do not store per-flow information be-
cause of scalability reasons they only store the overall sum of bandwidth kept.
If a link goes down, the underlying routing protocol might change the routing in
such a way, that one part of the flows is now routed via one interface, but another
part via another interface of this router (and might even not cross this router at all).
Since the core router only has information about the aggregated sum of bandwidth
we cannot know how to divide this sum into parts needed for the new routes.

One possible solution would be the allocation of the total sum of bandwidth on the
new outgoing interfaces. This of course would result in a large overprovisioning
and waste of bandwidth and is therefore not desirable. We propose another solu-
tion that breaks the rule of only storing aggregate information in the core routers
in a way, that the bandwidth broker maintains a reservation value not only for each
interface of a core router but for each routing table entry (see Table C.1).

Destination Gateway Interface Reservation
Dest 	 Gatew 	 Ifc 	 500
Dest

�
Gatew 	 Ifc 	 300

Dest � Gatew
�

Ifc
�

700
Dest � Gatew 	 Ifc 	 700
Dest � Gatew � Ifc � 500
Dest � Gatew

�
Ifc
�

200

Table C.1: Example for the new Routing Table Format

196 CONCLUSION

With this additional information we can correctly change the topology and reser-
vation database in case of routing changes: Assume, that the link of Interface 1
breaks and the routing protocol provides us with the following new routes: des-
tinations Dest 	 and Dest

�
are now routed via interface Ifc

�
, while Dest � is routed

via Ifc � . The new routing table now looks like Table C.2.

Destination Gateway Interface Reservation
Dest 	 Gatew

�
Ifc
�

500
Dest

�
Gatew

�
Ifc
�

300
Dest � Gatew

�
Ifc
�

700
Dest � Gatew � Ifc � 700
Dest � Gatew � Ifc � 500
Dest � Gatew

�
Ifc
�

200

Table C.2: The new Routing Table after the Topology Changes

The bandwidth to be configured newly at the interfaces can easily be compute
from the routing table: Ifc

�
needs 1700 units, while Ifc � will be configured 1200

units.

Deletion of a routing table entry is also quite simple: we will only have to check tin
he new routing table, over which gateway the addresses of the deleted subnetwork
will now be routed. The only thing that has to be done is to add the bandwidth
used for the deleted network to the reservation entry of this gateway.

Outlook and Future Work

The implementation of the bandwidth broker architecture for mobile users is not
carried out in detail yet. There are many things still to be done to accomplish a
fully developed framework:

� Although the QoS management API offers the flexibility to support various
kinds of router hardware, only an implementation for Linux routers has been
implemented. Other implementations for commercial routers (Cisco, NEC,
Allied Telesyn, etc.) are still missing.

� The implementation of security mechanisms has not yet been performed.
The AAA architecture presented in Chapter 10 provides basic guidelines
for such an implementation. These guidelines can be used as a basis for a
complete security packet

CONCLUSION 197

� The bandwidth broker – router communication has to be secure, too in or-
der to prevent malicious reconfiguration of network elements. This could
perhaps be implemented using a ssh tunnel.

� The user interface for the bandwidth broker could still be improved. A
web-based interface would be very convenient for the user. However, the
notification of the user in case of necessary interaction (e.g. a handover
could not be performed using the parameters given to the client software) is
a problem.

� Although our QoS-aware handover procedure should be able to provide rea-
sonable fast and smooth handovers, the handover techniques presented in
Section 1.3 should also be included in the framework.

� Performance evaluations for the multi-domain and for the mobile scenarios
would be interesting to locate possible bottlenecks and further optimise the
implementation.

The bandwidth broker architecture and the QoS signalling protocol can also be
extended and used for other purposes.

� Our present admission control algorithm is not fully developed yet and can
still be improved. For example, measurement-based admission control can
improve the bandwidth utilisation of an access network significantly, if sev-
eral users are not using their full amount of reserved bandwidth at the same
time.

� Presently, our implementation can only be used to set up DiffServ reser-
vations. However, the architecture could be extended to configure non-
DiffServ reservations, such as MPLS paths.

� The handover decision, as it is now implemented, is only based on signal
quality and on the availability of resources. We have already mentioned,
that it could be advantageous to include information outside the scope of
networking, such as geographical information (e.g. from a GPS receiver)
or route information. By taking such information into account, the mobile
client would be able to come to a better decision about the new access point.

� Our signalling protocol only supports the setup of unicast flows. However,
it would also be interesting to support multicast flows. To do so, we would
have to extend the bandwidth broker to query the multicast routing informa-
tion from the routers and to calculate the multicast tree. Another possibility
would be to calculate an optimal multicast tree for an existing group and
explicitly force the routing of this tree to the network.

198 CONCLUSION

� The reservation and utilisation tables of the bandwidth broker could also be
used to monitor the validity of the network state. With the use of monitoring
information from routers we could easily detect a unexpected increase of
traffic to a certain destination, thus recognising Denial of Service attacks.

� Accounting is still a big issue for value-added services like Differentiated
Service.

