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Abstract 

The Internet of Things (IoT) is among the largest sources of data today and in the near 
future. Millions of sensors calculate and provide different services with all sorts of 
physical parameters. Securing data in a fast and secure way becomes increasingly 
more important due to the sheer amount of sensitive data that must be secured. Today 
data is mostly secured centrally and in a tedious and slow fashion. The discovery of 
Veritaa, a Distributed Ledger Technology (DLT) with an integrated public key signature 
store, is counteracting against this fact. The main objective of this work is to discover 
the compatibility between the Veritaa framework and the Arduino device.. Veritaa 
consists of a blockchain and the Graph of Trust (GoT). The GoT certifies the 
authenticity of the smart device, and the blockchain guarantees that the measurement 
values are immutable. The relations in the GoT are created with transactions, which 
can be a signing node or an edge. Subsequent to this, it is worth knowing the speed 
and energy consumption while creating and sending statements to other nodes in the 
network. In this work we discovered that an Arduino uno device does not have the 
needed flash memory for all the necessary libraries and global variables. With the 
slightly advanced version, the Arduino mega, the framework has been implemented 
successfully.  It is possible to generate 23 edges and a signing node in a statement 
without a memory overflow. However, the maximum bytes to send to the hologram 
server without splitting the statement is 1024KB. That is why it is possible to only send 
a signing node and 5 edges which are 991 bytes as a JSON message. Sending and 
generating this JSON message to the hologram cloud is 9130ms and the sending alone 
takes approximately 3000ms. These values are justified with a simple time calculation. 
Furthermore, the average current consumption was 0.1191A at 5V which was 
determined with an USB meter. 
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1 Introduction 

Securing data with strong Lightweight Cryptographic (LWC) algorithms on resource 
constrained devices on the Internet of Things (IoT) is a long outstanding research topic. 
According to a study conducted in 2020 many kinds of research continue moving 
forward to find a suitable algorithm that meet the specific demands of the IoT 
application. The paper [1] provides an overview of the Lightweight Cryptographic 
(LWC) primitives for IoT environments and presents various LWC algorithms based on 
their key dimension, block size, structures, and number of rounds. With the upcoming 
of what is normally known as the “Fourth industrial Revolution” [2], the gathering of 
data has significantly changed. A huge number of sensors will measure all sort of 
physical parameters and provide them to different applications and services. These 
sensor readings are usually centrally controlled and collected.  

With the discovery of Distributed Ledger Technology (DLT) data collection is being 
decentralized. The term DLT describes a technique used to document certain 
transactions. In contrast to the classic approach, in which a general ledger is usually 
managed by only one instance, any number of copies of the ledger, which are in 
principle equal, are maintained decentrally by different nodes. Appropriate measures 
are taken to ensure that new transactions to be added are adopted in all copies of the 
ledger and that an agreement (consensus) is reached on the current status of the 
ledger.  

The term blockchain is closely coupled to the term DLT. The term blockchain is also 
used when an accounting system is managed decentrally and the correct status must 
be documented because many participants are involved in the accounting process. 
The procedure of cryptographic chaining in a decentrally managed accounting system 
is the technical basis for crypto currencies but can also contribute to improving or 
simplifying transaction security in distributed systems compared to central systems.  
One of the first applications of Blockchain is the crypto currency Bitcoin [3]. 

Veritaa is based on a high performance and scalable DLT a Distributed Public Key 
Infrastructure and Signature Store (DPKISS). DPKISS integrates an immutable 
database to immutably store declarations that have been signed by key pairs managed 
by Veritaa. The major invention of Veritaa is the Graph of Trust (GoT), a directed graph 
that uses relations between identity claims to certify the identities and store signed 
relations to digital document identifiers [4]. Veritaa provides a framework for signing 
measured physical parameters. These measured values are signed by a sensor node 
and the signature is immutably stored on a blockchain. That way, the integrity of data 
can be guaranteed, and sensor nodes can be authenticated.  

At present most of the packets are moved unsecured or exported manually by people. 
The integrity of these measurement values and the authenticity of their source cannot 
be validated. But in many healthcare, governmental or industrial applications the 
validity of the source of data and the integrity of the data itself is extremely important. 
To enable these features, it is required that measurement values cannot be changed 
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after they have been measured and that the authenticity of their source can be 
validated. 

International Data Corporation (IDC) made an estimate that there will be 41.6 billion 
IoT devices connected, which will be generating 79.4 zettabytes (ZB) of data in 2025 
[5]. One of the most relevant components of IoT are sensors that can measure 
sensitive and critical data like temperature values or personal data of a patient. 
Therefore, it is essential to secure the sensitive measurement values with efficient 
algorithms.  While the security aspect is of tremendous importance, efficiency cannot 
be neglected because of the sheer amount of data that has to be secured. The market 
for sensors is there. The IoT sensor market was valued at USD 11.91 billion in 2019 
and is expected to reach USD 42.67 billion by 2025. A Compound Annual Growth Rate 
(CAGR) of 24.05% during the forecast period of 2020-2025 is registered. There is a 
significant increase in the trend of automation. As sensors play the most critical role in 
every aspect of automation, IoT sensor market is expected to grow significantly in the 
near future [6].  There is evidence that IoT is further expanding even if the security is 
not ready yet. The baseline security must be robust, and the security architecture must 
be designed for long life cycles in the system, which is a huge challenge. Therefore, it 
is worth researching in this area. 

Implementing the standard cryptographic algorithms is very difficult for resource-limited 
devices due to the size of implementation, the speed or performance, and energy 
consumption. Lightweight cryptography can use less memory and less computation. 
The main challenge of securing measurement values with cryptographic functions is 
that these microcontroller units (MCUs) have limited processing capabilities. It is 
extremely challenging to implement security when there are limited battery capacities, 
limited flash memory, and limited Random-Access Memory (RAM).  

In this work we investigate Arduino development boards' hashing and signing 
capabilities and their compatibility with the Veritaa framework. Therefore, we want the 
Arduino sensor to be operated in a delegate mode closely coupled with a Veritaa node. 
For that we use the Hologram Cloud, which provides an API and a Dashboard interface 
to send TCP or UDP messages to any port on a device like Arduino. The sensor node 
creates statements that are collected and posted by a Veritaa node in a block to the 
blockchain. Since each sensor node creates its own chain of hashed transactions, 
even if this closely coupled mode does not write directly to the blockchain, the sensor 
readings are secured and cannot be deleted or changed because of the consensus 
among the nodes. The Graph of Trust is to certify the authenticity and the blockchain 
ensures the immutability of the measured values. 

 

The main contributions of this thesis are summarized as follows: 

• Implementing the Veritaa framework and creating Transactions/Statements to 
find out the compatibility of the Arduino boards with the Veritaa framework 

• Connecting the Arduino sensor with the hologram cloud 

• Examining the speed and energy consumption of generating and sending them 
to the Veritaa node 
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• Finding out the maximum amount of transactions the Arduino board can 
generate and send  
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2 Theoretical Background and Related Work 

To implement the Veritaa framework we need a signature algorithm to sign a statement 
for data integrity and authentication. In this chapter, we will give the theoretical 
background information about the Veritaa framework and the signature algorithms. 
Since an objective of this thesis is to efficiently protect measurement values, the 
efficiency of these algorithms is at the forefront of the focus. Finally, the most relevant 
and well-established research on related works is being summarized and evaluated. 
In addition, the related work is being compared to Veritaa in terms of speed and energy 
consumption. 

 

2.1 Veirtaa – The Graph of Trust and the ABCG 

Veritaa [4] uses the Graph of Trust (GoT) and an Acyclic Block Confirmation Graph 
(ABCG) to enable authenticity of the entity and integrity of data. The GoT is used to 
represent real world relations between entities and digital documents. In the ABCG 
each block does not confirm a single, but multiple blocks like it was proposed in IOTA 
[7].  

The GoT is a method in Veritaa to determine authenticity of an identity claim. A public 
key associated with the name of an entity to which it belongs is called an identity claim. 
Each identity claim may announce its relationship to other identity claims created by 
other entities. Together with the relations, the identity claims form the GoT and this 
GoT can be used to derive an identity claim 's authenticity. The relations are formed at 
the beginning with an identity claim and are ending with either an identity claim or a 
document identifier. A document identifier is a node consisting of an identifier that 
uniquely identifies a digital document and asserts its integrity. Each relationship has a 
type that indicates the relationship type between the identity claims and or the 
document identifier. In the next chapter, the exact relationships that are possible are 
described (see section 3.3). The type of relations that can be formed between two 
identity claims are trusts audits and validates. Issues, approves and signs are relations 
that can be formed between an identity claim and a document identifier. 

The reason why there are these types of relations is because actions that are 
performed on the document do not change the document and the actions performed 
between identity claims are transparent and traceable for all the members in the 
Veritaa network. Actions are relations between the nodes of the GoT. The actions are 
non-repudiable and immutable. This is done with the ABCG. The ABCG ensures the 
integrity of the GoT. To store the GoT in a peer-to-peer network, Veritaa uses the 
ABCG as a DLT. The ABCG is a particular DLT program optimized to store the GoT. 
The benefit of ABCG over a single blockchain is that new blocks do not always have 
to be posted at the end of the ABCG, so new blocks can always be committed by the 
nodes. If the honest nodes agree to only validate three blocks with the least validation 
locally, all blocks can be validated over time. 
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A validation is done by inserting the hash of the confirmed block in the verifying block 
header. As the hashes of the verified blocks are stored in the hash of the block, it is 
assured that it is not possible to modify the previous blocks. If a block in the ABCG 
changes, the hash will also change, and the successive blocks will then point to a non-
existing block. A hash tree is used in the blocks to ensure the immutability of the 
transactions. Each transaction includes a hash of the previous transaction. The hash 
of the last transaction is stored in the hash of the block and, thus, if a single transaction 
were modified, the hash of the block would change. This hash tree makes it difficult to 
alter transactions.  
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2.2 Digital Signature Algorithms 

A digital signature is an asymmetric cryptosystem in which a sender uses a secret 
signature key (the private key) to calculate a value for a digital message. This value 
enables anyone to use the public verification key to verify the undeniable authenticity 
and integrity of the message. To be able to assign a signature created with a signature 
key to a signatory, the corresponding verification key must be assigned to the verifier. 

