
 
 

 
 

Universal Large Scale Sensor Network 
 
 
 
 
 
 

Bachelorarbeit 
der Philosophisch-naturwissenschaftlichen Fakultät 

der Universität Bern 
 
 
 
 
 
 
 
 
 
 

vorgelegt von 
 

Jakob Schaerer und Severin Zumbrunn 
FS 2016 

 
 
 
 

Leiter der Arbeit: 
Professor Dr. Torsten Braun 

Institut für Informatik und angewandte Mathematik 



Universal Large Scale Sensor Network

Jakob Schaerer, Severin Zumbrunn and Torsten Braun
Communication and Distributed Systems, Institute of Computer Science

University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

jakob.schaerer@students.unibe.ch, severin.zumbrunn@students.unibe.ch, braun@inf.unibe.ch

Abstract— We have created a large scale sensor Network with

a node distance of up to 1km, low-power consumption and low

cost hardware. The design of the network nodes is modular and

application specific sensors can be attached. This makes the

network flexible to a wide range of applications. A low power

optimized MAC and routing layer allows the energy efficient

transmission of information through the network. The network

can be accessed by connecting a PC via serial interface to any

node. From the selected node the network configuration and

the sensor data readout of any other sensor is possible. The

sensor network is designed for stand-alone applications in the

context of long-term monitoring of environmental conditions in

remote areas. We show what characteristics are important to

establish and maintain networks with low data rates and long

ranges.

I. INTRODUCTION

During the past few years, wireless sensor networks
(WSNs) with different measurement goals emerged. Most of
these WSNs use 2.4GHz radio controllers which limits the
distance in between two nodes. Wireless sensor networks that
cover large areas [3] are mostly for predefined applications.
They often have a fixed set of built in sensors, or consume
so much power that it can not be covered by solar cells. To
fill the gap between those existing solutions, we created the
Universal Large Scale Sensor Network (ULSSN), which is
able to transmit information over a large distance, is energy
efficient and, has a modular design and allows the attachment
of different sensors. With this flexibility the network can be
used for a variety of different applications.

We used an integrative approach, which combines hard-
ware and software development to have a perfectly adapted
system. Therefore, we designed and developed a printed
circuit board (PCB) that features a TICC1110 (low-power,
868MHz, 10dBm, system-on-chip) from Texas Instruments
(TI), a debug connector, a connector for various types of
sensors, which are connected via Universal Asynchronous
Receive Transmit (UART), a 64MB Flash memory, two
indicator LEDs and a dc-dc step-up-down converter circuit
(Figure 1). The hardware was optimized for low power
consumption and is mostly based on the design guidelines
from TI [1].

In this work the focus is set on the protocol stack in
particular, on the MAC and the routing layer. In section II
we discuss the relevance of several existing approaches for
the layers of our protocol stack. In the following sections
III. and IV. we describe our implementations of the selected

protocols and discuss the additionally included features.
Finally, section V presents some measurements of our im-
plementation.

Fig. 1. Hardware overview

II. RELATED WORK

In general, battery-driven WSNs face the issue of having
limited energy capacity. Therefore, many different measures
in applications and hardware have been taken to minimize en-
ergy consumption for communication. This can be achieved
by reducing overhead, adopting the output power to the
required transmission range or lowering node-to-node ranges.
As there is the need to support longer ranges, we developed
a protocol stack, that is built of a PHY, MAC, routing and
application layer. This work focuses on the MAC and routing
layer.

A. MAC Layer

In a sensor network multiple network nodes access the
same physical medium to exchange information. In order
to receive and decode messages from other nodes, every
message needs to be sent in a standardized format. The
medium access control (MAC) protocol defines how the
network nodes access the physical medium. It is the purpose
of the MAC protocol to create a reliable connection between
nodes and prevent data loss. Additionally, the method with
which the medium is accessed can influence the signal
range, low power dissipation or data rate. In WSNs the
MAC layer needs to focus on low power consumption and
collision avoidance.

