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Abstract

Increasing computing power and larger available datasets enable  
work with machine learning to solve complex problems. This is 
beneficial for a wide range of traffic flow prediction applications in 
the environment of large cities. Examples are vehicle navigation 
services, vehicle routing or traffic congestion management.

Long Short Term Memory Networks (LSTMs) are a specialized 
variant of Recurrent Neural Networks (RNNs) designed to learn 
long-term dependencies. Using Multi-Task Learning (MTL) offers 
the possibility to take advantage of traffic information for multiple 
trajectories (moving objects) and taking the spatial information 
shared by neighboring trajectories into account.

In this thesis different MTL architecture based LSTM predictors are 
used to explore spatio-temporal dependencies among adjacent 
trajectories hidden in large datasets. The aim was to predict the 
density (number of present objects during an interval) within 
rectangular grid cells, based on a data set collected from vehicles in
the city of Porto, Portugal.

The thesis shows, that MTL-architectures which are combining 
dedicated and shared LSTMs performed best among the different 
tested architectures in this work, benefiting most from shared 
knowledge. By the state-of-the-art the MTL-LSTM indicated 
improvements of 10% - 15% in prediction accuracy and time 
consumption on both weekdays and weekends.
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Abstract—Predicting traffic flow in large cities is beneficial
for a wide range of applications, including vehicle navigation
services, vehicle routing, and traffic congestion management. In
this scenario, deep learning approaches such as Recurrent Neural
Networks (RNN) and its variant Long Short Term Memory
(LSTM) are excellent alternatives due to their ability to learn
long-term dependencies. However, these neural networks only
learn the temporal traffic information for each trajectory (moving
object), failing to take advantage of spatial information shared
by neighboring trajectories. This paper introduces MTL-LSTM
(Multi-Task Learning-based LSTM) traffic flow estimator, which
attempts to explore both temporal and spatial dependencies
among adjacent trajectories. Specifically, we employ LSTM
predictors with the MTL approach to explore traffic flow patterns
across urban trajectories. To examine the proposed model, we
predict traffic flow in Porto’s city using a data set from buses
and taxies. Our experiments show improvements of 10% to 15%
over the state-of-the-art.

Index Terms—Deep Learning, Multi-Task Learning, Traffic
Flow Prediction, and Intelligent Transportation system (ITS).

I. INTRODUCTION

Urban traffic flow forecasting is a significant function
of the Intelligent Transportation system (ITS), which plays
an important role in city traffic management and public
travel safety. Besides, this forecasting type can help people
improve daily travel plans and optimize public transport
resource allocation. In recent years, due to advances in
public infrastructure and data transmission technologies, more
traffic flow data is available, promoting forecasting accuracy.
Although several models have been deployed, many of them
leverage conventional methods that may be unsatisfying
to discover the deep correlations like temporal and spatial
dependencies hidden in large datasets.

Adjacent trajectories simultaneously influence a moving
object’s trajectory; each moving object responds to others’
stimulus. Traffic time series show strong temporal dynam-
ics, since there are recurring events like rush hours. The
road network structure dominates spatial correlation: slower
vehicles are slowing down following vehicles on the same
road segment; if a traffic jam occurs on a road segment,
the adjacent road segments will also be affected [1][2]. The
closer the trajectories are, the higher is the distortion; they are
spatially dependent. Spatial dependence refers to the degree

of spatial auto-correlation between independently measured
values observed in geographical space [3]. Consequently,
traffic flow prediction accuracy can not profit from sharply
increasing traffic data. Therefore, new techniques are eagerly
demanded to handle the abundant traffic data at a deep level.

As a subset of machine learning, deep learning has drawn
tremendous interest from academic and industrial fields.
Deep learning algorithms such as RNNs (Recurrent Neural
Networks) and LSTM (Long Short Term Memory) can
exploit complex temporal features of urban traffic. In the
transportation research area, deep learning is increasingly
presented in traffic flow estimation and achieves attractive
performance [4]. Most existing traffic flow estimators are
STL-based (Single Task Learning) algorithms. In an STL
approach, forecasting traffic flow for each trajectory in a city
is considered a single prediction task, in which an individual
traffic predictor must be built and trained separately for
each task (trajectory). The STL-based traffic flow estimators
are neglecting the potential benefits of jointly considering
traffic flow information (e.g., number of moving objects)
across the entire neighboring trajectories in city environments.

