
A Flow Trace Generator using Graph-
based Traffic Classification Techniques

Peter Siska
University of Bern

psiska@students.unibe.ch

Marc Ph. Stoecklin
IBM Research – Zurich

mtc@zurich.ibm.com

Andreas Kind
IBM Research – Zurich

ank@zurich.ibm.com

Torsten Braun
University of Bern

braun@iam.unibe.ch

ABSTRACT
We propose a novel methodology to generate realistic network
flow traces to enable systematic evaluation of network monitoring
systems in various traffic conditions. Our technique uses a graph-
based approach to model the communication structure observed in
real-world traces and to extract traffic templates. By combining
extracted and user-defined traffic templates, realistic network flow
traces that comprise normal traffic and customized conditions are
generated in a scalable manner. A proof-of-concept implementa-
tion demonstrates the utility and simplicity of our method to pro-
duce a variety of evaluation scenarios. We show that the extraction
of templates from real-world traffic leads to a manageable number
of templates that still enable accurate re-creation of the original
communication properties on the network flow level.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques, Model-
ing techniques, Performance attributes; C.2.3 [Computer-commu-
nication Networks]: Network Operations—Network monitoring

General Terms
Measurement, Performance

Keywords
Trace Generation, Network Flows, Self-parameterization, Traffic
Dispersion Graphs

1. INTRODUCTION
Traffic-monitoring systems are widely used in corporate and

service provider networks to gather network-related information
of business critical applications, analyze prevalent communication
patterns of the traffic, collect data for accounting, or detect ab-
normal traffic patterns. In general, the systems use flow-based
information of the network traffic, e.g., NetFlow or IETF IPFIX,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWCMC ’10, June 28–July 2, 2010, Caen, France.
Copyright 2010 ACM 978-1-4503-0062-9/10/06...$5.00.

exported by routers or switches. Even though these protocols
summarize observed traffic flows into a compact representation,
the sheer amount of flows as well as particular traffic conditions
may lead to an overload and inaccurate analysis results produced
by traffic-monitoring systems.

Systematic testing of monitoring systems to ensure accuracy and
performance is therefore crucial, but, at the same time, poses a
number of challenges. The evaluation of a system is typically
performed on a collection of traces known to contain complex
constellations such as attacks, high item cardinalities, or very high
flow rates. Many traffic conditions detrimental to a monitoring
system’s performance are, however, difficult to collect as they
are observed rarely or produce overloads on the collector side.
Critical traffic scenarios must be generated synthetically. This is
achieved with a set of manually parametrized scripts to imitate
expected traffic conditions. As a consequence, the flow attributes
and the structure of the traffic are limited by simplifications and
assumptions resulting in unrealistic traffic structure. Evaluations
using these traces often do not provide satisfying results. Even
though a packet-level generator combined with a flow-exporting
probe may as well produce flow traces, the overhead incurred, the
risk of potential measurement errors arising in the probe, as well
as their focus on preserving packet-level properties are not justified
for the evaluation of flow-level monitoring systems.

In this paper, we consider the problem of flow-level trace gener-
ation to support the performance evaluation of monitoring systems
under realistic conditions. We propose a template-based approach
using graph-theoretic metrics to define traffic patterns present in
traffic scenarios such as attacks, anomalies, and borderline cases.
By combining templates and streaming the generated traffic trace
to a monitoring system, the performance of the system can be
studied under various conditions. Our approach enables easy-to-
use customization of traffic features and characteristics in terms
of the number of hosts and flows as well as the evaluation time.
Moreover, we present a self-parametrization technique that extracts
templates from real-world traffic traces. These templates enable the
recreation of flow traces that closely resemble those of the original
traffic. The template library created can be used as background
traffic and combined with customized templates to produce specific
evaluation scenarios.