List of Abbreviations

AAA Authentication, Authorization and Accounting

AAAB AAA broker (trusted third party)

AAAF AAA server in the foreign domain

AAAH AAA server in the home domain

AF Assured Forwarding

API Application Programmers Interface

BA Behaviour Aggregate

BB Bandwidth Broker

CAR Call Admission Rate

CH Correspondent Host

CLI Command Line Interface

CMIP Common Management Information Protocol

CMIS Common Management Information Services

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

CSMA/CD Carrier Sense Multiple Access / Collision Detection

CoA Care of Address

DA Directory Agent

DHCP Dynamic Host Configuration Protocol

199

200 ABBREVIATIONS

DNS Domain Name Service

DSCP Differentiated Services Code Point

EF Expedited Forwarding

ESSID Extended Segment Set Identification

FA Foreign Agent

FTP File Transfer Protocol

GUI Graphical User Interface

HA Home Agent

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

ID Identification Number

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

ISP Internet Service Provider

LAN Local Area Network

MAC Medium Access

MF Multi Field

MH Mobile Host

MPEG2 Motion Pictures Expert Group Standard 2

NAI Network Access Identifier

PDA Portable Digital Assistant

PDB Per Domain Behaviour

PHB Per Hop Behaviour

ABBREVIATIONS 201

QoS Quality of Service

RFC Request For Comment

RPC Remote Procedure Call

RSVP Resource Reservation Protocol

SA Service Agent

SLA Service Level Agreement

SLP Service Location Protocol

SLS Service Level Specification

SL Service Level

SNMP Simple Network Management Protocol

STL Standard Template Library

TCA Traffic Conditioning Agreement

TCP Transmission Control Protocol

TCS Traffic Conditioning Specification

TC Traffic Control

TTL Time To Live

ToS Type of Service

UA User Agent

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

VoIP Voice over IP

202 ABBREVIATIONS

Bibliography

[1] I. Aad and C. Castelluccia. Differentiation mechanisms for IEEE 802.11.
In IEEE Infocomm 2001,Anchorage, Alaska,, April 2001.

[2] I. Aad and C. Castelluccia. Remarks On Per-flow Differrentiaition In IEEE
802.11. In European Wireless 2002, Florence, Italy, February 2002.

[3] Agere Systems. AP Manager. Available online from
http://www.orinocowireless.com.

[4] W. Almesberger. Linux network traffic control — implementation
overview. ftp://lrcftp.epfl.ch/ pub/ people/ almesber/ pub/ tcio-current.ps,
April 1999.

[5] W. Almesberger, J. Salim, and A. Kuznetsov. Differentiated Services on
Linux. Internet Draft, draft-almesberger-wajhak-diffserv-linux-01.txt, June
1999. work in progress.

[6] B. Andersson, D. Forsberg, J. Hautio, H. Kari, J. Malinen, J. Mali-
nen, K. Mustonen, and T. Weckström. Dynamics - HUT Mobile IP.
http://www.cs.hut.fi/Research/Dynamics/.

[7] R. Atkinson. RFC 1826: IP Authentication Header, August 1995. Obso-
leted by RFC2402 [87].

[8] R. Balmer, M. Günter, and T. Braun. Video Streaming in a DiffServ/IP
Multicast Network. In Workshop Advanced Internet Charging and QoS
Technology at Informatik 2001 (ICQT), September 2001.

[9] M. Bauer and H. Akhand. Managing Quality-of-Service in Internet Ap-
plications Using Differentiated Services. Journal of Network and Systems
Management, 10(1), March 2002.

203

204 BIBLIOGRAPHY

[10] F. Baumgartner and T. Braun. Fairness of Assured Service. In Modelling
and Simulation, 13th European Simulation Conference’99, Warsaw, vol-
ume 1, 1999. ISBN 1-56555-171-0.

[11] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[12] Y. Bernet, S. Blake, D. Grossman, and A. Smith. RFC 3290: An Informal
Management Model for Diffserv Routers, May 2002.

[13] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski, and E. Felstaine. RFC 2998: A Framework for
Integrated Services Operation over Diffserv Networks, November 2001.

[14] Y. Bernet, A. Smith, S. Blake, and D. Grossman. A Conceptual Model for
DiffServ Routers. Internet Draft, March 2000. work in progress.

[15] J. Biswas, A. A. Lazar, J. F. Huard, K. Lim, S. Mahjoub, L.-F. Pau,
M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein. The IEEE P1520
Standards Initiative for Programmable Network Interfaces. IEEE Commu-
nications Magazine, 36(10):64–72, October 1998.

[16] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC
2475: An Architecture for Differentiated Service, December 1998.

[17] R. Bless and K. Wehrle. Evaluation of Differentiated Services using an
implementation under Linux. In Seventh IFIP International Workshop on
Quality of Service (IWQOS’99), London, UK, June 1999. ISBN 0-7803-
5671-3.

[18] U. Blumenthal and B. Wijnen. RFC 2264: User-based Security Model
(USM) for version 3 of the Simple Network Management Protocol (SN-
MPv3), January 1998. Obsoleted by RFC2274 [19].

[19] U. Blumenthal and B. Wijnen. RFC 2274: User-based Security Model
(USM) for version 3 of the Simple Network Management Protocol (SN-
MPv3), January 1998. Obsoletes RFC2264 [18]. Obsoleted by RFC2574
[20].

[20] U. Blumenthal and B. Wijnen. RFC 2574: User-based Security Model
(USM) for version 3 of the Simple Network Management Protocol (SN-
MPv3), March 2000. Obsoletes RFC2274 [19].

[21] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205:
Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specifica-
tion, September 1997.

BIBLIOGRAPHY 205

[22] R. Braden and L. Zhang. RFC 2209: Resource ReSerVation Protocol
(RSVP) – Version 1 Message Processing Rules, September 1997.

[23] T. Braun, C. Castelluccia, and G. Stattenberger. An Analysis of the Diff-
Serv Approach in Mobile Environments. In Proceedings of 1st Workshop
of IP Quality of Service for wireless and mobile networks (IQWiM’99),
Aachen, Germany, 1999.

[24] T. Braun, M. Günter, and I. Khalil. Management of Quality of Service
Enabled VPNs. IEEE Communications Magazine, May 2001.

[25] T. Braun, Li Ru, and G. Stattenberger. An AAA Architecture Extension for
Providing Differentiated Services to Mobile IP Users. In Proceedings of
the 6th IEEE Symposium on Computers and Communications (ISCC 2001),
Hammamet, Tunesia, July 2001.