To address the aforementioned shortcoming, this paper
proposed MTL-LSTM (Multi-Task Learning-based Long-
short Term Memory), a framework to forecast the future state
of urban traffic in terms of numbers of moving objects (e.g.,
vehicles) in urban trajectories. Basically, MTL is a machine
learning paradigm, and it aims to leverage useful information
in multiple related prediction tasks to help improve the
prediction performance of all tasks [5]. MTL can take more
information into account than STL. By sharing representations
between related tasks, we can enable the model to generalize
better on the main task. MTL has a better ability to cope
with noisy data than STL, which is due to MTLs ability to
focus attention. MTL can help the model to determine the
relevance or irrelevance of features and set its attention to
the relevant features [6]. Those techniques are leading to
improved prediction accuracy when comparing MTL and STL.

Our proposed MTL-LSTM is fed simultaneously by his-
torical traffic data (number of vehicles) from neighboring
trajectories, where traffic flow estimation in these trajectories



is a related prediction task. MTL attempts to improve traffic
flow prediction accuracy for one trajectory by utilizing the
relations contained in other adjacent trajectories. In this way,
the information from one trajectory can help neighboring
(related) trajectories to have accurate traffic flow prediction
accuracy.

The rest of this paper is organized as follows. Section II
reviews related work. Section III discusses the problem state-
ment. Section IV describes the proposed MTL-LSTM traffic
flow estimator. The evaluation methodology and the results
are presented in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

Over the past few decades, many traffic flow forecasting
models have been proposed to facilitate traffic management.
Existing methods can be classified into three categories:
parametric, non-parametric, and hybrid approaches. The auto-
regressive integrated moving average (ARIMA) was first intro-
duced to forecast traffic flows [7]. Over the years, the ARIMA
model has been used as the basis for several variants, e.g.,
seasonal ARIMA and Kohonen ARIMA [8][9]. These para-
metric approaches are suitable to deal with regular variations,
but the performance is undesirable when traffic data shows
significant stochastic and non-linear characteristics. To address
this problem, non-parametric predictors have shown remark-
able advantages in various traffic flow prediction tasks [10].
However, traditional non-parametric approaches are insuffi-
cient to model complex relationships and, consequently, fail to
improve forecasting accuracy. To maximize the strengths of the
introduced parametric and non-parametric approaches, hybrid
approaches are explored to achieve attractive results. In [11]
authors combine the SARIMA model with a Kalman filter. Hy-
brid approaches deliver plausible results in various practices,
but the prediction accuracy is still limited in some scenarios.
The work in [12] states that, when enlarging the training data
size, the prediction performance quickly decreases. Therefore,
hybrid models fail to take advantage of large datasets.

In recent years, deep learning approaches have increased
attention in traffic flow forecasting to tackle the introduced
shortcomings. Authors in [13] proposed a novel deep learning-
based traffic flow estimator, in which a stacked autoencoder
model was used to extract traffic flow features. In [14] it
is proposed a deep learning-based traffic flow prediction
model with CNN (Convolutional Neural Network) to extract
spatial features and GRU (Gated Recurrent Unit) to capture
temporal features. These studies show promising performance
in estimating traffic flows. However, most existing predictors
are STL-based models, which can not take advantage of
information sharing among related tasks.

Fortunately, some attempts were made to forecast traffic
states by introducing MTL [15]. MTL is a machine learning
paradigm whose aim is to benefit from additional information
in auxiliary tasks to predict the main task better. However,
these models use deep learning algorithms with only several

stacked neural network layers, which may restrict their predic-
tion capacities. In summary, to meet the increasing needs of
accurate traffic information in ITS, in this paper, we propose a
Multi-Task Learning-based LSTM (MTL-LSTM), which aims
to improve urban traffic flow prediction accuracy by jointly
training traffic information of multiple adjacent trajectories.

III. PROBLEM STATEMENT

A traffic flow is defined as the total number of moving
objects (e.g., vehicles) that pass through an area during a
period. The area can be a road segment or a region in the city.
In this research, a traffic flow predictor attempts to estimate
future traffic states regarding the number of moving objects in
the trajectories. To define the city’s areas, we use the Python
Google S2 geometry library1. S2 is a library for working with
the geometry of the two-dimensional surfaces of the earth. It
enables efficient access to spatial objects (spatial indexing) and
helps to partition the geographical space (in our case, Porto,
Portugal) into four-corner grid cells.

The coordinates of each RSU (Road-Side Unit) are known.
Spatial indexing is used to map these positions of RSUs into
grid cells. The grid cells are covering the trajectories of the
RSUs, which are situated in the grid cells. In the city center,
the RSUs are located denser to each other to cover the higher
traffic. The usage of a single RSU can not indicate the number
of connections made in the whole area; they only show the
workload of one RSU. To get a general prediction for areas,
the grid cells are used. With the standardized cell size, it is
also easier to compare areas.