1



1) Low Power Listening: To optimize the power con-
sumption of network nodes the devices need to keep their
transceivers turned off as long as possible. For the trans-
mitting device the time to enable the radio is given by the
time the packet is sent. For the receiving node a mechanism
is needed to turn on the radio in order to receive the
packet. Obviously, the receiving node needs to listen to
the channel at the time the packet is sent. To recognize
a packet transmission the receiver can probe the channel
periodically with an interval t

i

(Figure 2). During a probe
the receiver turns on it’s radio device and checks the channel
for activities. When no activity was detected the radio can
either be turned off or it can receive the packet otherwise.
By periodically probing the channel the problem emerges,
that the probe most probably does not start to listen at
the beginning of the packet and only a part of the packet
is received. To avoid this problem the packet needs to be
announced. When the announcement of the packet lasts for
t
i

, it is guaranteed that the listening node is always probing
during the announcement time of the sender. This strategy
of, probing the channel is called Radio Duty Cycling (RDC).

Fig. 2. Radio Duty Cycling

There are several protocols that use radio duty cycling to
reduce on time of the radio transceivers. Those protocols
can be classified into two groups by the way the transmitting
device is announcing the packet. Protocols like WiseMAC
[10] and B-MAC [11] use a long preamble to announce the
packet and protocols like ContikiMAC [7] and X-MAC [13]
send packets as announcements. In section III-B we show
the advantages of the preamble over the packet approach.

2) CSMA/CA: In a sensor network multiple nodes are
sharing one medium, but only one device can send on
the medium. When multiple devices are transmitting data
concurrently, the signals are mixed and the sent packets
cannot be reconstructed at the receiver. To prevent the nodes
from sending concurrently, a way to access the medium has
to be defined. Most of the wireless devices do not support
full duplex mode, thus, they are not able to listen to the
channel while they are transmitting and hence cannot detect
possible collisions. Without the ability to detect a collision,
they need to be prevented by Carrier Sense Multiple Access
/ Collision Avoidance (CSMA/CA). Collision avoidance is
done by probing the channel before a transmission. If the
probe detects a free channel, the packet will be initiated,
otherwise the node waits for some back-off-time and repeats
this step (Figure 4).

B. Routing Layer

A routing layer is responsible for establishing routes inside
a network topology and to setup a path over a finite set of
nodes. Routing protocols typically have to address changing
topologies caused by node failures, reachability changes
or interferences but also due to network load and energy
constraints of battery-powered nodes.

Since the goal is to gather sensor data from every node by
connecting to a single node in the network, there are basically
two approaches available for such WSNs. The first is called
data dissemination, where data is not actively pulled from the
network, but every node advertises it’s new information by
some ADVERTISEMENT packet containing meta-data that
specifies the actual sensor information that has become avail-
able. Any other node receiving this packet can check whether
it already has the advertised data and if not it may request
the complete data packet from the advertiser by initiating a
REQUEST packet. Using this approach, data is transmitted
thorough the network continuously. This approach is called
three-way-handshake and is described in the SPIN protocol
[4]. A benefit from this approach is, that no further routing
effort is needed as data disseminates through the network
automatically. This means that nodes do not have to store
additional network information like routing tables and this
protocol is obviously not prone to node failures. However, a
crucial disadvantage is the necessity for every node to store
the complete distributed knowledge of the node set, which
leads to excessive memory usage and is therefore not scalable
for a larger number of nodes due to the limited memory
capacity.

The second approach focuses on the creation and main-
tenance of routing paths. It is the more common way as
it is broadly used in Internet protocols. Usually, in these
routing protocols, nodes can be either routers or endpoints.
An endpoint can only send data by transmitting it to the
next router in the network. A router knows other routers
or endpoints to which it can forward the data to or has
at least the default gateway in order to send packets to
unknown destinations. Since in our application, every node is
a potential base station, this means that every node is a router
and endpoint at the same time. Usually, every router stores
a routing table, which holds cost information and network
addresses from all surrounding routers. This information has
to be maintained to keep routes valid and detect errors in
routing, e.g. loops. Especially in battery-driven WSNs, it is
often the case that packets are lost due to interference or
link loss. Therefore, WSNs are mostly considered as lossy
networks, without the need for every packet to be received.

Another aspect to be considered is, that all routing
messages that have to be sent for route maintenance are
basically overhead and hence increase energy consumption.
To have limited overhead most WSN protocols are simply
creating a tree graph, where every node knows it’s parent
node and passes all sensor data to it. Here the only necessary
routing message is the rank-in-graph message, whose rank
is increased and resent by every receiver. By this way it is

2



possible to send unicast messages from every node to the
root. But the opposite is not possible due to the missing
routing table. One protocol that is based on building such
tree graphs is called ”Routing Protocol for Low-Power and
Lossy Networks” (RPL) [5].

