

Veritaa: Signing Transactions on
Arduino

Bachelor Thesis

Serdil Mordeniz

University of Bern
Faculty of Science

B Sc in Computer Science

September 2020

Supervisor: Jakob Schaerer

Head of Research: Prof. Dr. Torsten Braun

II

University of Bern

Institute of Computer Science

Bachelor of Science in Computer Science

Veritaa: Signing Transactions with Arduino

by Serdil Mordeniz

Abstract

The Internet of Things (IoT) is among the largest sources of data today and in the near
future. Millions of sensors calculate and provide different services with all sorts of
physical parameters. Securing data in a fast and secure way becomes increasingly
more important due to the sheer amount of sensitive data that must be secured. Today
data is mostly secured centrally and in a tedious and slow fashion. The discovery of
Veritaa, a Distributed Ledger Technology (DLT) with an integrated public key signature
store, is counteracting against this fact. The main objective of this work is to discover
the compatibility between the Veritaa framework and the Arduino device.. Veritaa
consists of a blockchain and the Graph of Trust (GoT). The GoT certifies the
authenticity of the smart device, and the blockchain guarantees that the measurement
values are immutable. The relations in the GoT are created with transactions, which
can be a signing node or an edge. Subsequent to this, it is worth knowing the speed
and energy consumption while creating and sending statements to other nodes in the
network. In this work we discovered that an Arduino uno device does not have the
needed flash memory for all the necessary libraries and global variables. With the
slightly advanced version, the Arduino mega, the framework has been implemented
successfully. It is possible to generate 23 edges and a signing node in a statement
without a memory overflow. However, the maximum bytes to send to the hologram
server without splitting the statement is 1024KB. That is why it is possible to only send
a signing node and 5 edges which are 991 bytes as a JSON message. Sending and
generating this JSON message to the hologram cloud is 9130ms and the sending alone
takes approximately 3000ms. These values are justified with a simple time calculation.
Furthermore, the average current consumption was 0.1191A at 5V which was
determined with an USB meter.

III

Table of Contents

ABSTRACT ... II

LIST OF FIGURES .. V

LIST OF TABLES ... VI

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND AND RELATED WORK 4

2.1 Veirtaa – The Graph of Trust and the ABCG .. 4

2.2 Digital Signature Algorithms ... 6

2.2.1 RSA .. 7
2.2.2 Efficient RSA Signature algorithm ... 10
2.2.3 Ed25519 ... 11

2.3 Related Work ... 14

2.3.1 Overview of Block-based and DAG-based Security Systems 14
2.3.2 Block-based security systems ... 16
2.3.3 DAG-based security systems .. 17

3 VERITAA FRAMEWORK ... 19

3.1 Statement Structure ... 19

3.2 Transaction: Signing Node ... 20

3.3 Transaction: Edge .. 21

3.4 Subsigning Entity ... 22

4 SYSTEM IMPLEMENTATION .. 23

4.1 Device Connections ... 23

4.2 Sending Statements to the Hologram Cloud ... 24

4.3 Hardware limitations of each component .. 24

4.3.1 Arduino uno rev3 .. 24
4.3.2 Arduino mega 2560 .. 25

4.4 Interrupt problem with Serial Pin 8 on Arduino Mega and the solution 25

4.5 SparkFun LTE CAT M1/NB-IoT firmware update necessary........................... 26

5 IMPLEMENTATION OF THE EXTENSION OF THE VERITAA
FRAMEWORK .. 27

5.1 Setup Requirements .. 27

5.2 Flowchart Loop... 28

6 EXPERIMENTS AND RESULTS .. 30

6.1 Determination of a Statement Size ... 30

IV

6.2 Time Measurement of individual functions .. 32

6.3 Time Measurement and Energy consumption with USB-meter UM25C 35

6.3.1 Current and time measurement .. 35
6.3.2 Time Calculation and comparison with the measurement data 36
6.3.3 Current Measurement in Setup ... 37
6.3.4 Current Measurement while Idle ... 38

7 CONCLUSION AND FUTURE WORK .. 39

7.1 Conclusion ... 39

7.2 Future Work ... 39

8 ARDUINO SKETCH OF THE VERITAA FRAMEWORK 41

BIBLIOGRAPHY ... 49

V

List of Figures

Figure 2.1: Digital Signature Process [8] ... 6
Figure 2.2: Block-based security system ..14
Figure 2.3: DAG-based security system ...15
Figure 3.1: Subsigning Entity ..22
Figure 4.1: Overview of the system architecture ...23
Figure 4.2: Wiring of SOFT serial pins Rx Tx ..26
Figure 5.1: Steps needed in Setup to send statements ..27
Figure 5.2: Steps needed in Loop to send statements ..29
Figure 6.1: An example code to measure execution time of getEd25519Keys32
Figure 6.2: Time measurement to send hologram message in 100 byte intervals33
Figure 6.3: Extrapolation to send maximum size statement ..34
Figure 6.4: Current and time measurements 40 repetitions ..35
Figure 6.5: Current measurement during setup ..37
Figure 6.6: Current measurement while idle ...38

VI

List of Tables

Table 2.1: Overview of existing solutions in IoT devices ...15
Table 3.1: Veritaa: Statement ...19
Table 3.2: Transaction: Signing Node ...20
Table 3.3: Transaction: Edge..21
Table 4.1: Output from the Arduino IDE ..24
Table 4.2: Arduino UNO ATmega328P hardware specification ...25
Table 4.3: Arduino MEGA 2560 hardware specification ..25
Table 6.1: Size of Transaction: Signing Node ...30
Table 6.2: Size of Transaction: Edge ..30
Table 6.3: Maximum size of a statement with 23 edges and a signing node31
Table 6.4: Maximum size of a statement that we could send to the hologram cloud32
Table 6.5: Time measurement for each function ...33
Table 6.6: Key findings with USB-meter in loop ..36
Table 6.7: Time calculation for 1 Signing Node and 5 Edges ..36
Table 6.8: Key findings with USB-meter in setup ..37

1

1 Introduction

Securing data with strong Lightweight Cryptographic (LWC) algorithms on resource
constrained devices on the Internet of Things (IoT) is a long outstanding research topic.
According to a study conducted in 2020 many kinds of research continue moving
forward to find a suitable algorithm that meet the specific demands of the IoT
application. The paper [1] provides an overview of the Lightweight Cryptographic
(LWC) primitives for IoT environments and presents various LWC algorithms based on
their key dimension, block size, structures, and number of rounds. With the upcoming
of what is normally known as the “Fourth industrial Revolution” [2], the gathering of
data has significantly changed. A huge number of sensors will measure all sort of
physical parameters and provide them to different applications and services. These
sensor readings are usually centrally controlled and collected.

With the discovery of Distributed Ledger Technology (DLT) data collection is being
decentralized. The term DLT describes a technique used to document certain
transactions. In contrast to the classic approach, in which a general ledger is usually
managed by only one instance, any number of copies of the ledger, which are in
principle equal, are maintained decentrally by different nodes. Appropriate measures
are taken to ensure that new transactions to be added are adopted in all copies of the
ledger and that an agreement (consensus) is reached on the current status of the
ledger.

The term blockchain is closely coupled to the term DLT. The term blockchain is also
used when an accounting system is managed decentrally and the correct status must
be documented because many participants are involved in the accounting process.
The procedure of cryptographic chaining in a decentrally managed accounting system
is the technical basis for crypto currencies but can also contribute to improving or
simplifying transaction security in distributed systems compared to central systems.
One of the first applications of Blockchain is the crypto currency Bitcoin [3].

Veritaa is based on a high performance and scalable DLT a Distributed Public Key
Infrastructure and Signature Store (DPKISS). DPKISS integrates an immutable
database to immutably store declarations that have been signed by key pairs managed
by Veritaa. The major invention of Veritaa is the Graph of Trust (GoT), a directed graph
that uses relations between identity claims to certify the identities and store signed
relations to digital document identifiers [4]. Veritaa provides a framework for signing
measured physical parameters. These measured values are signed by a sensor node
and the signature is immutably stored on a blockchain. That way, the integrity of data
can be guaranteed, and sensor nodes can be authenticated.

At present most of the packets are moved unsecured or exported manually by people.
The integrity of these measurement values and the authenticity of their source cannot
be validated. But in many healthcare, governmental or industrial applications the
validity of the source of data and the integrity of the data itself is extremely important.
To enable these features, it is required that measurement values cannot be changed

2

after they have been measured and that the authenticity of their source can be
validated.

International Data Corporation (IDC) made an estimate that there will be 41.6 billion
IoT devices connected, which will be generating 79.4 zettabytes (ZB) of data in 2025
[5]. One of the most relevant components of IoT are sensors that can measure
sensitive and critical data like temperature values or personal data of a patient.
Therefore, it is essential to secure the sensitive measurement values with efficient
algorithms. While the security aspect is of tremendous importance, efficiency cannot
be neglected because of the sheer amount of data that has to be secured. The market
for sensors is there. The IoT sensor market was valued at USD 11.91 billion in 2019
and is expected to reach USD 42.67 billion by 2025. A Compound Annual Growth Rate
(CAGR) of 24.05% during the forecast period of 2020-2025 is registered. There is a
significant increase in the trend of automation. As sensors play the most critical role in
every aspect of automation, IoT sensor market is expected to grow significantly in the
near future [6]. There is evidence that IoT is further expanding even if the security is
not ready yet. The baseline security must be robust, and the security architecture must
be designed for long life cycles in the system, which is a huge challenge. Therefore, it
is worth researching in this area.

Implementing the standard cryptographic algorithms is very difficult for resource-limited
devices due to the size of implementation, the speed or performance, and energy
consumption. Lightweight cryptography can use less memory and less computation.
The main challenge of securing measurement values with cryptographic functions is
that these microcontroller units (MCUs) have limited processing capabilities. It is
extremely challenging to implement security when there are limited battery capacities,
limited flash memory, and limited Random-Access Memory (RAM).

In this work we investigate Arduino development boards' hashing and signing
capabilities and their compatibility with the Veritaa framework. Therefore, we want the
Arduino sensor to be operated in a delegate mode closely coupled with a Veritaa node.
For that we use the Hologram Cloud, which provides an API and a Dashboard interface
to send TCP or UDP messages to any port on a device like Arduino. The sensor node
creates statements that are collected and posted by a Veritaa node in a block to the
blockchain. Since each sensor node creates its own chain of hashed transactions,
even if this closely coupled mode does not write directly to the blockchain, the sensor
readings are secured and cannot be deleted or changed because of the consensus
among the nodes. The Graph of Trust is to certify the authenticity and the blockchain
ensures the immutability of the measured values.