In this research, we use grid cells with a 1.27 km2 area. The
traffic flow collected from the trajectories in grid cells is stored
as C =

[
F 1 . . . F i

]
, we refer C as density of the grid cell.

Collected traffic flow can be shown as: F i =
[
xt . . . xt+T

]
,

where xt ∈ RN×P is a set representing the number of vehicles
(V ) in each grid cell (Tr) at time interval t. The traffic
predictor L(.) attempts to learn patterns of traffic flow at time
T and make an estimation for the future time T ′:

L
((
x(t), · · · , x(t+T )

))
≡

(
x(t+1+T ), · · · , xT ′

)
(1)

The extracted traffic information from the dataset for the
city of Porto, Portugal [16] is presented in Figure 1. This
plot shows the grid cells of the S2 library (brown borders)
and the RSUs (colored dots) distributed in the city with their
corresponding density. The data represents the situation of an
example of Thursday afternoon from 12:00 to 18:00 pm. The
density for a RSU is represented by the color of the marker.
The density indicates the number of connections made with
the RSU during the interval. One vehicle can connect multiple
times during this period. In the next section we present the
proposed predictor to estimate the urban traffic flow.

1http://s2geometry.io/



Fig. 1: RSUs with corresponding densities and S2 grid cells
(brown borders) in the City centre of Porto, Portugal.

IV. SYSTEM MODEL

In this section, we present the proposed MTL-LSTM model
as an urban traffic flow estimator. The predictor is a deep
learning-based multi-task learning (MTL) algorithm. MTL-
LSTM employs multi-task learning to explore the Spatio-
temporal correlations of traffic flows between neighboring tra-
jectories and then predict the future number of moving objects
in the trajectories. The proposed MTL-LSTM is presented in
Figure 3. In the following subsections, we first introduce the
concept of Dedicated and Shared LSTMs. We describe how to
integrate those learning architectures into a unified Multi-Task
Learning framework to estimate urban traffic flows. Note that,
for simplicity, we only present a two grid cell scenario.

A. Single-Task, Dedicated and Shared LSTM

The RNN (Recurrent Neural Network) is mainly used
for tasks that are involved with sequential inputs, such as
time series prediction. The authors in [17] show that RNNs
can not support long-term dependencies. Thus, an improved
RNN called a Long Short Term Memory network (LSTM) is
proposed, which uses special hidden units (i.e., memory cells)
to remember inputs for a long time. LSTM models can learn
long-term temporal sequences and make accurate predictions.
As an LSTM naturally explores the temporal dependencies,
here, we mainly focus on adopting an LSTM to capture spatial
dependencies of traffic flow across neighboring trajectories.
In this way, first, we introduce Dedicated LSTM and Shared
LSTM, which can capture spatial dependencies of urban traffic
flow among adjacent areas. Then, to improve the performance
gains, we merge these two learning architectures to generate
our MTL-LSTM model.

1) Single-Task LSTM: To use as a baseline for performance
comparison, we consider a Single-Task LSTM. It predicts
traffic for one grid cell using only data from this cell, not
taking advantage of spatial dependencies. This prediction can
be expressed as:

Ŷ i
t+1 = STLi

(
F i

)
(2)

F i represents collected traffic flows from trajectories in grid
cell i used by the STL predictor to predict future traffic flow
Ŷ i
t+1.
2) Dedicated LSTM: In this prediction model, the traffic

flow forecasting task for each grid cell, which includes specific
trajectories, will be served by its Dedicated LSTM predictor.
Dedicated means that each LSTM has only the purpose to
predict traffic for one grid cell. Therefore, for every grid cell
a LSTM exists. However, the full set of collected traffic from
all grid cells is provided to each predictor for joint exploration
of the spatial-dependencies of traffic flow between adjacent
trajectories (see Figure 4-a). The prediction process for each
Dedicated LSTM can be formulated as:

Ŷ i
t+1 = DLi

(
C =

[
F 1 . . . F j

])
(3)

Ŷ i
t+1, DLi are predicted traffic flow and the Dedicated-LSTM

predictor, respectively. C presents accumulated traffic flow
from all j grid cells.

3) Shared LSTM: As shown in Figure 4-b, different from
the previous architecture, in this model there is no Dedicated
LSTM predictor. Instead, a Shared LSTM is adopted. Again,
collected traffic flows from all grid cells are fed to this shared
predictor to learn spatial and temporal dependencies for all
trajectories at the same time. But in contrary to the dedicated
LSTM, the shared architecture uses one LSTM to predict
traffic for all grid cells. The forecasting process for the Shared
LSTM can be presented as:

Ŷ i
t+1 = SL

(
C =

[
F 1 . . . F j

])
(4)

Ŷ i
t+1, depicts the predicted traffic flow for all trajectories in

the city areas. SL is the Shared-LSTM.