[26] T. Braun, M. Scheidegger, H. Einsiedler, G. Stattenberger, and K. Jonas. A
Linux Implementation of a Differentiated Services Router. In Sathya Rao
and Kaare Ingar Sletta, editors, Next Generation Networks — Networks
and Services for the Information Society, volume 1938 of Lecture Notes in
Computer Science, pages 302 – 315, October 2000.

[27] P. Calhoun and C. Perkins. RFC 2794: Mobile IP Network Access Identi-
fier Extension for IPv4, March 2000.

[28] P. R. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J Arkko. Diameter
Base Protocol. Internet Draft, draft-ietf-aaa-diameter-15.txt, October 2002.
work in progress.

[29] J. Case, D. Harrington, R. Presuhn, and B. Wijnen. RFC 2262: Message
Processing and Dispatching for the Simple Network Management Protocol
(SNMP), January 1998.

[30] J. Case, D. Harrington, R. Presuhn, and B. Wijnen. RFC 2272: Message
Processing and Dispatching for the Simple Network Management Protocol
(SNMP), January 1998. Obsoletes RFC2262 [29]. Obsoleted by RFC2572
[31].

[31] J. Case, D. Harrington, R. Presuhn, and B. Wijnen. RFC 2572: Message
Processing and Dispatching for the Simple Network Management Protocol
(SNMP), April 1999. Obsoletes RFC2272 [30].

[32] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1442: Structure
of Management Information for version 2 of the Simple Network Manage-
ment Protocol (SNMPv2), April 1993.

206 BIBLIOGRAPHY

[33] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1449: Trans-
port Mappings for version 2 of the Simple Network Management Protocol
(SNMPv2), April 1993. Obsoleted by RFC1906 [36].

[34] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1902: Structure
of Management Information for Version 2 of the Simple Network Manage-
ment Protocol (SNMPv2), January 1996. Obsoletes RFC1442 [32]. Obso-
leted by RFC2578 [117].

[35] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1905: Proto-
col Operations for Version 2 of the Simple Network Management Protocol
(SNMPv2), January 1996.

[36] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. RFC 1906: Trans-
port Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2), January 1996. Obsoletes RFC1449 [33].

[37] V.G. Cerf. RFC 1052: IAB recommendations for the development of Inter-
net network management standards, April 1989.

[38] P. Chandra, A. Fisher, and P. Steenkiste. Beagle: A Resource Allocation
Protocol for an Advanced Services Internet. Technical Report CMU-CS-
98-150, Carnegie Mellon University, 1998.

[39] H. Chaskar and R. Koodli. A framework for QoS support in mobile IPv6.
Internet Draft, March 2001. work in progress.

[40] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Court-
ney, S. Davari, V. Firoiu, and D. Stiliadis. RFC 3246: An Expedited For-
warding PHB (Per-Hop Behavior), March 2002. Obsoletes RFC2598 [78].

[41] A. De Carolis and L. Dell’Uomo. QoS-Aware Handover for Mobile IP.
Internet Draft, draft-decarolis-qoshandover-02.txt, April 2001. work in
progress.

[42] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. RFC
2903: Generic AAA Architecture, August 2000.

[43] J. Diederich, T. Lohmar, M. Zitterbart, and R. Keller. A QoS Model for
Differentiated Services in Mobile Wireless Networks. In Paper Digest of
the 11th IEEE Workshop on Local and Metropolitan Area Networks (LAN-
MAN’01), Boulder Co., USA, March 2001.

BIBLIOGRAPHY 207

[44] J. Diederich and M. Zitterbart. An expedited forwarding with dropping
PHB. Internet Draft, draft-dieder-diffserv-phb-efd-00.txt, October 1999.
work in progress.

[45] Matthew Doar. Tiers topology generator. http://www.geocities.com/ Re-
searchTriangle/ 3867/ sourcecode.html.

[46] Z. Duan and Z.-L. Zhang. A Scalable Bandwidth Management Architecture
for Supporting VoIP Applications Using Bandwidth Broker. In Paper Di-
gest of the 11th IEEE Workshop on Local and Metropolitan Area Networks
(LANMAN’01), Boulder Co., USA, March 2001.

[47] D. Eastlake. RFC 1455: Physical Link Security Type of Service, May 1993.
Obsoleted by RFC2474 [124].

[48] C. Perkins (Ed.). RFC 2002: IP Mobility Support, October 1996. Obsoleted
by RFC3220 [49].

[49] C. Perkins (Ed.). RFC 3220: IP Mobility Support for IPv4, January 2002.
Obsoletes RFC2002 [48].

[50] C. Perkins (Ed.). RFC 3344: IP Mobility Support for IPv4, August 2002.
Obsoletes RFC3220 [49].

[51] G. Dommety (Ed.), A. Yegin, C. Perkins, G. Tsirtis, K. El-Malki, and
M. Khalil. Fast Handovers for Mobile IPv6. Internet Draft, draft-ietf-
mobileip-fast-mipv6-04.txt, March 2002. work in progress.

[52] H. Chaskar (Ed.). Requirements of a QoS Aolution for Mobile IP. Inter-
net Draft, draft-ietf-mobileip-qos-requirements-03.txt, July 2002. work in
progress.

[53] J. Kempf (Ed.). Problem Description: Reasons for performing Context
Transfers Between Nodes in an IP Access Network. Internet Draft, draft-
ietf-seamoby-context-transfer-problem-stat-04.txt, August 2002. work in
progress.

[54] K. El-Malki (Ed.), P. Calhoun, T. Hiller, J. Kempf, P. McCann, A. Singh,
H. Soliman, and S. Thalanany. Low Latency Handoffs in Mobile IPv4. In-
ternet Draft, draft-ietf-mobileip-lowlatency-handoffs-v4-04.txt, June 2002.
work in progress.

[55] M. Brunner (Editor). Requirements for QoS Signaling Protocols. Internet
Draft, draft-ietf-nsis-req-03.txt, November 2002. work in progress.

