VirtualMesh: An Emulation Framework for Wireless Mesh
Networks in OMNeT++

Thomas Staub
Institute of Computer Science
and Applied Mathematics
Neubriickstrasse 10
3012 Bern, Switzerland
staub@iam.unibe.ch

ABSTRACT

Wireless Mesh Networks (WMN) have proven to be a key
technology for increased network coverage of Internet in-
frastructures. The development process for new protocols
and architectures in the area of WMN is typically split into
evaluation by network simulation and testing of a proto-
type in a test-bed. Testing a prototype in a real test-bed is
time-consuming and expensive. Irrepressible external inter-
ferences can occur which makes debugging difficult. More-
over, the test-bed usually supports only a limited number
of test topologies. Finally, mobility tests are impractical.
Therefore, we propose VirtualMesh as a new testing archi-
tecture which can be used before going to a real test-bed.
It provides instruments to test the real communication soft-
ware including the network stack inside a controlled environ-
ment. VirtualMesh is implemented by capturing real traffic
through a virtual interface at the mesh nodes. The traffic
is then redirected to the network simulator OMNeT++. In
our experiments, VirtualMesh has proven to be scalable and
introduces moderate delays. Therefore, it is suitable for pre-
deployment testing of communication software for WMNSs.

Categories and Subject Descriptors

1.6.8 [Types of Simulation]: Combined—network emula-
tion

General Terms
DESIGN, EXPERIMENTATION

Keywords

wireless emulation, OMNeT++, integration of real nodes in
simulated environment, pre-deployment testing

1. INTRODUCTION

Wireless Mesh Networks (WMN) have become one of the
key technologies for providing increased network coverage

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OMNEeT++ 2009, Rome, Italy.

Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Reto Gantenbein
Institute of Computer Science
and Applied Mathematics
Neubrickstrasse 10
3012 Bern, Switzerland
gantenbe@iam.unibe.ch

Torsten Braun
Institute of Computer Science
and Applied Mathematics
Neubrickstrasse 10
3012 Bern, Switzerland
braun@iam.unibe.ch

of Internet infrastructures. The simple cost-efficient deploy-
ment with self-configuration facilities makes them a valuable
alternative to wired networks to increase the network cov-
erage [1]. Therefore, WMNSs are in the focus of current re-
search. Several research and city WMNs already exist [3, 5,
9] and WMNSs are evolving from pure research networks to
carrier-grade communication infrastructures, which require
extensive pre-deployment testing.

The development process in WMNs is typically split into
evaluations by simulations and testing a real prototype in a
test-bed. First, the protocols and architectures are imple-
mented and evaluated in a network simulator. Afterwards,
a prototype is implemented on the target platform such as
Linux and tested inside a test-bed before deployment in the
real network. Simulation provides most flexibility in testing.
Different and large scale experiments as well as experiments
with mobility of devices and users are possible. It provides
the best way for testing and debugging the functionality
of the approaches. But unfortunately, simulation models
cannot cover all influences of the operating system, the net-
work stack, the hardware, and the physical environment due
to complexity constraints. Therefore, the transition from
the simulation models to the deployable solution remains
challenging. Testing the prototype in a test-bed during the
implementation process is time-consuming, costly, and very
limited. Due to economical reasons, the scale of the test-
beds is limited and they are often not deployed in isolated en-
vironments, which limits reproducibility. Interferences with
existing network are possible and irrepressible, which makes
debugging of new protocols very challenging. Furthermore,
the number of test topologies is limited and mobility tests
are impracticable. Moreover, WMNs provide an enhanced
testing challenge compared to simple wireless access net-
works. They support mobile users and high-throughput ap-
plications. Their architecture contains self-configuring and
self-healing mechanisms, which have to be included in the
tests. The cross-layer interactions have to be tested in a
controlled environment without any irrepressible influences.
Moreover, the tests have to cover time and delay aspects of
the real network stack. All these tests cannot be fully done
in simulations, but also in a test-bed they are difficult to be
performed. We therefore propose to emulate the physical
medium to gain more control in the development process.

The authors of [7] validated the wireless model in the net-
work simulator ns-2 by comparing measurements of a real
network setup with an emulated and simulated network.
They concluded that with a proper parametrization the sim-

ulation model can approximate the real network, but some
aspects like delays introduced by the hardware and the oper-
ating system cannot be considered in the simulation. There-
fore, their emulated network provides results that match the
real measurement more accurately than the simulation.