The main contributions of this thesis are summarized as follows:

• Implementing the Veritaa framework and creating Transactions/Statements to
find out the compatibility of the Arduino boards with the Veritaa framework

• Connecting the Arduino sensor with the hologram cloud

• Examining the speed and energy consumption of generating and sending them
to the Veritaa node

3

• Finding out the maximum amount of transactions the Arduino board can
generate and send

4

2 Theoretical Background and Related Work

To implement the Veritaa framework we need a signature algorithm to sign a statement
for data integrity and authentication. In this chapter, we will give the theoretical
background information about the Veritaa framework and the signature algorithms.
Since an objective of this thesis is to efficiently protect measurement values, the
efficiency of these algorithms is at the forefront of the focus. Finally, the most relevant
and well-established research on related works is being summarized and evaluated.
In addition, the related work is being compared to Veritaa in terms of speed and energy
consumption.

2.1 Veirtaa – The Graph of Trust and the ABCG

Veritaa [4] uses the Graph of Trust (GoT) and an Acyclic Block Confirmation Graph
(ABCG) to enable authenticity of the entity and integrity of data. The GoT is used to
represent real world relations between entities and digital documents. In the ABCG
each block does not confirm a single, but multiple blocks like it was proposed in IOTA
[7].

The GoT is a method in Veritaa to determine authenticity of an identity claim. A public
key associated with the name of an entity to which it belongs is called an identity claim.
Each identity claim may announce its relationship to other identity claims created by
other entities. Together with the relations, the identity claims form the GoT and this
GoT can be used to derive an identity claim 's authenticity. The relations are formed at
the beginning with an identity claim and are ending with either an identity claim or a
document identifier. A document identifier is a node consisting of an identifier that
uniquely identifies a digital document and asserts its integrity. Each relationship has a
type that indicates the relationship type between the identity claims and or the
document identifier. In the next chapter, the exact relationships that are possible are
described (see section 3.3). The type of relations that can be formed between two
identity claims are trusts audits and validates. Issues, approves and signs are relations
that can be formed between an identity claim and a document identifier.

The reason why there are these types of relations is because actions that are
performed on the document do not change the document and the actions performed
between identity claims are transparent and traceable for all the members in the
Veritaa network. Actions are relations between the nodes of the GoT. The actions are
non-repudiable and immutable. This is done with the ABCG. The ABCG ensures the
integrity of the GoT. To store the GoT in a peer-to-peer network, Veritaa uses the
ABCG as a DLT. The ABCG is a particular DLT program optimized to store the GoT.
The benefit of ABCG over a single blockchain is that new blocks do not always have
to be posted at the end of the ABCG, so new blocks can always be committed by the
nodes. If the honest nodes agree to only validate three blocks with the least validation
locally, all blocks can be validated over time.

5

A validation is done by inserting the hash of the confirmed block in the verifying block
header. As the hashes of the verified blocks are stored in the hash of the block, it is
assured that it is not possible to modify the previous blocks. If a block in the ABCG
changes, the hash will also change, and the successive blocks will then point to a non-
existing block. A hash tree is used in the blocks to ensure the immutability of the
transactions. Each transaction includes a hash of the previous transaction. The hash
of the last transaction is stored in the hash of the block and, thus, if a single transaction
were modified, the hash of the block would change. This hash tree makes it difficult to
alter transactions.

6

2.2 Digital Signature Algorithms

A digital signature is an asymmetric cryptosystem in which a sender uses a secret
signature key (the private key) to calculate a value for a digital message. This value
enables anyone to use the public verification key to verify the undeniable authenticity
and integrity of the message. To be able to assign a signature created with a signature
key to a signatory, the corresponding verification key must be assigned to the verifier.

The data to be signed and the private key are calculating the signature by a unique
calculation rule. Different data must almost certainly lead to a different signature, and
the signature must produce a different value for each key. In deterministic digital
signature procedures, the digital signature is uniquely defined by the message and the
key. In probabilistic digital signature procedures, random values are included in the
signature calculation, so that the digital signature for a message and a key can have
many different values.

Figure 2.1: Digital Signature Process [8]

A digital signature algorithm involves a process for producing signatures, and a
process for verifying signatures. A signatory uses the generation process to generate
a digital signature on the data. A verifier uses the verification process to verify the
signature 's authenticity. A signatory has a private and public key and owns the key
pair. As shown in Figure 2.1 the private key is used in the method of producing
signatures. The only person allowed to use the private key to produce digital signatures
is the key pair owner.

7

In a digital signature, the private key is not usually applied directly to the message, but
to its hash value, which is calculated from the message using a hash function (such as
SHA-3). To prevent attacks, this hash function must be collision-resistant, that is, it
must be practically impossible to find two different messages with identical hash
values.

If the public key has been assigned to a person by means of a digital certificate, the
identity of the signature creator can be determined or verified via the public directory
of the certification service provider, due to the fact that there is only one private key
corresponding to the public key. The entirety of the technical infrastructure with which
the certificates and information about their validity are generated and made publicly
available is called PKI (Public Key Infrastructure).

A widespread misunderstanding is that signing is an encryption with the private key of
an asymmetric encryption method. This assumption results from the fact that this is
indeed the case with a naive and insecure variant of RSA, namely "Textbook RSA".
However, this is never the case with secure variants of RSA (e.g. RSA-Full-Domain-
Hash (FDH), RSA-Probabilistic-Signature-Scheme (PSS), RSA-Optimal-Asymmetric-
Encryption-Padding (OAEP), for more details see [9]), despite certain similarities in
details. With other encryption and signature procedures, there are usually only very
superficial similarities at most [8]. There is no semantic security for Textbook RSA, so
it is not secure against selected plaintext attacks or ciphertext attacks. This is because
it is deterministic (the encryption of the same message creates the same ciphertext
twice) and multiplicatively homomorphic (the encryption of encrypted values can be
changed multiplicatively) which is not the case with the secure variants of RSA.

2.2.1 RSA

A group at M.I.T. discovered a good public key algorithm. It is known by the initials of

the three discoverers (Rivest, Shamir and Adleman): RSA. For more than 30 years it

has survived all attempts to break it and is considered very strong. A lot of protection

today is based on it. For this reason, the 2002 ACM Turing Award was awarded to

Rivest, Shamir, and Adleman. Its major disadvantage is that for good security it

requires keys of at least 1024 bits, which makes it quite slow. The RSA method is

based on certain Number Theory principles [10].

8

Algorithm 1: RSA Key Generation

1 : Choose two distinct prime numbers p and q.

2 : Compute 𝑛 = 𝑝 ∗ 𝑞.

3 : Compute λ(n), where λ is Carmichael's totient function. Since 𝑛 = 𝑝 ∗ 𝑞, 𝜆(𝑛) =

 𝑙𝑐𝑚(𝜆(𝑝), 𝜆(𝑞)), and since p and q are prime, 𝜆(𝑝) = 𝜑(𝑝) = 𝑝 − 1 and likewise

𝜆(𝑞) = 𝑞 − 1. Hence λ(n) = least common multiple of (p − 1, q − 1).

4 : Choose an integer e such that 1 < e < λ(n) and 𝑔𝑐𝑑(𝑒, 𝜆(𝑛)) = 1; that is, e and λ(n)

are coprime.

5 : Determine d as 𝑑 ≡ 𝑒 − 1 (𝑚𝑜𝑑 𝜆(𝑛)); that is, d is the modular multiplicative inverse

of e modulo λ(n).

The public key is the modulus n and the exponent e. The private key consists of the
private exponent d, which must be kept secret. P, q, and λ(n) also need to be kept
secret as they can be used to calculate d. They can all be discarded after d is calculated
[11].

The integers p and q should be selected at random for security purposes and should
be comparable but differ in length by a few digits to make factoring more difficult. Prime
integers can be found efficiently using a primality test.

For public and private keys, n is used as a modulus. The key length is its length,
generally expressed in bits. N is released in the public key. The least common multiple

(lcm) can be calculated with the Euclidean algorithm because 𝑙𝑐𝑚(𝑎, 𝑏) =
|𝑎𝑏|

𝑔𝑐𝑑(𝑎,𝑏)
.

Algorithm 2: RSA Signature Generation [12]

Input : Message to be signed (msg)

Output : Signature (s)

1 : Compute the message hash: ℎ = ℎ𝑎𝑠ℎ(𝑚𝑠𝑔)

2 : Compute h with the private exponent d to calculate the signature: 𝑠 = ℎ𝑑 (𝑚𝑜𝑑 𝑛)

The hash h should be in the range [0...n). The obtained signature s is an integer in the
range [0...n). Security relies on the fact that there are no efficient algorithms to
decompose the prime numbers p and q.

9

Algorithm 3: RSA Signature Verification [12]

Input : Signature (s)

Output : True or false

1 Calculate the message hash: h = hash(msg)

2 : Obtain A’s authentic public key (n, e).

3 : Compute h’ with the public exponent e: h’ = 𝑠𝑒 (𝑚𝑜𝑑 𝑛)

4 : Compare the resulting hash value h’ with the message's actual hash value h

Signed messages guarantee data integrity and authenticity, provided the private key
has really been kept secret. Due to the homomorphic nature of RSA, only one message
can be signed with this method. If there are two signatures msg1 and msg2, an attacker
can multiply them to calculate the message signature msg1*msg2. This problem can
be circumvented by not signing the message itself. Instead, a collision resistant hash
function h specified in addition to the signature procedure is used to calculate the hash
value h(msg) of the message msg. This is signed with the private key to get the actual
signature. The recipient can verify the signature thus obtained with the public key and
receives a value h'. He compares this value with the hash value h(msg) of the message
he received. If both values ℎ(𝑚𝑠𝑔) = ℎ′ match, it can be assumed with high probability
that the message was transmitted without errors and is not fake. However, even this
modification does not meet modern security requirements, so procedures such as
RSA-Probabilistic-Signature-Scheme (PSS) are used to sign with RSA [8].

10

2.2.2 Efficient RSA Signature algorithm

In practice the parameters used in the RSA public-key scheme tend to be very long
(1024-4096 bit). A major undesirable consequence of this is that typically, RSA
computations are slow unless special measures are taken.