The contribution of our work is twofold. First, we introduce
the concept of traffic templates, a compact representation of traffic
conditions using a set of graph metrics and their evolution over
time. By means of the templates, network flow traces containing
desired traffic conditions can be composed and generated. Second,
we present a self-parametrization technique that extracts template
parameters from existing flow traces and enables the creation of

a library of background traffic. We demonstrate that the flows
generated from these templates exhibit characteristics close to those
in the original traffic.

This paper is organized as follows. In Sect. 2, we review existing
techniques to produce evaluation traces as well as techniques
related to our work. We specify our objectives and present obser-
vations that justify our design choices in Sect. 3. Section 4 presents
our template-based approach and self-parametrization technique.
The flow generation and the self-parametrization are evaluated in
Sect. 5.

2. RELATED WORK
A vast number of packet-based network traffic generators and

models have been proposed over the past years. The techniques
preserve traffic properties on the packet-level, such as inter-packet
gaps, file size distributions, or traffic burstiness. They have
been applied in application-specific traffic generation [1], soft-
or hardware performance evaluation [2], and the evaluation of
anomaly detection systems [3, 4]. We focus on flow-level rather
than packet-level trace generation: our aim is to produce traces
that preserve traffic properties on the network flow level (e.g.,
connectivity patterns), which are essential in the evaluation of flow-
based network monitoring systems.

Several open-source and commercial tools for generating traces
in NetFlow format exist [5, 6]. Although these tools can be
configured with IP address and port pools, the traces produced
do not reflect realistic scenarios. Moreover, no mechanism is
provided to extract traffic properties from real traces to simplify
the configuration. Another framework proposes the manipulation
of existing flow traces by injecting flow records into existing traces
to evaluate the effectiveness of anomaly detection systems [7]. Our
approach differs from their work as it generates new traffic from
structural properties extracted as opposed to manipulating existing
traces.

Sommers et al. proposed Harpoon, a configurable packet-level
traffic generator [8, 9]. Their approach aims at generating packet
sequences that exhibit similar octet and packet counts as well as
temporal and spatial characteristics to those in real traffic. Related
to our work is the ability of Harpoon to self-configure by extracting
empirical distributions of file sizes, inter-connection times, IP
addresses, and the number of active sessions from NetFlow logs. In
our approach, we model and generate flow records (as opposed to
packet-level traffic) and preserve flow-level properties (as opposed
to per-flow properties), such as distinct connection structures and
traffic patterns on service ports (applications). This is suited for
the evaluation of flow-based monitoring systems using directly
generated flow traces, whereas Harpoon aims at generating traffic
loads (in terms of packet rate) to test network hardware, such as
routers.

3. TRAFFIC DISPERSION GRAPHS
Flow-level network-monitoring systems are faced with very high

flow export rates from one or more export devices (e.g., routers) in
the network. The systems are equipped with high-speed insertion
algorithms and specially designed in-memory database systems.
The performance of the flow processing is bounded by hardware
constraints as well as the structure of the monitored traffic. If the
analyzer process cannot keep up with the rate of incoming flow
records, the quality of the results degrades. A proper evaluation
of the performance limits of monitoring systems is therefore
indispensable, both in terms of export rates and nature of the traffic
observed.

(a) HTTP (80) (b) DNS (53)

Figure 1: Visualization of port-based TDGs from two service
ports. The direction of edges defines the service initiators
(from) and providers (to).

3.1 Graph-based Connectivity Modeling
Our work has been inspired by the work of Iliofotou et al. [10].

They analyze the interactions between hosts on a given service
port by means of graph-based metrics in Traffic Dispersion Graphs
(TDG). A TDG is defined as a graph G = (E, V) that consists
of a collection of vertices V (hosts) and a collection of edges E
(connections) that connect pairs of vertices. However, while they
use the graph metrics for application classification, we use them as
a basis for trace generation. We focus on port-based TDGs and
add a directed edge between two vertices when a flow between the
two hosts is first seen on a given service port. The initiator of a
connection and thus the direction of an edge is determined by a
heuristic along with a database of popular service ports.