208 BIBLIOGRAPHY

[56] Y. Ezaki and Y. Imai. Mobile IPv6 handoff by Explicit Multicast. Internet
Draft, draft-ezaki-handoff-xcast-01.txt, May 2001. work in progress.

[57] G. Fankhauser, S. Hadjiefthymiades, N. Nikaein, and L. Stacey. RSVP
Support for Mobile IP Version 6 in Wireless Environments. Internet
Draft, draft-fhns-rsvp-support-in-mipv6-00.pdf, November 1998. work in
progress.

[58] S. Farrell, J. Vollbrecht, P. Calhoun, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence. RFC 2906: AAA Authorization
Requirements, August 2000.

[59] A. Fieger, M. Zitterbart, R. Keller, and J. Diederich. Towards qos support in
the presence of handover,. In Proceedings of 1st Workshop of IP Quality of
Service for wireless and mobile networks (IQWiM’99), Aachen, Germany,
April 1999.

[60] S. Floyd and V. Jacobsen. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4), August 1993.

[61] L. R. Ford and D.R Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[62] X. Fu, H. Karl, and C. Kappler. QoS-Conditionalized Handoff for Mo-
bile IPv6. In Proc. of the Second IFIP-TC6 Networking Conf. - Network-
ing2002, pages 721 – 730, Pisa, Italy, May 2002. Springer Verlag.

[63] J. A. Garcia-Macias, F. Rousseau, G. Berger-Sabbatel, L. Toumi, and
A. Duda. Quality of Service and Mobility for the Wireless Internet. In
Proc. First ACM Wireless Mobile Internet Workshop, Rome, Italy, 2001.

[64] editor Gary Kenward. General Requirements for Context Transfer. Internet
Draft, draft-ietf-seamoby-ct-reqs-05.txt, October 2002. work in progress.

[65] http://www.dante.net/geant/about-geant.html, September 2002.

[66] D. Grossman. RFC 3260: New Terminology and Clarifications for Diffserv,
May 2002.

[67] M. Günter. Management of Multi-Provider Internet Services with Software
Agents. PhD thesis, University of Bern, June 2001.

[68] M. Günter and T. Braun. Evaluation of Bandwidth Broker Signaling.
In Proceedings of the International Conference on Network Protocols
ICNP’99, Toronto, Canada, pages 145 – 152. IEEE Computer Society,
November 1999. ISBN 0-7695-0412-4.

BIBLIOGRAPHY 209

[69] E. Guttman, C. Perkins, J. Veizades, and M. Day. RFC 2608: Service
Location Protocol, Version 2, June 1999.

[70] D. Harrington, R. Presuhn, and B. Wijnen. RFC 2261: An Architecture for
Describing SNMP Management Frameworks, January 1998. Obsoleted by
RFC2271 [71].

[71] D. Harrington, R. Presuhn, and B. Wijnen. RFC 2271: An Architecture
for Describing SNMP Management Frameworks, January 1998. Obsoletes
RFC2261 [70]. Obsoleted by RFC2571 [184].

[72] Hasan, J. Jähnert, S. Zander, and B. Stiller. Authentication, Authoriza-
tion, Accounting, and Charging for the Mobile Internet. Technical Report
TIK-Report No. 114, Eidgenössische Technische Hochschule Zürich, June
2001.

[73] Hasan, J. Jähnert, S. Zander, and B. Stiller. Authentication, Authorization,
Accounting, and Charging for the Mobile Internet. In IST Mobile Commu-
nications Summit 2001, Barcelona, Spain, September 2001.

[74] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. RFC 2597: Assured
Forwarding PHB Group, June 1999.

[75] J. Heinanen and R. Guerin. RFC 2698: A Two Rate Three Color Marker,
September 1999.

[76] Cisco Systems Inc. Internet Technology Handbook. Cisco Press, third
edition, December 2000.

[77] Bandwidth Broker Implementation. www.ittc.ukans.edu/˜kdrao/ BB/
bbreport.html.

[78] V. Jacobson, K. Nichols, and K. Poduri. RFC 2598: An Expedited For-
warding PHB, June 1999. Obsoleted by RFC3246 [40].

[79] V. Jacobson, K. Nichols, and K. Poduri. The ‘Virtual Wire’ Per-Domain Be-
haviour. Internet Draft, draft-ietf-diffserv-pdb-vw-00.txt, July 2000. work
in progress.

[80] S. Jamadagni and S. Pandey. Optimized IP Mobility - Requirements for Un-
derlying Systems. Internet Draft, draft-satish-l2-mobilereq-00.txt, Febru-
ary 2002. work in progress.

210 BIBLIOGRAPHY

[81] R. Jayaraj. Cell-Search List Indications for Seamless Anticipative,
Resource-Mindful Handovers. Internet Draft, draft-rjaya-seamoby-cslist-
ind-00.txt, May 2002. work in progress.

[82] H. Jung, H. Kang, and C. Lee. Fast Handoff with Chain Tunneling for
Mobile IPv6. Internet Draft, draft-jung-mobileip-fastho-chain-00.txt, June
2002. work in progress.

[83] J. Kempf, D. Blair, P. Reynolds, and A. O’Neill. Leveraging Fast Handover
Protocols to Support Localized Mobility Management in Mobile IP. In-
ternet Draft, draft-kempf-mobileip-fastho-lmm-00.txt, June 2002. work in
progress.

[84] J. Kempf, P. Calhoun, and D. Frascone. The Diameter API. Internet Draft,
draft-ietf-aaa-diameter-api-03, November 2002. work in progress.

[85] J. Kempf, Y. Gwon, D. Funato, A. Takeshita, and J. Wood. Post-handover
Mobile Initiated Tunneling for Fast Mobile IPv4 Handover. Internet
Draft, draft-kempf-mobileip-postmit-handover-00.txt, June 2002. work in
progress.

[86] S. Kent and R. Atkinson. RFC 2401: Security Architecture for the Internet
Protocol, November 1998.