There are several ways to improve the efficiency of RSA:

1. Chinese Remainder Theorem (CRT) [13]
2. Square and multiply method [14]
3. Short exponents [15]
4. Batch RSA [16]
5. Multi-Prime RSA [17]
6. Multi-Power RSA [18]
7. Offline RSA-Key Generation [19]

The CRT is a method that accelerates RSA decryption/RSA signature generation by a
factor of 4 [13]. Using the CRT, messages can be decrypted or signed more efficiently.
Because the modulus N is very large, the bit representations of numbers used in the
computer are also very long. The Chinese remainder theorem allows you to perform
calculations in the two smaller groups of size p and q instead of in a group of size N,
and to reassemble the result afterwards. Since the numbers here are much smaller,
this calculation is faster overall.

Further improvement can be achieved with the square and multiply method. Since the
main operation of the signature algorithm is modular exponentiation, it is worth making

it more efficient. For the simple and slow exponentiation of 𝑥𝑘, (k-1) multiplications are
needed. For the square and multiply method, the loop is only run through log2 𝑘 times.
In each loop, there is a squaring (the first squaring can be neglected) and possibly a
multiplication. Asymptotically become 𝑂(𝑙𝑜𝑔(𝑘)) operations are required, whereas
𝑂(𝑘) operations are required for simple exponentiation. 𝑂 denotes an asymptotic upper
bound for the runtime behavior of the algorithm. As it can easily be seen, binary
exponentiation is much more efficient than the simple procedure. This reduced
demand on computing power is enormous for large bases and exponents [14]. The
next evolution of the square and multiply method is an improved exponentiation
algorithm for RSA [20]. In that paper a new exponentiation algorithm is presented that
works in parallel, requires fewer multiplications and therefore has less delay. This
technique is, therefore, more useful for larger key computations.

Furthermore, there is a method that includes the public key e to accelerate the RSA
verification algorithm by making e small. It turns out, that you can choose the public
key e to be a very small value. The three values 𝑒 = 3, 𝑒 = 17 and 𝑒 = 216 + 1 =
 65’537 are the most common keys selected today. RSA is still secure with such short
public exponents. In general the private exponent d still has the full bit length l.
Otherwise it would be easy to brute-force the private key, i.e. reveal d by exhaustive
searching [15].

The principle of batching is performing multiple simultaneous encryption or signature
operation. In practice, the new variant performs several modular exponentiations
effectively, at the cost of a single modular exponentiation. It leads to a very fast RSA-

11

like scheme if RSA is to be performed at any central location or when pure-RSA
encryption is to be performed [16].

Some other technique is the so called Multi-Prime RSA. Multi-Prime RSA is an RSA
variant, where the modulus is the product of more than two distinct primes. The
standard PKCS#1 is supported by having more than two prime factors. This is called
the key to "multi-prime." On the plus side this could offer some improvement in
performance. On the negative side the modulus may be weakened by using too small
factors. The bottom line is that three or four primes will be tolerable for normal sizes
and give a nice boost in efficiency, but it is not recommended to go beyond that. Public-
key activities are not in any way affected by it [17].

Multi-Power RSA is a variation of Multi-Prime RSA. In Multi-Prime RSA, the N module

consists of different primes, while in Multi-Power RSA, the 𝑁 = 𝑝𝑘 ∗ 𝑞. This
standardized modulus provides a more efficient decryption than Multi-Prime RSA.
Takagi first defined Multi-Power RSA in 1998 [18].

Another speedup technique of RSA is the offline RSA-key generation. Since the RSA
key generation takes a substantial amount of computations of the overall RSA
algorithm, the keys could be generated offline and later when the RSA is used carried
out to a database. One such example is from 2012 from Sami A. Nagar and Saad
Alshamma where they aim to speed up the implementation of the RSA algorithm during
data transmission between various communication networks and the Internet, which is
determined to produce the keys by a program prepared in a C# language and then
save those key values in the databases generated by SQL Server [19].

2.2.3 Ed25519

Edwards-curve Digital Signature Algorithm (EdDSA) is a modern and stable digital
signature algorithm based on performance-optimized elliptic curves, such as the 255-
bit Curve25519 curve. EdDSA signatures use the elliptic curves from Edwards (for
performance reasons) edwards25519. The EdDSA algorithm is based on the algorithm
for the Schnorr signature and relies on the problem of the elliptic curve discrete
logarithm problem (ECDLP). The RFC 8032 theoretically defines the EdDSA signature
algorithm and its variants. A 256-bit ECDSA signature has the same protection power
as the RSA signature of 3072-bit [21].

Some RSA-type systems provide faster verification. But this advantage decreases as
the level of security increases, and much slower signatures and much bigger keys
outweigh the advantage for many applications. For low cycle functions higher
performance is achieved. For example, rwb0fuz1024 (1024-bit Rabin – Williams) uses
12304 cycles to sign but 1751284 cycles and 128 bytes for a public key; ronald1024
(1024-bit RSA) uses 60300 cycles to sign but 2171124 cycles and 128 bytes for a
public key; ronald3072 (3072-bit RSA) uses 231536 cycles to verify but an astounding
31456912 cycles to sign and 384 bytes for a public key. In the original paper that
introduced Ed25519 they used 134000 cycles for verification, 87548 cycles for signing,
and 32 bytes for a public key [22].

12

2.2.3.1 Ed25519 Key Generation

The private key is generated from a random integer, known as the seed, which like the
curve order, should have similar bit length. The seed is hashed first, then the last few
bits are removed, corresponding to the curve cofactor (8 for Ed25519), then the highest
bit is removed, and the second highest bit is set. These transformations ensure that
the private key will always belong to the same elliptic curve (EC) points subgroup on
the curve, and that the private keys will always have the same bit length.

We assume the elliptic curve for the EdDSA algorithm comes with a generator point G
and a subgroup order q for the EC points, generated from G.

The Public key pubKey is a point on the elliptic curve, determined by multiplication of
EC points: pubKey = privKey * G (private key, multiplied for curve by generator point
G). The public key is encoded as a compressed EC point: the y-coordinate, together
with the x-coordinate 's lowest bit (the parity). The public key for Ed25519 is 32 Bytes.

2.2.3.2 EdDSA Sign

The EdDSA signing algorithm (RFC 8032) takes as its input a text message msg +
private key privKey from the signer EdDSA and generates a pair of integers {R, s} as
the output. Signing the EdDSA works as follows (with slight simplifications):

Algorithm 4: EdDSA Sign [21]

1 : Calculate pubKey = privKey * G

2 : Deterministically generate a secret integer

r = hash (hash(privKey) + msg) mod q (this is a bit simplified)

3 : Calculate the public key point behind r by multiplying it by the curve generator: R

= r * G

4 : Calculate h = hash (R + pubKey + msg) mod q

5 : Calculate s = (r + h * privKey) mod q

6 : Return the signature {R, s}

The digital signature created for Ed25519 is 64 bytes (32 + 32 bytes). It contains a
compact point R and an integer s.

2.2.3.3 EdDSA Verify Signature

The EdDSA signature verification algorithm [23] takes a text message msg, the EdDSA
public key pubKey, the EdDSA signature {R, s} as an input and generates a Boolean
value (valid or false signature) as an output. The EdDSA verification algorithm (with
slight simplifications) works as follows:

13

Algorithm 5: EdDSA Verify Signature [21]

1 : Calculate h = hash (R + pubKey + msg) mod q

2 : Calculate P1 = s * G

3 : Calculate P2 = R + h * pubKey

4 : Return P1 == P2

14

2.3 Related Work

In this section, we are going to compare and explain several existing solutions on
security and privacy in IoT devices. The solutions are either block-based, which have
their origin from blockchain, or DAG-based security systems, which have their origin
from the tangle. Our focus is on Veritaa since the framework has been implemented in
this work on an Arduino device. Veritaa uses a DAG-based system.

2.3.1 Overview of Block-based and DAG-based Security Systems

A blockchain [3] is a centralized and tamper-resistant network which is not owned by
anyone but can be accessed by anyone. New blocks may be attached to current blocks
if those in the network accept the new block. Also, it is not feasible to modify or erase
blocks once they are recorded. The blockchains were designed to operate with
adversarial agents on an insecure network. It ensures data integrity by preventing data
erasure or abuse by using sophisticated and compute-intensive stable hash algorithms
to capture data modification. Such compute-intensive algorithms are part of the proof
of work which is a consensus process by different nodes in a network. The consensus
can agree on new data or identify a modification in the network. Through using
cryptographic algorithms Blockchain solves the privacy problems of IoT networks. By
using tamper-resistant ledgers, it also addresses the security problems in IoT
networks. Figure 2.2 shows an example of a block-based security system. When we
are talking about block-based security systems we mean that an underlying entity in
the system can only confirm one block.

Figure 2.2: Block-based security system

Tangle [7] on the other hand is a newer technology introduced by crypto-currency IOTA
for distributed ledgers. Inevitably, the tangle passes the blockchain as their next
evolutionary step, it requires no complex, time-consuming and computer-intensive
consensus protocol. It does not use blocks for processing transactions, either. Every
transaction is by itself a separate block and will allow two older transactions to be
added to the ledger. Two older transactions are accepted using proof of work. Tangle
uses the DAG (see Figure 2.3) which connects each transaction to two older
transactions by accepting it. When we are talking about tangle-based systems, we
mean that an underlying entity in the system can confirm more than one block uses a
DAG.

15

Figure 2.3: DAG-based security system

The current study of the literature shows that these two types of DLT’s are used most
often for resource constrained IoT networks. Table 2.1 gives an overview about the
existing and most relevant DLT’s security and privacy solutions on IoT devices.

Table 2.1: Overview of existing solutions in IoT devices

Existing solutions on security and privacy in IoT devices

B
lo

c
k
-b

a
s
e
d

D
A

G
-b

a
s
e

d

O
th

e
rs

Towards an Optimized BlockChain for IoT [24] X

Blockchain based Data Integrity Service Framework for IoT data [25] X

BIFF: A Blockchain-based IoT Forensics Framework with Identity Privacy
[26]

X

TangoChain: A Lightweight Distributed Ledger for Internet of Things Devices
in Smart Cities [27]

 X

DIoTA: Decentralized-Ledger-Based Framework for Data Authenticity
Protection in IoT Systems [28]

 X

IOTA-VPKI: a DLT-based and Resource Efficient Vehicular Public Key
Infrastructure [29]

 X

A Blockchain Solution based on Directed Acyclic Graph for IoT Data Security
using IoTA Tangle [30]

 X

A Hypergraph-Based Blockchain Model and Application in Internet of
Things-Enabled Smart Homes [31]

X X

Veritaa - The Graph of Trust [4] X

16

2.3.2 Block-based security systems

IoT security is difficult because most devices have low resource capacities, system
heterogeneity and lack of standardization. In addition, many of these IoT devices
gather and exchange vast volumes of data from our personal spaces, thus opening
questions about privacy that are important. The papers [24], [25], [26] all introduced a
new way of BC-based security and privacy for IoT devices.