1) RPL: RPL is a routing protocol that is designed for
low-power and Lossy Networks (LLNs) and operates with
constraints on energy and memory. It features multipoint-
to-point, point-to-multipoint and even point-to-point mecha-
nisms. RPL has become one of the most important protocols
as it is implemented in common operating systems, like
Contiki [12] or TinyOS [12] for low-power devices such
as WSNs. In RPL, every node may work as a router and
endpoint. The RFC6550 - RPL standard [5] was created to
have sensor networks that are compliant to IPv6 in order to
be interoperable and can be directly connected to the Internet.
In our application we have an isolated network connected to
a single Personal Computer instead of the Internet.

In RPL there are four modes of operation (MOP). MOP 0
does not maintain downward routes, hence it does not need
to store routing tables or additional information other than
the single parent it has selected as gateway. MOP 1 is also
called non-storing mode and features downward routes in
the manner that every node sends it’s children addresses to
the parent. This way the root node will have the complete
knowledge on the topology of the network. But point-to-
point (p2p) connections are still not available. MOP 2 and 3
feature such p2p connections.

MOP 0 uses two types of packets for route creation
and maintenance: Data Solicitation Information (DIS) and
Data Information Object (DIO). The DIO packet is sent
by every node in some interval t and holds data about
the node position in the tree graph, which is also called
Destination Oriented Directed Acyclic Graph (DODAG).
This positioning information can be any kind from geo-
location to rank metric. An Objective Function (OF) then
determines, which node should be selected as a parent based
on the lowest transmission costs. While the DIO message
is used for tree creation, the DIS message can be used to
ask any other node for it’s DIO message. Doing so, an old
and potentially invalid route can be checked before sending
an actual data packet to the root. In order to save energy
while keeping the routing information up to date an efficient
algorithm for RPL was provided:

2) Trickle Algorithm: A Trickle Algorithm [8] is used
whenever an application requires to send as few information
as possible. This is done by minimizing redundancy, using
exponentially increased intervals and fast reactions to invalid
information. It is one of the core parts of RPL and is an RFC
standard as well (RFC 6206 [8]). It fits perfectly for the DIO
transmission in RPL, because it allows rapid adaptation of
routing paths and saves a lot of energy by minimizing radio
transmissions.

III. MAC LAYER

As mentioned in section II our protocol stack has several
different objectives. We set the focus of our Universal Large
Scale Sensor Network (ULSSN) to signal range and low-
power dissipation.

A. Datarate-Range-Power Model

The range of the signal is determined by the output power
of the device, the device attenuation, the antenna peak gain,
the free space path loss, and the receiver sensitivity. The
receiver sensitivity is higher at low data rates [1] [2]. The
receiver can demodulate a signal with a lower power level
on low data rates and more power can be dissipated over the
medium. Therefore, a higher distance can be reached with a
lower data rate.

Fig. 3. Datarate-Range-Power model

We have developed a model (Figure 3) to determine the
reachable range with a certain data rate and a specific output
power level. In this model we assume free space propagation.
Hence, the attenuation chain consists of twice the device
attenuation V

DEV

[dB] (measured), twice the antenna gain
V
ANT

[dB] (specification) and the free space path loss
(equation 1). r [m] is the distance, f [Hz] is the frequency
and c [

m

s

] is the speed of light. P
T

[dBm] is the output
power set on the transmitting device. The receiver sensitivity
P
Rmin

[dBm] is given by the radio module (see section V-
F).

FSPL = 10 log10

✓
4⇡rf

c

◆2

[dB] (1)

In order for the receiver to be able to demodulate the
signal, inequality 2 must hold.

P
T

� 2 · V
DEV

+ 2 · V
ANT

� P
Rmin

> FSLP (2)

Now we can determine the maximum possible distance for
a given output power and data rate.

log10(r) <
1

20

(P
T

�2·V
DEV

+2·V
ANT

�P
Rmin

)

c

4⇡f
(3)

3



Figure 3 also shows the energy cost in Joule to transmit
a single bit. The costs depend on the data rate, which deter-
mines the duration to send a bit and the current consumption
(see section V-E) to transmit at a certain power level.

Based on this model (Figure 3) we decided to use a data
rate of 2.4kbps (red line). With this data rate we predict that
the range between two nodes can reach up to 1.28km in free
space. However, depending on the environment this will be
limited by trees, houses and other obstacles that hamper the
signal propagation.