(a) Dedicated LSTM (b) Shared LSTM

Fig. 2: LSTM architectures for spatio-temporal traffic fore-
casting.

B. Multi Task Learning LSTM

The introduced Dedicated and Shared LSTM architectures
attempt to capture spatio-temporal features of urban traffic
flows among neighboring trajectories. However, these pre-
dictors still have a simple architecture, which implies that
correlations between trajectories can not be explored effec-
tively. In order to fully capture the pure spatial and temporal



information of the urban traffic among adjacent trajectories, we
introduce the MTL (Multi-Task Learning) based architecture,
which combines the Shared and Dedicated LSTM architectures
to improve prediction performances (e.g., accuracy, training
time, etc.) (see Figure 3). Again, every LSTM uses information
from all grid cells. Additionally, the prediction for each grid
cell combines a shared and dedicated LSTM.

Fig. 3: The system architecture of MTL-LSTM designed for
traffic flow estimation using dedicated and shared LSTM.

Basically, given the learning tasks (e.g., traffic flow estima-
tion in urban trajectories), where all the tasks or a subset of
them are related, MTL aims to improve the learning of each
prediction task by using the knowledge contained in all or
some of the tasks. The prediction function for the proposed
MTL-LSTM can be expressed as follows:

Ŷ i
t+1 =

[
DLi

(
C =

[
F 1 . . . F j

])
, SL (C)

]
(5)

Ŷ i
t+1 represents the predicted traffic flow, F i and C =[
F 1 . . . F j

]
denote the collected traffic flow information from

a single trajectory and from all trajectories in the city of Porto,
respectively.

C. Feature Engineering

The success of machine learning predictions depends heav-
ily on the choice of features [18]. In this subsection, the
process of extracting features from raw data is explained.

Mobility traces collected from moving objects as vehicles
consist of spatio-temporal points. The spatio-temporal points
are tuples with GPS coordinates (latitude and longitude) and
time of presence (RSU ID, timestamp). They represent to
which RSUs (Road Site Units) and OBU (On-Board Unit)
in the City of Porto were connected at a certain time. For
each RSU, the coordinates are known. The mobility traces of
OBUs include the GPS coordinates of connected RSU and
their RSU ID as well as the timestamp. Those sequences
of connected RSUs for OBUs are our used trajectories. The
sampling frequency of the mobility traces is an average of 10
seconds.

With the S2 library, every RSU can be efficiently assigned
to a unique grid cell. We define traffic density in a grid cell
as the number of connected OBUs to an RSU, located inside
the corresponding grid cell, during an interval of 30 minutes.
If an OBU leaves a cell and returns during the interval, it gets

counted multiple times. We filter out days where some grid
cells have no collected traffic data.

Based on the city’s trajectories, we predict traffic density
inside a grid cell for the next 30 minutes. We decided to
approach this as a classification problem and defined four
categories: none, low, medium and high density. The none
category stands for no present OBUs, e.g., in the early morning
(03:00 - 04:00 am). The three remaining categories have their
borders chosen in a way that all of them have the same count of
elements. We incorporate temporal information time in a day,
weekday, month, and density as input features.

V. PERFORMANCE ANALYSIS

To examine the prediction performance of the proposed
MTL-LSTM traffic flow estimator, we experiment it on a large
scale VANET dataset. Section V-A describes the dataset and
experiments details. The results are presented in section V-B.

A. Experiment Setup

This work considers real vehicle traces collected from the
VANET testbed deployed in Porto’s city from October 2016
until August 2017 [16]. This urban-scale testbed consists of
600+ networked vehicles and 70+ RSUs scattered along the
city.

To evaluate the success of our urban traffic flow estimator,
we rely on the prediction accuracy. We trained the RL-LSTM
for 250 epochs, where each epoch indicates the number of
iterations over the entire dataset. We set the learning rate to
0.1, which indicates the amount that the weights are updating
during training.

The basic STL-LSTM consists of an input layer, two
hidden LSTM layers of size 15 and activation function tanh,
two dropout layers, and a dense layer. For the MTL, the
functional API of Keras [19] is used with concatenation
layers for merging. The built-in Adam optimizer [20] is used.
The loss function for the classification problem is ”categori-
cal crossentropy.”