The data to be signed and the private key are calculating the signature by a unique 
calculation rule. Different data must almost certainly lead to a different signature, and 
the signature must produce a different value for each key. In deterministic digital 
signature procedures, the digital signature is uniquely defined by the message and the 
key. In probabilistic digital signature procedures, random values are included in the 
signature calculation, so that the digital signature for a message and a key can have 
many different values. 

 

Figure 2.1: Digital Signature Process [8] 

 

A digital signature algorithm involves a process for producing signatures, and a 
process for verifying signatures. A signatory uses the generation process to generate 
a digital signature on the data. A verifier uses the verification process to verify the 
signature 's authenticity. A signatory has a private and public key and owns the key 
pair. As shown in Figure 2.1 the private key is used in the method of producing 
signatures. The only person allowed to use the private key to produce digital signatures 
is the key pair owner. 
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In a digital signature, the private key is not usually applied directly to the message, but 
to its hash value, which is calculated from the message using a hash function (such as 
SHA-3). To prevent attacks, this hash function must be collision-resistant, that is, it 
must be practically impossible to find two different messages with identical hash 
values. 

If the public key has been assigned to a person by means of a digital certificate, the 
identity of the signature creator can be determined or verified via the public directory 
of the certification service provider, due to the fact that there is only one private key 
corresponding to the public key. The entirety of the technical infrastructure with which 
the certificates and information about their validity are generated and made publicly 
available is called PKI (Public Key Infrastructure). 

A widespread misunderstanding is that signing is an encryption with the private key of 
an asymmetric encryption method. This assumption results from the fact that this is 
indeed the case with a naive and insecure variant of RSA, namely "Textbook RSA". 
However, this is never the case with secure variants of RSA (e.g. RSA-Full-Domain-
Hash (FDH), RSA-Probabilistic-Signature-Scheme (PSS), RSA-Optimal-Asymmetric-
Encryption-Padding (OAEP), for more details  see [9]), despite certain similarities in 
details. With other encryption and signature procedures, there are usually only very 
superficial similarities at most [8]. There is no semantic security for Textbook RSA, so 
it is not secure against selected plaintext attacks or ciphertext attacks. This is because 
it is deterministic (the encryption of the same message creates the same ciphertext 
twice) and multiplicatively homomorphic (the encryption of encrypted values can be 
changed multiplicatively) which is not the case with the secure variants of RSA. 

 

2.2.1 RSA 

A group at M.I.T. discovered a good public key algorithm. It is known by the initials of 

the three discoverers (Rivest, Shamir and Adleman): RSA. For more than 30 years it 

has survived all attempts to break it and is considered very strong. A lot of protection 

today is based on it. For this reason, the 2002 ACM Turing Award was awarded to 

Rivest, Shamir, and Adleman. Its major disadvantage is that for good security it 

requires keys of at least 1024 bits, which makes it quite slow. The RSA method is 

based on certain Number Theory principles [10].  
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Algorithm 1: RSA Key Generation  

1 : Choose two distinct prime numbers p and q. 

2 : Compute 𝑛 =  𝑝 ∗ 𝑞. 

3 : Compute λ(n), where λ is Carmichael's totient function. Since 𝑛 =  𝑝 ∗ 𝑞, 𝜆(𝑛)  =

 𝑙𝑐𝑚(𝜆(𝑝), 𝜆(𝑞)), and since p and q are prime, 𝜆(𝑝)  =  𝜑(𝑝)  =  𝑝 −  1 and likewise 

𝜆(𝑞)  =  𝑞 −  1. Hence λ(n) = least common multiple of (p − 1, q − 1). 

4 : Choose an integer e such that 1 < e < λ(n) and 𝑔𝑐𝑑(𝑒, 𝜆(𝑛))  =  1; that is, e and λ(n) 

are coprime. 

5 : Determine d as 𝑑 ≡  𝑒 − 1 (𝑚𝑜𝑑 𝜆(𝑛)); that is, d is the modular multiplicative inverse 

of e modulo λ(n). 

 

The public key is the modulus n and the exponent e. The private key consists of the 
private exponent d, which must be kept secret. P, q, and λ(n) also need to be kept 
secret as they can be used to calculate d. They can all be discarded after d is calculated 
[11].  

The integers p and q should be selected at random for security purposes and should 
be comparable but differ in length by a few digits to make factoring more difficult. Prime 
integers can be found efficiently using a primality test.  

For public and private keys, n is used as a modulus. The key length is its length, 
generally expressed in bits. N is released in the public key. The least common multiple 

(lcm) can be calculated with the Euclidean algorithm because 𝑙𝑐𝑚(𝑎, 𝑏) =
|𝑎𝑏|

𝑔𝑐𝑑(𝑎,𝑏)
. 

 

Algorithm 2: RSA Signature Generation [12] 

Input : Message to be signed (msg) 

Output : Signature (s) 

1 : Compute the message hash: ℎ =  ℎ𝑎𝑠ℎ(𝑚𝑠𝑔) 

2 : Compute h with the private exponent d to calculate the signature: 𝑠 =  ℎ𝑑 (𝑚𝑜𝑑 𝑛) 

 

The hash h should be in the range [0...n). The obtained signature s is an integer in the 
range [0...n).  Security relies on the fact that there are no efficient algorithms to 
decompose the prime numbers p and q. 
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Algorithm 3: RSA Signature Verification [12] 

Input : Signature (s) 

Output : True or false 

1  Calculate the message hash: h = hash(msg) 

2 : Obtain A’s authentic public key (n, e). 

3 : Compute h’ with the public exponent e: h’ =  𝑠𝑒 (𝑚𝑜𝑑 𝑛) 

4 : Compare the resulting hash value h’ with the message's actual hash value h 

 

Signed messages guarantee data integrity and authenticity, provided the private key 
has really been kept secret. Due to the homomorphic nature of RSA, only one message 
can be signed with this method. If there are two signatures msg1 and msg2, an attacker 
can multiply them to calculate the message signature msg1*msg2. This problem can 
be circumvented by not signing the message itself. Instead, a collision resistant hash 
function h specified in addition to the signature procedure is used to calculate the hash 
value h(msg) of the message msg. This is signed with the private key to get the actual 
signature. The recipient can verify the signature thus obtained with the public key and 
receives a value h'. He compares this value with the hash value h(msg) of the message 
he received. If both values ℎ(𝑚𝑠𝑔)  =  ℎ′ match, it can be assumed with high probability 
that the message was transmitted without errors and is not fake. However, even this 
modification does not meet modern security requirements, so procedures such as 
RSA-Probabilistic-Signature-Scheme (PSS) are used to sign with RSA [8]. 
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2.2.2 Efficient RSA Signature algorithm 

In practice the parameters used in the RSA public-key scheme tend to be very long 
(1024-4096 bit). A major undesirable consequence of this is that typically, RSA 
computations are slow unless special measures are taken. 

There are several ways to improve the efficiency of RSA: 

1. Chinese Remainder Theorem (CRT) [13] 
2. Square and multiply method [14] 
3. Short exponents [15] 
4. Batch RSA [16] 
5. Multi-Prime RSA [17] 
6. Multi-Power RSA [18] 
7. Offline RSA-Key Generation [19] 

The CRT is a method that accelerates RSA decryption/RSA signature generation by a 
factor of 4 [13]. Using the CRT, messages can be decrypted or signed more efficiently. 
Because the modulus N is very large, the bit representations of numbers used in the 
computer are also very long. The Chinese remainder theorem allows you to perform 
calculations in the two smaller groups of size p and q instead of in a group of size N, 
and to reassemble the result afterwards. Since the numbers here are much smaller, 
this calculation is faster overall.  

Further improvement can be achieved with the square and multiply method. Since the 
main operation of the signature algorithm is modular exponentiation, it is worth making 

it more efficient. For the simple and slow exponentiation of 𝑥𝑘, (k-1) multiplications are 
needed. For the square and multiply method, the loop is only run through log2 𝑘 times. 
In each loop, there is a squaring (the first squaring can be neglected) and possibly a 
multiplication. Asymptotically become 𝑂(𝑙𝑜𝑔(𝑘)) operations are required, whereas 
𝑂(𝑘) operations are required for simple exponentiation. 𝑂 denotes an asymptotic upper 
bound for the runtime behavior of the algorithm. As it can easily be seen, binary 
exponentiation is much more efficient than the simple procedure. This reduced 
demand on computing power is enormous for large bases and exponents [14]. The 
next evolution of the square and multiply method is an improved exponentiation 
algorithm for RSA [20]. In that paper a new exponentiation algorithm is presented that 
works in parallel, requires fewer multiplications and therefore has less delay. This 
technique is, therefore, more useful for larger key computations. 