In a preliminary study, we explored how many port-based TDGs
are needed to achieve a high coverage of the connectivity patterns.
We analyzed flow traces from an average-sized campus network
and from a large hosting environment during different periods of
time, ranging from hours up to days. We observed that the majority
of flow records are associated with only a small subset of dominant
service ports. On average, 90.16% (σ = 5.91) of all flows are related
to only 50 service ports. Similarly, 80.99% (σ = 17.59) of all hosts
and 95.1% (σ = 4.2) of all octets transmitted can be attributed to
sets of 50 ports. We found that the combination of the top k service
ports (e.g., with k = 50) in terms of the number of flows and the
number of unique hosts provides a sufficiently high coverage of the
connectivity patterns present in the traces.

Figure 1 shows visualizations of TDGs for two service ports.
The number of unique hosts has been limited to 300 to improve
the quality of visualization of the underlying traffic structure. The
graphs exhibit distinct structures that are characteristic for each
service port. The TDG of service port 80 (HTTP) consists of
many hosts (clients) that connect to one or a few other hosts (web
servers). Other service ports, such as service port 53 (DNS),
exhibit denser structures containing many low out-degree vertices
connecting to only a few high in-degree vertices (DNS servers).
Moreover, we find that in many TDGs a large number of vertices
have either zero out-degree (sinks) or in-degree (sources) and only a
small portion of the hosts act as both service initiators and providers
(e.g., peer-to-peer).

3.2 Graph Degree Properties
We analyzed the degree properties of various port-based TDGs.

In Fig. 2, we visualize the graph vertices in a scatter plot, where the
number of out-degrees and in-degrees defines the position of each
vertex. We find that graphs for most ports (e.g., port 80), exhibit a

0 1 10 100 1000

0
1

10

100

1000

in−degree

o
u
t−
d
e
g
re
e

HTTP (80)

0 1 10 100 1000

0
1

10

100

1000

in−degree

DNS (53)

Figure 2: Scatter plots of out-degree and in-degree values of
each TDG vertex for different ports on a log-log scale over a
one-hour interval.

separation of vertices along both axes. These vertices have either
zero out-degree or zero in-degree. Other services, such as DNS, are
also characterized by vertices in the first quadrant of the Cartesian
plane, reflecting vertices with non-zero in- and out-degrees.

The vertex degree values in TDGs reflect the communication
patterns between hosts. We use this observation to define a
method to capture the traffic structure for a given port. Due to
space restrictions, we limit the presentation of the results to HTTP
and DNS traffic; the two applications are distinct in terms of
their connectivity patterns and representative for the majority of
applications.

4. METHODOLOGY
Our flow trace generation technique consists of four building

blocks. We model the connection patterns on distinct service
ports by partitioning the joint degree distribution. We introduce
the concept of traffic templates to express these patterns and
additional traffic characteristics. Flow traces are generated from a
collection of such traffic templates by a trace generator. Moreover,
we describe a self-parameterization technique to extract template
parameters from an existing set of flow traces.

4.1 Partitioning
We divide the plane spanned by the out-degree and in-degree

values of vertices into fixed-sized partitions (quantization). We
chose the partition boundaries such that vertices are separated into
meaningful partitions to distinguish between zero, low, medium,
and high degree vertices. The partitions are determined by the
non-linear left-closed intervals [0, 1), [1, 2), [2, 10), [10, 100), and
[100,∞). This leads to a set K of 24 relevant1 partitions as
shown in Fig. 3(a). For example, a web server accessed by a few
clients falls into one of the low in-degree partitions. A popular web
server is probably to be assigned to a high in-degree partition (e.g.,
[100,∞)), while clients likely exhibit zero in-degrees, but non-zero
out-degrees.

The vertex population in a partition k ∈ K is characterized by
five parameters Gk = (nk, µk,out , µk,in , σk,out , σk,in), where
nk is the number of vertices in partition k, µk,out and µk,in are the
mean out-degree and in-degree of the vertices, and σk,out and σk,in
are the respective standard deviations.

