
CONTENT-DISCOVERY IN WIRELESS
INFORMATION-CENTRIC NETWORKS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Arun Sittampalam
2015

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Abstract

Content-centric networking (CCN) [1] is a new networking approach in which forwarding is
based on content names instead of host identifiers. The main goal is to provide a communication
infrastructure that is better suited to content distribution and mobility. Through caching and
broadcast communication, CCN is more resilient to disruptions and failures. CCN supports
infrastructure-based communication, e.g., in wired networks or via wireless access points, but
also supports opportunistic wireless communication between devices. Therefore, CCN can work
in isolated islands where the network infrastructure, e.g., access points, is not operational. To
retrieve content, nodes need to have knowledge of available content names. For example, in a
disaster scenario, requesters can not retrieve naming information from central repositories but
need to discover content that is reachable within their wireless transmission range.

We base our work on the CCN architecture, which is pull-based, i.e., requesters need to
transmit Interests to receive content. Interests are forwarded and matched to content objects
based on longest-prefix matching. In this thesis, we design and evaluate different algorithms
for opportunistic content discovery based on wireless one-hop broadcast. The main idea behind
content discovery is the following: requesters transmit wireless broadcast requests in certain
prefixes to retrieve matching content via longest-prefix matching from any node in transmis-
sion range. This is in contrast to traditional opportunistic networking approaches, where nodes
perform device discovery to find neighbors before they connect to them.

RID (Regular Interest Discovery) and ERD (Enumeration Request Discovery) are based on
a previous bachelor thesis [2]. RID discovers the name tree in a depth-first manner by retrieving
the first segment of a content object while ERD discovers it in a breadth-first manner (name
components on each level of the name tree). In this work, we extended RID and ERD by a
resume capability, which is useful in case of mobility where it takes some time until a requester
sees all content sources because of intermittent connectivity. Furthermore, we proposed and
implemented LFD (Leaves First Discovery), which uses elements of RID and ERD. The main
benefit of LFD compared to ERD is the quicker content discovery in structured namespaces, i.e.,
less browsing is required. Compared to RID, LFD results in less traffic because fewer content
messages are transmitted.

All algorithms have been implemented in C and have been integrated into CCNx 0.8.2 [3].
Extensive evaluations have been performed in mobile scenarios with up to 100 nodes by em-
ulations using NS3-DCE on Ubelix, the Linux cluster of the University of Bern [4]. We have
evaluated content discovery in diverse namespaces (flat, hierarchical and mixed). Flat name-
spaces have only one name component and no naming structure. Hierarchical namespaces have
names with many name components. Mixed namespaces are a combination of flat and hierar-

chical namespaces including flat names for some content and hierarchical names for others.
The results have shown that LFD performs best in most scenarios. This means it should be

preferred if the name structure is not known.
Flat name spaces are ideal for ERD, but the overhead of LFD is negligible. LFD results in

nearly the same discovery time and generates only slightly more traffic (one additional message
to reach the leaf level).

In hierarchical and mixed namespaces LFD performs significantly better than ERD and RID
because less time is required to browse the namespace. Furthermore, we have observed that
the data traffic of ERD in hierarchical namespaces can become huge, even more than with RID.
LFD, however, results in the smallest traffic overhead.

As future work, LFD may further be improved by implementing an adaptive request strategy
on the leaf level (RID or ERD requests) depending on the discovered naming information. If
many nodes reply with identical information, RID may be more efficient to detect new infor-
mation. However, if the content is different, ERD requests may be more efficient because they
contain only names and no data segment in the payload resulting in less traffic.

Bibliography

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard. Network Named Content. In 5th ACM CoNEXT, pages p. 1-12, Rome, Italy,
December 2009.

[2] Arian Uruqi: ”Content Discovery and Retrieval Application for Mobile Content-Centric
Networks”, Bachelor Thesis, April 2014

[3] CCNx. http://www.ccnx.org/, April 2015.

[4] Ubelix, http://www.ubelix.unibe.ch

Content Discovery in Wireless Information-Centric
Networks

Carlos Anastasiades, Arun Sittampalam, Torsten Braun
Institute of Computer Science and Applied Mathematics

University of Bern, Switzerland
Email: {anastasiades, sittampalam, braun}@iam.unibe.ch

Abstract—Information-centric networking (ICN) enables com-
munication in isolated islands, where fixed infrastructure is not
available, but also supports seamless communication if the infras-
tructure is up and running again. In disaster scenarios, when
a fixed infrastructure is broken, content discovery algorithms
are required to learn what content is locally available. For
example, if preferred content is not available, users may also
be satisfied with second best options. In this paper, we describe
a new content discovery algorithm and compare it to existing
Depth-first and Breadth-first traversal algorithms. Evaluations
in mobile scenarios with up to 100 nodes show that it results in
better performance, i.e., faster discovery time and smaller traffic
overhead, than existing algorithms.
Index Terms—Information-centric networks, wireless, oppor-

tunistic, discovery, CCN

I. INTRODUCTION
Information-centric networking (ICN) is a new communica-

tion paradigm to address drawbacks of host-based communica-
tion protocols. By addressing and routing information based on
names, ICN can identify and aggregate concurrent requests in
popular content, and quickly find alternative content sources.
In recent years, most ICN works have focused on routing,
scalability and security in wired Internet protocols. However,
due to its flexibility, ICN is also very appealing for wireless
and mobile networks. A node that broadcasts a request can
quickly find available content in its immediate neighborhood.
Information-centric networking has been identified as