Furthermore, there is a method that includes the public key e to accelerate the RSA 
verification algorithm by making e small. It turns out, that you can choose the public 
key e to be a very small value. The three values 𝑒 =  3, 𝑒 =  17 and 𝑒 =  216  +  1 =
 65’537 are the most common keys selected today. RSA is still secure with such short 
public exponents. In general the private exponent d still has the full bit length l. 
Otherwise it would be easy to brute-force the private key, i.e. reveal d by exhaustive 
searching [15]. 

The principle of batching is performing multiple simultaneous encryption or signature 
operation. In practice, the new variant performs several modular exponentiations 
effectively, at the cost of a single modular exponentiation. It leads to a very fast RSA-
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like scheme if RSA is to be performed at any central location or when pure-RSA 
encryption is to be performed [16]. 

Some other technique is the so called Multi-Prime RSA. Multi-Prime RSA is an RSA 
variant, where the modulus is the product of more than two distinct primes. The 
standard PKCS#1 is supported by having more than two prime factors. This is called 
the key to "multi-prime." On the plus side this could offer some improvement in 
performance. On the negative side the modulus may be weakened by using too small 
factors. The bottom line is that three or four primes will be tolerable for normal sizes 
and give a nice boost in efficiency, but it is not recommended to go beyond that. Public-
key activities are not in any way affected by it [17]. 

Multi-Power RSA is a variation of Multi-Prime RSA. In Multi-Prime RSA, the N module 

consists of different primes, while in Multi-Power RSA, the 𝑁 =  𝑝𝑘 ∗ 𝑞. This 
standardized modulus provides a more efficient decryption than Multi-Prime RSA. 
Takagi first defined Multi-Power RSA in 1998 [18]. 

Another speedup technique of RSA is the offline RSA-key generation. Since the RSA 
key generation takes a substantial amount of computations of the overall RSA 
algorithm, the keys could be generated offline and later when the RSA is used carried 
out to a database. One such example is from 2012 from Sami A. Nagar and Saad 
Alshamma where they aim to speed up the implementation of the RSA algorithm during 
data transmission between various communication networks and the Internet, which is 
determined to produce the keys by a program prepared in a C# language and then 
save those key values in the databases generated by SQL Server [19]. 

 

2.2.3 Ed25519 

Edwards-curve Digital Signature Algorithm (EdDSA) is a modern and stable digital 
signature algorithm based on performance-optimized elliptic curves, such as the 255-
bit Curve25519 curve. EdDSA signatures use the elliptic curves from Edwards (for 
performance reasons) edwards25519. The EdDSA algorithm is based on the algorithm 
for the Schnorr signature and relies on the problem of the elliptic curve discrete 
logarithm problem (ECDLP). The RFC 8032 theoretically defines the EdDSA signature 
algorithm and its variants. A 256-bit ECDSA signature has the same protection power 
as the RSA signature of 3072-bit [21]. 

Some RSA-type systems provide faster verification. But this advantage decreases as 
the level of security increases, and much slower signatures and much bigger keys 
outweigh the advantage for many applications. For low cycle functions higher 
performance is achieved. For example, rwb0fuz1024 (1024-bit Rabin – Williams) uses 
12304 cycles to sign but 1751284 cycles and 128 bytes for a public key; ronald1024 
(1024-bit RSA) uses 60300 cycles to sign but 2171124 cycles and 128 bytes for a 
public key; ronald3072 (3072-bit RSA) uses 231536 cycles to verify but an astounding 
31456912 cycles to sign and 384 bytes for a public key. In the original paper that 
introduced Ed25519 they used 134000 cycles for verification, 87548 cycles for signing, 
and 32 bytes for a public key [22]. 
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2.2.3.1 Ed25519 Key Generation 

The private key is generated from a random integer, known as the seed, which like the 
curve order, should have similar bit length. The seed is hashed first, then the last few 
bits are removed, corresponding to the curve cofactor (8 for Ed25519), then the highest 
bit is removed, and the second highest bit is set. These transformations ensure that 
the private key will always belong to the same elliptic curve (EC) points subgroup on 
the curve, and that the private keys will always have the same bit length. 

We assume the elliptic curve for the EdDSA algorithm comes with a generator point G 
and a subgroup order q for the EC points, generated from G. 

The Public key pubKey is a point on the elliptic curve, determined by multiplication of 
EC points: pubKey = privKey * G (private key, multiplied for curve by generator point 
G). The public key is encoded as a compressed EC point: the y-coordinate, together 
with the x-coordinate 's lowest bit (the parity). The public key for Ed25519 is 32 Bytes. 

 

2.2.3.2 EdDSA Sign 

The EdDSA signing algorithm (RFC 8032) takes as its input a text message msg + 
private key privKey from the signer EdDSA and generates a pair of integers {R, s} as 
the output. Signing the EdDSA works as follows (with slight simplifications): 

 

Algorithm 4: EdDSA Sign [21] 

1 : Calculate pubKey = privKey * G 

2 : Deterministically generate a secret integer  

r = hash (hash(privKey) + msg) mod q (this is a bit simplified) 

3 : Calculate the public key point behind r by multiplying it by the curve generator: R 

= r * G 

4 : Calculate h = hash (R + pubKey + msg) mod q 

5 : Calculate s = (r + h * privKey) mod q 

6 : Return the signature {R, s} 

 

The digital signature created for Ed25519 is 64 bytes (32 + 32 bytes). It contains a 
compact point R and an integer s.  

 

2.2.3.3 EdDSA Verify Signature 

The EdDSA signature verification algorithm [23] takes a text message msg, the EdDSA 
public key pubKey, the EdDSA signature {R, s} as an input and generates a Boolean 
value (valid or false signature) as an output. The EdDSA verification algorithm (with 
slight simplifications) works as follows: 
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Algorithm 5: EdDSA Verify Signature [21] 

1 : Calculate h = hash (R + pubKey + msg) mod q 

2 : Calculate P1 = s * G 

3 : Calculate P2 = R + h * pubKey 

4 : Return P1 == P2 
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2.3 Related Work 

In this section, we are going to compare and explain several existing solutions on 
security and privacy in IoT devices. The solutions are either block-based, which have 
their origin from blockchain, or DAG-based security systems, which have their origin 
from the tangle. Our focus is on Veritaa since the framework has been implemented in 
this work on an Arduino device. Veritaa uses a DAG-based system. 

 

2.3.1 Overview of Block-based and DAG-based Security Systems 

A blockchain [3] is a centralized and tamper-resistant network which is not owned by 
anyone but can be accessed by anyone. New blocks may be attached to current blocks 
if those in the network accept the new block. Also, it is not feasible to modify or erase 
blocks once they are recorded. The blockchains were designed to operate with 
adversarial agents on an insecure network. It ensures data integrity by preventing data 
erasure or abuse by using sophisticated and compute-intensive stable hash algorithms 
to capture data modification. Such compute-intensive algorithms are part of the proof 
of work which is a consensus process by different nodes in a network. The consensus 
can agree on new data or identify a modification in the network. Through using 
cryptographic algorithms Blockchain solves the privacy problems of IoT networks. By 
using tamper-resistant ledgers, it also addresses the security problems in IoT 
networks. Figure 2.2 shows an example of a block-based security system. When we 
are talking about block-based security systems we mean that an underlying entity in 
the system can only confirm one block.  

 
 

Figure 2.2: Block-based security system 

Tangle [7] on the other hand is a newer technology introduced by crypto-currency IOTA 
for distributed ledgers. Inevitably, the tangle passes the blockchain as their next 
evolutionary step, it requires no complex, time-consuming and computer-intensive 
consensus protocol. It does not use blocks for processing transactions, either. Every 
transaction is by itself a separate block and will allow two older transactions to be 
added to the ledger. Two older transactions are accepted using proof of work. Tangle 
uses the DAG (see Figure 2.3) which connects each transaction to two older 
transactions by accepting it. When we are talking about tangle-based systems, we 
mean that an underlying entity in the system can confirm more than one block uses a 
DAG. 



 

15 
   

 
 

Figure 2.3: DAG-based security system 

 

The current study of the literature shows that these two types of DLT’s are used most 
often for resource constrained IoT networks. Table 2.1 gives an overview about the 
existing and most relevant DLT’s security and privacy solutions on IoT devices. 

  

Table 2.1: Overview of existing solutions in IoT devices 

 
Existing solutions on security and privacy in IoT devices 

B
lo

c
k
-b

a
s
e
d
 

D
A

G
-b

a
s
e

d
 

O
th

e
rs

 
Towards an Optimized BlockChain for IoT [24] X   

Blockchain based Data Integrity Service Framework for IoT data [25] X   

BIFF: A Blockchain-based IoT Forensics Framework with Identity Privacy 
[26] 

X   

TangoChain: A Lightweight Distributed Ledger for Internet of Things Devices 
in Smart Cities [27] 

 X  

DIoTA: Decentralized-Ledger-Based Framework for Data Authenticity 
Protection in IoT Systems [28] 

 X  

IOTA-VPKI: a DLT-based and Resource Efficient Vehicular Public Key 
Infrastructure [29] 

 X  

A Blockchain Solution based on Directed Acyclic Graph for IoT Data Security 
using IoTA Tangle [30] 

 X  

A Hypergraph-Based Blockchain Model and Application in Internet of 
Things-Enabled Smart Homes [31] 

X  X 

Veritaa - The Graph of Trust [4]  X  
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2.3.2 Block-based security systems 

IoT security is difficult because most devices have low resource capacities, system 
heterogeneity and lack of standardization. In addition, many of these IoT devices 
gather and exchange vast volumes of data from our personal spaces, thus opening 
questions about privacy that are important. The papers [24], [25], [26] all introduced a 
new way of BC-based security and privacy for IoT devices.  