B. Low Power Listening

On low data rates, preamble oriented protocols have the
advantage that they can send a flexible amount of bits and,
therefore, have a flexible interval t

i

(Figure 2). The packet
oriented announcement strategies lack this flexibility as they
need to send full packets, which disables short periods. Thus,
we decided to implement radio duty cycling with a long
preamble to announce the packets. The preamble is 24 bytes
long and lasts for 80ms at a data rate of 2.4kbps. According
to the datasheet [1] the receiver has to probe the channel for
at least 757µs resulting in a radio duty cycling of 1%.

Packet detection and Fast sleep: In low power listening it
is important to listen to the channel as short as possible. This
is mainly done by probing and checking if there is activity on
the channel. When the channel is noisy it can happen that the
detected noise is falsely seen as an activity. In this case the
power consumption can be reduced by stopping the listening
either immediately or when a packet is not addressed to the
current node.

In our implementation the device is probing the channel
when it wakes up from sleep mode. This probing is done
by listening to the channel and comparing the first valid
Received Signal Strength Indication (RSSI) with a certain
threshold. When the RSSI is below this threshold the channel
is assumed to be inactive and the radio is turned off. When
the channel power level is above the threshold the device
continues to listen. Because the listening probe will always
start to listen in the preamble, we can use this preamble to
qualify if the activity on the channel belongs to our protocol.
This is done by the Preamble Quality Identifier (PQI). The
PQI is a counter, which is incremented when two consecutive
bits were not equal and it is decremented by 8 otherwise. If
there is PQI  0 after eight bits, the node assumes that it is
listening to noise and switches to idle. When the radio stays
active the frame of the packet is received. Here we can save
energy, if we only listen to packets that are addressed to the
current node. This is done by comparing the first address
byte of the packet with the first byte of the own address.
If it is a match, the node keeps listening for the complete
packet.

C. CSMA/CA

In our ULSSN we use a very simple CSMA/CA algorithm
with channel probing and backoff-time (Figure 4). To probe
the channel the radio switches to receive (RCV) mode and
waits until a valid RSSI sample is obtained. At the data

Fig. 4. CSMA/CA

rate of 2.4kbps, this probe needs 757µs until a valid RSSI
level is established. If the RSSI is above a certain threshold
it is assumed that the channel is occupied and the device
waits for 80ms (preamble time) backoff-time and repeats the
process until the RSSI is below the threshold and it can
transmit the packet. With an additional random delay before
the first probing, we prevent collisions after a broadcast
request where all nodes probe the channel at the same time,
assume it as free and then transmit concurrently. This random
delay lasts up to 5% of the preamble time and extends the
transmission time of an average packet by up to 1%.

D. Power Adaptation

The output power of the transmitter defines how far the
signal will reach. In a sensor network the distance between
two nodes is not always the same and reflections may hamper
signal propagation. To prevent oversaturation of the receiving
node and to save energy, the output power should be set to a
level low enough that the signal can still be demodulated on
the receiving node. So, the optimal output power for every
link is different.

The implementation of the power adaptation affects all
non-broadcast and non-acknowledgement packets. The band
between -90dBm and -60dBm defines the desired power level
on the receiving node. When a received packet is not within
this band a request to adapt the power is sent to the source
node of the packet. Initially, all packets are sent using the
defined standard power level. This level can be set to a value
that fits to the particular application and is lower for small
scale than for large scale networks. Each node maintains a
list of its neighbor nodes and the according power levels. If
a node receives an adaptation request, it adapts the power
level of the requesting node in its own neighbor list.

IV. ROUTING LAYER

In our protocol stack we have identified RPL as the
foundation for our routing protocol as it features lightweight
methods. However, as it was stated by Clausen et al.,
common implementations of RPL use more than 50kB of
memory [6]. Thus, we had to focus on program size since
our microcontroller features only 32kB of Flash memory.
It is best practice to reduce memory usage by removing

4



unnecessary functions and information. Therefore, we did an
analysis on the functionality range and discovered that for
our application we require only a limited set of functionality
to get a working system. This not only reduced the program
memory size itself but also the overhead of our packets. With
this measure we were able to decrease the DIO and DIS
packet size by 84%, which results in total energy savings
of 1.8mJ per packet. This can be seen in Figure 5, which
depicts the modified RPL packet format as needed for our
application-tailored RPL version.