1) Test and train split: A good cross-validation scheme
emulates the test distribution well; it has to cope with future
unseen data. Cross-validation divides data into n parts with
equal number of elements. Then, n − 1 parts are used to
train the predictor, and the remaining part is used to test the
algorithm. Most general cross-validation techniques as K-Fold
are not correct when it comes to time-series data/problems.
The methods are based on shuffling the data-set. This has to be
avoided with time-series problems because it means predicting
the past with data from the future. Ignoring the order of time-
series can lead to inaccurate validation scores. Most cross-
validation techniques do not ensure the same coherence in the
validation folds compared to the actual test set. There is also
a risk of overfitting on parts of the data set. Overfitting is the
phenomenon of fitting the Neural Network (NN) to the training
data and failing to fit on additional data or future observations.
It means that the NN fails to find a general predictive rule. We
want to maximize the prediction accuracy on new data points
and not necessarily on the training data [21].



To take time-series into account, we use walk-forward
cross-validation or expanding window cross-validation. With
this test/train, split data remains in chronological order. The
training starts on a small set of batches and is tested against
the next upcoming batch. In the next iteration, the batch used
for testing is added to the training set. With this split test, data
can be reused for training; the training data is expanding in
each fold [22].

2) Frameworks and hardware: We use the Keras library
[19], a deep learning API, written in Python, running on top
of TensorFlow. TensorFlow is an open-source software library
for numerical computation using data flow graphs. Nodes in
the graph are standing for mathematical operations, while
the graph edges represent the multidimensional data arrays
(tensors) that flow between them [23].

The predictors are trained and evaluated on a High-
Performance Computing Cluster at the University of Bern in
Switzerland (HPC Cluster - UBELIX 2) with Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz.

B. Evaluation Results
In this subsection, we examine the performance of the traffic

flow prediction considering the proposed MTL-LSTM. We
conducted detailed experiments to compare the performance of
MTL-LSTM with Shared-LSTM, Dedicated LSTM, and STL-
LSTM. STL-LSTM is a pure temporal model, where the traffic
flow in each grid cell is predicted using its own LSTM. This
model is mainly used as a benchmark [24].
Figure 5 presents the computed urban traffic flow prediction
accuracy across the city for business days (Monday to Friday)
and weekends (Saturday and Sunday). The accuracy measures
if the right category (level of traffic) is predicted (see IV-C).
The results show the efficiency of MTL-LSTM, which outper-
forms other predictors for both business days and weekends.
MTL-LSTM can deliver an average prediction accuracy of
73% and 71% for business days and weekends, respectively.
Among the predictors in Figure 5, the pure temporal model
(STL-LSTM) performs worst. Another important observation
is that the Shared-LSTM outperforms the Dedicated-LSTM.
Shared-LSTM and MTL-LSTM are fitted to other grid cells
and can therefore take advantage of spatial dependencies. This
shows that, instead of training an LSTM for each grid cell,
attempting to estimate the traffic flow for all nearby grid
cells could provide us with even better results. Moreover,
considering the availability of data collected over a longer
period of time (multiple years), seasonal differences could be
discovered and exploited.

In addition to prediction accuracy, we also measure the
training time for each traffic flow predictor. The results can
be found in Figure 4. In general, the training time refers to
the time duration that a learning algorithm spends to learn
features and discover patterns in the training dataset. Shared-
LSTM and MTL-LSTM benefit from gaining knowledge of
other grid cells, decreasing the time consumption for updating
weights compared to Dedicated-LSTM and STL-LSTM.

2https://docs.id.unibe.ch/ubelix

Fig. 4: Total training time of traffic flow predictors for business
days and weekends.

The obtained results, as shown in Figure 4, show that the
MTL-LSTM can learn the spatio-temporal features and dis-
cover the movement patterns of the vehicles faster than other
algorithms. In total, MTL-LSTM spends 350 seconds and 320
seconds to train collected traffic data during business days
and weekends, respectively. STL-LSTM is the one requiring
more training time compared to the others. These observations
conclude that, by feeding the MTL-based predictor using
collected traffic flow from multiple neighboring grid cells
simultaneously, the prediction process will be accelerated.

VI. CONCLUSIONS

This paper proposed the MTL-LSTM model to estimate the
traffic flow of vehicles in urban trajectories. The proposed
predictor attempts to explore both temporal and spatial de-
pendencies of traffic patterns among neighboring trajectories
to improve traffic flow prediction accuracy and improve speed.
Based on a real-world and large-scale dataset, we provided a
detailed evaluation of different learning models. We showed
that the spatial information of urban traffic among nearby tra-
jectories can indeed provide valuable information to improve
prediction accuracy and reduce time consumption.

Future work will use this approach to provide information
to the city management platform, and advise for possible
problems and required interventions in the city, including the
effects of traffic changes in the neighboring parts of the city.
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