The paper [24] proposes distributed trust to reduce the processing time for block
validation. The authors of the paper [24] tested their approach in a smart home setting,
but their work can also be used for broader IoT applications for providing security and
privacy. Simulations showed that their approach substantially reduces packet and
overhead processing time compared to the BC implementation in Bitcoin. Their focus
was on the performance and the overhead rather than the energy consumption.
Ultimately, their approach decreases the processing time by approximately 50%. Their
work can be used for the mutual trust approach outlined in that paper may also be used
in other BC-based systems if the network security allows it.

Another example of a BC-based system is the paper [25], where they are proposing a
data integrity service based blockchain system. In that system, a more robust
assurance of data integrity can be given to both Data Owners and Data Users, without
relying on any third-party auditors. However, their implementation has still low
efficiency as they are also aware of that. They have only implemented the fundamental
functions of their protocol and want to further improve their approach in future.

Lastly there is BIFF a Blockchain-based IoT Forensics Framework with Identity Privacy
which was published in 2018 [26]. In that paper, they propose a permitted IoT forensics
system centered on blockchain to enhance the integrity, authenticity, and non-
repudiation properties of the collected proof. They formally define the system
architecture, provide details of the framework, and propose a cryptographic-based
approach to mitigate privacy concerns about identity. They use a different type of
consensus protocol called Byzantine Fault Tolerance (BFT), which is typically used in
a permissioned blockchain. The system selects one "master" from the specified entities
for each pre-defined epoch (e.g., servers under LEA control). This leader then gathers
the unconfirmed transactions, forms a block, and integrates his ID into the field of the
miner ID. This specific block is then transmitted and checked by the Group to the entire
network. If a predefined threshold is passed by the number of positive testing, this
particular block is considered valid and written in the immutable ledger. Their
framework is different, but their transaction format is similar to Veritaa’s. However, they
did not test their framework yet. One potential future work that they announced is to
integrate the system into an IoT testbed comprising a heterogeneous set of devices,
to test the functionality of the system and to benchmark the efficiency [26]. For
comparison, in Veritaa, consensus is achieved if only valid blocks are added to the
ABCG. A block is considered valid if its hash tree contains only matching hashes, if it
confirms at least three legitimate and no invalid blocks, if it is signed by an identity
claim that occurs either in the GoT or in the same block, and if it contains a valid
transaction list [4].

17

2.3.3 DAG-based security systems

The literature about Tangle-based (see section 2.3.1) security framework for IoT
devices was a lot less common than the BC-based systems because tangle is relatively
new. Nevertheless, the papers [28], [27], [30] all introduces a DAG-based security
system.

For example, there is DIoTA [28] a novel, decentralized, ledger based IoT system
authentication platform. To enable IoT devices and data protection, DIoTA uses a two-
layer, decentralized ledger architecture along with a lightweight data authentication
mechanism. They also evaluate DIoTA 's efficiency and protection. If we compare
DIoTA with Veritaa, Veritaa is faster than DIoTA. It is also more secure because DIoTA
uses global ledger nodes to monitor and track updates of each edge ledger to facilitate
information exchange between different edge ledgers and prevent data modification.
On the other hand, in Veritaa there are no global edges. This means that there is no
centralized point for adversaries.

Compared with conventional linear blockchain, TangoChain [27] is a DAG. In
TangoChain, each DAG node contains a single transaction created by an IoT node
that finds two additional transactions already attached to TangoChain to verify their
validity. To publish a transaction, there is a small proof of work to prevent denial of
service attacks. Furthermore, they plan on doing experiments with realistic use cases
to show TangoChain 's performance on a testbed and a network setup [27].

Another solution, which is not for conventional IoT devices but for car to car
communication, is IOTA-VPKI, which stands for IOTA vehicular public key
infrastructure. The efficacy of DLT-based VPKI will be assessed in the IoT project
sponsored by EU Horizon 2020.

The research proposed in 2020 in paper [30] focuses on the use of IOTA Tangle's
Masked Authenticated Messaging (MAM) function to ensure that IOT sensor data is
transmitted and that guarantees the reliability and confidentiality of the data being
transferred. MAM is a secure protocol to transfer and access encrypted or masked
data, consisting of messages transmitted by zero value transactions, to the
Tangle. Using the MAM module, nodes or devices connected to the IOTA Tangle can
transmit their messages to a "Channel" in a masked and authenticated form. A
Raspberry Pi was used to send and publish messages. After the node is connected to
the IOTA network and collects the sensor data at predefined intervals, this collected
sensor data is then released to the IOTA Tangle using the MAM functionality. It is time-
stamped after the node collects the sensor data and then an encrypted message is
generated. This encrypted message is being added to the Tangle. This provides
confidentiality, integrity and authentication of the data that has been transferred. One
weakness of this research is that they have not evaluated the performance of the
proposed solution yet. They noted that further research work is needed in the direction
for enhancing the transaction rate, to handle the high rate of IOT data more smoothly
and also the development of different robust consensus mechanism is needed [30].

The paper [31] proposes a hypergraph-based blockchain model. This model aims to
reduce storage consumption and solve the additional security problems. The author of
paper [31] use the hyperedge as the storage node structure and turn the entire

18

networked data storage into a part time network storage. They discuss the model and
security strategy design in detail, introduce some use cases in a smart home network
and evaluate the model's storage performance through simulation, experiments, and
network assessment.

From the study of the literature of related works about BC- or DAG-based systems
Veritaa is on the cutting edge in terms of speed and efficiency. All the papers show
that they did not do a performance test yet or Veritaa is more effective.

19

3 Veritaa Framework

The purpose of Veritaa is to verify the origin, integrity, and history of digital documents.
The GoT represents real world relations between entities and use this information to
certify the identities. In order to create relations and build up the GoT, Veritaa provides
a signing node and an edge for IoT devices like Arduino. The signing node is necessary
to initially connect to the network. Edges represent declarations and actions that have
been performed and signed by entities. Together they form a statement. A statement
usually consists of a signing node and several edges. Since our main goal is to find
out if the Arduino devices are capable to be secured by the Veritaa framework, we
must explain how the framework is built up in detail. For that reason, we are going to
introduce the statement structure. We will provide some context information about
Veritaa to understand about what the individual fields are about. For a more detailed
explanation of Veritaa, the original paper [4] which proposed Veritaa can be used.

3.1 Statement Structure

A statement consists of several fields (see Table 3.1). These fields all have a specific
size. The transaction_counter counts the number of transactions in the block for a
Veritaa node to understand how many transactions were sent. The transaction field is
a list of a signing node and several edges. How many transactions a statement consists
of is up to the creator that is also the reason this field can be dynamic in length. The
creator is a unique hash value. The signature length depends on the signature
algorithm. We are using the most efficient solution which is Ed25519 with a signature
length of 64 bytes.

Table 3.1: Veritaa: Statement

Field Description Size [Bytes]

transaction_counter number of transactions in the block 4

transactions list of the transactions dynamic

creator hash of the entity that created the

statement

32

signature_length 2

signature

signature_length

20

3.2 Transaction: Signing Node

The Graph of Trust (GoT) is built out of transactions that contain relations between
identity claims or an identity claim and a document identifier. The GoT provides two
methods to prove the authenticity of identity claims. The first method is domain vetting.
Domain vetting is the procedure on doing background checks with certain methods to
identify its trustworthiness. Each identity claim can have a validation domain to a well-
known folder that contains a file with the public keys that are owned by the domain
holder. This can be achieved with the last field of the signing node which is the
validation link. The first four fields are the same in every transaction. The type field
gives the form of a transaction which provides either domain vetting or if the GoT itself
is being used to prove the authenticity of identity claims. For domain vetting we use
the signing node which is identified by a 0 in the type field (see Table 3.2).

One of the most important fields in a transaction is the previous transaction field. When
you initially create a transaction that field is set to null. The second transaction contains
the hash of the previous transaction and so on. This leads to the last transaction’s
previous transaction field containing all the other hash values from the previous
transactions. If the transaction was changed or altered in the process a different hash
value will be calculated. That way the Veritaa nodes can validate the integrity of the
transactions. The inception and expiry date. We use Unix timestamps. The field
algorithm must be added to the framework, so that validating node knows which
verification algorithm should be used. The signature algorithms that we have tested
are P-521, Ed25519 and RSA. In our experiments Ed25519 was more convenient and
faster than the other algorithms.

Table 3.2: Transaction: Signing Node

Field Description Size [Bytes]

transaction_length length of the transaction 2

previous_transaction hash of the previous transaction

or null for the first

32

inception_date 8

expiry_date 8

type Signing Node = 0 or Edge = 1 1

node_type Organization = 0 1

object_hash hash (type + node type + name +

public key + validation link)

32

name_length 2

name name of the node name_length

algorithm Either P-521, Ed25519 or RSA 1

public_key_length 2

public_key public key of the identity claim public key length

validation_link_length 2

validation_link validation link for vetting validation link length

21

3.3 Transaction: Edge

The second way to establish evidence of an identity claim 's validity is through the GoT
itself. The identity claims along with the relationships form the GoT, and this GoT is
being used to deduce an identity claim 's validity. In order to make these relations with
another node in the network or with a document identifier, the field edge_type is being
introduced (see Table 3.3). There are 8 possible edge types possible. That is why one
byte is being reserved.

Table 3.3: Transaction: Edge

Field Description Size [Bytes]

transaction_length length of the transaction 2

previous_transaction hash of the previous transaction

or null for the first

32

inception_date 8

expiry_date 8

type Signing Node = 0 or Edge = 1 1

edge_type 0 = ISSUES

1 = VALIDATES

2 = AUDITS

3 = REVOKES

4 = APPROVES

5 = TRUSTS

6 = REQ_SUBSIGNING

7 = GRANT_SUBSIGNING

1

object_hash the hash of the node that is

endorsed by this edge

32

payload_length 2

payload payload length

22

3.4 Subsigning Entity

After the statements are generated, they are sent to a signing entity by a subsigning
entity. The subsigning entity requests the signing and the signing entity approves it. A
pairing is achieved when the signing entity grants the subsigning rights. When this
paring is done, the subsigning entity can send statements to the signing entity and the
signing entity then puts the statement in a block and commits it to the ABCG. In Figure
3.1, A1 is the subsigning entity and A2 represents the signing entity. After A1 requests
subsigning rights, A2 can grant it. Now A1 is able to issue data in the network. The
sensor node was paired with the owner and therefore, all entities that trust the owner’s
identity can also trust the values of A1. A1 is in this work our Arduino device, but it
could be any other device that gathers some type of sensitive data and A2 is a node
that is already trusted by the network.