Fig. 5. Modified DIO and DIS packet definitions

We also restricted ourselves to the minimum functionality
of RPL by choosing RPL Mode 0, since we do not require
peer-to-peer (p2p) connections. Though, we want to be able
to send downward configuration messages from the base
station. This is done by an additional functionality described
later in section IV-B. In our application, the parent selection
using an Objective Function (OF) is done by comparing the
rank in the tree of different nodes and does not include any
other metric. It would be conceivable to define the OF so
that battery level, link quality indicator and other metrics
are considered. But since we only have one type of sensor
node in our application, they share similarity in battery and
memory capacity, calculation speed etc. Therefore, it is a
viable approach to keep the OF as simple as possible.
Additionally, we limit the number of different DODAGs
to 1 and thus, can completely remove the functionality for
distinguishing DODAGs. This has a direct influence on
the parent selection method, because a node that currently
does not know about the DODAG will simply send a DIO
message of maximum (infinite) rank. If a node receives a
packet containing invalid DODAG information, e.g. infinite
rank, it may respond with a DIO message that holds it’s
current finite rank in the DODAG. This way, the consistency
of a DODAG is always guaranteed and disconnected sensor
nodes can join the DODAG automatically.

Another common way of saving energy is extending the
transmission interval for routing messages. However, when
lowering the timeliness of routes, erroneous transmissions
can increase due to the possible obsolete routes nodes hold.
Therefore, only extending intervals is not the appropriate
solution but together with a mechanism that also addresses
the issue of obsolete information it is possible to save a lot
of energy. This is done with the so called Trickle Algorithm
as it is described by Levis et al.[8].

A. Trickle Algorithm

The Trickle Algorithm is a very simple process described
in a few steps:

1) A value I is randomly selected out of an Interval
[I

min

, I
max

], where I
min

2 N and I
max

2 {I
min

⇤
2

n, n 2 N+}. Two variables, the consistency counter
c and the time counter variable a are set to zero
and a redundancy constant k is defined. The value k
describes the amount of redundant routing packets we
tolerate in our network.

2) When an interval begins, c and a are set to zero, a
transmission variable t is chosen randomly from our
interval [I/2, I) and a then starts counting up.

3) For every redundant packet (a packet that does not
change our own configuration, e.g. that comes from
a parent node and holds the same cost as we already
know), we increase variable c by one.

4) At time a = t, if c < k we initiate a DIO transmission.
Otherwise, the transmission is suppressed due to too
much redundancy in our network.

5) When t > I , we double the interval [0, I] to [0, 2 ⇤ I]
until I > I

max

then, we simply set the interval to
[0, I

max

].
6) At any time, if we receive an inconsistent packet, we

reset the Trickle Timer by setting the interval size back
to [0, I

min

] and continue with step 2.

Fig. 6. Exponentially incremented interval of a Trickle Timer

With these six steps we are able to send only as few
information as needed. Let us assume that we have a network
of four nodes that are all interconnected and one of them is
our base station, which in our terms means that it has rank
zero and all others have rank 1. Let k = 1. Now when
the base station initiates a DIO message, all other nodes will
receive it and increment their value c by 1. This way no other
node will transmit it’s information since there was already
enough redundancy sent. Next, every node will double it’s
interval and only one node (the one with the lowest value of
t), will initiate another DIO message and so on. Therefore, in
a perfect environment without any disturbances, we end up
in sending only one routing message per hour, which results
in having a low-power routing protocol.

B. Downward routes

To have the ability to send configuration messages from
the root node into the network, we were constrained to use
additional mechanisms as RPL Mode 0 does not maintain
downward routes. Since every configuration packet is sent

5



as a broadcast message, it will be re-sent multiple times by
every node. This causes a lot of overhead and will finally
result in deadlock as the transmission buffers of the routing
protocol overflow with copies of the same packet. In order
to distinguish between upward and downward traffic we
have added an ID to every configuration packet to identify
the source where the packet came from. With that measure
we are reducing the transmission of redundant information
because everytime a packet is received from a lower rank
the packet should be forwarded downwards as it originated
from root. By this simple algorithm, nodes that are on the
same level will not respond to packets from each other as
those are lossy broadcast packets. This mechanism not only
provides a simple way for sending messages downwards the
tree, it also saves a lot of energy due to it’s low overhead
and fast algorithm for checking the timeliness of a packet.