[87] S. Kent and R. Atkinson. RFC 2402: IP Authentication Header, November
1998. Obsoletes RFC1826 [7].

[88] I. Khalil and T. Braun. A Range-Based SLA and Edge Driven Virtual Core
Provisioning in DiffServ-VPNs. In The 26th Annual IEEE Conference on
Local Computer Networks (LCN’2001), Tampa, USA, November 2001.

[89] I. Khalil and T. Braun. Implementation of a Bandwidth Broker for Dy-
namic End-to-End Capacity Reservation over Multiple Diffserv Domains.
In 4th IFIP/IEEE International Conference on Management of Multimedia
Networks and Services (MMNS), Chicago, USA, November 2001.

[90] I. Khalil and T. Braun. Automated Service Provisioning in Heterogenous
Large-Scale Enviroment. In Proceedings of the 8th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2002), Firenze, Italia,
April 2002.

[91] I. Khalil and T. Braun. Edge Provisioning of VPN-DiffServ Networks,.
Journal on Network and Systems Management, 10(1), March 2002.

BIBLIOGRAPHY 211

[92] P. Kivimäki. Policy Based Networks & Bandwidth Broker. www.atm.tut.fi/
workshop01/ workshop01-bb.pdf.

[93] A. Kolarov. Study of the TCP/UDP Fairness Issue for the Assured Forward-
ing Per Hop Behaviour in Differentiated Services Networks. In Proceed-
ings of the IEEE Workshop on High Performance Switching and Routing
(HPSR 2001), Dallas, Texas, USA, May 2001.

[94] R. Koodli and C. Perkins. A Framework for Smooth Handovers with Mo-
bile IPv6. Internet Draft, draft-ietf-koodli-smoothv6-00.txt, July 2000.
work in progress.

[95] R. Koodli and C. Perkins. Fast Handovers in Mobile IPv6. Internet Draft,
draft-perkins-mobileip-fastv6-00.txt, October 2000. work in progress.

[96] R. Koodli and C. Perkins. A context Transfer Protocol for Seamless Mo-
bility. Internet Draft, draft-koodli-seamoby-ct-04.txt, August 2002. work
in progress.

[97] G. Krishnamurthi, R. Chalmers, and C. Perkins. Buffer Management for
Smooth HandOvers in Mobile IPv6. Internet Draft, draft-krishnamurthi-
mobileip-buffer6-00.txt, July 2000. work in progress.

[98] G. Krishnamurthi, R. Chalmers, and C. Perkins. Buffer Management for
Smooth HandOvers in Mobile IPv6. Internet Draft, draft-krishnamurthi-
mobileip-buffer6-00.txt, July 2000. work in progress.

[99] Alexey Kuznetsov. iproute2 release 990824. ftp://ftp.sunet.se/pub/Linux/
ip-routing/iproute2-2.2.4-now-ss990824.tar.gz.

[100] D. Levi, P. Meyer, and B. Stewart. RFC 2263: SNMPv3 Applications,
January 1998. Obsoleted by RFC2273 [101].

[101] D. Levi, P. Meyer, and B. Stewart. RFC 2273: SNMPv3 Applications,
January 1998. Obsoletes RFC2263 [100]. Obsoleted by RFC2573 [102].

[102] D. Levi, P. Meyer, and B. Stewart. RFC 2573: SNMP Applications, April
1999. Obsoletes RFC2273 [101].

[103] D. Levi and J. Schoenwaelder. RFC 2592: Definitions of Managed Ob-
jects for the Delegation of Management Script, May 1999. Obsoleted by
RFC3165 [104].

212 BIBLIOGRAPHY

[104] D. Levi and J. Schoenwaelder. RFC 3165: Definitions of Managed Ob-
jects for the Delegation of Management Scripts, August 2001. Obsoletes
RFC2592 [103].

[105] R.-F. Liao, R. H. Wouhaybi, and A.T. Campbell. Incentive Engineering in
Wireless LAN Based Access Networks. In Proc. 10th International Confer-
ence on Network Protocols (ICNP 2002), Paris, France, November 2002.

[106] A. Lindgren, A. Almquist, and O. Schelen. Evaluation of Quality of Service
Schemes for IEEE 802.11 Wireless LANs. In Proceedings of the 26th An-
nual IEEE Conference on Local Computer Networks (LCN’2001), Tampa,
USA, November 2001.

[107] Lucent Technologies. . . . IEEE 802.11 channel selection guidelines: Us-
ing multiple channels in WaveLAN / IEEE 802.11. WaveLAN Technical
Bulletin 003/A, Lucent Technologies, November 1998.

[108] Lucent Technologies. . . . roaming with WaveLAN/IEEE 802.11. WaveLAN
Technical Bulletin 021/A, Lucent Technologies, December 1998.

[109] Lucent Technologies. . . . Planning Large Scale Installations: Installation
Guidelines. WaveLAN Technical Bulletin 023/B, Lucent Technologies,
April 1999.

[110] Lucent Technologies. . . . security: WaveLAN / IEEE 802.11 Security Lay-
ers. WaveLAN Technical Bulletin 002/A, Lucent Technologies, September
1999.

[111] J. Malinen and C. Perkins. Mobile IPv6 Regional Registrations. Internet
Draft, draft-malinen-mobileip-regreg6-00.txt, July 2000. work in progress.

[112] A. Mankin, Ed., F. Baker, B. Braden, S. Bradner, M. O‘Dell, A. Romanow,
A. Weinrib, and L. Zhang. RFC 2208: Resource ReSerVation Protocol
(RSVP) – Version 1 Applicability Statement Some Guidelines on Deploy-
ment, September 1997.

[113] J. Manner and M. Kojo (Eds.). Mobility Related Terminology. Internet
Draft, draft-ietf-seamoby-mobility-terminology-00.txt, August 2002. work
in progress.