The paper [24] proposes distributed trust to reduce the processing time for block 
validation. The authors of the paper [24] tested their approach in a smart home setting, 
but their work can also be used for broader IoT applications for providing security and 
privacy. Simulations showed that their approach substantially reduces packet and 
overhead processing time compared to the BC implementation in Bitcoin. Their focus 
was on the performance and the overhead rather than the energy consumption. 
Ultimately, their approach decreases the processing time by approximately 50%. Their 
work can be used for the mutual trust approach outlined in that paper may also be used 
in other BC-based systems if the network security allows it.  

Another example of a BC-based system is the paper [25], where they are proposing a 
data integrity service based blockchain system. In that system, a more robust 
assurance of data integrity can be given to both Data Owners and Data Users, without 
relying on any third-party auditors. However, their implementation has still low 
efficiency as they are also aware of that. They have only implemented the fundamental 
functions of their protocol and want to further improve their approach in future. 

Lastly there is BIFF a Blockchain-based IoT Forensics Framework with Identity Privacy 
which was published in 2018 [26]. In that paper, they propose a permitted IoT forensics 
system centered on blockchain to enhance the integrity, authenticity, and non-
repudiation properties of the collected proof. They formally define the system 
architecture, provide details of the framework, and propose a cryptographic-based 
approach to mitigate privacy concerns about identity. They use a different type of 
consensus protocol called Byzantine Fault Tolerance (BFT), which is typically used in 
a permissioned blockchain. The system selects one "master" from the specified entities 
for each pre-defined epoch (e.g., servers under LEA control). This leader then gathers 
the unconfirmed transactions, forms a block, and integrates his ID into the field of the 
miner ID. This specific block is then transmitted and checked by the Group to the entire 
network. If a predefined threshold is passed by the number of positive testing, this 
particular block is considered valid and written in the immutable ledger. Their 
framework is different, but their transaction format is similar to Veritaa’s. However, they 
did not test their framework yet. One potential future work that they announced is to 
integrate the system into an IoT testbed comprising a heterogeneous set of devices, 
to test the functionality of the system and to benchmark the efficiency [26]. For 
comparison, in Veritaa, consensus is achieved if only valid blocks are added to the 
ABCG. A block is considered valid if its hash tree contains only matching hashes, if it 
confirms at least three legitimate and no invalid blocks, if it is signed by an identity 
claim that occurs either in the GoT or in the same block, and if it contains a valid 
transaction list [4]. 
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2.3.3 DAG-based security systems 

The literature about Tangle-based (see section 2.3.1) security framework for IoT 
devices was a lot less common than the BC-based systems because tangle is relatively 
new. Nevertheless, the papers [28], [27], [30] all introduces a DAG-based security 
system. 

For example, there is DIoTA [28] a novel, decentralized, ledger based IoT system 
authentication platform. To enable IoT devices and data protection, DIoTA uses a two-
layer, decentralized ledger architecture along with a lightweight data authentication 
mechanism. They also evaluate DIoTA 's efficiency and protection. If we compare 
DIoTA with Veritaa, Veritaa is faster than DIoTA. It is also more secure because DIoTA 
uses global ledger nodes to monitor and track updates of each edge ledger to facilitate 
information exchange between different edge ledgers and prevent data modification. 
On the other hand, in Veritaa there are no global edges. This means that there is no 
centralized point for adversaries. 

Compared with conventional linear blockchain, TangoChain [27] is a DAG. In 
TangoChain, each DAG node contains a single transaction created by an IoT node 
that finds two additional transactions already attached to TangoChain to verify their 
validity. To publish a transaction, there is a small proof of work to prevent denial of 
service attacks. Furthermore, they plan on doing experiments with realistic use cases 
to show TangoChain 's performance on a testbed and a network setup [27]. 

Another solution, which is not for conventional IoT devices but for car to car 
communication, is IOTA-VPKI, which stands for IOTA vehicular public key 
infrastructure. The efficacy of DLT-based VPKI will be assessed in the IoT project 
sponsored by EU Horizon 2020.  

The research proposed in 2020 in paper [30] focuses on the use of IOTA Tangle's 
Masked Authenticated Messaging (MAM) function to ensure that IOT sensor data is 
transmitted and that guarantees the reliability and confidentiality of the data being 
transferred. MAM is a secure protocol to transfer and access encrypted or masked 
data, consisting of messages transmitted by zero value transactions, to the 
Tangle.  Using the MAM module, nodes or devices connected to the IOTA Tangle can 
transmit their messages to a "Channel" in a masked and authenticated form. A 
Raspberry Pi was used to send and publish messages. After the node is connected to 
the IOTA network and collects the sensor data at predefined intervals, this collected 
sensor data is then released to the IOTA Tangle using the MAM functionality. It is time-
stamped after the node collects the sensor data and then an encrypted message is 
generated. This encrypted message is being added to the Tangle. This provides 
confidentiality, integrity and authentication of the data that has been transferred. One 
weakness of this research is that they have not evaluated the performance of the 
proposed solution yet. They noted that further research work is needed in the direction 
for enhancing the transaction rate, to handle the high rate of IOT data more smoothly 
and also the development of different robust consensus mechanism is needed [30]. 

The paper [31] proposes a hypergraph-based blockchain model. This model aims to 
reduce storage consumption and solve the additional security problems. The author of 
paper [31] use the hyperedge as the storage node structure and turn the entire 
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networked data storage into a part time network storage. They discuss the model and 
security strategy design in detail, introduce some use cases in a smart home network 
and evaluate the model's storage performance through simulation, experiments, and 
network assessment. 

From the study of the literature of related works about BC- or DAG-based systems 
Veritaa is on the cutting edge in terms of speed and efficiency. All the papers show 
that they did not do a performance test yet or Veritaa is more effective. 
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3 Veritaa Framework 

The purpose of Veritaa is to verify the origin, integrity, and history of digital documents. 
The GoT represents real world relations between entities and use this information to 
certify the identities. In order to create relations and build up the GoT, Veritaa provides 
a signing node and an edge for IoT devices like Arduino. The signing node is necessary 
to initially connect to the network. Edges represent declarations and actions that have 
been performed and signed by entities. Together they form a statement. A statement 
usually consists of a signing node and several edges. Since our main goal is to find 
out if the Arduino devices are capable to be secured by the Veritaa framework, we 
must explain how the framework is built up in detail. For that reason, we are going to 
introduce the statement structure. We will provide some context information about 
Veritaa to understand about what the individual fields are about. For a more detailed 
explanation of Veritaa, the original paper [4] which proposed Veritaa can be used. 

 

3.1 Statement Structure 

A statement consists of several fields (see Table 3.1). These fields all have a specific 
size. The transaction_counter counts the number of transactions in the block for a 
Veritaa node to understand how many transactions were sent. The transaction field is 
a list of a signing node and several edges. How many transactions a statement consists 
of is up to the creator that is also the reason this field can be dynamic in length. The 
creator is a unique hash value. The signature length depends on the signature 
algorithm. We are using the most efficient solution which is Ed25519 with a signature 
length of 64 bytes. 

 

Table 3.1: Veritaa: Statement 

Field Description Size [Bytes] 

transaction_counter number of transactions in the block 4 

transactions list of the transactions dynamic 

creator hash of the entity that created the 

statement 

32 

signature_length   2 

signature 
 

signature_length 
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3.2 Transaction: Signing Node 

The Graph of Trust (GoT) is built out of transactions that contain relations between 
identity claims or an identity claim and a document identifier. The GoT provides two 
methods to prove the authenticity of identity claims. The first method is domain vetting. 
Domain vetting is the procedure on doing background checks with certain methods to 
identify its trustworthiness. Each identity claim can have a validation domain to a well-
known folder that contains a file with the public keys that are owned by the domain 
holder. This can be achieved with the last field of the signing node which is the 
validation link. The first four fields are the same in every transaction. The type field 
gives the form of a transaction which provides either domain vetting or if the GoT itself 
is being used to prove the authenticity of identity claims. For domain vetting we use 
the signing node which is identified by a 0 in the type field (see Table 3.2).  

One of the most important fields in a transaction is the previous transaction field. When 
you initially create a transaction that field is set to null. The second transaction contains 
the hash of the previous transaction and so on. This leads to the last transaction’s 
previous transaction field containing all the other hash values from the previous 
transactions. If the transaction was changed or altered in the process a different hash 
value will be calculated. That way the Veritaa nodes can validate the integrity of the 
transactions. The inception and expiry date. We use Unix timestamps. The field 
algorithm must be added to the framework, so that validating node knows which 
verification algorithm should be used. The signature algorithms that we have tested 
are P-521, Ed25519 and RSA. In our experiments Ed25519 was more convenient and 
faster than the other algorithms. 

Table 3.2: Transaction: Signing Node 

Field Description Size [Bytes] 

transaction_length length of the transaction 2 

previous_transaction hash of the previous transaction 

or null for the first 

32 

inception_date   8 

expiry_date   8 

type Signing Node = 0 or Edge = 1 1 

node_type Organization = 0 1 

object_hash hash (type + node type + name + 

public key + validation link) 

32 

name_length   2 

name name of the node name_length 

algorithm Either P-521, Ed25519 or RSA 1 

public_key_length   2 

public_key public key of the identity claim public key length 

validation_link_length   2 

validation_link validation link for vetting validation link length 
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3.3 Transaction: Edge 

The second way to establish evidence of an identity claim 's validity is through the GoT 
itself. The identity claims along with the relationships form the GoT, and this GoT is 
being used to deduce an identity claim 's validity. In order to make these relations with 
another node in the network or with a document identifier, the field edge_type is being 
introduced (see Table 3.3). There are 8 possible edge types possible. That is why one 
byte is being reserved.  