The approach presented in [6] tries to integrate the be-
havior of the real network stack and the operating system
into the testing process by using virtualized hosts connected
through an emulation framework. The virtual hosts are run-
ning a L4 microkernel on top of a real-time kernel. To inte-
grate the wireless network behavior, the hosts are connected
by the 802.11b network emulator MobiEmu [16]. Although
the authors praised the low hardware requirements of their
approach, they did not publish any results about the accu-
racy of their setup.

JiST /MobNet [10] provides a comprehensible Java frame-
work for simulation, emulation, and real world testing of a
wireless ad-hoc network. It allows to run the same tests in-
dependently of platform and abstraction level. MobNet is
a wireless extension on top of the Java in Simulation Time
(JiST) simulator. The drawback of this approach is that
most communication software and network protocol stacks
are not written Java and therefore afterwards a further tran-
sition to an embedded system may be necessary.

Another approach for testing real implementations in a
very flexible network is provided by the ORBIT testbed [11].
It provides a configurable indoor radio grid for controlled
experimentation and an outdoor wireless network for testing
under real-world conditions. The indoor radio grid offers
a controlled environment as an isolated network, in which
background interferences can be injected. Although the 20 x
20 grid of nodes offers a large variety of different topologies,
it can be too restricted and mobility tests are even more
limited. Furthermore, the scarce ORBIT resources may be
not available for all experiments.

UMIC-Mesh [17] is a hybrid WMN testbed. Besides a
testbed with real wireless mesh nodes, UMIC-Mesh pro-
vides virtual nodes by using XEN virtualization. The vir-
tual nodes are interconnected by a combination of the ad-
vanced networking features of the Linux kernel. This in-
cludes packet filtering for controlling the communication be-
tween the nodes. The virtual network is only intended for
software development and functionality validation. There-
fore, the behavior of the wireless medium is not modelled in
this approach.

In order to cope with the problem of a simulator overload
during network emulation, the authors of [15] introduce the
concept of synchronized network emulation. They replace
real hosts with virtualized hosts using XEN. A central syn-
chronizer component then controls the time flow of the vir-
tual hosts by an adapted scheduler for XEN. It keeps them
synchronized with the network simulator OMNeT++ [14].

The integration of real network stacks inside a network
simulator provide another mechanism for testing complex
protocol behavior. OppBSD [4] integrates the TCP /IP stack
of FreeBSD in the network simulator OMNeT++. The
project Network Simulation Cradle [8] provides support for
using the real network stacks of Linux, FreeBSD, and Open-
BSD with the network simulator ns-2.

Our contribution is an emulation framework for WMNs for
the network simulator OMNeT++. Our VirtualMesh frame-
work offers enhanced evaluation of communication software
written for real and virtualized nodes over an OMNeT++

‘ Transport (TCP, UPD, ...) ‘

Internet (ARP, IP and ICMP)

[9POIAI || SePON pazienuIA Jo [esy

| MAC |

Figure 1: Subdivision of the network stack to the
real / virtualized nodes and the simulation model.

simulation model. Communication software can be tested
without any adaptations over an emulated network in OM-
NeT++4. VirtualMesh uses real mesh nodes with a real net-
work stack. It intercepts the wireless traffic before transmit-
ting it over the air and forwards it to a simulation model.
This simulation model offers a vast flexibility in topologies
and mobility tests. In addition, the scale of the test scenar-
ios can be increased by host virtualization [6].

The remainder of this paper is structured as follows. Sec-
tion 2 presents the general architecture of VirtualMesh. In
Section 2.1, the packet interception and forwarding is de-
scribed. Section 2.2 shows the simulation model and the
feeding of real traffic to the simulation. The individual pro-
cedures used in VirtualMesh are illustrated in Section 2.3.
We provide an evaluation of VirtualMesh in Section 3. Fi-
nally, we presents our conclusions in Section 4.

2. VIRTUALMESH

VirtualMesh combines the advantages of real world tests
performed on embedded Linux systems with the flexibil-
ity and the controlled environment of a network simulator.
The main advantages are: the real communication software
is used, the real network stack is tested, background traf-
fic/interferences can be controlled, and different mobility
tests can be easily performed. The real implementation of
the communication software can be tested. Accordingly, the
behavior of the Linux network stack is embedded in a con-
trolled testing environment. There are no irrepressible influ-
ences on the experiments such as interferences from neigh-
boring networks and power lines, steel structures of build-
ings, or changing weather conditions. In addition, the un-
derlying simulated network enables large scale experiments.
It supports changing topologies and different mobility sce-
narios. This makes automated testing of the real communi-
cation software with a high variety of scenarios possible.