V. MEASUREMENTS

A. Low Power Listening

To measure the current drawn by our device we used
a micro benchmark as proposed by A. Dunkels [7]. We
measured the voltage over a 10 Ohm shunt resistor with a
Teledyne LeCroy HDO6104 oscilloscope to determine the
current consumption of the node. Figure 7 shows the current
consumption of a listening probe. In this measurement three
parts can be identified. First, the controller starts up from
sleep mode. In this part timers are updated and direct
memory access channels are initialized. This wake-up of
the operating system needs ⇠ 590µs. After wake-up, the
radio device is calibrated. This is done at every 4th start of
the radio and needs ⇠ 754µs. In the last step the radio is
listening to the channel for ⇠ 930µs.

Fig. 7. Listening Probe

Using this measurement we could determine that waking
up from sleep and probing the channel needs 10.5mA on
average and lasts for 1.7ms. The current consumption in
sleep mode is 198µA. With a listening interval t

i

= 80ms
the resulting average current consumption is 420µA as
shown in equation 4.

1.7ms · 10.5mA+ (80ms� 1.7ms) · 198µA
80ms

= 420µA (4)

B. Range Verification

To verify that we can reach a distance longer than 1km
between two nodes we sent packets over this distance.
Therefore, we have chosen an area with only a few obstacles
and the possibility of a line of sight (LOS) transmission over
1km. With this setup we were able to establish a connection
over a distance of 1.03km and transmit packets with a packet
error rate of  4%.

C. Power Adaptation

To verify the power adaptation algorithm we have created
a simple test setup, consisting of three nodes. Two nodes
A (red) and B (blue) are transmitting data and a third node
C (white) is listening to the channel and logging the power
level as it can be seen in Figure 8.

Fig. 8. Power Adaptation - Test setup and Measurement

To test the power adaptation, node A sends a packet to
node B. Node B receives the packet and the power level is
above the desired power band. Node B sends a request to A
to reduce its output power. Node A adapts the output power
for node B, but the request packet was above the desired
power band too. So A requests B to lower its output power.
This leads to a negotiation until both levels are within the
power band and the output power is optimally adopted.

D. Response Times

To measure the average response times, we implemented a
PING application [9] on the application layer. PING is used
for sending echo request messages to test if there are other
nodes available.

A

B C D

Fig. 9. Topology for PING measurement

In standard IP, nodes can be requested by initiating a PING
message with either their direct, subnetwork or broadcast

6



address. Since we did not want to query single nodes, we
only implemented broadcast support with a time-to-live (ttl)
field. Following this strategy we are able to detect the nodes
on different levels of the tree, e.g. with a ttl value of 2 we
would only receive responses from nodes on either rank 1
or rank 2, but no messages from higher ranks.

When a PING request is initiated, a timer is started until
a certain time has passed. For every packet, we log the
time it took until the PING response was received. With
this application it is not only possible to see if the routing
and all corresponding layers work together, but also to have
a tool available to measure the actual response times.

1:1 1065.9ms
1:2 1701.1ms
1:3 2470.2ms
1:4 2752.5ms

Fig. 10. Average response times for a fully meshed network with 2,3,4
and 5 nodes

Figure 9 shows the example topology 1 : 3 used for
measuring the response times. The notation 1 : n is read as 1
base station is connected to n nodes, where the base station is
the node that initiates the PING. From the measured average
response times (Figure 10) we can clearly see that the
response time increases by around 583ms for each additional
node. This is due to the fact that by adding a node (n+1), the
last packet is sent after a total time of n ⇤ t

window

+ t
window

,
where n is the number of nodes and t

window

is the time slot
for one PING packet, defined by parameters of the MAC
layer.

E. Transmission Costs

The costs in Joule to transmit a bit is given by the time
to send the bit (420µs at 2.4kbps), the voltage (3V) and the
current consumption of the network node. We have used the
same setup as shown in section V-A to measure the current
at different output power levels. With these measurements
we are able to approximate a transmission cost function.

Figure 11 shows the current measurements at different
output power levels. We used the hypothesis function (5)
to find an approximation to these points.

h
✓

= ✓0 + ✓1x+ ✓2x
2 (5)

For the hypothesis h
✓

function we found the parameters
✓0 = 2.45 · 10�2, ✓1 = 0.73 · 10�3 and ✓2 = 1.4 · 10�5.
With those parameters the hypothesis function h

✓

has a mean
squared error as shown in equation (6), where m is the
number of samples, x(i) is the output power of sample i
and y(i) is the current consumption of sample i.