promising approach for opportunistic and delay-tolerant com-
munication [1]. Natural disasters, e.g., floodings, earthquakes
or wars, can destroy communication infrastructures and,
thus, prevent infrastructure-based communication. While most
works have focused on redundancy and infrastructure re-
silience [2], not much work has been performed to investigate
approaches for operation during or after disasters, when fixed
infrastructures may be destroyed. Recent work [3] has shown
that most communication patterns that take place during disas-
ters are of information-centric nature, e.g., retrieval of disaster
information or dissemination of warnings. Information-centric
networking can work in isolated islands that are disconnected
from central infrastructure to provide any kind of information.
For example, first responders could carry storage units in their
backpacks with world news [3] or cars could provide multi-
media content [4] to remote cities, which lack the required
infrastructure. To retrieve content, knowledge of available

content names is required. In a disaster scenario, requesters
cannot get naming information from central repositories, and
even if they could, it may not be meaningful if most content
could not be retrieved due to broken links. Thus, if preferred
content is not available because of limited reachability, users
may also be satisfied with “second-best” alternatives. For
example, if a video with the current weather forecast is not
available, users may also be satisfied with a textual weather
description.
In this work, we investigate algorithms to support oppor-

tunistic content discovery based on broadcast requests. We
base our work on Content-Centric Networking [5], which is
a popular ICN architecture. CCN is based on hierarchical
naming, which supports name aggregation and longest-prefix
matching. Unlike other approaches, CCN does not require any
name resolution procedures. Due to longest-prefix matching, a
node can define the scope of discovered content, e.g., requests
with the prefix /Publisher retrieve all content from a publisher
while /Publisher/video only retrieve videos. Based on prior
work [6], we have designed and implemented three content
discovery algorithms and evaluated them in terms of mes-
sage overhead and time to discover available content. Since
content naming can be performed arbitrarily, we thoroughly
evaluate different naming structures for content discovery. Flat
namespaces have only one name component and no naming
structure. Hierarchical namespaces have names with many
name components.Mixed namespaces are a combination of flat
and hierarchical names including flat names for some content
and hierarchical names for others.
The algorithms have been implemented in CCNx 0.8.2

[7] and we evaluate them in diverse mobile scenarios via
emulation using NS3-DCE [8]. Please note that our algorithms
are designed to find available content names in the absence of
central naming repositories. However, once name collections
have been identified, synchronization protocols may be applied
[9] to retrieve new content.
The remainder of this paper is organized as follows. A

short overview of the CCN architecture and related work is
presented in Section II. The discovery algorithms are described
in Section III. Evaluation results are shown in Section IV.
In Section V, we discuss namespaces for content discovery.
Finally, we conclude our work in Section VI.

II. RELATED WORK

A. Content-Centric Networking
CCN communication [5] is based on two messages: Interests

to request content and Data to deliver content. Typically in
CCN, files consist of multiple segments that are carried by
Data messages. Then, in order to retrieve a file, users need to
express Interests in every segment of the file. The CCNx [7]
project provides an open source reference implementation of
CCN. The core element of the implementation is the CCN
daemon (CCND), which performs message processing and
forwarding decisions. Links from the CCND to applications
or other hosts are called faces. A CCND has the following
three memory components:
1) The Forwarding Information Base (FIB) contains for-
warding entries to direct Interests towards content
sources.

2) The Pending Interest Table (PIT) stores unsatisfied for-
warded Interests together with the face on which they
were received. If Data is received in return, it can be
forwarded based on face information in the PIT.

3) The Content Store (CS) is used as cache in a CCN router
storing received Data packets temporarily.

Prior to transmission, content is included and scheduled for
transmission in a queue. To avoid duplicate content transmis-
sions, an additive random delay AD = [DP, 3DP] is considered
during content scheduling (the data pause DP is a configurable
parameter). If a node overhears the transmission of the same
content from another node, it removes the scheduled content
from the content queue to avoid duplicate transmissions, i.e.,
enable duplicate suppression.
Interest messages contain several header fields, which are

considered in the forwarding and matching process. The Inter-
est Lifetime determines how long an Interest stays in the PIT.
The Scope (if present) limits forwarding to the local host or
neighboring hosts. Furthermore, Exclude filters can be used to
indicate already known components and, thus, avoid duplicate
content retrieval.

Fig. 1. Hierarchical Name Structure: files may be stored on different hosts.

Content names follow a hierarchical structure composed
of one or multiple name components. To ensure globally
unique names and support routing, content names may be
aggregated by publisher specific prefixes similar to DNS

names as illustrated in Figure 1. The ellipses correspond
to name components and the rectangles to files. Each file
consists of one or several segments denoted by small circles.
There are no restrictions on content names and they may be
selected arbitrarily. The hierarchical name may not indicate the
location of content objects as Figure 1 shows. Content from the
same publisher may be downloaded and provided by different
mobile hosts. To find content from a specific publisher, an
Interest in the general prefix /Publisher is sufficient due to
name aggregation and longest-prefix matching.