The main concept of VirtualMesh is to intercept and redi-
rect the real traffic at the nodes to a simulation model which
then handles network access and the behavior of the phys-
ical medium. The network stack is therefore split into two
parts as shown in Figure 1. The application, transport and
Internet layer are handled by the real / virtualized node. At
the MAC layer the traffic is captured by a virtual network
interface and then redirected to the simulation model. The
simulation model calculates the network response according
to the virtual network topology, the propagation model, the
background interferences, and the current position of the
nodes. Only the MAC layer and the physical medium are

Node with physical interface Node with virtual interface
App App
Ao A
2 2
> (%] 3 [2]
K L
Linux 'i 5 Linux 'i é
Network ° % Network ° %
Stack £ = Stack L =
kol B © B
[= [=
network wireless network vifd
interface extensions interface
| driver | | driver (tun) | %7
| hardware device | | PacketModeller |

v

simulated hardware
device (WlanNIC)

(a) (b)

Figure 3: Node with Linux network stack and (a)
a real network interface or (b) our virtual network
interface (PacketModeller) communicating with the
OMNeT++ simulation model..

simulated. All the other layers remain unchanged and work
just as in a real test-bed of embedded Linux nodes.

The general architecture of VirtualMesh is shown in Fig-
ure 2. It consists of one or several computers hosting the
simulation model and real or virtualized mesh nodes. The
nodes and the model are interconnected by a dedicated IEEE
802.3 Ethernet service network. The wireless interfaces of
the nodes are replaced by virtual interfaces which communi-
cate over the service network to the simulation model. Be-
sides real nodes, the architecture supports virtualized hosts.
Host virtualization is performed by XEN [2]. However, other
virtualization techniques could be used too. It provides ad-
ditional scalability of the system. One standard server ma-
chine may hold up to ten virtual mesh nodes without any
problem.

2.1 Traffic Redirection: Virtual Interface and
PacketModeller

Traffic interception/redirection at the MAC layer is the
principal idea of VirtualMesh. In order to redirect the wire-
less traffic from the nodes to the simulation model, we re-
place the normal wireless device by a new virtual interface
and the PacketModeller. Our virtual wireless device is built
on top of the TUN/TAP device of the Linux kernel and is
managed by a small virtual interface device daemon (vifd).
The TUN/TAP device redirects any received network traf-
fic as Ethernet frames to the userspace where the Packet-
Modeller takes care of them, while vifd is reponsible for the
configuration of the wireless parameters.

A normal Linux network interface (see Figure 3a) is con-
figured by net-tools or by the ip-route2 suite (i.e. by the
commands ifconfig or ip). Additionally, for wireless de-
vices, wireless parameters such as channel, operation mode,
transmission power, rts/cts, and encryption are set by the
wireless-tools (e.g. iwconfig) through the Wireless Exten-
sion API of Linux. As the behavior of our virtual device is

similar to the one of a normal network device, no changes in
the network configuration itself are required. Furthermore,
the wireless parameters of our virtual interface can be set by
a patched version of wireless tools such as iwconfig (see Fig-
ure 3b) which then sets the parameters in our device daemon
vifd.

The user space daemon PacketModeller receives all pack-
ets transmitted to the virtual interface and encapsulates
them in new packets, which are sent to the host running
the simulation model. In the opposite direction, packets
coming from the simulation model are decapsulated at the
PacketModeller and raw Ethernet frames are injected back
into the network stack via the virtual interface, which then
passes them to the application (see Figure 4, numbers corre-
spond to the individual steps). In this way, all the wireless
traffic of the node is processed by the virtual interface, the
PacketModeller, and the simulation model.