Figure 3(b) shows an example of a partitioning for HTTP traffic
(port 80) measured in a 300-s interval. The value (and color
intensity) in each partition indicates the number of vertices nk. The
zero out-degree partitions (bottom row) contain most likely web
servers, where popular servers with high in-degrees are in partitions
on the right-hand side and less frequently visited servers are in
1We ignore the partition [0, 1)× [0, 1) in the bottom left corner in
Fig. 3(a) as by definition, a TDG does not contain isolated vertices.

[0,1) [1,2) [2,10) [10,100) [100,∞)

[100,∞)

[10,100)

[2,10)

[1,2)

[0,1)

in-degree

o
u
t-

d
e
g
re

e

Partition parameters

 - Number of vertices n
k

- Mean and std. dev. of

in-degrees μ
k,in
,σ

k,in

,

- Mean and std. dev. of

out-degrees μ
k,out

σ
k,out

(a) Degree plane partitioning

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

99

122

47

0

687

1

0

1

0

182

0

0

0

0

13

0

0

0

0

0

0

0

0

0

in−degree

o
u
t−
d
e
g
re
e

(b) Partitioning of HTTP (80)

Figure 3: Left: The out-degree and the in-degree plane is
divided into 24 distinct, fixed-sized partitions. Right: Partition-
ing of a 300-s interval for traffic analyzed showing the number
of vertices in each partition.

partitions on the left-hand side. Similarly, the clients are in the
zero in-degree partitions (left column), with clients connecting to
several web servers in the upper and clients accessing few servers
in the lower partitions.

4.2 Traffic Templates
A traffic template captures the structural properties of the con-

nection patterns and the flow attribute value distributions for a
time period and a given service port. A template consists of two
parts: a representation of the degree distribution partitioning and
a collection of distribution parameters defining admissible flow
attributes. Moreover, a period length T is assigned to each template
to maintain the temporal dimension associated with the template
definition. Table 1 depicts the list of all template components.

The analysis of parameters from partitions generated over a
number of time intervals of varying length allows us to determine
the temporal behavior of the number of hosts active on a given
service port pdst and of their connectivity properties. With increas-
ing numbers of distinct hosts observed, the connectivity patterns
change. For example, for DNS traffic, the in-degree of servers
generally increases with the number of clients observed whereas
the number of servers remains constant. For web traffic, on the
other hand, many new distinct servers appear in low in-degree
partitions, whereas only the in-degree of popular servers increases.

To address the dependency of the traffic structure on the host
population, we express the partition parameters as a function of the
number of hosts. As such, we approximate the parameters inGk of
each partition k ∈ K with a polynomial function. Each partition is
then expressed as a collection of coefficients ~ag,k for each partition
parameter g ∈ Gk. From the resulting polynomials we derive the
partition parameters for a desired number of hosts when generating
flow traces.

4.3 Flow Trace Generation
The process of flow trace generation consists of three steps.

(1) The templates to produce a traffic scenario are selected by the
user and customized if desired. (2) For each template selected,
a TDG of the underlying traffic structure, whose set of edges
E represents admissible connections, is generated. (3) The flow
records, whose attribute values have been populated, are shuffled
across all templates and output.

4.3.1 Template Customization
The customization of traffic templates consists of the (a) param-

etrization of flow record fields, such as the number of packets,
octets, or flow duration, (b) scaling the number of flows, and (c)

Table 1: Traffic Template Parameters

Parameter Description
T Period length associated with the template parameters.

~ag,k Polynomial coefficients for each partition parameter g ∈ Gk
for every partition k ∈ K.

pdst Destination (service) port for service initiators.

Psrc Source port range for service initiators.

IPsrc , IPdst Ranges for source and destination IP addresses.

dµ, dσ , pµ, pσ ,
bµ, bσ

Lognormal distribution parameters for the duration, packets,
and octets flow record field.

µH , σH Mean value and standard deviation of the number of hosts.