B. Discovery in Information-centric Networking
Routing in information-centric networking is equivalent to

finding a content source for a given content name. NLSR [10]
is a link-state based routing protocol that uses only Interest
and Data messages and a synchronization mechanism to ex-
change collections of prefixes and learn the complete network
topology. Other approaches use Bloom Filters to exchange
availability information of local caches among neighbors [11],
[12], [13] or use exploration phases, where Interests are
flooded in the network [14] to find content sources close to
requesters. However, routing protocols are used to configure
forwarding entries in the FIB in a transparent way, i.e., without
users noticing it. In addition, routing protocols may only
advertise content prefixes, which is enough for routing, but
they do not provide information about content published under
these prefixes. In opportunistic scenarios with limited content
availability, users may want to know what content can be
retrieved.
In this work, we investigate name discovery based on broad-

cast requests similar to multicast DNS (mDNS) [15] and DNS-
based Service Discovery (DNS-SD) [16]. DNS-SD enables
requesters to find available services in specific domains or
subdomains via service instance enumeration. Since mDNS
provides name to IP address mappings, names are in general
uniquely assigned to distinct nodes. This means that if the
same name already exists, the user needs to select another
one. In contrast to DNS-SD and mDNS, CCN content names
do not need to be uniquely assigned to specific nodes and it is
likely that the same content objects, i.e., copies, may be stored
at repositories and caches of multiple nodes.
Earlier works [6], [17], [18] have applied Exclude filters to

efficiently retrieve diverse content objects at the same time
via broadcast requests. However, all of these works apply
Exclude filters in flat namespaces, i.e., all content objects
are published under the same prefix. It has been shown [6]
that broadcast requests are particularly beneficial if content
is stored uniquely in distinct repositories, i.e., no redundant
copies, because multiple content objects can be transmitted in
response to the same Interest, i.e., parallel transmissions.
In this work, we evaluate existing algorithms [6], i.e.,

Enumeration Request Discovery (ERD) and Regular Interest
Discovery (RID), and compare it to a new Leaves First
Discovery (LFD) algorithm in mobile environments with up
to 100 nodes. We evaluate all algorithms in flat, hierarchical
and mixed namespaces.

III. CONTENT DISCOVERY ALGORITHMS
In distributed environments, where connectivity to fixed

infrastructures and central repositories may not exist, nodes
need to perform content discovery to learn what content names
are available. Content discovery algorithms based on Bloom
filters [13] or the Sync protocol [9] work only for already
known content names. In addition, the Sync protocol triggers
the retrieval of missing content automatically independent of
whether users want the content or not. In this section, we
describe three algorithms for content discovery in naming
structures (name trees) such as in Figure 1.

A. Notation and Parameters
We describe Regular Interest Discovery (RID) and Enumer-

ation Request Discovery (ERD), which are based on earlier
work [6], as well as Leaves First Discovery (LFD), which
is a combination of both. The common parameters for all
algorithms are listed in Table I.

TABLE I
ALGORITHM PARAMETERS.

Parameter description
p request prefix, initially p = root
IL Interest lifetime: ILlong , ILshort

EF Exclude filter in an Interest

to
timeouts, initially to = 0
stop if to equals T

NT name tree with name components

The request prefix p is initially set to a root prefix, which
defines the starting point for discovery, i.e., the root of the
name (sub-)tree. Broadcast requests in content prefixes can
result in multiple different content replies at the same time.
Earlier work [6] has shown that requesters should wait a time
interval of 2DP after the reception of the first response to an
Interest. This enables different responses, which are triggered
by the first Interest, to be received at the local cache before
the next Interest is transmitted. Thus, this content can then be
served from the cache and it does not need to be retransmitted
by content sources, reducing the number of duplicate content
transmissions drastically. We use two different values for the
Interest lifetime IL, i.e., ILshort to retrieve content from the
local cache and ILlong to get content from neighboring nodes.
We do not set the Interest scope with ILlong , i.e., unlimited
scope, but set it to “only local host” with ILshort. Interests
do not request specific content but contain a general prefix to
discover content published under the prefix. To avoid duplicate
transmissions and receptions, Interests have an Exclude filter
EF . If an Interest times out, the Interest is retransmitted
until the number of timeouts to reach a certain limit T . All
discovered names are stored in a name tree NT .

B. Regular Interest Discovery (RID)
Algorithm 1 presents Regular Interest Discovery (RID) and

we explain it with the help of the name tree in Figure 1.
RID is based on recursive expression of Interest messages to
browse the name tree via Depth-first traversal. Due to longest

prefix matching, a requester can express an Interest in a root
prefix p = /Publisher to discover the subtree under that
root. After a Data message c has been received (line 10), RID
extracts the file name without segment number (line 12), e.g.,
/Publisher/multimedia/audio/file1, and stores it in the name
tree NT (line 13). Then, the last component, i.e., file1, is
removed from the request prefix (line 14) and included in the
Exclude filter EF (line 15) to request other files such as file2.
If only one Interest in the prefix p has been transmitted so far,
i.e., first request, and there were no timeouts to (line 16), the
algorithm waits for 2DP before the next Interest transmission
to reduce duplicate transmissions (line 17). After that, the
Interest lifetime is set to ILshort to retrieve content from
the cache. In case of a timeout with ILshort, the Interest is
retransmitted with ILlong (line 21). In case of a timeout with
ILlong, the timeout counter to is increased before the Interest
is retransmitted (line 23). After T timeouts with ILlong , RID
assumes that all content has been received under that prefix
(timeout event) and climbs one level up in the nametree, e.g.,
to /Publisher/multimedia, excluding the subtree it came from
(line 7), i.e., audio. RID always requests the first segment of
a content object. Thus, it can quickly go down to a leaf of the
next subtree, e.g., /Publisher/multimedia/video/file1.
A full discovery round is completed when RID has climbed

up to the root of the nametree and experienced T timeouts,
i.e., root is not a prefix of pnew anymore (line 3). In the
next discovery round (line 4), which starts after time, already
known names can be excluded.