[114] V. Marques, R. Aguiar, F. Fontes, J. Jähnert, and H. Einsiedler. Enabling
IP QoS in Mobile Environments. In IST Mobile Communications Summit
2001, Barcelona, Spain, September 2001.

BIBLIOGRAPHY 213

[115] V. Marques, R. Aguiar, J. Jähnert, K. Jonas, M. Liebsch, H. Einsiedler, and
F. Fontes. A Heterogeneous Mobile IP QoS-aware Network. In accepted
for oral presentation at CRC 2001, November 2001.

[116] P. Martinez, M. Brunner, J. Quittek, F. Strauß, J. Schönwälder, S. Mertens,
and T. Klie. Using the Script MIB for Policy-based Configuration Man-
agement. In Proceedings of the 8th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2002), Firenze, Italia, April 2002.

[117] K. McCloghrie, D. Perkins, and J. Schoenwaelder. RFC 2578: Structure
of Management Information Version 2 (SMIv2), April 1999. Obsoletes
RFC1902 [34].

[118] K. McCloghrie, D. Perkins, and J. Schoenwaelder. RFC 2579: Textual
Conventions for SMIv2, April 1999.

[119] K. McCloghrie, D. Perkins, and J. Schoenwaelder. RFC 2580: Confor-
mance Statements for SMIv2, April 1999.

[120] Sun Microsystems. RFC 1050: RPC: Remote Procedure Call Protocol
specification, April 1989.

[121] D. Mitton and M. Beadles. RFC 2881: Network Access Server Require-
ments Next Generation (NASREQNG) NAS Model, July 2000.

[122] G. Montenegro and Ed. RFC 2344: Reverse Tunneling for Mobile IP, May
1998. Obsoleted by RFC3024 [123].

[123] G. Montenegro and Ed. RFC 3024: Reverse Tunneling for Mobile IP, re-
vised, February 2001. Obsoletes RFC2344 [122].

[124] K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474: Definition of
the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
December 1998. Obsoletes RFC1455 [47].

[125] K. Nichols and B. Carpenter. RFC 3086: Definition of Differentiated Ser-
vices Per Domain Behaviors and Rules for their Specification, April 2001.

[126] K. Nichols, V. Jacobson, and L. Zhang. RFC 2638: A Two-bit Differenti-
ated Services Architecture for the Internet, July 1999.

[127] J. Norton. Dynamic class loading for C++ on linux. Linux Journal, 73,
March 2000. http://www2.linuxjournal.com/lj-issues/issue73/3687.html.

214 BIBLIOGRAPHY

[128] J. Ogawa and Y. Nomura. A Simple Resource Management Architecture
for Differentiated Services. In Proceedings of the 10th Annual INET Con-
ference, Yokohama, Japan, July 2000.

[129] M. Ohta. Smooth Handover over IEEE 802.11 Wireless LAN. Inter-
net Draft, draft-ohta-smooth-handover-wlan-00.txt, June 2002. work in
progress.

[130] P. Pan and H. Schulzrinne. YESSIR: A Simple Reservation Mechanism for
the Internet. Computer Communication Review, 29(2), 1999.

[131] C. Perkins. RFC 2003: IP Encapsulation within IP, October 1996.

[132] C. Perkins. Fast Handovers for Mobile IPv6. Internet Draft, draft-perkins-
mobileip-handover-00.txt, November 2000. work in progress.

[133] C. Perkins and D. Johnson. Route Optimization in Mobile IP. Internet
Draft, draft-ietf-mobileip-optim-10.txt, November 2000. work in progress.

[134] G. Politis, P. Sampatakos, and I. Venieris. Design of a Multi-Layer Band-
width Broker Architecture. In Sathya Rao and Kaare Ingar Sletta, editors,
Next Generation Networks — Networks and Services for the Information
Society, volume 1938 of Lecture Notes in Computer Science. Springer Ver-
lag, October 2000.

[135] O. Pop, T. Mahr, T. Dreilinger, and R. Szabo. Vendor-Independent Band-
width Broker Architecture for DiffServ Networks. In Proceedings of
the IEEE International Conference on Telecommunications (ICT 2001)
Bucharest, Romania, June 2001.

[136] S. Radhakrishnan. Linux - Advanced Networking Overwiew. Available
online from http://qos.ittc.ukans.edu/howto.

[137] F. Reichmeyer, L.Ong, A. Terzis, L. Zhang, and R.Yavatkar. A two-tier
resource management model for differentiated services networks. Internet
Draft, November 1998. work in progress.

[138] C. Rensing, Hasan, M. Karsten, and B. Stiller. A Survey on AAA Mecha-
nisms, Protocols, and Architectures and a Policy-based Approach beyond:
� � . Technical Report TIK-Report No. 111, Eidgenössische Technische
Hochschule Zürich, May 2001.

[139] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP Routing Stability of
Popular Destinations. In Proceedings of ACM SIGCOMM Internet Mea-
surement Workshop, Marseille, France, November 2002.

BIBLIOGRAPHY 215

[140] C. Rigney, A. Rubens, W. Simpson, and S. Willens. RFC 2058: Remote
Authentication Dial In User Service (RADIUS), January 1997. Obsoleted
by RFC2138 [141].

[141] C. Rigney, A. Rubens, W. Simpson, and S. Willens. RFC 2138: Remote
Authentication Dial In User Service (RADIUS), April 1997. Obsoletes
RFC2058 [140]. Obsoleted by RFC2865 [143].

[142] C. Rigney, W. Willats, and P. Calhoun. RFC 2869: RADIUS Extensions,
June 2000.

[143] C. Rigney, S. Willens, A. Rubens, and W. Simpson. RFC 2865: Remote
Authentication Dial In User Service (RADIUS), June 2000. Obsoletes
RFC2138 [141].