µF , σF Mean value and standard deviation of the number of flows.

adjustment of the number of hosts.
To parametrize flow record fields, the parameters of the number

of packets (pµ, pσ) and octets (bµ, bσ) as well as for flow duration
(dµ, dσ) are set. The number of flows (and its variability over
time) to be generated during a time interval is controlled by
the parameters µF and σF . Similarly, the number of hosts is
customized with µH and σH .

4.3.2 Generating TDGs from Templates
We establish a TDG from the joint degree distribution given by

the partitioning. The parameters, i.e., the number of vertices in
each partition and the mean degrees and deviations, are derived
from the polynomial functions evaluated for the parametrized
number of hosts. To establish a TDG, we apply a random graph
algorithm, the matching algorithm proposed by Newman et al. [11],
which efficiently generates random graphs with arbitrary degree
distributions.

First, all graph vertices are initialized for each partition. Each
vertex in the graph is associated with a unique IP address drawn
randomly from either IP src or IPdst depending on their degree
setting. Then, a set of out-stubs or in-stubs (or both) is assigned to
each vertex; a stub can be considered as an open end of outgoing
or incoming edges. The number of stubs for each vertex in
a partition k is drawn from the normal distribution defined by
N (µk,out , σ

2
k,out) and N (µk,in , σ

2
k,in). Finally, the out-stubs and

in-stubs are picked randomly in pairs and joined to form edges
in the graph. In order to generate graphs without self-loops and
multiple edges between two vertices, we use a modified version of
the matching algorithm proposed by Milo et al. [12].

4.3.3 Flow Record Generation
The number of flows generated for consecutive time intervals

of length T is drawn from a normal distribution defined by the
template parameters µF and σF . The flow generator randomly
chooses connections from the lists of admissible connections (set
of edges E in a TDG) from all templates and creates two flow
records for each entry2. Values for duration, packets, and octets
flow record fields are chosen by sampling from the lognormal
distribution defined by the parameters dµ, dσ , pµ, pσ , and bµ, bσ
respectively. The end timestamps of flows are sampled from a
uniform distribution over a period of length T . The derived end
timestamps, in conjunction with the duration values, yield the start
times and thus the time-dependent interleaving of flows. Finally,
2As a simplification, we assume that for every flow between two
hosts a responder flow exists. The attributes of the responder flow
are set by reversing the source and destination IP addresses and
ports.

the port fields in the records are updated with the destination port
pdst and source port chosen from the port range Psrc .

4.4 Self-Parametrization
In addition to manually defining traffic templates, our approach

provides the ability to automatically extract the template param-
eters from existing flow traces. We refer to this process as self-
parametrization.

First, the top k service ports in terms of the unique number of
hosts as well as the top k ports with respect to the number of flows
are established from the flow traces. The union of the two sets
of ports yields a collection of relevant service ports that account
for the major portion of the traffic as described in Sect. 3. The
parameter extraction is performed on flow trace segments of time
intervals of length T . For each relevant service port, the lognormal
distribution parameters are estimated over all intervals using max-
imum likelihood estimation. Furthermore, the average number of
flows µF (and hosts µH) is established, as well as the standard
deviation values σF (and σH) observed over all intervals. The
collection of source and destination IP addresses (IP src , IPdst) is
derived by counting the number of unique addresses, and grouping
them into network prefixes.

For each time interval analyzed, a TDG is created and the associ-
ated partitioning of the joint out-degree and in-degree distribution
of vertices in the graph is established. In this process, the partitions
for each interval consist of the traffic structure accumulated over all
previously analyzed intervals. As a consequence, the partitionings
capture the dependency of the traffic structure on the (increasing)
number of hosts observed. The polynomial coefficients ~ag,k for the
partition parameters g ∈ Gk are finally estimated using nonlinear
least squares regression. We use a polynomial of degree 4 that
approximates the evolution of partition parameters depending on
the number of hosts well.