Algorithm 1 Regular Interest Discovery (RID)
1: function RID DISCOVER(p, EF)
2: pnew = RID GET (p, EF , 0)
3: if root �∈ pnew then
4: SCHEDULE NEXT DISCOVERY (time)
5: else
6: pnext = remove last comp(pnew)
7: last comp(pnew) → EF
8: RID DISCOVER(pnext, EF)

9: function RID GET(p, EF , to)
10: c = SEND INTEREST (p, ILlong , EF)
11: while (Data c has been received) do
12: name = getName(c)
13: name → NT
14: p = remove last comp(name)
15: last comp(name) → EF
16: if first request and to == 0 then
17: wait(2DP)
18: c = SEND INTEREST (p, ILshort, EF)
19: if to < T then
20: if timeout with ILshort then
21: RID GET (p, EF , to)
22: else
23: RID GET (p, EF , to + 1)
24: else
25: return p

C. Enumeration Request Discovery (ERD)
Algorithm 2 shows Enumeration Request Discovery (ERD),

which is based on the consecutive expression of enumeration
requests and targets content at repositories. An enumeration re-
quest for a certain prefix requests all next level components for

the prefix at a certain repository. The enumeration response,
i.e., list of next level components, is identified by the ID of
the corresponding repository, which is based on its public key.

Algorithm 2 Enumeration Request Discovery (ERD)
1: function ERD DISCOVER(p, EF)
2: ERD GET (p, EF , 0)
3: pnext = next comp on lvl(p, NT)
4: if pnext �= {} then
5: ERD DISCOVER (pnext, {})
6: else
7: pnext = next lvl comp(pnew , NT)
8: if pnext �= {} then
9: ERD DISCOVER (pnext, {})
10: else
11: SCHEDULE NEXT DISCOVERY (time)

12: function ERD GET(p, EF , to)
13: L = SEND ENUMERATION (p, ILlong , EF)
14: while (Enumeration L has been received) do
15: getNames(L) → NT
16: getID(L) → EF
17: if first request and to == 0 then
18: wait(2DP)
19: L = SEND ENUMERATION (p, ILshort, EF)
20: if to < T then
21: if timeout with ILshort then
22: ERD GET (p, EF , to)
23: else
24: ERD GET (p, EF , to + 1)

ERD starts by expressing an enumeration request in the
root prefix, e.g., p = /Publisher (line 13). This may
trigger an enumeration response from repository 1 on host
1, i.e., /Publisher/ID1, containing the next-level component
multimedia. The received name components, i.e., here only
multimedia, are then added to the name tree NT (line 15)
and the repository ID ID1 is added to the Exclude filter (line
16). To reduce duplicates, ERD also waits 2DP after the
first request (line 18). The next Enumeration request uses
ILshort and excludes ID1 to retrieve Enumeration responses
of other hosts from the cache (line 19). In this example,
repository 2 on host 2 has replied with /Publisher/ID2 con-
taining the components multimedia and text in the payload.
ERD continues with the same prefix (but more excluded IDs)
until an enumeration request has timed out T times (timeout
event). Then, next comp on lvl (line 3) checks the name tree
for other name components on the same level. If there are
other components, discovery continues on the same level (line
5). If there are no more components, next lvl comp (line 7)
continues with the first component on the next level in the
name tree, e.g., /Publisher/multimedia or /Publisher/text. A
discovery run is finished at the leaves of the name tree, i.e., if
there are no more name components. Then, the next discovery
run (line 11) starts after time.
In contrast to RID, ERD payloads contain only content

names but no data and, thus, have a smaller size. However,
since enumeration responses are identified by repository IDs,
redundant information cannot be avoided. For example, if
multiple repositories store exactly the same content, their enu-
meration responses appear to be different (different repository
IDs), although they do not provide new information.

D. Leaves First Discovery (LFD)
Leaves First Discovery (LFD), which uses elements from

both RID and ERD, is presented in Algorithm 3. Similar

Algorithm 3 Leaves First Discovery (LFD)
1: function LFD DISCOVER(p, EF , to)
2: c = SEND INTEREST (p, ILlong , EF)
3: if (Data c has been received) then
4: name = getName(c)
5: name → NT
6: pnew = remove last comp(name)
7: ERD GET (pnew , {}, 0)
8: if pnew == root then
9: SCHEDULE NEXT DISCOVERY (time)
10: else
11: pnext = remove last comp(pnew)
12: last comp(pnew) → EF
13: LFD DISCOVER (pnext, EF , 0)
14: else if to < T then
15: LFD DISCOVER (p, EF , to + 1)
16: else if p �= root then
17: pnext = remove last comp(p)
18: last comp(p) → EF
19: LFD DISCOVER (pnext, EF , 0)
20: else
21: SCHEDULE NEXT DISCOVERY (time)

to RID, a regular Interest is transmitted first to quickly find
content and reach the leaves of the name tree (line 2). After the
first Data message has been received, LFD has reached a leaf
level and can perform ERD discovery to retrieve enumeration
responses from all repositories (line 7). If all enumerations
have been received at a level, i.e., T timeouts have been
triggered in ERD GET (line 7), and it is not the root level
(line 8), the algorithm climbs one level up in the name tree
by removing the last component (line 11), e.g., from /Pub-
lisher/multimedia/audio to /Publisher/multimedia, excluding
the component from the last subtree (line 12) , e.g., /audio,
and performs a RID request to quickly reach the leaves of the
next subtree (line 13), e.g., /Publisher/multimedia/video/file.
RID requests are retransmitted up to T times (line 15) before
climbing one level up (lines 17-19). Discovery stops with T
timeouts at the root of the tree and the next discovery starts
after time (line 9 and 18).
LFD includes advantages of RID to quickly reach content

leaves but does not require as much data overhead as RID
because mostly content names are requested and fewer data
segments.