Table 3.3: Transaction: Edge 

Field Description Size [Bytes] 

transaction_length length of the transaction 2 

previous_transaction hash of the previous transaction 

or null for the first 

32 

inception_date   8 

expiry_date   8 

type Signing Node = 0 or Edge = 1 1 

edge_type 0 = ISSUES  

1 = VALIDATES  

2 = AUDITS  

3 = REVOKES  

4 = APPROVES  

5 = TRUSTS  

6 = REQ_SUBSIGNING  

7 = GRANT_SUBSIGNING 

1 

object_hash the hash of the node that is 

endorsed by this edge  

32 

payload_length   2 

payload   payload length 
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3.4 Subsigning Entity 

After the statements are generated, they are sent to a signing entity by a subsigning 
entity. The subsigning entity requests the signing and the signing entity approves it. A 
pairing is achieved when the signing entity grants the subsigning rights. When this 
paring is done, the subsigning entity can send statements to the signing entity and the 
signing entity then puts the statement in a block and commits it to the ABCG. In Figure 
3.1, A1 is the subsigning entity and A2 represents the signing entity. After A1 requests 
subsigning rights, A2 can grant it. Now A1 is able to issue data in the network. The 
sensor node was paired with the owner and therefore, all entities that trust the owner’s 
identity can also trust the values of A1. A1 is in this work our Arduino device, but it 
could be any other device that gathers some type of sensitive data and A2 is a node 
that is already trusted by the network. 

 

Figure 3.1: Subsigning Entity 
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4 System Implementation 

To send data to other nodes in the network on an Arduino device is only possible with 
a compatible shield. For that we use the SparkFun LTE CAT M1/NB-IoT shield. For 
the implementation in the next chapter we need to know how the components work 
together and how limited their resources are. In Figure 4.1 (see below) you can see 
our system architecture to send statements to a Veritaa node. This architecture is only 
built to test the speed and energy consumption to generate and send statements on 
Arduino. We are not using real measurement values, but instead we take any 
temperature value and a timestamp. Hologram is an IoT connectivity platform. They 
are partnered with all big networks in the U.S and 550 carriers worldwide and their 
global IoT SIM card provides an optimal coverage. With hologram, companies avoid 
the headache of negotiating contracts with carriers while ensuring access to every 
available cellular network and technology. We use the hologram cloud to simulate our 
tests. In this chapter we are going to specify and explain all the necessary steps and 
the system components to send data from an Arduino device to the hologram cloud 
which forwards it to the Veritaa node. 

 

 
 

Figure 4.1: Overview of the system architecture 

 

4.1 Device Connections 

An USB meter is used to measure the current flow. UM25C PC software records 
voltage and current values in a 0.55 seconds interval. The Sparkfun LTE CAT shield 
receives power from the Arduino's 5V supply pin. The data communication between 
the Arduino and the shield occurs via an AT command interface over a simple UART 
RX and TX pins. The serial switch can either be set to HARD for the pins 0/1 and SOFT 
for the pins 8/9. We use the SOFT mode. 

The Hologram Socket API provides a low-level TCP socket interface to connect with 
the Hologram Cloud to the shield.  
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4.2 Sending Statements to the Hologram Cloud 

To register to the hologram cloud, we use a hologram SIM card which must be 
activated. Afterwards we have access to the internet via hologram. Before you run the 
registration sketch for the connection with the mobile network you need to adjust the 
mobile network provider to default because it is set to an American provider. After 30 
seconds the shield finds the available mobile networks in your area and you can select 
one. After a few seconds, you should see the status on your device's Hologram 
dashboard to be activated. 

To send a hologram message a device key is necessary which you can generate on 
the hologram dashboard. The generated device key must be updated in the sending 
sketch. Furthermore, the pins must be changed to 8/9 because we use SOFT mode. 
Finally, you can send a JSON-encoded string with socketWrite. The JSON-encoded 
string includes the following fields:  

• devicekey (k) -- String. Eight-character Device Key used for authentication 

• data (d) -- String. Base64-encoded statement 

• tags (t) - String or array of strings (not used) 

 

4.3 Hardware limitations of each component 

First, we tried to implement the Veritaa framework with the Arduino uno. However, the 
Arduino uno has not enough flash memory to implement the source code and all the 
necessary libraries. Ed25519, SHA3, Base64 and SparkFun library were the 
necessary libraries. Our sketch took more than 41KB of storage space. below you can 
see the output from the Arduino IDE. 

 

Table 4.1: Output from the Arduino IDE 

Sketch uses 41312 bytes (128%) of program storage space. Maximum is 32256 bytes. 

 

The reason we tried another board was because the Arduino uno did not have enough 
flash memory for all the necessary libraries (see Table 4.1). We chose a board with 
more flash memory which is the Arduino mega. To compare the used Arduino boards, 
we give an overview about the most important hardware components. It is also 
necessary to know some hardware restrictions for the implementation. 

4.3.1 Arduino uno rev3 

First, there is the flash memory of 32KB, which saves the program that is loaded from 
the Arduino IDE. There is also a library called progmem. With that library you can store 
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constant data on the flash to not waste any other memory (like the valuable SRAM). 
The SRAM has 2KB. Then there is a CPU which controls everything that goes on within 
the device. Finally, there is the Electrically Erasable Programmable Read Only Memory 
(EEPROM) of only 1KB (see Table 4.2). 

Table 4.2: Arduino UNO ATmega328P hardware specification 

Microcontroller ATmega328P 

Operating 
Voltage 

5V 

Flash Memory 32 KB of which 0.5 KB used by 
bootloader 

SRAM 2 KB 

EEPROM 1 KB 

Clock Speed 16 MHz 

 

4.3.2 Arduino mega 2560 

In Table 4.3 you can see the Arduino mega’s 2560 hardware specification. Arduino 
mega is an upgrade in terms of memory space. The Operating Voltage and Clock 
speed is the same as in Arduino uno. 

Table 4.3: Arduino MEGA 2560 hardware specification 

Microcontroller ATmega2560 

Operating 
Voltage 

5V 

Flash Memory 256 KB of which 8 KB used 
by bootloader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 
 

 

4.4 Interrupt problem with Serial Pin 8 on Arduino Mega and the solution 

Standard bootloader of the Arduino uno/mega only supports hardware serial pins 0/1 
for updating the program (Uploading Sketch). Therefore, hardware serial pins 0/1 is 
reserved for updating the program.  

Software Serial pins 8/9 works fine with Arduino uno for Rx and Tx. But not all pins of 
the Arduino mega support interrupts, so only the following pins can be used for Rx:10, 
11, 12, 13, 14, 15, 50, 51, 52, 53, A8 (62), A9 ( 63), A10 (64), A11 (65), A12 (66), A13 
(67), A14 (68), A15 (69). 

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
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We used pin 10 for Rx. That is why a small change in the wiring had to be made. On 
Arduino mega the pin 10 had to be connected to Sparkfun LTE shield’s pin 8. The Tx 
pin 9 works fine because no interrupt is necessary. Figure 4.2 (see below) shows the 
wiring that was necessary on Arduino Mega to connect with the SparkFun LTE CAT 
M1 / NB-IoT Shield. The SparkFun LTE CAT M1 / NB-IoT Shield offers connectivity to 
data networks around the globe for an Arduino or Arduino-compatible microcontroller. 
LTE stands for Long Term Evolution, which is also known as 4G, a standard for 
wireless broadband communication for mobile devices and data terminals. 

 
Figure 4.2: Wiring of SOFT serial pins Rx Tx 

 

4.5 SparkFun LTE CAT M1/NB-IoT firmware update necessary 

Cellular technologies unique to IoT are a modern and exciting branch of cellular 
technology. However, as with all emerging technologies, as the sector matures, there 
are some growing pains that must get tackled. Sending messages to the hologram 
cloud does not show up on the dashboard without a firmware update of the LTE shield. 
After the update of the Cat-M1 R410 Nova's Firmware [32], everything was working as 
expected. The installation process is only possible on a Raspberry Pi or Linux machine. 
Additionally, this firmware update will change the behavior of the blue LED on the LTE 
shield. Instead of slowly blinking while connected with the Hologram network, it will 
now stay solid.  
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5 Implementation of the Extension of the Veritaa Framework 

In this chapter the implementation of the Veritaa framework on Arduino mega is 
explained. To not waste any valuable SRAM a lot of thought was spent to make the 
code as efficient as possible. Considering the statement structure (see chapter 3) is 
relatively complex the right variables must be saved at the right place. 

 

5.1 Setup Requirements 

For serial data transmission, we must set the data baud rate of 9600 to communicate 
with the serial monitor. Once the serial monitor is open the baud rate must be changed 
to the same one as in the sketch so that the communication happens.  

After the connection with the LTE-Shield over a serial interface is established, the 
private and public key will be generated with Ed25519 and saved in global variables.  
Next, a hash of the creator with SHA3-256 will be generated and saved in a global 
variable too. Finally, transaction counter and the last hash of the object is initialized. 
All these variables are necessary for the Veritaa framework (see Figure 5.1). 