5. EVALUATION
In this section, we evaluate the flow generation and self-param-

etrization technique. We assess the accuracy of graph generation
algorithm by creating TDGs from partition parameters and compar-
ing the graph metrics of the generated graphs and graphs from real
traffic traces. Moreover, we show that the flow records generated
by our technique exhibit similar structural properties as the records
from original traffic, and we provide performance measurements of
the record generation. In a case study, we demonstrate the ability
of using background traffic templates in combination with user-
defined templates to generate traces containing abnormal traffic
events.

The evaluation testbed consists of a desktop-class commodity
Core 2 Duo processor with 3 MB shared L2 cache running at
3.06 GHz with 4 GB RAM. We implemented a prototype of our
technique in Perl 5. We use two different data sets for the evaluation
of our framework. The first data set consists of 10 days of NetFlow
records of the internal traffic (LAN) from an average-sized campus
network, collected between May 1, and May 9, 2009. The second
data set comprises 7 days of NetFlow records collected at a large
hosting environment between April 14, and April 20, 2008.

5.1 Graph Generation
We evaluate the graph generation technique in terms of the

number of vertices and edges as well as the degree distribution of
TDGs created from the partition parameters Gk. First, we generate
the graphs directly from static partition parameters. Then, we study
the effect of the approximation of the partition parameters using the
polynomial function.

We analyzed flow traces from the hosting provider data set for a
time period of one hour, divided into 12 intervals of 300-s length,
worth of 5.80 million flows and 172 752 unique IP addresses. For
each interval, we extract the partitioning parameters Gk from the
traffic accumulated over the analyzed intervals. Then, we generate
a TDG for each partitioning. We repeat the random graph algorithm
for different ports for five times. In Fig. 4 we show the relative
difference in the number of vertices |V | and edges |U | between the
original and the generated graph for each interval for DNS (53) and
HTTP (80) traffic. We observe that the random graph algorithm
introduces an average error of 0.62% (σ = 2.03) for DNS and
0.02% (σ = 0.05) for HTTP in the number of vertices, and 1.36%
(σ = 2.78) for DNS, 0.47% (σ = 0.15) for HTTP in the number of
edges. In some rare occasions a higher difference in the number of
vertices and edges can be observed such as for DNS in Fig. 4. We
found that this particular case was caused by a mismatch between
the number of in-stubs and out-stubs (when rounding the values
sampled from distributions) which lead to isolated vertices and
fewer connected edges.

Now, we apply the self-parametrization technique to extract the
polynomial coefficients ~ag,k over the same intervals. Based on
the coefficients, the partition parameters Gk are computed from
the polynomials and the TDGs are generated. We observe that
the graphs generated in this manner exhibit slightly higher average
errors, 0.28% (σ = 0.60) for DNS and 0.62% (σ = 1.44) for HTTP
in the number of vertices, and 2.49% (σ = 4.18) for DNS and 1.47%
(σ = 0.71) for HTTP in the number of edges. We justify the error
introduced by the polynomial with its ability to achieve still good
approximations of the partition parameters for an arbitrary host
population size.

We further compare the degree distribution of the underlying
undirected graph for both the original and generated graphs on
different ports by computing the empirical Complementary Cumu-
lative Distribution Function (CCDF) for the degree of each vertex
v ∈ V . In Fig. 5, we depict the CCDF for the original graphs
and those generated from partition parameters, both created from
an analysis of one hour of traffic trace from the hosting provider
data set on two popular service ports. To show the stability of
our measurements, we repeated the graph-generating algorithm 5
times and plot all curves. We find that our approach reproduces
the original degree distribution and thus the host connectivity
properties accurately. The number of vertices with a specific out-
degree and in-degree in the generated graphs is close to the values
in the original graphs.

5.2 Flow-Generation Performance
We divide the evaluation of the flow-generation performance into

two parts. First, we measure the time needed to create the TDGs
for all templates and to construct the connection lists. Then, we
quantify the flow generation rate achieved when iterating over the
connection list, setting record attributes, and sending NetFlow v5
packets to a collector.