E. Unsolicited Content in the Content Store
The discovery algorithms described above transmit Interests

(prefixes) via broadcast to all repositories in the vicinity.
However, if content has been received at the content store
and no Interest can be found in the PIT, e.g., because the
Interest has already been satisfied by previously received
content, it is considered as unsolicited content. To enforce
flow balance between Interest and Data messages in the
CCNx 0.8.2 implementation, unsolicited content becomes stale
immediately, i.e., as if it was expired content. Stale content
in the cache is deleted and not returned to Interest messages,
even if it would satisfy them. This is a very inefficient strategy

because the content has already been received and needs to be
retransmitted by content sources. Previous work has shown
that it is beneficial to keep unsolicited content in wireless
information-centric communication [6], [19], [18] because re-
questers can address multiple content sources at the same time
and benefit from parallel content transmissions by retrieving
some content from cache. Therefore, to improve efficiency for
wireless communication, the current CCND implementation
needs to be slightly modified such that unsolicited content
does not become stale immediately.

IV. EVALUATION

We have implemented RID, ERD and LFD in the CCNx
0.8.2 framework [7]. The evaluations have been performed by
emulations in mobile scenarios with NS3-DCE [8].

A. Evaluation Parameters
The evaluation parameters are listed in Table II. We use

TABLE II
COMMON SIMULATION PARAMETERS.

Parameter Value
interface 1x 802.11g
propagation loss LogDistance
energy detection threshold -76dBm
TX power 16dBm
Mobility random waypoint, speed: 1.2 - 1.4m/s

pause time: 1s, skip time: 3600s
playground size 150m x 150m
repository nodes 25 nodes grid with 25m distance

100 nodes grid with 12.5m distance
data pause DP 270ms
Interest lifetime long: 875ms, short: 125ms
retransmission limit T 1
resume interval 2s

802.11g wireless interfaces and a Log-Distance propagation
loss model. The transmission power is set to 16dBm and the
energy detection threshold is set to -76dBm, which corre-
sponds to transmission ranges of up to 60m. The playground
size is set to 150m × 150m. Repositories with content are
placed in a static grid of 25 or 100 nodes, i.e., in a grid
with 25m or 12.5m distance. A mobile requester performes
opportunistic (one hop) content discovery, while moving ac-
cording to the Random Waypoint Model with a pedestrian
speed between 1.2 - 1.4m/s. The additive random delay AD
for content scheduling uses a data pause DP of 270ms. The
Interest lifetimes are set to 875ms (long Interests) and 125ms
(short Interests). If a short Interest times out, a long Interest is
transmitted. After T = 1 timeouts of long Interests, a timeout
event is triggered, i.e., the algorithms proceed with the next
prefix. If not all content objects could be discovered within
one discovery round, discovery is resumed after 2s. Every
configuration is evaluated in 100 different runs.

B. Scenarios
The performance of content discovery depends on the

structure of the namespace. Therefore, we perform evaluations

in diverse namespaces. In each scenario, we set the number
of distinct content objects to 100.
1) flat namespace: all 100 content objects are published
under the same prefix, i.e., there is no naming structure.
Every content has one distinct name component.

2) hierarchical namespace: all 100 content objects are
published under a hierarchical prefix with 10 name
components. We use 4 different hierarchical prefixes
with 10 components for the 100 content objects.

3) mixed namespace: it is composed of hierarchical and
flat names. In total, every prefix has randomly between
1 and 10 components. Every node in the name tree has
between 1 and 5 different children. At the leaves, the
number of content objects is randomly set between 1
and 20.

The namespaces are designed such that every name compo-
nent is 12 bytes long. In every scenario, each node contains
4 different content objects. In the 25 nodes network, every
content object is stored uniquely at one node. In the 100 nodes
network, content is distributed randomly among all nodes, i.e.,
there are redundancies. We evaluate RID, ERD and LFD in
terms of discovery time, transmitted Interest and received Data
messages as well as received duplicate Data messages.

C. Discovery Time
We define the discovery time as the time until a requester

has discovered all 100 content objects in the network. Figure
2a shows discovery times in the 25 nodes network. The x-axis
shows the result for RID, LFD and ERD and the y-axis the
discovery time in seconds.

 0

 500

 1000

 1500

 2000

 2500

tim
e

in
 [s

]

RID LFD ERD

Discovery Time flat
Discovery Time hierarchical
Discovery Time mixed

(a) 25 nodes

 0

 200

 400

 600

 800

 1000

 1200

tim
e

in
 [s

]

RID LFD ERD

Discovery Time flat
Discovery Time hierarchical
Discovery Time mixed

(b) 100 nodes
Fig. 2. Discovery Time of RID, ERD and LFD in flat, hierarchical and mixed
namespaces.

Figure 2a shows that flat namespaces result in shortest
discovery times. The difference in discovery time between
RID, ERD and LFD is insignificant. LFD requires 0.8% more
time than ERD and RID requires 5% more time than LFD.
Although RID requests each content object separately, the
discovery time is only slightly longer than for LFD and ERD.