Figure 3.1: Subsigning Entity

23

4 System Implementation

To send data to other nodes in the network on an Arduino device is only possible with
a compatible shield. For that we use the SparkFun LTE CAT M1/NB-IoT shield. For
the implementation in the next chapter we need to know how the components work
together and how limited their resources are. In Figure 4.1 (see below) you can see
our system architecture to send statements to a Veritaa node. This architecture is only
built to test the speed and energy consumption to generate and send statements on
Arduino. We are not using real measurement values, but instead we take any
temperature value and a timestamp. Hologram is an IoT connectivity platform. They
are partnered with all big networks in the U.S and 550 carriers worldwide and their
global IoT SIM card provides an optimal coverage. With hologram, companies avoid
the headache of negotiating contracts with carriers while ensuring access to every
available cellular network and technology. We use the hologram cloud to simulate our
tests. In this chapter we are going to specify and explain all the necessary steps and
the system components to send data from an Arduino device to the hologram cloud
which forwards it to the Veritaa node.

Figure 4.1: Overview of the system architecture

4.1 Device Connections

An USB meter is used to measure the current flow. UM25C PC software records
voltage and current values in a 0.55 seconds interval. The Sparkfun LTE CAT shield
receives power from the Arduino's 5V supply pin. The data communication between
the Arduino and the shield occurs via an AT command interface over a simple UART
RX and TX pins. The serial switch can either be set to HARD for the pins 0/1 and SOFT
for the pins 8/9. We use the SOFT mode.

The Hologram Socket API provides a low-level TCP socket interface to connect with
the Hologram Cloud to the shield.

24

4.2 Sending Statements to the Hologram Cloud

To register to the hologram cloud, we use a hologram SIM card which must be
activated. Afterwards we have access to the internet via hologram. Before you run the
registration sketch for the connection with the mobile network you need to adjust the
mobile network provider to default because it is set to an American provider. After 30
seconds the shield finds the available mobile networks in your area and you can select
one. After a few seconds, you should see the status on your device's Hologram
dashboard to be activated.

To send a hologram message a device key is necessary which you can generate on
the hologram dashboard. The generated device key must be updated in the sending
sketch. Furthermore, the pins must be changed to 8/9 because we use SOFT mode.
Finally, you can send a JSON-encoded string with socketWrite. The JSON-encoded
string includes the following fields:

• devicekey (k) -- String. Eight-character Device Key used for authentication

• data (d) -- String. Base64-encoded statement

• tags (t) - String or array of strings (not used)

4.3 Hardware limitations of each component

First, we tried to implement the Veritaa framework with the Arduino uno. However, the
Arduino uno has not enough flash memory to implement the source code and all the
necessary libraries. Ed25519, SHA3, Base64 and SparkFun library were the
necessary libraries. Our sketch took more than 41KB of storage space. below you can
see the output from the Arduino IDE.

Table 4.1: Output from the Arduino IDE

Sketch uses 41312 bytes (128%) of program storage space. Maximum is 32256 bytes.

The reason we tried another board was because the Arduino uno did not have enough
flash memory for all the necessary libraries (see Table 4.1). We chose a board with
more flash memory which is the Arduino mega. To compare the used Arduino boards,
we give an overview about the most important hardware components. It is also
necessary to know some hardware restrictions for the implementation.

4.3.1 Arduino uno rev3

First, there is the flash memory of 32KB, which saves the program that is loaded from
the Arduino IDE. There is also a library called progmem. With that library you can store

25

constant data on the flash to not waste any other memory (like the valuable SRAM).
The SRAM has 2KB. Then there is a CPU which controls everything that goes on within
the device. Finally, there is the Electrically Erasable Programmable Read Only Memory
(EEPROM) of only 1KB (see Table 4.2).

Table 4.2: Arduino UNO ATmega328P hardware specification

Microcontroller ATmega328P

Operating
Voltage

5V

Flash Memory 32 KB of which 0.5 KB used by
bootloader

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

4.3.2 Arduino mega 2560

In Table 4.3 you can see the Arduino mega’s 2560 hardware specification. Arduino
mega is an upgrade in terms of memory space. The Operating Voltage and Clock
speed is the same as in Arduino uno.

Table 4.3: Arduino MEGA 2560 hardware specification

Microcontroller ATmega2560

Operating
Voltage

5V

Flash Memory 256 KB of which 8 KB used
by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

4.4 Interrupt problem with Serial Pin 8 on Arduino Mega and the solution

Standard bootloader of the Arduino uno/mega only supports hardware serial pins 0/1
for updating the program (Uploading Sketch). Therefore, hardware serial pins 0/1 is
reserved for updating the program.

Software Serial pins 8/9 works fine with Arduino uno for Rx and Tx. But not all pins of
the Arduino mega support interrupts, so only the following pins can be used for Rx:10,
11, 12, 13, 14, 15, 50, 51, 52, 53, A8 (62), A9 (63), A10 (64), A11 (65), A12 (66), A13
(67), A14 (68), A15 (69).

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf

26

We used pin 10 for Rx. That is why a small change in the wiring had to be made. On
Arduino mega the pin 10 had to be connected to Sparkfun LTE shield’s pin 8. The Tx
pin 9 works fine because no interrupt is necessary. Figure 4.2 (see below) shows the
wiring that was necessary on Arduino Mega to connect with the SparkFun LTE CAT
M1 / NB-IoT Shield. The SparkFun LTE CAT M1 / NB-IoT Shield offers connectivity to
data networks around the globe for an Arduino or Arduino-compatible microcontroller.
LTE stands for Long Term Evolution, which is also known as 4G, a standard for
wireless broadband communication for mobile devices and data terminals.

Figure 4.2: Wiring of SOFT serial pins Rx Tx

4.5 SparkFun LTE CAT M1/NB-IoT firmware update necessary

Cellular technologies unique to IoT are a modern and exciting branch of cellular
technology. However, as with all emerging technologies, as the sector matures, there
are some growing pains that must get tackled. Sending messages to the hologram
cloud does not show up on the dashboard without a firmware update of the LTE shield.
After the update of the Cat-M1 R410 Nova's Firmware [32], everything was working as
expected. The installation process is only possible on a Raspberry Pi or Linux machine.
Additionally, this firmware update will change the behavior of the blue LED on the LTE
shield. Instead of slowly blinking while connected with the Hologram network, it will
now stay solid.

27

5 Implementation of the Extension of the Veritaa Framework

In this chapter the implementation of the Veritaa framework on Arduino mega is
explained. To not waste any valuable SRAM a lot of thought was spent to make the
code as efficient as possible. Considering the statement structure (see chapter 3) is
relatively complex the right variables must be saved at the right place.

5.1 Setup Requirements

For serial data transmission, we must set the data baud rate of 9600 to communicate
with the serial monitor. Once the serial monitor is open the baud rate must be changed
to the same one as in the sketch so that the communication happens.

After the connection with the LTE-Shield over a serial interface is established, the
private and public key will be generated with Ed25519 and saved in global variables.
Next, a hash of the creator with SHA3-256 will be generated and saved in a global
variable too. Finally, transaction counter and the last hash of the object is initialized.
All these variables are necessary for the Veritaa framework (see Figure 5.1).

Figure 5.1: Steps needed in Setup to send statements

28

5.2 Flowchart Loop

After the setup, an initial signing node is generated and saved in a statement buffer (1.
see Figure 5.2). A hash is created from the following data and saved to a global
variable "lastObjectHash”:

- nodeName

- type

- nodeType

- publicKey

- validationLink

The global variable "lastObjectHash" is used when the next transaction is generated.

The data of the edge transaction is added to a buffer in the appropriate place (2. see

Figure 5.2). A temperature value (integer) and a timestamp (unsigned long) are taken

as payload. A hash is created from the payload and stored on a global variable

(lastObjectHash). The global variable "lastObjectHash" is used when the next

transaction is generated like in the generation of the signing node. The generation of

edges and the saving in the buffer will be repeated COUNT_EDGE-times.

Next, a hash of the last object hash and the hash of the creator is generated (3.) and

signed (4.) with the private key. The signature length and this signature is added in

the buffer in the right place. Therefore, the statement is created (5.) and lastly, we

must encode the statement to base64 (6.) because it is one of the most common

used encoding schemes and more efficient than hex encoded. There are some

important plus points of hex encoding. It is easy to grasp and implement. Each byte

is encoded as a separate character pair. To achieve a more effective encoding,

Base64 uses a wider character set. It is not meant to be readable by humans in any

way, but it is meant to be compatible with as many systems as possible. The

algorithm is more complicated than hex encoding, but there is a 33% increase in the

data size. This encoded message can now be sent as a hologram JSON message

(7. & 8.). This loop will be repeated COUNT_STATEMENT-times (see Figure 5.2).

29

Figure 5.2: Steps needed in Loop to send statements

30

6 Experiments and Results

In this section we are presenting our findings about the performance of the Veritaa
framework and the energy consumption. With our first experiment we found the
maximum amount of transactions in a statement to generate and send it to the
hologram cloud. We determined the maximum amount by starting with an initial signing
node and successively adding more edges to it until a SRAM overflow happened. In a
second experiment we measured the time and energy consumption for sending
statements for a Veritaa system coupled with an Arduino mega board.

6.1 Determination of a Statement Size

A statement was introduced in section 3.1. To determine the size of a transaction for
our measurements, the following values (red) were taken for the fields with variable
lengths. The other values for Veritaa framework are fixed.

All the fields are fixed in size, except name, public key, and validation link for the
signing node. For the edge only the payload field size is variable.

Table 6.1: Size of Transaction: Signing Node

Field Size [Bytes]

transaction length 2

previous transaction 32

inception date 8

expiry date 8

type 1

node type 1

object hash 32

name length 2

name 5

algorithm 1

public key length 2

public key 32

validation link length 2

validation link 15

Total 143

 Table 6.2: Size of Transaction: Edge

Field Size [Bytes]

transaction length 2

previous transaction 32

inception date 8

expiry date 8

type 1

edge type 1

object hash 32

payload length 2

payload 10

Total 96

As one can see in Table 6.1 and Table 6.2 the size of a signing node is 143 bytes and
an edge is 96 bytes in our example.