[144] Li Ru, T. Braun, and G. Stattenberger. An AAA based Architecture for
Providing Differentiated Services to Mobile IP Users. Technischer Bericht
IAM-00-009, Institut für Informatik, Universität Bern, Schweiz, November
2000.

[145] V. Sander and M. Fidler. Evaluation of a Differentiated Services Based
Implementation of a Premium and Olympic Service. In B. Stiller,
M. Smirnow, M. Karsten, and P. Reichl, editors, From QoS Provision-
ing to QoS Charging, volume 2511 of Lecture Notes in computer Science.
Springer Verlag, August 2002.

[146] S. Sato, K. Kobayashi, H. Pan, S. Tartarelli, and A. Banchs. Configuration
Rule, Performance Evaluation of DiffServ parameters. In 17th Interna-
tional Teletraffic Congress (ITC17), Salvador da Bahia, Brazil, December
2001.

[147] H. Schulzrinne, H. Tschofenig, X. Fu, J. Eisl, and R. Hancock. CASP
- Cross-Application Signaling Protocol. Internet Draft, draft-schulzrinne-
nsis-casp-00.txt, September 2002. work in progress.

[148] N. Seddigh, B. Nandy, and J. Heinanen. An Assured Rate Per-Domain
Behaviour for Differentiated Services. Internet Draft, draft-ietf-diffserv-
pdb-ar-01.txt, July 2001. work in progress.

[149] R. Serban, S. Gara, and W. Dabbous. Internet QoS Signaling Protocols.
IEEE Communications, December 2000.

[150] J. Sevanto, M. Liljeberg, and K. Raatikainen. Introducing Quality of Ser-
vice and Traffic Classes into Wireless Mobile Networks. In Proceedings of

216 BIBLIOGRAPHY

First ACM International Workshop on Wireless Mobile Multimedia (WOW-
MOM 1998) Dallas, Texas, USA, 1998.

[151] S. Shende, A. Malony, J Cuny, K. Lindlan, P. Beckman, and S. Karmesin.
Tuning and Analysis Utilities (TAU). Available from http://acts.nersc.gov/
tau/main.html.

[152] W. Simpson. RFC 1853: IP in IP Tunneling, October 1995.

[153] J. L. Sobrinho and A. S. Krishnakumar. Quality-of-Service in ad hoc carrier
sense multiple access networks. In IEEE Journal on Selected Areas in
Communications, August 1999.

[154] H. Soliman, C. Castelluccia, K. El-Malki, and L. Bellier. Hierarchi-
cal MIPv6 mobility management (HMIPv6). Internet Draft, draft-ietf-
mobileip-fast-hmipv6-06.txt, July 2002. work in progress.

[155] R. Srinivasan. RFC 1831: RPC: Remote Procedure Call Protocol Specifi-
cation Version 2, August 1995.

[156] G. Stattenberger and T. Braun. Implementation and Configuration of a
Linux Differentiated Services Router. Technischer Bericht IAM-00-010,
Institut für Informatik, Universität Bern, Schweiz, 2000.

[157] G. Stattenberger and T. Braun. Providing Differentiated Services to Mobile
IP Users. In Proceedings of the 26th Annual IEEE Conference on Local
Computer Networks (LCN’2001), Tampa, USA, November 2001.

[158] G. Stattenberger and T. Braun. QoS Provisioning for Mobile IP Users. In
H. Afifi and D. Zeghlache, editors, Conference on Applications and Ser-
vices in Wireless Networks, ASW 2001, Paris, France, July 2001.

[159] G. Stattenberger and T. Braun. Performance of a Bandwidth Broker for
DiffServ Networks. In Fachtagung Kommunikation in Verteilten Systemen
(KiVS), Leipzig, Germany, February 2003.

[160] G. Stattenberger, T. Braun, and M. Brunner. A Platform - Independent API
for Quality of Service Management. In Proceedings of the IEEE Workshop
on High Performance Switching and Routing (HPSR 2001), Dallas, Texas,
USA, May 2001.

[161] G. Stattenberger, T. Braun, M. Scheidegger, M. Brunner, and H. Stüttgen.
Performance evaluation of a Linux DiffServ implementation. Computer
Communications, 25(13), August 2002.

BIBLIOGRAPHY 217

[162] F. Strauß. Script MIB Performance Analysis. Simple Times, 7(2), Novem-
ber 1999.

[163] B. Stroustrup. The C++ Programming Language. Addison-Wesley, third
edition, 1999.

[164] http://www.switch.ch/network/map/SWITCHlanbb1.gif, May 2002.

[165] R. Szabó, T. Henk, V. Rexhepi, and G. Karagiannis. Resource Manage-
ment in Differentiated Services (RMD) IP Networks. In Proceeding of the
International Conference on Emerging Telecommunications Technologies
and Applications (ICETA 2001), Kosice, Slovak Republic, October 2001.

[166] A. Talukdar, B. Badrinath, and A. Acharya. MRSVP: A Resource Reserva-
tion Protocol for an Integrated Services Packet Network with Mobile Hosts.
Technical Report DCS-TR-337, Rutgers University, 1997.

[167] B. Teitelbaum and P. Chimento. Qbone bandwidth broker architecture.
http://qbone.internet2.edu/bb/bboutline2.html, 2000. Work in Progress.

[168] A. Terzis, J. Krawczyk, J. Wroclawski, and L. Zhang. RFC 2746: RSVP
Operation Over IP Tunnels, January 2000.

[169] A. Terzis, J. Ogawa, S. Tsui, L. Wang, and L. Zhang. A Prototype Imple-
mentation of the Two-Tier Architecture for Differentiated Services. In Pro-
ceedings of the Fifth IEEE Real-Time Technology and Applications Sympo-
sium (RTAS99), Vancouver, Canada, June 1999.

[170] A. Terzis, M. Srivastava, and L. Zhang. A Simple QoS Signaling Protocol
for Mobile Hosts in the Integrated Services Internet. In INFOCOM (3),
May 1999.