This is due to broadcast requests that can trigger multiple
distinct content transmissions, i.e., parallel transmissions, from
different content sources. If unsolicited content is not dis-
carded, it can be collected quickly by subsequent Interests
from the cache [6].
Discovering content in a hierarchical namespace requires

more time because algorithms need to climb up and down the
name tree, which includes more waiting times due to timeouts.
For example, LFD requires 76.7% more time in a hierarchical
namespace compared to a flat namespace. Figure 2a shows that
LFD handles naming hierarchy better than RID and ERD: it
results in 39.8% shorter discovery times than RID and even
54.3% shorter discovery times than ERD.
It may seem surprising that LFD performs even better than

RID in the hierarchical scenario, because each node contains
4 content objects with different hierarchical prefixes. This
means that every enumeration response with LFD contains
only 1 content name. However, LFD can quickly reach the leaf
level and then retrieve content names faster than RID because
Data messages at the leaf level are smaller, i.e., they contain
only names. While RID could benefit largely from parallel
transmissions in flat namespaces, fewer parallel transmissions
are possible in hierarchical namespaces (only for content with
the same prefix).
In mixed namespaces, LFD performs on average 17.6%

faster than RID and 29.1% faster then ERD. The maximum
discovery times of RID and ERD are even 56.1% and 71.8%
longer than for LFD since more time is required to browse the
name tree, which is disadvantageous in case of mobility.
Figure 2b shows discovery times for RID, LFD and ERD

in a network with 100 repository nodes. Due to higher
content density, discovery times have significantly decreased
compared to the 25 nodes scenario in Figure 2a. In hierarchical
namespaces, discovery times have decreased more than in flat
namespaces due to fewer climbing operations, i.e., content
can be found quicker. RID benefits the most from a higher
content density due to more parallel transmissions, while LFD
and ERD benefit less, because the number of nodes increases
as well, which means that more enumerations have to be
requested.
The relative differences between flat and mixed namespaces

have decreased in the 100 nodes scenario. For example in the
25 nodes network, RID discovery in mixed namespaces results
in 68.5% longer discovery times than in flat namespaces, while
in the 100 nodes scenario the difference between mixed and
flat namespaces is only 24.0%. If content density is high,
discovery in flat namespaces results in more collisions than
in mixed namespaces because more content is requested at
the same time (broadcast requests).

D. Data Messages

Data messages with RID always contain a payload of
4096 bytes, i.e., first data segment, while Data messages with
ERD are smaller because they contain only lists with name
components. Figure 3a shows, therefore, not only the number

of received Data messages at the requester (left y-axis) but also
their size in bytes (right y-axis) for the 25 nodes network.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0
 100
 200
 300
 400
 500
 600
 700
 800

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Received Data flat
Received Data hierarchical

Received Data mixed
Data Size flat

Data Size hierarchical
Data Size mixed

(a) 25 nodes

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0

 500

 1000

 1500

 2000

 2500

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Received Data flat
Received Data hierarchical
Received Data mixed
Data Size flat
Data Size hierarchical
Data Size mixed

(b) 100 nodes
Fig. 3. Transmitted Data of RID, ERD and LFD in flat, hierarchical and
mixed namespaces.

In flat namespaces, ERD results in the fewest transmitted
Data messages (and fewest transmitted bytes) because only
one list needs to be transmitted per node, while RID needs
to transmit one Data message per content object. On average,
LFD results in 2.8 times more data bytes and RID even in 34.3
times more data bytes than ERD. The data overhead between
LFD and ERD is larger than expected, because LFD needs to
transmit an Interest to reach the leaf level. Due to multiple
nodes in wireless transmission range, an LFD requester may
retrieve 7 - 8 segements in response to this Interest (due to
parallel transmissions), although only one Data message would
be enough to reach the leaf level.
However, ERD does not result in the fewest transmitted

bytes in all namespaces. In hierarchical namespaces, ERD
results in 2.6 times more transmitted data bytes than LFD and
even 18% more bytes than RID. This is because ERD transmits
7.8 times more Data messages than LFD while climibing down
the name tree and even 10 times more Data messages than
RID. Although individual packets are smaller for ERD than
for RID, the sum of transmitted bytes (packet headers and
payloads) becomes larger.
In the mixed namespace, LFD transmits on average 52.8%

fewer bytes than RID but 14.5% more bytes than ERD. LFD
transmits slightly more bytes than ERD because it retrieves a
content object for every name subtree to reach the leaf level.
However, the situation changes with increased node density.
Figure 3b shows the number of Data messages in the 100
nodes network. In the mixed namespace (100 nodes network),
ERD results in the most transmitted Data bytes, i.e., 37% more
than RID and even 107% more than LFD.
In hierarchical namespaces, LFD results in 35.6% fewer

bytes than RID and even in 84.6% fewer bytes than ERD.
Only in flat namespaces, ERD performs slightly better than
LFD, i.e. 32% fewer bytes, but the difference is negligible
(a few KBs) compared to the large overhead in hierarchical

and mixed namespaces (several hundreds of KBs), where ERD
requires even more Data bytes than RID. In all scenarios, LFD
results in significantly fewer Data bytes than RID.