 

 
 

Figure 5.1: Steps needed in Setup to send statements 
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5.2 Flowchart Loop 

After the setup, an initial signing node is generated and saved in a statement buffer (1. 
see Figure 5.2). A hash is created from the following data and saved to a global 
variable "lastObjectHash”: 

- nodeName 

- type 

- nodeType 

- publicKey 

- validationLink 

The global variable "lastObjectHash" is used when the next transaction is generated. 

The data of the edge transaction is added to a buffer in the appropriate place (2. see 

Figure 5.2). A temperature value (integer) and a timestamp (unsigned long) are taken 

as payload. A hash is created from the payload and stored on a global variable 

(lastObjectHash). The global variable "lastObjectHash" is used when the next 

transaction is generated like in the generation of the signing node. The generation of 

edges and the saving in the buffer will be repeated COUNT_EDGE-times. 

Next, a hash of the last object hash and the hash of the creator is generated (3.) and 

signed (4.) with the private key. The signature length and this signature is added in 

the buffer in the right place. Therefore, the statement is created (5.) and lastly, we 

must encode the statement to base64 (6.) because it is one of the most common 

used encoding schemes and more efficient than hex encoded. There are some 

important plus points of hex encoding. It is easy to grasp and implement. Each byte 

is encoded as a separate character pair. To achieve a more effective encoding, 

Base64 uses a wider character set. It is not meant to be readable by humans in any 

way, but it is meant to be compatible with as many systems as possible. The 

algorithm is more complicated than hex encoding, but there is a 33% increase in the 

data size. This encoded message can now be sent as a hologram JSON message 

(7. & 8.). This loop will be repeated COUNT_STATEMENT-times (see Figure 5.2). 
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Figure 5.2: Steps needed in Loop to send statements 
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6 Experiments and Results 

In this section we are presenting our findings about the performance of the Veritaa 
framework and the energy consumption. With our first experiment we found the 
maximum amount of transactions in a statement to generate and send it to the 
hologram cloud. We determined the maximum amount by starting with an initial signing 
node and successively adding more edges to it until a SRAM overflow happened. In a 
second experiment we measured the time and energy consumption for sending 
statements for a Veritaa system coupled with an Arduino mega board. 

6.1 Determination of a Statement Size 

A statement was introduced in section 3.1. To determine the size of a transaction for 
our measurements, the following values (red) were taken for the fields with variable 
lengths. The other values for Veritaa framework are fixed. 

All the fields are fixed in size, except name, public key, and validation link for the 
signing node. For the edge only the payload field size is variable.  

 

Table 6.1: Size of Transaction: Signing Node 

Field Size [Bytes] 

transaction length 2 

previous transaction 32 

inception date 8 

expiry date 8 

type 1 

node type 1 

object hash 32 

name length 2 

name 5 

algorithm 1 

public key length 2 

public key 32 

validation link length 2 

validation link 15 

Total 143 
 

                 Table 6.2: Size of Transaction: Edge 

Field Size [Bytes] 

transaction length 2 

previous transaction 32 

inception date 8 

expiry date 8 

type 1 

edge type 1 

object hash 32 

payload length 2 

payload 10 

Total 96 
 

 

As one can see in Table 6.1 and Table 6.2 the size of a signing node is 143 bytes and 
an edge is 96 bytes in our example. 

To determine how many edges can be generated on Arduino mega in a statement, the 
number of edges was increased step by step. The tests could be performed without 
errors up to 23 edges.  Afterwards memory overflow occurred. 
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As shown in Table 6.3, the size of a statement with 23 edges and a signing node 
occupies 2453 bytes for the plain data and 3295 bytes for the JSON message in 
SRAM. 

To encode the plain data to base64 we need to keep the plain data in memory. 
Together with the encoded JSON message the SRAM occupies (2453 bytes + 3295 
bytes) 5748 bytes. The rest of the SRAM is used for the other functions and global 
variables. 

Table 6.3: Maximum size of a statement with 23 edges and a signing node 

Statement data Bytes Quantity Size (Bytes) 

Transaction counter 4 1 4 

Signing node 143 1 143 

Edge 96 23 2208 

Hash of the Creator  32 1 32 

Signature length 2 1 2 

Signature 64 1 64 

Total plain data   2453 

Message (Base64-encoded)   3272 

JSON-encoded 23 1 23 

JSON-Message to send   3295 

 

Our goal is to send the maximum amount of transaction in one execution. The first 
discovery is that the Arduino mega can generate 23 edges and a signing node in a 
statement without a memory overflow. This was found by incrementing the amount of 
edges. After further tests we discovered that more than 1024 bytes could not be sent 
to the hologram cloud. The reason why only 1024 bytes could be sent has to be further 
investigated. Our assumption is that this limitation is based on the hologram server 
JSON message limit or the maximum packet size of the narrowband-IoT shield.  

Our second discovery was that Arduino mega could maximally send 5 edges and a 
signing node in one iteration of the loop which is in the scope of 1024 bytes that could 
be sent. To determine the maximum number of edges in a statement with a message 
size of 1024 bytes, the following calculation can be performed: 
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Table 6.4: Maximum size of a statement that we could send to the hologram cloud 

Statement data Bytes Quantity Size (Bytes) 

Transaction counter 4 1 4 

Signing node 143 1 143 

Edge 96 5 490 

Hash of the Creator  32 1 32 

Signature length 2 1 2 

Signature 64 1 64 

Total plain data   735 

Message (Base64-encoded)   968 

JSON-encoded 23 1 23 

JSON-Message to send   991 

 

As you can see in Table 6.4 the total plain data is 735 bytes and after it is base64-
encoded 968 bytes are used. The JSON message needs 23 additional characters 
which must be added in the calculation. The maximum size of a JSON message to 
send is 991 bytes. If we would increment the amount of edges to 6, the JSON message 
to send would be above 1024 bytes and that is why only 5 edges with a signing node 
is possible to send in one execution. 

 

6.2 Time Measurement of individual functions 

First, the execution time of individual functions were measured by the program using 
the Arduino time function millis. 

The example code in Figure 6.1 outputs the number of milliseconds on the serial 
interface that the Arduino board needs to execute the function getEd25519Keys. 

uint8_t privateKey[32]; 
uint8_t publicKey[32]; 
 
unsigned long time1, time2; 
 
void setup(){ 
  Serial.begin(9600); 
   
  time1 = millis(); 
 
  getEd25519Keys(privateKey, publicKey); 
   
  time2 = millis(); 
  Serial.println(time2-time1); 
} 
 
void loop() { 
 
} 
 

Figure 6.1: An example code to measure execution time of getEd25519Keys 
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After 50 measurements, the following times per function were determined (see Table 
6.5): 

Table 6.5: Time measurement for each function 

Function Time (ms) Description 

LTE Shield connecting 902 Per setup 
First connection 20 seconds 

getEd25519Keys 7202 Per setup 

createCreatorHash 9 Per setup 

signingnode2Buffer 9 Per loop 

Edge2Buffer 9 Many times per loop 

createHashForSignature 9 Per loop 

sign_ED25519 6096 Per loop 

Base64.encode statement 
(1 Signing Node + 5 Edge) 

2 Plain Data: 725 Byte 
Base64.Encoded Data: 968 Byte 

sendHologramMessage see Figure 6.2 

 

The key generation, the signing, and the sending of the hologram message takes the 
most amount of time. However, the keys only must be generated once in the setup. 
The other values can be neglected. To send a statement to the hologram server as a 
JSON message of 991 bytes (see Table 6.4) it takes approximately 3000ms. 

To calculate how long it would take to send the maximum amount of edges in a 
statement (23 edges and a signing node) we measured how long it takes to send 
messages to the hologram cloud. Sending only involves the sending of data. That 
means opening, connecting, and writing data to a socket. After successfully writing the 
data to the socket, it must be closed. Figure 6.2 shows the sending time to send data 
in 100-byte intervals. The graph below can be extrapolated to the number of bytes 23 
edges and a signing node need in order to determine the time to send the maximum 
amount of transactions in a statement.  

 

 
Figure 6.2: Time measurement to send hologram message in 100 byte intervals 
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Since we could not send the maximum amount of bytes in one execution because of 
the above explained reasons in chapter 6.1. To determine the time of the maximum 
size of a statement to send to the hologram server we can use linear extrapolation. 
Excel has a convenient function for this which is called TREND. This function 
extrapolates any number of values in a dataset. In Figure 6.3 (see below) the statement 
size of 3295 bytes is extrapolated over the 10 measured values from Figure 6.2. 
Therefore, to send the maximum size of a signing node with 23 edges it would 
approximately take 5457ms.  

 

Figure 6.3: Extrapolation to send maximum size statement 
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6.3 Time Measurement and Energy consumption with USB-meter 
UM25C 

We used a function in Arduino libraries that has a millis function. This function returns 
the number of milliseconds since the Arduino board started the current program. To 
verify the time measurements with the millis function, a measuring system with UM25C 
was set up (see Figure 4.1). With UM25C PC software V1.3 the time and the supply 
current and voltage of the connected device can be measured and recorded. 

 

6.3.1 Current and time measurement 

To increase the accuracy of the average value, the generation and sending of the 
statement to hologram servers was repeated 40 times and then the average value was 
determined (red). 