[171] The Institute of Electrical and Electonics Engineers, Inc. (IEEE).
ANSI/IEEE Standard 802 Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Pysical Layer (PHY) Specifications, 1999.
http://standards.ieee.org/getieee802/download/802.11-1999.pdf.

[172] The Institute of Electrical and Electonics Engineers, Inc. (IEEE).
ANSI/IEEE Standard 802 Part 3: Carrier Sense multiple access with
collision detection (CSMA/CD) access method and physical layer spec-
ifications, 2002. http://standards.ieee.org/ getieee802/ download/ 802.3-
2002.pdf.

[173] S. Thomson and T. Narten. RFC 1971: IPv6 Stateless Address Autocon-
figuration, August 1996. Obsoleted by RFC2462 [174].

218 BIBLIOGRAPHY

[174] S. Thomson and T. Narten. RFC 2462: IPv6 Stateless Address Autocon-
figuration, December 1998. Obsoletes RFC1971 [173].

[175] Jean Tourrilhes. Wireless Tools. Available online from
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html.

[176] P. Trimintzios, I. Andrikopoulos, G. Pavlou, P. Flegkas, D. Griffin, P. Geor-
gatsos, D. Goderis, Y. T’Joens, L. Georgiadis, V. Jacquenet, and R. Egan. A
Management and Control Architecture for Providing IP Differentiated Ser-
vices in MPLS-Based Networks. IEEE Communications Magazine, May
2001.

[177] G. Tsirtis, A. Yegin, C. Perkins, G. Dommety, H. Soliman, and M. Khalil.
Fast Handovers for Mobile IPv6. Internet Draft, draft-designteam-fast-
mipv6-00.txt, June 2001. work in progress.

[178] N.H. Vaidya, P. Bahl, and S. Gupta. Distributed fair scheduling in a wireless
LAN. In Proceedings of ACM International Conference on Mobile Com-
puting and Networking (MobiCom 2000), Boston, Massachusetts, USA,
August 2000.

[179] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence. RFC 2904: AAA Authorization
Framework, August 2000.

[180] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence. RFC 2905: AAA Authorization
Application Examples, August 2000.

[181] A. Weyland. Mobile-Controlled Handover in Wireless LANs. Master’s
thesis, University of Bern, 2001.

[182] A. Weyland, G. Stattenberger, and T. Braun. Mobile-Controlled Handover
in Wireless LANs. In IEEE Workshop on Local and Metropolitan Area
Networks (LANMAN’02), Stockholm, Sweden, August 2002.

[183] A. Weyland, G. Stattenberger, and T. Braun. User-Controlled Handover
in Wireless LANs. In IEEE Workshop on Applications and Services in
Wireless Networks (ASWN 2002), Paris, France, July 2002.

[184] B. Wijnen, D. Harrington, and R. Presuhn. RFC 2571: An Architecture
for Describing SNMP Management Frameworks, April 1999. Obsoletes
RFC2271 [71].

BIBLIOGRAPHY 219

[185] B. Wijnen, R. Presuhn, and K. McCloghrie. RFC 2265: View-based Ac-
cess Control Model (VACM) for the Simple Network Management Proto-
col (SNMP), January 1998. Obsoleted by RFC2275 [186].

[186] B. Wijnen, R. Presuhn, and K. McCloghrie. RFC 2275: View-based Ac-
cess Control Model (VACM) for the Simple Network Management Pro-
tocol (SNMP), January 1998. Obsoletes RFC2265 [185]. Obsoleted by
RFC2575 [187].

[187] B. Wijnen, R. Presuhn, and K. McCloghrie. RFC 2575: View-based Ac-
cess Control Model (VACM) for the Simple Network Management Proto-
col (SNMP), March 2000. Obsoletes RFC2275 [186].

[188] http://www1.worldcom.com/global/about/network/maps/europe/.

[189] J. Wroclawski. RFC 2210: The Use of RSVP with IETF Integrated Ser-
vices, September 1997.

[190] A. Yegin, D. Funato, K. El-Malki, Y. Gwon, J. Kempf, M. Pettersson,
P. Roberts, H. Soliman, and A. Takeshita. Supporting Optimized Handover
for IP Mobility - Requirements for Underlying Systems. Internet Draft,
draft-manyfolks-l2-mobilereq-02.txt, June 2002. work in progress.

[191] Z.-L. Zhang, Z. Duan, L. Gao, and Y. Hou. Decoupling QoS Control from
Core Routers: A Novel Bandwidth Broker Architecture for Scalable Sup-
port of Guaranteed Services. In ACM SIGCOMM 2000, Stockholm, Swe-
den, August 2000.

[192] Z.-L. Zhang, Z. Duan, and Y. T. Hou. On Scalable Design of Bandwidth
Brokers. Technical report, University of Minnesota, July 2000.

[193] Zhi-Li Zhang, Z. Duan, and Y. T. Hou. On Scalable Network Re-
source Management Using Bandwidth Brokers. In Proceedings of the
8th IEEE/IFIP Network Operations and Management Symposium (NOMS
2002), Firenze, Italia, April 2002.

[194] X. Zhao. Linux Mobile IP. http://gunpowder.stanford.edu/mip/.

[195] T. Zseby, S. Zander, and G. Carle. RFC 3334: Policy-Based Accounting,
October 2002.

220 BIBLIOGRAPHY

Curriculum Vitae

1973 Born on September,
� �����

in Regensburg, Germany
1980 – 1984 Elementary School Konradschule Regensburg
1985 – 1992 Albrecht Altdorfer Gymnasium Regensburg
1992 – 1993 Military Service
1993 – 1999 Study of Mathematics and Physics at the University of Re-

gensburg, Germany
1999 M. Sc. in Physics
1999 – 2002 Research assistant and Ph. D. student at the Institute for

Computer Science and Applied Mathematics, University of
Bern