E. Interest Messages
Figure 4a illustrates the transmitted Interests (left y-axis)

and their sizes in bytes (right y-axis) in the 25 nodes network.
Because Interests only retrieve content, their size may often be
neglected. However, Exclude filters can grow with the number
of discovered content resulting in large Interest messages.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 500

 1000

 1500

 2000

 2500

 3000

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Transmitted Interests flat
Transmitted Interests hierarchical
Transmitted Interests mixed
Interests Size flat
Interests Size hierarchical
Interests Size mixed

(a) 25 nodes

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Transmitted Interests flat
Transmitted Interests hierarchical
Transmitted Interests mixed
Interests Size flat
Interests Size hierarchical
Interests Size mixed

(b) 100 nodes
Fig. 4. Transmitted Interests of RID, ERD and LFD in flat, hierarchical and
mixed namespaces.

The number of transmitted Interests in the flat namespace is
similar, LFD sends 21.4% fewer Interests than RID and 1.5%
more Interests than ERD. RID Interests are slightly larger due
to larger Exclude filters (more excluded components). Thus,
RID sends 36% more bytes in Interests than LFD and ERD.
In the hierarchical namespace, LFD results in 28.2% fewer

Interests than RID and even in 43.2% fewer Interests than
ERD. However, the size of transmitted Interests with RID is
25.8% smaller than for LFD and even 87.3% smaller than
for ERD. This is due to two reasons. First, there are four
different hierarchical prefixes, thus, fewer components need
to be excluded with RID compared to the flat namespace
(namespace partitioning). Second, Exclude filters with LFD
and ERD are larger because they include repository IDs, which
have a static length of 38 bytes, and not name components,
which have a length of 12 bytes in our scenario.
Similar observations can be made in mixed namespaces.

However, compared to the hierarchical namespace, LFD and
ERD require slightly fewer Interest bytes because more names
can be included in the same enumeration responses, i.e., fewer
Interests are required.
Figure 4b shows the number of Interest messages in the

100 nodes network. Surprisingly, the number of transmitted
Interests can be reduced compared to the 25 nodes scenario.
For example in the flat namespace, the number of Interests can
be reduced by by 33.9% (RID), 27% (LFD) and 26.6% (ERD)

compared to the 25 nodes scenario. Due to higher content den-
sity more content can be retrieved via parallel transmissions.
Consequently, the Interest bytes for RID decrease by 47.6%.
For LFD and ERD, however, transmitted bytes increase despite
fewer Interests by 143.5% (LFD) and 147.2% (ERD). Due to
higher node density, transmitted Interests that are not satisfied
from local cache have longer Exclude filters because more
repository IDs need to be excluded. Similar observations can
be made for the hierarchical and mixed namespace.
In the worst case (maximum values), the transmitted Interest

bytes with ERD can become even larger as transmitted Data
messages in bytes (see last subsection).

F. Duplicate Data
Figure 5a shows the received Duplicates (left y-axis) and

their sizes (right y-axis) at the requester in the 25 nodes
network. It may be unexpected to have duplicates in the 25
nodes network where every content is uniquely stored only
at one node. However, a node may request content from a
repository and then move out of range for reception. Other
nodes may receive the content and keep it in the cache. If
the requester comes into the range again, multiple nodes may
reply with the same content resulting in duplicates. Although
duplicate suppression can reduce the number of duplicates, it
cannot completely prevent them [6].

 0

 5

 10

 15

 20

 25

 30

 0

 20

 40

 60

 80

 100

 120

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Dup. Data flat
Dup. Data hierarchical

Dup. Data mixed
Dup. Size flat

Dup. Size hierarchical
Dup. Size mixed

(a) 25 nodes

 0
 20
 40
 60
 80

 100
 120
 140

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

m

es
sa

ge
s

si
ze

 in
 [K

B
]

RID LFD ERD

Dup. Data flat
Dup. Data hierarchical

Dup. Data mixed
Dup. Size flat

Dup. Size hierarchical
Dup. Size mixed

(b) 100 nodes
Fig. 5. Duplicate Data of RID, ERD and LFD in flat, hierarchical and mixed
namespaces.

Figure 5a shows that most duplicates (except for the hi-
erarchical namespace) are received with RID and the fewest
duplicates are received with LFD. Since duplicates with ERD
and LFD are rather small, RID always results in the most
duplicate bytes transmitted. However, compared to the size of
transmitted Interest and Data messages, the overhead for du-
plicate transmissions is insignificant in the 25 nodes scenario.
Figure 5b shows the number of duplicates and their sizes

in the 100 nodes network. Due to higher node and content
density, the number of duplicates have increased by a factor
of 5 or more compared to the 25 nodes network. Figure

5b shows that duplicate bytes are still negligible for LFD
and ERD. Although ERD results in 5 times more duplicate
bytes than LFD in hierarchical namespaces, which may seem
high, it corresponds only to 2.5% of all transmitted Interest
bytes with ERD. For RID, however, duplicates become a
significant fraction of network traffic as more duplicate bytes
are transmitted than Interest bytes.

V. NAMESPACE DESIGN FOR DISASTER SCENARIOS
Discovery in flat namespaces is considerably faster com-

pared to hierarchical namespaces because no browsing is
required. However, if node and content density is high, flat
namespaces can result in many data transmissions and colli-
sions. In addition, the size of Interest messages increases since
more components need to be excluded. Content providers can,
therefore, use hierarchical names (depending on the number
of content they provide) to partition the namespace and limit
the number of content replies.
If time matters, e.g., in emergency scenarios, flat names-

paces or only a few hierarchy levels should be preferred. To
facilitate content discovery, authorities may define artificial
flat namespaces, e.g., /disaster, and create alias mappings
to ”real”, i.e., existing and potentially hierarchical, content.
Alias mappings are content objects with artificial names,
which include a list of content names in the payload. A
requester can then learn ”real” content names by inspecting the
payload. This enables authorities to promote already widely
distributed content (even from various providers) and mark
them as important without re-publishing and, therefore, re-
signing the content. Also, multiple alias mappings, e.g., names
in different languages, can be defined for the same content.
Content retrieval can be performed by the ”real” content
name learned from the payload. Thus, requesters can identify
identical content in caches despite different alias mappings.
Like any other CCN content, alias mappings are signed such
that users can lay their trust in alias mappings based on the
authority that created it.