To determine how many edges can be generated on Arduino mega in a statement, the
number of edges was increased step by step. The tests could be performed without
errors up to 23 edges. Afterwards memory overflow occurred.

31

As shown in Table 6.3, the size of a statement with 23 edges and a signing node
occupies 2453 bytes for the plain data and 3295 bytes for the JSON message in
SRAM.

To encode the plain data to base64 we need to keep the plain data in memory.
Together with the encoded JSON message the SRAM occupies (2453 bytes + 3295
bytes) 5748 bytes. The rest of the SRAM is used for the other functions and global
variables.

Table 6.3: Maximum size of a statement with 23 edges and a signing node

Statement data Bytes Quantity Size (Bytes)

Transaction counter 4 1 4

Signing node 143 1 143

Edge 96 23 2208

Hash of the Creator 32 1 32

Signature length 2 1 2

Signature 64 1 64

Total plain data 2453

Message (Base64-encoded) 3272

JSON-encoded 23 1 23

JSON-Message to send 3295

Our goal is to send the maximum amount of transaction in one execution. The first
discovery is that the Arduino mega can generate 23 edges and a signing node in a
statement without a memory overflow. This was found by incrementing the amount of
edges. After further tests we discovered that more than 1024 bytes could not be sent
to the hologram cloud. The reason why only 1024 bytes could be sent has to be further
investigated. Our assumption is that this limitation is based on the hologram server
JSON message limit or the maximum packet size of the narrowband-IoT shield.

Our second discovery was that Arduino mega could maximally send 5 edges and a
signing node in one iteration of the loop which is in the scope of 1024 bytes that could
be sent. To determine the maximum number of edges in a statement with a message
size of 1024 bytes, the following calculation can be performed:

32

Table 6.4: Maximum size of a statement that we could send to the hologram cloud

Statement data Bytes Quantity Size (Bytes)

Transaction counter 4 1 4

Signing node 143 1 143

Edge 96 5 490

Hash of the Creator 32 1 32

Signature length 2 1 2

Signature 64 1 64

Total plain data 735

Message (Base64-encoded) 968

JSON-encoded 23 1 23

JSON-Message to send 991

As you can see in Table 6.4 the total plain data is 735 bytes and after it is base64-
encoded 968 bytes are used. The JSON message needs 23 additional characters
which must be added in the calculation. The maximum size of a JSON message to
send is 991 bytes. If we would increment the amount of edges to 6, the JSON message
to send would be above 1024 bytes and that is why only 5 edges with a signing node
is possible to send in one execution.

6.2 Time Measurement of individual functions

First, the execution time of individual functions were measured by the program using
the Arduino time function millis.

The example code in Figure 6.1 outputs the number of milliseconds on the serial
interface that the Arduino board needs to execute the function getEd25519Keys.

uint8_t privateKey[32];
uint8_t publicKey[32];

unsigned long time1, time2;

void setup(){
 Serial.begin(9600);

 time1 = millis();

 getEd25519Keys(privateKey, publicKey);

 time2 = millis();
 Serial.println(time2-time1);
}

void loop() {

}

Figure 6.1: An example code to measure execution time of getEd25519Keys

33

After 50 measurements, the following times per function were determined (see Table
6.5):

Table 6.5: Time measurement for each function

Function Time (ms) Description

LTE Shield connecting 902 Per setup
First connection 20 seconds

getEd25519Keys 7202 Per setup

createCreatorHash 9 Per setup

signingnode2Buffer 9 Per loop

Edge2Buffer 9 Many times per loop

createHashForSignature 9 Per loop

sign_ED25519 6096 Per loop

Base64.encode statement
(1 Signing Node + 5 Edge)

2 Plain Data: 725 Byte
Base64.Encoded Data: 968 Byte

sendHologramMessage see Figure 6.2

The key generation, the signing, and the sending of the hologram message takes the
most amount of time. However, the keys only must be generated once in the setup.
The other values can be neglected. To send a statement to the hologram server as a
JSON message of 991 bytes (see Table 6.4) it takes approximately 3000ms.

To calculate how long it would take to send the maximum amount of edges in a
statement (23 edges and a signing node) we measured how long it takes to send
messages to the hologram cloud. Sending only involves the sending of data. That
means opening, connecting, and writing data to a socket. After successfully writing the
data to the socket, it must be closed. Figure 6.2 shows the sending time to send data
in 100-byte intervals. The graph below can be extrapolated to the number of bytes 23
edges and a signing node need in order to determine the time to send the maximum
amount of transactions in a statement.

Figure 6.2: Time measurement to send hologram message in 100 byte intervals

2074 2193
2345 2458 2506 2579 2685

2831 2922
3083

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

Ti
m

e
(m

s)

Bytes

Sending time

34

Since we could not send the maximum amount of bytes in one execution because of
the above explained reasons in chapter 6.1. To determine the time of the maximum
size of a statement to send to the hologram server we can use linear extrapolation.
Excel has a convenient function for this which is called TREND. This function
extrapolates any number of values in a dataset. In Figure 6.3 (see below) the statement
size of 3295 bytes is extrapolated over the 10 measured values from Figure 6.2.
Therefore, to send the maximum size of a signing node with 23 edges it would
approximately take 5457ms.

Figure 6.3: Extrapolation to send maximum size statement

3’295; 5’457

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500

Ti
m

e
(m

s)

Bytes

Extrapolation to send maximum size statement

35

6.3 Time Measurement and Energy consumption with USB-meter
UM25C

We used a function in Arduino libraries that has a millis function. This function returns
the number of milliseconds since the Arduino board started the current program. To
verify the time measurements with the millis function, a measuring system with UM25C
was set up (see Figure 4.1). With UM25C PC software V1.3 the time and the supply
current and voltage of the connected device can be measured and recorded.

6.3.1 Current and time measurement

To increase the accuracy of the average value, the generation and sending of the
statement to hologram servers was repeated 40 times and then the average value was
determined (red).

Figure 6.4: Current and time measurements 40 repetitions

These measurement values were recorded in a loop. The loop was repeating itself for
40 times. One-time execution of the loop can be summarized as follows:

• Generation of a statement with a signing node and 5 edges

• Signing the statement

0.2167

365.2

0.1191

0

0.05

0.1

0.15

0.2

0.25

0
1

0
.4

5
2

0
.9

3
1

.3
5

4
1

.8
5

2
.2

5
6

2
.7

7
3

.1
5

8
3

.6
9

4
.0

5
1

0
4

.5
1

1
4

.9
5

1
2

5
.4

1
3

5
.8

5
1

4
6

.3
1

5
6

.7
5

1
6

7
.2

1
7

7
.6

5
1

8
8

.1
1

9
8

.5
5

2
0

9
2

1
9

.4
5

2
2

9
.9

2
4

0
.3

5
2

5
0

.8
2

6
1

.2
5

2
7

1
.7

2
8

2
.1

5
2

9
2

.6
3

0
3

.0
5

3
1

3
.5

3
2

3
.9

5
3

3
4

.4
3

4
4

.8
5

3
5

5
.3

C
u

rr
en

t(
A

m
p

er
e)

Time (second)

Current and time measurements 40 repetitions

Current(A) Average(A)

36

• Base64 encoding of the statements

• Sending the JSON message to the hologram cloud

The supply voltage stays stable at 5V. In Figure 6.4 you can see the x-axis which
indicates the amount of seconds and on the y-axis the amount of current flow (in
Ampere) can be seen. The first label (0.2167) in the diagram shows the peak current
consumption in amperes to send a statement. The second label (0.1191) in the
diagram shows the average value of the current consumption in Amperes when
generating and sending 40 statements. The last label in the diagram shows the number
of seconds (365.2) to send 40 statements. According to measurements, the generation
and transmission of 40 statements takes 365.2 seconds. This means that the average
value for the generation of a statement and transmission can be calculated as 9130ms
(365200ms/40) (see Table 6.6).The calculated average power consumption is
0.5955W. One time execution of the loop takes therefore 5.437Ws.

Table 6.6: Key findings with USB-meter in loop

The maximum current consumption at 5V is: 0.2167A.

The average current consumption at 5V is: 0.1191A.

The average time is: 9130ms

The average power consumption is: 5V x 0.1191A = 0.5955W

The average energy consumption is: 0.5955W x 9.13 = 5.437Ws

6.3.2 Time Calculation and comparison with the measurement data

In Table 6.7 we compare the average time with the time determined by the millis
function. We can see the time calculation for a signing node and 5 edges. The only
thing that must be calculated is the execution time of transactions2Buffer because it is
the only variable value. The other values were adopted from the time measurement of
each function in Table 6.5. The average time for generating a statement and sending
9130ms is therefore pretty much the value determined with the millis function.

Table 6.7: Time calculation for 1 Signing Node and 5 Edges

Function Time (ms)

transactions2Buffer
für (1 Signing Node +5 Edge)

56

createHashForSignatur 9

sign_ED25519 6096

Base64.encode statement
(1 Signing Node + 5 Edge)

2

sendHologramMessage 3000

Total 9163

37

6.3.3 Current Measurement in Setup

The data in Figure 6.5 was recorded during setup. It performed the following

activities:

• Connection with the LTE Shield

• Public and private key generation

• Generating the hash of the creator

Table 6.8: Key findings with USB-meter in setup

The average current consumption at 5V is: 0.0869A

The average time is: 8250ms

The average power consumption is: 5V x 0.0869A = 0.4345W

The average energy consumption is: 0.4345W x 8.25 = 3.585Ws

Interestingly, in the setup the average current consumption was only 0.0869A. The

reason for that is because the LTE shield is in idle state and does not consume much

power. All the activities in the setup endured 8.25 seconds. The average power

consumption is 0.4345W and, therefore, the average energy consumption amounts

to 3.585Ws (see Table 6.8).