The graph generation and the preparation of the connection list
for 5000 unique hosts present in 72 templates took 4.2 s (σ = 0.39)
on average. Increasing the number of hosts for a period to 22 000
hosts yields a mean processing time of 28.7 s (σ = 0.74). After
the pre-processing step, the flow records are generated from the
connection list. We measure an average rate of 98 218 flows/s
(σ = 3907). Varying the number of flows generated up to 10M flows
leaves this rate unchanged. We conclude that the graph generating
algorithm scales well in terms of the number of hosts and that the
generator achieves high flow rates.

-20

-10

 0

 10

 20

 10 20 30 40 50 60re
la

ti
v
e

 d
if
fe

re
n

c
e

 [
in

 %
]

period length [in min]

DNS (53)

edges
vertices

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e

 d
if
fe

re
n

c
e

 [
in

 %
]

period length [in min]

HTTP (80)

edges
vertices

Figure 4: Relative difference between the number of connected
vertices and edges of the original and the generated graphs (5
runs for each period length).

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

degree

DNS (53)

original
generated

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

degree

HTTP (80)

original
generated

Figure 5: CCDF, P (X > x), of the degrees of each vertex in
the original and the generated graphs.

5.3 Traffic Structure
We use the self-parametrization on the LAN traces to extract

the traffic template parameters. The flow records analyzed span
over 48 consecutive 300-s intervals, comprising a total of 5.15
million flows and 43 385 unique IP addresses. We generate traffic
traces for a period of 4 hours from the templates and create the
TDGs. Similarly, we establish the TDGs from the original traffic
traces (with equal period length) from three different days of the
LAN data set. Then, we compare the TDGs by means of 8 graph
metrics, that capture the structure of network traffic, which have
been introduced by Iliofotou et al. [10] and recently refined [13].

Table 2 shows a comparison of the graph metrics of the original
and generated traces for port 53 and 80 (10 runs). The Max
Degree Ratio (MDR) is the maximum vertex degree in the graph
normalized by the total number of vertices minus one. The
directionality of a graph is captured by the percentage of sources
(OnlyOut), sinks (OnlyIn), and vertices with both incoming and
outgoing edges (InO). The Largest Weakly Connected Component
(LWCC) quantifies the connectivity of a graph and is indicated

Table 2: Comparison of graph metrics of TDGs established from original and generated traffic.
Port Trace type Vertices Edges Average Degree InO, % OnlyOut, % OnlyIn, % LWCC, % MDR RU r

53 original 7 275 8 991 1.239 (0.028) 0.648 (0.062) 19.196 (1.248) 80.156 (1.191) 99.992 (0.011) 0.803 (0.012) 0.049 (0.005) -0.567 (0.005)

generated 7 592 9 484 1.249 (0.001) 0.632 (0.000) 20.138 (0.005) 79.229 (0.005) 99.818 (0.055) 0.783 (0.003) 0.051 (0.000) -0.532 (0.006)

80 original 8 399 26 259 3.127 (0.090) 0.520 (0.015) 10.349 (0.667) 89.132 (0.657) 99.621 (0.206) 0.067 (0.004) 0.258 (0.006) -0.373 (0.005)

generated 8 167 24 865 3.045 (0.010) 0.524 (0.007) 10.608 (0.031) 88.870 (0.035) 98.893 (0.201) 0.036 (0.004) 0.279 (0.004) -0.336 (0.006)

Figure 6: TDG created from generated flow traces containing a
user-defined network scan combined with background traffic.

relative to the total number of vertices. The Relative Uncertainty
(RU) measures the uniformity of the degree distribution, while
the assortativity coefficient r provides a metric of the relationship
between the degrees of adjacent vertices. We observe that the
differences in the metrics are small. This shows that our approach
generates traces with structure highly similar to the original traffic.