 

 
Figure 6.4: Current and time measurements 40 repetitions 
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• Base64 encoding of the statements 

• Sending the JSON message to the hologram cloud 

The supply voltage stays stable at 5V. In Figure 6.4 you can see the x-axis which 
indicates the amount of seconds and on the y-axis the amount of current flow (in 
Ampere) can be seen. The first label (0.2167) in the diagram shows the peak current 
consumption in amperes to send a statement. The second label (0.1191) in the 
diagram shows the average value of the current consumption in Amperes when 
generating and sending 40 statements. The last label in the diagram shows the number 
of seconds (365.2) to send 40 statements. According to measurements, the generation 
and transmission of 40 statements takes 365.2 seconds. This means that the average 
value for the generation of a statement and transmission can be calculated as 9130ms 
(365200ms/40) (see Table 6.6).The calculated average power consumption is 
0.5955W. One time execution of the loop takes therefore 5.437Ws. 

Table 6.6: Key findings with USB-meter in loop 

The maximum current consumption at 5V is: 0.2167A. 

The average current consumption at 5V is: 0.1191A. 

The average time is: 9130ms  

The average power consumption is: 5V x 0.1191A = 0.5955W 

The average energy consumption is: 0.5955W x 9.13 = 5.437Ws 

6.3.2 Time Calculation and comparison with the measurement data 

In Table 6.7 we compare the average time with the time determined by the millis 
function. We can see the time calculation for a signing node and 5 edges. The only 
thing that must be calculated is the execution time of transactions2Buffer because it is 
the only variable value. The other values were adopted from the time measurement of 
each function in Table 6.5. The average time for generating a statement and sending 
9130ms is therefore pretty much the value determined with the millis function. 

Table 6.7: Time calculation for 1 Signing Node and 5 Edges 

Function Time (ms) 

transactions2Buffer 
für (1 Signing Node +5 Edge) 

56 

createHashForSignatur 9 

sign_ED25519 6096 

Base64.encode statement 
(1 Signing Node + 5 Edge) 

2 

sendHologramMessage 3000 

Total 9163 
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6.3.3 Current Measurement in Setup 

The data in Figure 6.5 was recorded during setup. It performed the following 

activities: 

• Connection with the LTE Shield 

• Public and private key generation  

• Generating the hash of the creator 

Table 6.8: Key findings with USB-meter in setup 

The average current consumption at 5V is: 0.0869A 

The average time is: 8250ms 

The average power consumption is: 5V x 0.0869A = 0.4345W 

The average energy consumption is: 0.4345W x 8.25 = 3.585Ws 

 

Interestingly, in the setup the average current consumption was only 0.0869A. The 

reason for that is because the LTE shield is in idle state and does not consume much 

power. All the activities in the setup endured 8.25 seconds. The average power 

consumption is 0.4345W and, therefore, the average energy consumption amounts 

to 3.585Ws (see Table 6.8). 

 

Figure 6.5: Current measurement during setup 
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6.3.4 Current Measurement while Idle 

In Figure 6.6 the current measurement was recorded while the system was idle. In the 
idle state Arduino is only connected to the LTE shield with no tasks to be completed. 
The idle state was measured to calculate the total amount of current consumption for 
a battery driven Arduino mega device in a real-world system in future. The average 
current consumption for the idle state is: 0.0857A 

 

 

Figure 6.6: Current measurement while idle 
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7 Conclusion and Future Work 

In this section we conclude our work and summarize our results. In addition, several 
issues that could be explored in future work are discussed to further improve the 
energy consumption. 

 

7.1 Conclusion 

In this thesis our main objective of implementing the Veritaa framework on an Arduino 
device was achieved after switching the Arduino uno with the more advanced device 
Arduino mega. The reason why Arduino uno was not compatible with the Veritaa 
framework is because the libraries Ed25519, SHA3, Base64 and SparkFun library use 
more flash memory than the Arduino uno board has, which is 32KB. Furthermore, 
Arduino devices have limited resources and standard RSA as a public key signature 
algorithm is not recommended to use even after improving the algorithm significantly 
with various methods. The solution is to use lightweight cryptographic algorithms like 
ed25519. Regarding to the Veritaa framework we discovered that we could only send 
a signing node and 5 edges as a statement. The reason is because there is a limit of 
1024 bytes from the hologram cloud. Furthermore, the speed for the different functions 
that are needed in order to send statements to the hologram server were determined 
and the energy consumption was evaluated. The average energy consumption to send 
1 statement takes 5.437Ws. The average energy consumption to generate a statement 
is only 3.585Ws due to the LTE shield being idle while Arduino generates a statement. 

The contribution of this work has a significant importance to the IoT field. The reason 
for this fact is that in future when real systems are constructed with millions of nodes 
in the Veritaa network we can already make estimations about the energy consumption 
of the future system. Embedded systems are compatible with the Veritaa framework 
too since Arduino mega had all the necessary resources to create statements and send 
them. This work is the steppingstone to much bigger projects when real systems are 
going to become tested with real data.  

Of course, there are also some weaknesses with the framework. By adding the hashes, 
the overhead for transmitting a sensor value is increased. But with security there is 
always going to be some inefficiencies and Veritaa is a very fast system overall. It is 
one of the best systems to secure embedded systems that need to have authenticity 
and integrity of the data that has been measured or gained from the outside world.  

 

7.2 Future Work 

We should keep in mind that Arduino boards have several sleep modes, which should 
be used whenever possible. In a microchip AVR, which is an 8-bit microcontroller, 
regulated network, there are many things to consider when trying to reduce the power 
consumption. Sleep modes should be used as much as possible, and the sleep mode 
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should be chosen to perform as few of the functions of the system as possible. All 
unwanted features should be deactivated. In a future work these sleep modes can be 
used to further optimize the energy consumption [33]. 

A problem that occurred which could be solved if we had more time, is the limit of 1024 
bytes to send to the hologram server. This problem can be further analyzed. An idea 
is to split the JSON message into several pieces and then reconstruct it at the receiver. 
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8 Arduino Sketch of the Veritaa framework 

#include <Ed25519.h> 

#include <SHA3.h> 

#include <Base64.h> 

 

// Click here to get the library:  

// http://librarymanager/All#SparkFun_LTE_Shield_Arduino_Library 

#include <SparkFun_LTE_Shield_Arduino_Library.h> 

 

const uint8_t COUNT_EDGE = 5; 

const uint8_t COUNT_STATEMENT = 40; 

 

uint32_t transactionsCounter; 

 

// key generation with Ed25519 

uint8_t privateKey[32]; 

uint8_t publicKey[32]; 

 

uint8_t lastObjectHash[32]; 

uint8_t creatorHash[32]; 

 

typedef enum : uint8_t { Ed_25519, P_521, RSA } algorithms; 

 

typedef enum : uint8_t {  

  ISSUES, VALIDATES, AUDITS, REVOKES, 

  APPROVES, TRUSTS, REQ_SUBSIGNING,  

  GRANT_SUBSIGNING  

} edge_types; 

 

typedef struct Payload { 

  int temperature; 

  uint64_t timestamp; 

} payload; 

 

// Create a SoftwareSerial object to pass to the LTE_Shield library 

SoftwareSerial lteSerial(10, 9); 

// Create a LTE_Shield object to use throughout the sketch 

LTE_Shield lte; 

 

// Plug in your Hologram device key here: 

String HOLOGRAM_DEVICE_KEY = "SS9peQQq"; 

//String HOLOGRAM_DEVICE_KEY = "Mdy,L0Ju"; 

 

// These values should remain the same: 

const char HOLOGRAM_URL[] = "cloudsocket.hologram.io"; 

const unsigned int HOLOGRAM_PORT = 9999; 

 

 

// generates the object hash from a signing node  

// and returns it via parameter hash 

void createObjectHashSigningNode( 

  uint8_t* hash, 

  uint16_t nodeNameLength, 

  unsigned char* nodeName, 

  uint8_t type, 
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  uint8_t nodeType, 

  uint8_t publicKeyLength, 

  uint8_t* publicKey, 

  uint16_t validationLinkLength, 

  unsigned char* validationLink) 

{ 

  SHA3_256 sha3_256; 

  sha3_256.reset(); 

  size_t dataLength = 1 + 1 + nodeNameLength  

                            + publicKeyLength 

                            + validationLinkLength; 

 

  uint8_t data[dataLength]; 

  uint8_t start = 0; 

 

  memcpy(&data[start], &(type), 1); 

  start += 1; 

 

  memcpy(&data[start], &(nodeType), 1); 

  start += 1; 

  memcpy(&data[start], nodeName, nodeNameLength); 

  start += nodeNameLength; 

  memcpy(&data[start], publicKey, publicKeyLength); 

  start += publicKeyLength; 

  memcpy(&data[start], validationLink, validationLinkLength); 

  start += validationLinkLength; 

  sha3_256.update(data, dataLength); 

  sha3_256.finalize(hash, 32); 

} 

 

 

// copies the signing node data to buffer 

size_t signingNode2Buffer( 

  unsigned char* buffer, 

  size_t start, 

  uint8_t* previousTransaction, 

  uint64_t inceptionDate, 

  uint64_t expiryDate, 

  uint16_t nodeNameLength, 

  unsigned char* nodeName, 

  algorithms algorithm, 

  uint8_t publicKeyLength, 

  uint8_t* publicKey, 

  uint16_t validationLinkLength, 

  unsigned char* validationLink) 

{ 

  uint16_t transactionLength = 90 - sizeof(uint16_t)  

                                  + nodeNameLength 

                                  + publicKeyLength  

                                  + validationLinkLength; 

                                                      

  memcpy(&buffer[start], &(transactionLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], previousTransaction, 32); 

  start += 32; 

 

  memcpy(&buffer[start], &(inceptionDate), sizeof(inceptionDate)); 

  start += sizeof(inceptionDate); 
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  memcpy(&buffer[start], &(expiryDate), sizeof(expiryDate)); 

  start += sizeof(expiryDate); 