Figure 6.5: Current measurement during setup

0.0869

0.084

0.085

0.086

0.087

0.088

0.089

0.09

0 0.55 1.1 1.65 2.2 2.75 3.3 3.85 4.4 4.95 5.5 6.05 6.6 7.15 7.7 8.25

C
u

rr
en

t(
A

m
p

er
e)

Time(second)

Current measurement setup

Current(A) Average(A)

38

6.3.4 Current Measurement while Idle

In Figure 6.6 the current measurement was recorded while the system was idle. In the
idle state Arduino is only connected to the LTE shield with no tasks to be completed.
The idle state was measured to calculate the total amount of current consumption for
a battery driven Arduino mega device in a real-world system in future. The average
current consumption for the idle state is: 0.0857A

Figure 6.6: Current measurement while idle

0.0857

0.078
0.08

0.082
0.084
0.086
0.088

0.09
0.092
0.094
0.096

0

2
.7

5

5
.5

8
.2

5

1
1

1
3

.7
5

1
6

.5

1
9

.2
5

2
2

2
4

.7
5

2
7

.5

3
0

.2
5

3
3

3
5

.7
5

3
8

.5

4
1

.2
5

4
4

4
6

.7
5

4
9

.5

5
2

.2
5

5
5

5
7

.7
5

6
0

.5

6
3

.2
5

6
6

6
8

.7
5

7
1

.5

C
u

rr
en

t(
A

m
p

er
e)

Time(second)

Current measurements while idle

Current(A) Average(A)

39

7 Conclusion and Future Work

In this section we conclude our work and summarize our results. In addition, several
issues that could be explored in future work are discussed to further improve the
energy consumption.

7.1 Conclusion

In this thesis our main objective of implementing the Veritaa framework on an Arduino
device was achieved after switching the Arduino uno with the more advanced device
Arduino mega. The reason why Arduino uno was not compatible with the Veritaa
framework is because the libraries Ed25519, SHA3, Base64 and SparkFun library use
more flash memory than the Arduino uno board has, which is 32KB. Furthermore,
Arduino devices have limited resources and standard RSA as a public key signature
algorithm is not recommended to use even after improving the algorithm significantly
with various methods. The solution is to use lightweight cryptographic algorithms like
ed25519. Regarding to the Veritaa framework we discovered that we could only send
a signing node and 5 edges as a statement. The reason is because there is a limit of
1024 bytes from the hologram cloud. Furthermore, the speed for the different functions
that are needed in order to send statements to the hologram server were determined
and the energy consumption was evaluated. The average energy consumption to send
1 statement takes 5.437Ws. The average energy consumption to generate a statement
is only 3.585Ws due to the LTE shield being idle while Arduino generates a statement.

The contribution of this work has a significant importance to the IoT field. The reason
for this fact is that in future when real systems are constructed with millions of nodes
in the Veritaa network we can already make estimations about the energy consumption
of the future system. Embedded systems are compatible with the Veritaa framework
too since Arduino mega had all the necessary resources to create statements and send
them. This work is the steppingstone to much bigger projects when real systems are
going to become tested with real data.

Of course, there are also some weaknesses with the framework. By adding the hashes,
the overhead for transmitting a sensor value is increased. But with security there is
always going to be some inefficiencies and Veritaa is a very fast system overall. It is
one of the best systems to secure embedded systems that need to have authenticity
and integrity of the data that has been measured or gained from the outside world.

7.2 Future Work

We should keep in mind that Arduino boards have several sleep modes, which should
be used whenever possible. In a microchip AVR, which is an 8-bit microcontroller,
regulated network, there are many things to consider when trying to reduce the power
consumption. Sleep modes should be used as much as possible, and the sleep mode

40

should be chosen to perform as few of the functions of the system as possible. All
unwanted features should be deactivated. In a future work these sleep modes can be
used to further optimize the energy consumption [33].

A problem that occurred which could be solved if we had more time, is the limit of 1024
bytes to send to the hologram server. This problem can be further analyzed. An idea
is to split the JSON message into several pieces and then reconstruct it at the receiver.

41

8 Arduino Sketch of the Veritaa framework

#include <Ed25519.h>

#include <SHA3.h>

#include <Base64.h>

// Click here to get the library:

// http://librarymanager/All#SparkFun_LTE_Shield_Arduino_Library

#include <SparkFun_LTE_Shield_Arduino_Library.h>

const uint8_t COUNT_EDGE = 5;

const uint8_t COUNT_STATEMENT = 40;

uint32_t transactionsCounter;

// key generation with Ed25519

uint8_t privateKey[32];

uint8_t publicKey[32];

uint8_t lastObjectHash[32];

uint8_t creatorHash[32];

typedef enum : uint8_t { Ed_25519, P_521, RSA } algorithms;

typedef enum : uint8_t {

 ISSUES, VALIDATES, AUDITS, REVOKES,

 APPROVES, TRUSTS, REQ_SUBSIGNING,

 GRANT_SUBSIGNING

} edge_types;

typedef struct Payload {

 int temperature;

 uint64_t timestamp;

} payload;

// Create a SoftwareSerial object to pass to the LTE_Shield library

SoftwareSerial lteSerial(10, 9);

// Create a LTE_Shield object to use throughout the sketch

LTE_Shield lte;

// Plug in your Hologram device key here:

String HOLOGRAM_DEVICE_KEY = "SS9peQQq";

//String HOLOGRAM_DEVICE_KEY = "Mdy,L0Ju";

// These values should remain the same:

const char HOLOGRAM_URL[] = "cloudsocket.hologram.io";

const unsigned int HOLOGRAM_PORT = 9999;

// generates the object hash from a signing node

// and returns it via parameter hash

void createObjectHashSigningNode(

 uint8_t* hash,

 uint16_t nodeNameLength,

 unsigned char* nodeName,

 uint8_t type,

42

 uint8_t nodeType,

 uint8_t publicKeyLength,

 uint8_t* publicKey,

 uint16_t validationLinkLength,

 unsigned char* validationLink)

{

 SHA3_256 sha3_256;

 sha3_256.reset();

 size_t dataLength = 1 + 1 + nodeNameLength

 + publicKeyLength

 + validationLinkLength;

 uint8_t data[dataLength];

 uint8_t start = 0;

 memcpy(&data[start], &(type), 1);

 start += 1;

 memcpy(&data[start], &(nodeType), 1);

 start += 1;

 memcpy(&data[start], nodeName, nodeNameLength);

 start += nodeNameLength;

 memcpy(&data[start], publicKey, publicKeyLength);

 start += publicKeyLength;

 memcpy(&data[start], validationLink, validationLinkLength);

 start += validationLinkLength;

 sha3_256.update(data, dataLength);

 sha3_256.finalize(hash, 32);

}

// copies the signing node data to buffer

size_t signingNode2Buffer(

 unsigned char* buffer,

 size_t start,

 uint8_t* previousTransaction,

 uint64_t inceptionDate,

 uint64_t expiryDate,

 uint16_t nodeNameLength,

 unsigned char* nodeName,

 algorithms algorithm,

 uint8_t publicKeyLength,

 uint8_t* publicKey,

 uint16_t validationLinkLength,

 unsigned char* validationLink)

{

 uint16_t transactionLength = 90 - sizeof(uint16_t)

 + nodeNameLength

 + publicKeyLength

 + validationLinkLength;

 memcpy(&buffer[start], &(transactionLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], previousTransaction, 32);

 start += 32;

 memcpy(&buffer[start], &(inceptionDate), sizeof(inceptionDate));

 start += sizeof(inceptionDate);

43

 memcpy(&buffer[start], &(expiryDate), sizeof(expiryDate));

 start += sizeof(expiryDate);

 uint8_t type = 0;

 memcpy(&buffer[start], &(type), sizeof(type));

 start += sizeof(type);

 uint8_t nodeType = 0;

 memcpy(&buffer[start], &(nodeType), sizeof(nodeType));

 start += sizeof(nodeType);

 uint8_t objectHash[32];

 createObjectHashSigningNode(objectHash,

 nodeNameLength,

 nodeName,

 type,

 nodeType,

 publicKeyLength,

 publicKey,

 validationLinkLength,

 validationLink);

 // Update lastObjectHash

 memcpy(lastObjectHash, objectHash, 32);

 memcpy(&buffer[start], objectHash, sizeof(objectHash));

 start += sizeof(objectHash);

 memcpy(&buffer[start], &(nodeNameLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], nodeName, nodeNameLength);

 start += nodeNameLength;

 memcpy(&buffer[start], &(algorithm), sizeof(algorithm));

 start += sizeof(algorithm);

 memcpy(&buffer[start], &(publicKeyLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], publicKey, publicKeyLength);

 start += publicKeyLength;

 memcpy(&buffer[start], &(validationLinkLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], validationLink, validationLinkLength);

 start += validationLinkLength;

 return start;

}

// generates the object hash from a edge and

// returns it via parameter hash

void createObjectHashEdge(uint8_t* hash,

 uint16_t payloadLength,

 uint8_t* payload)

{

 SHA3_256 sha3_256;

44

 sha3_256.reset();

 sha3_256.update(payload, payloadLength);

 sha3_256.finalize(hash, 32);

}

// generates the hash from a creator name and

// returns it via parameter hash

void createCreatorHash(uint8_t* hash,

 uint16_t creatorLength,

 uint8_t* creator)

{

 SHA3_256 sha3_256;

 sha3_256.reset();

 sha3_256.update(creator, creatorLength);

 sha3_256.finalize(hash, 32);

}

// copies the signing node data to buffer

size_t edge2Buffer(

 unsigned char* buffer,

 size_t start,

 uint8_t* previousTransaction,

 uint64_t inceptionDate,

 uint64_t expiryDate,

 edge_types edgeType,

 uint16_t payloadLength,

 uint8_t* payload)

{

 uint8_t transactionLength = 86 - sizeof(uint16_t) + payloadLength;

 memcpy(&buffer[start], &(transactionLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], previousTransaction, 32);

 start += 32;

 memcpy(&buffer[start], &(inceptionDate), sizeof(inceptionDate));

 start += sizeof(inceptionDate);

 memcpy(&buffer[start], &(expiryDate), sizeof(expiryDate));

 start += sizeof(expiryDate);

 uint8_t type = 1;

 memcpy(&buffer[start], &(type), sizeof(type));

 start += sizeof(type);

 memcpy(&buffer[start], &(edgeType), sizeof(edgeType));

 start += sizeof(edgeType);

 uint8_t objectHash[32];

 createObjectHashEdge(objectHash,

 payloadLength,

 payload);

 // Update lastObjectHash

 memcpy(lastObjectHash, objectHash, 32);

 memcpy(&buffer[start], objectHash, sizeof(objectHash));

45

 start += sizeof(objectHash);

 memcpy(&buffer[start], &(payloadLength), sizeof(uint16_t));

 start += sizeof(uint16_t);

 memcpy(&buffer[start], payload, payloadLength);

 start += payloadLength;

 return start;

}

//Helper method for providing a transaction

size_t transactions2Buffer(unsigned char* buffer, size_t start) {

 payload payload = { -2, 1588180278 };

 uint8_t payloadData[sizeof(payload)];

 memcpy(payloadData, &payload, sizeof(payload));

 size_t lastPos = start;