VI. CONCLUSIONS

If connectivity to a fixed infrastructure is broken, users need
to know the names of available content objects before they can
retrieve them. In this paper, we have described three discovery
algorithms for content discovery, namely RID, ERD and LFD.
All algorithms have been evaluated by emulations in mobile
scenarios using flat, hierarchical and mixed namespaces.
If the structure of the namespace is unknown, LFD should

be preferred because it performs better than ERD and RID
in most scenarios. In flat namespaces, which are optimal
for ERD, LFD results in only slightly more Data traffic
compared to ERD (same discovery time) but in significantly
lower Data overhead compared to RID. In hierarchical and
mixed namespaces, LFD performs significantly better than
ERD because fewer Data and Interest messages are required
(lower traffic overhead). Although LFD sends slightly more
bytes via Interest messages compared to RID, the overall
traffic including Data and duplicate messages is still higher

with RID. In addition, LFD results in lower discovery times
compared to both ERD and RID.
For higher node densities, LFD and ERD can send fewer

Interest messages than in sparse densities but the Interest
messages become larger due to longer Exclude filters. In
hierarchical and mixed namespaces, ERD performs the worst
because it may transmit even more bytes via Interest than Data
messages. However, even in high node density networks, LFD
still results in a lower traffic overhead and lower discovery
times compared to RID.
As future work, an adaptive request strategy for LFD on

the leaf level, i.e., send RID or ERD requests depending on
whether enumeration responses contain the same information
or not, may further improve message efficiency. To support
this, it would be beneficial to use hashes from payloads as
enumeration identifiers instead of repository IDs.

REFERENCES
[1] G. Tyson, J. Bigham, and E. Bodanese. Towards an Information-Centric

Delay-Tolerant Network. In 2nd IEEE NOMEN, 2013.
[2] J. Sterbenz, D. Hutchison, E. Cetinkaya, A. Jabbar, J. Rohrer,

M. Schöller, and P. Smith. Resilience and survivability in communication
networks: Strategies, principles and survey of disciplines. Elsevier
Computer Networks, 54:1245–1265, 2010.

[3] G. Tyson, E. Bodanese, J. Bigham, and A. Mauthe. Beyond content
delivery: Can icns help emergency scenarios? IEEE Network, 28(3):44–
49, June 2014.

[4] A. Galati, T. Bourchas, S. Siby, S. Frey, M. Olivares, and S. Mangold.
Mobile-enabled delay tolerant networking in rural developing regions. In
IEEE Mobile-Enabled Delay Tolerant Networking in Rural Developing
Regions, Silicon Valley, CA, USA, October 2014.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Network Named Content. In 5th ACM CoNEXT,
pages 1–12, Rome, Italy, December 2009.

[6] C. Anastasiades, A. Uruqi, and T. Braun. Content Discovery in
Opportunistic Content-Centric Networks. In 5th IEEE WASA-NGI, pages
1048–1056, Clearwater, FL, USA, October 2012.

[7] CCNx. http://www.ccnx.org/, April 2015.
[8] NS-3: Direct Code Execution. http://www.nsnam.org/overview/projects/

direct-code-execution/, April 2015.
[9] CCNx Synchronization Protocol. http://www.ccnx.org/releases/ccnx-

0.8.2/doc/technical/SynchronizationProtocol.html, April 2015.
[10] M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang.

NLSR: Named-data Link State Routing Protocol. In ACM Workshop on
Information-Centric Networking (ICN 2013), August 2013.

[11] Y. Wang, K. Lee, B. Venkataraman, R. Shamanna, I. Rhee, and S. Yang.
Advertising cached contents in the control plane: Necessity and feasi-
bility. In IEEE Infocom, 2012.

[12] M. Lee, K. Cho, K. Park, T. Kwon, and Y. Choi. Scan: Scalable content
routing for content-aware networking. In IEEE ICC, Kyoto, Japan, June
2011.

[13] M. Lee, J. Song, K. Cho, S. Pack, T. Kwon, J. Kangasharju, and
Y. Choi. Content discovery for information-centric networking. Elsevier
Computer Networks, 2014.

[14] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini.
Inform: a dynamic interest forwarding mechanism for information-
centric networking. In 3rd ACM sigcomm ICN, Hong Kong, August
2013.

[15] S. Cheshire and M. Krochmal. RFC 6762: Multicast DNS.
[16] S. Cheshire and M. Krochmal. RFC 6763: DNS-based Service Discov-

ery.
[17] C. Anastasiades, W. El Maudni El Alami, and T. Braun. Agent-based

Content Retrieval for Opportunistic Content-Centric Networks. In 12th
WWIC, 2014.

[18] M. Amadeo, C. Campolo, and A. Molinaro. Multi-source data retrieval
in IoT via named data networking. In 1st ACM ICN, 2014.

[19] L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru, and L. Zhang. Data nam-
ing in vehicle-to-vehicle communications. In IEEE Infocom Computer
communication workshop, pages 328–333, Orlando, FL, March 2012.

	Bibliography