5.4 Definition of Traffic Scenarios
The availability of specific borderline scenarios such as network

scans or abnormal surges of traffic is of special interest when eval-
uating flow-based network-monitoring systems. We demonstrate
that such events can easily be defined using our technique by
defining a customized traffic scenario of a network scan performed
by three hosts. We manually created a template and set the
polynomial coefficients in two partitions to produce three scanners
performing a scan of a population of 600 target hosts on port 22.
Normal background traffic was taken from the port 22 template
obtained in Sect. 5.3. In Fig. 6, we depict the TDG created from
the flow records generated from the two templates. The three
scanners are reflected distinctively from the background traffic as
three vertices with high out-degrees. We use such scenarios, among
others, to assess the quality of analysis results reported by the
AURORA traffic monitoring system [14].

6. CONCLUSION
In this paper, we proposed a graph-based method to generate net-

work flow record traces using traffic templates to enable systematic
evaluation of flow-based monitoring systems. The traffic templates
define the structural properties of the connection patterns as well
as the flow attribute distributions observed for various applications.
By combining a set of templates, traces from desired traffic sce-
narios can be generated, such as complex monitoring conditions,
traffic anomalies, or regression tests. The trace generation allows
the parameterization of templates to modulate the number of hosts
and flows while preserving the underlying structural properties of
the traffic. A self-parameterization technique has been introduced
to extract templates automatically from existing flow-level traces
to simplify the generation of realistic traffic. The evaluation of our
method has shown its performance in generating complex traffic
traces at high export rates.

[1] C. Rolland, J. Ridoux, and B. Baynat, “LiTGen, a
Lightweight Traffic Generator: Application to P2P and Mail
Wireless Traffic,” in PAM ’07: Proceedings of the Passive and
Active Measurement Conference, 2007.

[2] K. V. Vishwanath and A. Vahdat, “Realistic and responsive
network traffic generation,” in SIGCOMM ’06: Proceedings
of the 2006 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, 2006.

[3] A. Rupp, H. Dreger, A. Feldmann, and R. Sommer, “Packet
trace manipulation framework for test labs,” in IMC ’04: Pro-
ceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, 2004.

[4] J. Sommers, V. Yegneswaran, and P. Barford, “A framework
for malicious workload generation,” in IMC ’04: Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measure-
ment, 2004.

[5] Paessler, “Paessler Netflow Generator,” http://www.paessler.
com/tools/netflowgenerator/ (last accessed: Apr. 2010).

[6] J. Juping, “Netflow Simulator in C#,” http://sourceforge.net/
projects/netflowsim/ (last accessed: Apr. 2010).

[7] D. Brauckhoff, A. Wagner, and M. May, “Flame: A flow-level
anomaly modeling engine,” in CSET’08: Proceedings of the
Conf. on Cyber Security Experimentation and Test, 2008.

[8] J. Sommers and P. Barford, “Self-configuring network traffic
generation,” in IMC ’04: Proceedings of the 4th ACM SIG-
COMM Conference on Internet Measurement, 2004.

[9] J. Sommers, H. Kim, and P. Barford, “Harpoon: a flow-
level traffic generator for router and network tests,” in SIG-
METRICS ’04/Performance ’04: Proceedings of the Joint
International Conference on Measurement and Modeling of
Computer Systems, 2004.

[10] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,
S. Singh, and G. Varghese, “Network monitoring using traffic
dispersion graphs (TDGs),” in IMC ’07: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement,
2007.

[11] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random
graphs with arbitrary degree distributions and their applica-
tions,” in Phys. Rev. E 64(2), 2001.

[12] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman,
and U. Alon, “On the uniform generation of random
graphs with prescribed degree sequences,” Eprint arXiv:cond-
mat/0312028, 2003.

[13] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher, “Exploit-
ing dynamicity in graph-based traffic analysis: techniques and
applications,” in CoNEXT ’09: Proceedings of the 5th Inter-
national Conference on Emerging Networking Experiments
and Technologies, 2009.

[14] IBM Research, “AURORA: Traffic analysis and visualiza-
tion,” http://www.zurich.ibm.com/aurora/ (last accessed: Apr.
2010).