 // Fill buffer with signing node

 lastPos = signingNode2Buffer(buffer,

 lastPos,

 lastObjectHash,

 1588180278,

 1609459200,

 5, (unsigned char*)"Node1",

 Ed_25519,

 sizeof(privateKey), privateKey,

 15, (unsigned char*)"validationlink1");

 for(size_t i = 0; i < COUNT_EDGE; i++)

 {

 // Fill buffer with edge

 lastPos = edge2Buffer(buffer,

 lastPos,

 lastObjectHash,

 1588180278,

 1609459200,

 REQ_SUBSIGNING,

 sizeof(payload),

 payloadData);

 }

 return lastPos;

}

// Just needs the addresses to generate the private

// and derive the public key.

void getEd25519Keys(uint8_t* privateKey, uint8_t* publicKey) {

 Ed25519::generatePrivateKey(privateKey);

 Ed25519::derivePublicKey(publicKey, privateKey);

}

46

// Signs the message.

void sign_ED25519(uint8_t signature[64],

 const uint8_t privateKey[32],

 const uint8_t publicKey[32],

 const void* hash, size_t len)

{

 Ed25519::sign(signature, privateKey, publicKey, hash, len);

}

// generates the hash from signature message and

// returns it via parameter hash

// signature message consists of the hash of the last object (edge)

// and the creator hash

void createHashForSignature(uint8_t* hash, uint8_t* signatureMessage)

{

 SHA3_256 sha3_256;

 sha3_256.reset();

 sha3_256.update(signatureMessage, 64);

 sha3_256.finalize(hash, 32);

}

void sendHologramMessage(String message)

{

 int socket = -1;

 String hologramMessage;

 // Construct a JSON-encoded Hologram message string:

 hologramMessage = "{\"k\":\"" + HOLOGRAM_DEVICE_KEY + "\",\"d\":\"" +

 message + "\"}";

 // Open a socket

 socket = lte.socketOpen(LTE_SHIELD_TCP);

 // On success, socketOpen will return a value between 0-5. On fail -1.

 if (socket >= 0) {

 // Use the socket to connect to the Hologram server

 //Serial.println("Connecting to socket: " + String(socket));

 if (lte.socketConnect(socket, HOLOGRAM_URL,

 HOLOGRAM_PORT) == LTE_SHIELD_SUCCESS) {

 // Send our message to the server:

 if (lte.socketWrite(socket,

 hologramMessage) == LTE_SHIELD_SUCCESS)

 {

 // On succesful write, close the socket.

 if (lte.socketClose(socket) == LTE_SHIELD_SUCCESS) {

 Serial.println("Socket " + String(socket) + " closed");

 }

 } else {

 Serial.println(F("Failed to write"));

 }

 }

 }

}

void setup()

{

47

 Serial.begin(9600);

 Serial.println(millis());

 // connection with LTE Shield

 if (lte.begin(lteSerial, 9600)) {

 Serial.println(F("LTE Shield connected!"));

 }

 // key generation with Ed25519

 getEd25519Keys(privateKey, publicKey);

 createCreatorHash(creatorHash, 8, (uint8_t*)"Creator1");

 // Initialize transaction counter

 transactionsCounter = 1;

 // Init lastObjectHash

 memset(lastObjectHash, 0, 32);

 Serial.println(millis());

}

void loop()

{

 // Measurements performed with COUNT_STATEMENT packages

 if (transactionsCounter > COUNT_STATEMENT)

 {

 Serial.println(millis());

 delay(10000);

 return;

 }

 // buffer for transactions

 unsigned char buffer[750];

 int start = 0;

 memcpy(&buffer[start], &(transactionsCounter), sizeof(uint32_t));

 start += sizeof(uint32_t);

 // generate a transaction with a signing node and several edges

 start = transactions2Buffer(buffer, start);

 memcpy(&buffer[start], creatorHash, 32);

 start += 32;

 // Signature over previous object hash (lastObjectHash)

 // and creator hash

 uint16_t signatureLength = 64;

 uint8_t signature[64];

 uint8_t signatureMessage[64];

 memcpy(signatureMessage, lastObjectHash, 32);

 memcpy(&signatureMessage[32], creatorHash, 32);

 uint8_t hash[32];

 createHashForSignature(hash, signatureMessage);

 sign_ED25519(signature, privateKey, publicKey, hash, 32);

 memcpy(&buffer[start], &(signatureLength), sizeof(uint16_t));

48

 start += sizeof(uint16_t);

 memcpy(&buffer[start], signature, signatureLength);

 start += signatureLength;

 // encode the binary data to Base64-string for sending

 int encodedLength = Base64.encodedLength(start);

 char message[encodedLength];

 Base64.encode(message, (char*)buffer, start);

 // Send the Message

 sendHologramMessage(message);

 lte.poll();

 Serial.println(start);

 Serial.println(encodedLength);

 transactionsCounter++;

}

49

Bibliography

[1] Z. Labbi, M. Senhadji, A. Maarof and M. Belkasmi, "Lightweight Cryptographic for
Securing," International Journal of Innovative Technology and Exploring
Engineering (IJITEE), pp. 181-188, 4 February 2020.

[2] M. Xu, J. M. David and S. H. Kim, "The Fourth Industrial Revolution: Opportunities and
Challenges," International Journal of Financial Research, pp. 90-95, 8 March
2018.

[3] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008. [Online].
Available: https://bitcoin.org/bitcoin.pdf.

[4] J. Schaerer, S. Zumbrunn and T. Braun, "Veritaa - The Graph of Trust".

[5] M. Shirer, "International Data Corporation," 18 June 2019. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerId=prUS45213219.

[6] "Mordor Intelligence," [Online]. Available:
https://www.mordorintelligence.com/industry-reports/iot-sensor-market.

[7] S. Popov, "The Tangle," 30 April 2018. [Online]. Available:
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637
ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf.

[8] "Digital Signature Standard (DSS)," in FEDERAL INFORMATION PROCESSING
STANDARDS, Gaithersburg, 2013.

[9] E. K. Moriarty, B. Kaliski, J. Jonsson and A. Rusch, "PKCS #1: RSA Cryptography
Specifications Version 2.2," RSA Laboratories, 2016.

[10] A. S. TANENBAUM and D. J. WETHERALL, COMPUTER NETWORKS, Amsterdam,
The Netherlands; Seattle, WA: Pearson Education, 2010, p. 795.

[11] R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems," in Massachusetts Institute of Technology, Cambridge,
1979.

[12] A. Menezes, P. v. Oorschot and S. Vanstone, "Digital Signatures," in Handbook of
Applied Cryptography, United States, CRC Press, 1996, pp. 425-481.

[13] C.-H. Wu, J.-H. Hong and C.-W. Wu, "RSA Cryptosystem Design Based on the
Chinese Remainder Theorem," in Asia and South Pacific Design Automation
Conference, Asia, 2001.

[14] L. C. K. Hui and K. -.. Lam, "Fast square-and-multiply exponentiation for RSA,"
Electronics Letters, 1994.

[15] P. C. Paar, Implementation of Cryptographic Schemes 1, Ruhr University Bochum:
Chair for Embedded Security, 2015.

[16] A. Fiat, "Batch RSA," in Journal of Cryptology, Israel, 1996.

[17] M. J. Hinek, "On the security of multi-prime RSA," in Journal of Mathematical
Cryptography, Canada, 2008.

[18] T. Takagi, "Fast RSA-type cryptosystem modulo," in Annual International Cryptology
Conference, Japan, 1998.

[19] Alshamma, S. A. Nagar and Saad, "High Speed Implementation of RSA Algorithm with
Modified Keys Exchange," in 6th International Conference on Sciences of
Electronics, Sudan, 2012.

50

[20] S. Sepahvandi, M. Hosseinzadeh and K. N. a. A.jalali, "An Improved Exponentiation
Algorithm for RSA Cryptosystem," in International Conference on Research
Challenges in Computer Science, 2009.

[21] S. Nakov, "Practical Cryptography for Developers," 2018. [Online]. Available:
https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519.

[22] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, "High-speed high-
security signatures," Journal of Cryptographic Engineering, p. 77–89, 2012.

[23] S. Josefsson and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA),"
January 2017. [Online]. Available: https://tools.ietf.org/html/rfc8032#page-13.

[24] A. Dorri, S. S. Kanhere and R. Jurdak, "Towards an Optimized BlockChain for IoT," in
IEEE/ACM Second International Conference on Internet-of-Things Design and
Implementation (IoTDI), Pittsburgh, 2017.

[25] B. Liu, X. L. Yu, S. Chen, X. Xu and L. Zhu, "Blockchain based Data Integrity Service
Framework for IoT data," in IEEE International Conference on Web Services
(ICWS), Honolulu, 2017.

[26] D.-P. Le, H. Meng, L. Su, S. L. Yeo and V. Thing, "BIFF: A Blockchain-based IoT
Forensics Framework with Identity Privacy," in IEEE Region 10 Conference, Korea
(South), 2018.

[27] A. Tekeoglu and N. Ahmed, "TangoChain: A Lightweight Distributed Ledger for
Internet of Things Devices in Smart Cities," in IEEE International Smart Cities
Conference (ISC2), Morocco, 2019.

[28] L. Xu, L. Chen, Z. Gao, X. Fan, T. Suh and W. Shi, "DIoTA: Decentralized-Ledger-
Based Framework for Data Authenticity Protection in IoT Systems," IEEE Network,
pp. 38-46, January/February 2020.

[29] A. Tesei, L. D. Mauro, M. Falcitelli, S. Noto and P. Pagano, "IOTA-VPKI: A DLT-Based
and Resource Efficient Vehicular Public Key Infrastructure," in IEEE 88th Vehicular
Technology Conference (VTC-Fall), Chicago, 2018 .

[30] M. Bhandary, M. Parmar and D. Ambawade, "A Blockchain Solution based on Directed
Acyclic Graph for IoT Data Security using IoTA Tangle," in 5th International
Conference on Communication and Electronics Systems (ICCES), India, 2020.

[31] C. Qu, M. Tao and R. Yuan, "A Hypergraph-Based Blockchain Model and Application
in Internet of Things-Enabled Smart Homes," Sensors, 24 August 2018.

[32] "Hologram," [Online]. Available: https://support.hologram.io/hc/en-
us/articles/360035212594-Updating-the-Cat-M1-R410-Nova-s-Firmware.
[Accessed 15 August 2020].

[33] "Datasheet Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V," 2014, pp. 50-54.