J(✓) =
1

m

mX

i=1

(h
✓

(x(i)
)� y(i))2 = 0.95 (6)

Let I(x) = h
✓

for the value of ✓ found above, then I(x)
in Ampere is the current consumption as a function of the
output power. With function (7), where x is the output power

Fig. 11. Current consumption at different output power levels

in [dBm], s the data rate in [bps] and u the supply voltage
in [V], we can predict the cost to transmit a single bit.

f(x, s, u) = I(x)
u

s
(7)

This function was used in section III-A to estimate the
cost to send a single bit over a certain range.

F. Receiver Sensitivity

To estimate a continuous receiver sensitivity function we
use linear regression (equation 8) on the receiver sensitivity
dataset in the specification of TI CC1110 [1] [2] (Figure 12).

Fig. 12. RCV sensitivity approximation

h0
✓

(x) = ✓0 + ✓1x1 + ✓2log(x) (8)

For this hypothesis h0
✓

function we found the parameters
✓0 = �1.267 · 102, ✓1 = 1.303 · 10�5 and ✓2 = 2.423.
With these parameters the hypothesis function h0

✓

has a mean
squared error as shown in equation (9), where m is the

7



number of samples, x(i) is the data rate of sample i and
y(i) is the sensitivity of sample i.

J(✓) =
1

m

mX

i=1

(h0
✓

(x(i)
)� y(i))2 = 0.7 (9)

VI. CONCLUSIONS
This work contains the development and implementation

of an ad-hoc wireless sensor network. We propose a protocol
stack including a MAC and routing protocol for a low-power
and lossy sensor network featuring long transmission ranges.
Our design provides a way of transmitting sensor data with
minimal costs over maximum range. We showed that an
integrative approach where every aspect that accounts for
the power usage can be very effective in terms of optimizing
the overall energy consumption.

REFERENCES

[1] Texas Instruments ”CC1110Fx / CC1111Fx”. ”Low-Power SoC
(System-on-Chip) with MCU, Memory, Sub-1 GHz RF Transceiver,
and USB Controller”. January 2006.

[2] Sverre Hellan ”CC11xx Sensitivity versus Frequency Offset and
Crystal Accuracy”. August 2009.

[3] Geoffrey Werner-Allen et al. ”Deploying a Wireless Sensor Network
on an Active Volcano”. IEEE Internet Computing. March 2006.

[4] W. Heinzelman, J. Kulik, and H. Balakrishnan, ”Adaptive Protocols
for Information Dissemination in Wireless Sensor Networks,” Proc.
5th ACM/IEEE Mobicom Conference (MobiCom ’99), Seattle, WA,
August 1999.

[5] T. Winter, et al., ”RPL: IPv6 Routing Power for Low-Power and Lossy
Networks”. RFC 6550. March 2012.

[6] Clausen et al., ”A critical evaluation of the IPv6 Routing Protocol
for Low Power and Lossy Networks (RPL)” IEEE 7th International
Conference on Wireless and Mobile Computing, Networking and
Communications, WiMob 2011. October 2011.

[7] A. Dunkels, ”The ContikiMAC Radio Duty Cycling Protocol”. 2011.
[8] P. Levis, et al. ”The Trickle Algorithm”. RFC 6206. March 2011.
[9] R. Braden ”Requirements for Internet Hosts – Communication Lay-

ers”. RFC 1122. October 1989.
[10] El-Hoiydi, A., and J. D. Decotignie. “WiseMAC: An Ultra Low

Power MAC Protocol for the Downlink of Infrastructure Wireless
Sensor Networks.” Ninth International Symposium on Computers and
Communications, 2004.

[11] Polastre, J., J. Hill, and D. Culler. “Versatile Low Power Media Access
for Wireless Sensor Networks,” SenSys’04, 95–107, 2004.

[12] Ko, JeongGil and Eriksson, Joakim et al. ”ContikiRPL and TinyRPL:
Happy Together.” In: Extending the Internet to Low power and Lossy
Networks (IP+SN 2011), Apr 2011.

[13] Buettner, Michael, Gary V. Yee, Eric Anderson, and Richard Han.
“X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless
Sensor Networks.” In Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, 307–20. SenSys ’06. New
York, NY, USA: ACM, 2006

8