 

  uint8_t type = 0; 

  memcpy(&buffer[start], &(type), sizeof(type)); 

  start += sizeof(type); 

 

  uint8_t nodeType = 0; 

  memcpy(&buffer[start], &(nodeType), sizeof(nodeType)); 

  start += sizeof(nodeType); 

 

  uint8_t objectHash[32]; 

  createObjectHashSigningNode(objectHash, 

                              nodeNameLength, 

                              nodeName, 

                              type, 

                              nodeType, 

                              publicKeyLength, 

                              publicKey, 

                              validationLinkLength, 

                              validationLink); 

   

  // Update lastObjectHash 

  memcpy(lastObjectHash, objectHash, 32); 

 

  memcpy(&buffer[start], objectHash, sizeof(objectHash)); 

  start += sizeof(objectHash); 

 

  memcpy(&buffer[start], &(nodeNameLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], nodeName, nodeNameLength); 

  start += nodeNameLength; 

 

  memcpy(&buffer[start], &(algorithm), sizeof(algorithm)); 

  start += sizeof(algorithm); 

 

  memcpy(&buffer[start], &(publicKeyLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], publicKey, publicKeyLength); 

  start += publicKeyLength; 

 

  memcpy(&buffer[start], &(validationLinkLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], validationLink, validationLinkLength); 

  start += validationLinkLength; 

  return start; 

} 

 

// generates the object hash from a edge and  

// returns it via parameter hash 

void createObjectHashEdge(uint8_t* hash, 

  uint16_t payloadLength, 

  uint8_t* payload)  

{ 

  SHA3_256 sha3_256; 
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  sha3_256.reset(); 

  sha3_256.update(payload, payloadLength); 

  sha3_256.finalize(hash, 32); 

} 

 

 

// generates the hash from a creator name and  

// returns it via parameter hash 

void createCreatorHash(uint8_t* hash, 

  uint16_t creatorLength, 

  uint8_t* creator) 

{ 

  SHA3_256 sha3_256; 

  sha3_256.reset(); 

  sha3_256.update(creator, creatorLength); 

  sha3_256.finalize(hash, 32); 

} 

 

 

// copies the signing node data to buffer 

size_t edge2Buffer( 

  unsigned char* buffer, 

  size_t start, 

  uint8_t* previousTransaction, 

  uint64_t inceptionDate, 

  uint64_t expiryDate, 

  edge_types edgeType, 

  uint16_t payloadLength, 

  uint8_t* payload) 

{ 

  uint8_t  transactionLength = 86 - sizeof(uint16_t) + payloadLength; 

 

  memcpy(&buffer[start], &(transactionLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], previousTransaction, 32); 

  start += 32; 

 

  memcpy(&buffer[start], &(inceptionDate), sizeof(inceptionDate)); 

  start += sizeof(inceptionDate); 

 

  memcpy(&buffer[start], &(expiryDate), sizeof(expiryDate)); 

  start += sizeof(expiryDate); 

  uint8_t type = 1; 

  memcpy(&buffer[start], &(type), sizeof(type)); 

  start += sizeof(type); 

 

  memcpy(&buffer[start], &(edgeType), sizeof(edgeType)); 

  start += sizeof(edgeType); 

 

  uint8_t objectHash[32]; 

 

  createObjectHashEdge(objectHash, 

                       payloadLength, 

                       payload); 

                        

  // Update lastObjectHash 

  memcpy(lastObjectHash, objectHash, 32); 

  memcpy(&buffer[start], objectHash, sizeof(objectHash)); 
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  start += sizeof(objectHash); 

 

  memcpy(&buffer[start], &(payloadLength), sizeof(uint16_t)); 

  start += sizeof(uint16_t); 

 

  memcpy(&buffer[start], payload, payloadLength); 

  start += payloadLength; 

  

  return start; 

} 

 

 

//Helper method for providing a transaction 

size_t transactions2Buffer(unsigned char* buffer, size_t start) { 

   

  payload payload = { -2, 1588180278 }; 

  uint8_t payloadData[sizeof(payload)]; 

  memcpy(payloadData, &payload, sizeof(payload)); 

 

  size_t lastPos = start; 

 

  // Fill buffer with signing node 

  lastPos = signingNode2Buffer(buffer, 

                               lastPos,  

                               lastObjectHash, 

                               1588180278, 

                               1609459200, 

                               5, (unsigned char*)"Node1", 

                               Ed_25519, 

                               sizeof(privateKey), privateKey, 

                               15, (unsigned char*)"validationlink1"); 

 

 

  for(size_t i = 0; i < COUNT_EDGE; i++)  

  { 

    // Fill buffer with edge 

    lastPos = edge2Buffer(buffer, 

                          lastPos,  

                          lastObjectHash, 

                          1588180278, 

                          1609459200, 

                          REQ_SUBSIGNING, 

                          sizeof(payload), 

                          payloadData); 

   

  } 

   

  return lastPos; 

} 

 

 

// Just needs the addresses to generate the private  

// and derive the public key. 

void getEd25519Keys(uint8_t* privateKey, uint8_t* publicKey) { 

  Ed25519::generatePrivateKey(privateKey); 

  Ed25519::derivePublicKey(publicKey, privateKey); 

} 
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// Signs the message. 

void sign_ED25519(uint8_t signature[64], 

  const uint8_t  privateKey[32], 

  const uint8_t publicKey[32], 

  const void* hash, size_t len)  

{ 

  Ed25519::sign(signature, privateKey, publicKey, hash, len); 

} 

 

 

// generates the hash from signature message and  

// returns it via parameter hash 

// signature message consists of the hash of the last object (edge)  

// and the creator hash 

void createHashForSignature(uint8_t* hash, uint8_t* signatureMessage) 

{ 

  SHA3_256 sha3_256; 

  sha3_256.reset(); 

  sha3_256.update(signatureMessage, 64); 

  sha3_256.finalize(hash, 32); 

} 

 

 

void sendHologramMessage(String message) 

{ 

  int socket = -1; 

  String hologramMessage;   

     

  // Construct a JSON-encoded Hologram message string: 

  hologramMessage = "{\"k\":\"" + HOLOGRAM_DEVICE_KEY + "\",\"d\":\"" + 

    message + "\"}"; 

     

  // Open a socket 

  socket = lte.socketOpen(LTE_SHIELD_TCP); 

  // On success, socketOpen will return a value between 0-5. On fail -1. 

  if (socket >= 0) { 

    // Use the socket to connect to the Hologram server 

    //Serial.println("Connecting to socket: " + String(socket)); 

    if (lte.socketConnect(socket, HOLOGRAM_URL, 

                          HOLOGRAM_PORT) == LTE_SHIELD_SUCCESS) { 

      // Send our message to the server: 

      if (lte.socketWrite(socket,  

                          hologramMessage) == LTE_SHIELD_SUCCESS) 

      { 

        // On succesful write, close the socket. 

        if (lte.socketClose(socket) == LTE_SHIELD_SUCCESS) { 

          Serial.println("Socket " + String(socket) + " closed"); 

        } 

      } else { 

        Serial.println(F("Failed to write")); 

      } 

    } 

  } 

} 

 

 

 

void setup()  

{    
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  Serial.begin(9600); 

  Serial.println(millis()); 

    

  // connection with LTE Shield 

  if ( lte.begin(lteSerial, 9600) ) { 

    Serial.println(F("LTE Shield connected!"));   

  } 

    

  // key generation with Ed25519 

  getEd25519Keys(privateKey, publicKey); 

     

  createCreatorHash(creatorHash, 8, (uint8_t*)"Creator1"); 

   

  // Initialize transaction counter  

  transactionsCounter = 1; 

   

  // Init lastObjectHash 

  memset(lastObjectHash, 0, 32); 

   

  Serial.println(millis()); 

} 

 

 

void loop()  

{ 

  // Measurements performed with COUNT_STATEMENT packages 

  if (transactionsCounter > COUNT_STATEMENT) 

  { 

    Serial.println(millis()); 

    delay(10000); 

    return; 

  } 

     

  // buffer for transactions 

  unsigned char buffer[750]; 

   

  int start = 0; 

   

  memcpy(&buffer[start], &(transactionsCounter), sizeof(uint32_t)); 

  start += sizeof(uint32_t);  

 

  // generate a transaction with a signing node and several edges 

  start = transactions2Buffer(buffer, start);    

   

  memcpy(&buffer[start], creatorHash, 32); 

  start += 32; 

 

  // Signature over previous object hash (lastObjectHash)  

  // and creator hash 

  uint16_t signatureLength = 64; 

  uint8_t signature[64];   

  uint8_t signatureMessage[64]; 

  memcpy(signatureMessage, lastObjectHash, 32); 

  memcpy(&signatureMessage[32], creatorHash, 32); 

  uint8_t hash[32]; 

  createHashForSignature(hash, signatureMessage); 

  sign_ED25519(signature, privateKey, publicKey, hash, 32); 

     

  memcpy(&buffer[start], &(signatureLength), sizeof(uint16_t)); 
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  start += sizeof(uint16_t); 

     

  memcpy(&buffer[start], signature, signatureLength); 

  start += signatureLength; 

   

  // encode the binary data to Base64-string for sending 

  int encodedLength = Base64.encodedLength(start); 

  char message[encodedLength]; 

  Base64.encode(message, (char*)buffer, start); 

   

  // Send the Message 

  sendHologramMessage(message); 

  lte.poll(); 

  Serial.println(start); 

  Serial.println(encodedLength); 

  transactionsCounter++; 

} 
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