Figure 4 shows the packet flow from the application at
source node S to destination node D. Both nodes are con-
nected to the simulation model on host H. The application
at node S sends the packets to the Linux network stack (1)
where they are intercepted by the virtual wireless interface
vif0 (2). The original Ethernet frames are then redirected
to the PacketModeller (3), which encapsulates them in new
packets (4). These packets are transmitted through the Eth-
ernet interface eth0 (5) to the simulation model on host H
(6). At host H, the packets are fed to the simulation model
(described later in Section 2.2). After processing in the sim-
ulation model, the resulting packets are encapsulated again
and sent to their destination node D (7). There, the pack-
ets are received via the Ethernet interface eth0 (8) and the
PacketModeller (9). The PacketModeller decapsulates the
packets and injects them back into the network stack via the
virtual interface vif0 (10). Finally, the application at node
D receives the packets (11). The packet redirection is fully
transparent for the applications and the network stack.

For accurate simulations, the model needs to know several
additional static and dynamic parameters describing the ex-
ternal nodes and the current configurations of their wireless
interfaces. Static parameters (e.g. IP and listening port of
the PacketModeller on ethQ) are set at the startup of the
node. The PacketModeller has to register these node pa-
rameters at the model with a REGISTER message (see Fig-
ure 5). This message contains the node identification, the
MAC address of the node representation inside the model,
the host name, the infrastructural IP address and the port
where the PacketModeller is listening for incoming traffic.
The REGISTER message is sent by the PacketModeller just
after the startup of the node. The REGISTER message is
retransmitted if it is not acknowlegded by the model within
ten seconds. After the successful reception of the acknowl-
egdment, the node can start transmitting its wireless traffic
to the model. Through the node registration, the model
has created an internal representation of the external node
(ProzyHost). Dynamic parameters such as the current com-
munication channel and transmission power are included in
any DATA packet sent from the PacketModeller to the sim-
ulation model. The model is therefore supplied with these
parameters and can calculate the simulation behavior. The
DATA message is illustrated in Figure 5.

2.2 Simulation Model

Our simulation model (WlanModel) has been written for

Real Nodes
with Virtual Interfaces

Virtualized Nodes
with Virtual Interfaces: (Emulation)

1
I

l

Virtual
Interfaces

Virtual
Interfaces

XEN Hypervisor

/4

Communication
between Nodes and Model

Model in
Network SimulatO{ (Omnet++)

TR =l

’

/ ~
,/ Mesh Clients &

Figure 2: VirtualMesh architecture with real nodes, virtualized nodes, and model.

Source node S with virtual interface Node H hosting the model Destination node D with virtual interface

| |

| cRAWSocketRTScheduler |

PacketProxy

- N

Simulation model in Omnet++

Figure 4: Packet flow between two nodes interconnected by the OMNeT++ simulation model.

REGISTER Message

Type: virtual host
register Z MAC name 17 oL
DATA Message

Ethernet Packet

Type: 5
| atie ID | Channel | TxPower | Options

Figure 5: Message format to communicate with the
model: data transmission and node registration.

the network simulator OMNeT++ [14]. It receives the traffic
coming from the external nodes, calculates the system’s re-
sponse, and then sends the calculated packets back to exter-
nal nodes. It consists of the objects cRAWSocketRTSched-
uler, PacketProxy, several ProxyHosts with the INET Ieee-
80211NicAdHoc stack (WlanNIC). Furthermore, the helper
class NodeManager takes care of a proper node respresen-
tation inside the model. The wireless network behavior is
modelled by INET’s ChannelControl and MobilityModels.
The individual components are in the following described
in more detail (see also Figure 6, individual steps are num-
bered).

Together with the PacketProry the cRAWSocketRTSched-
uler forms the core of the simulation model. It represents
the interface between the external nodes and the simulation
model. It handles the processing of simulation messages,
the in-/outcoming network traffic, and the message schedul-
ing inside the WlanModel. 1t listens on UDP port 2424 for
incoming packets (REGISTER and DATA messages) from
the PacketModeller components of external nodes. Upon
packet reception (1), the new packet is stored in the receive
buffer of the PacketProxy module and a notification message
with the reception time is enqueued in the message queue of
the simulation. This message queue is then processed step-
by-step ensuring that required timing constraints are met.
Therefore several functions include timeouts to ensure time
critical processing of external packets and internal messages.

The PacketProry module handles the REGISTER and
DATA packets received from the cRAWSocketRTScheduler
as well as the packets from the ProzyHost (RAWEtherFrame
packets). If a new external node registers its presence to the
model, the PacketProry adds the node information to the
NodeManager which is responsible for the administration of
the external nodes inside the simulation model. The Node-
Manager therefore holds a table containing the node identi-
fiers, the virtual MAC addresses, the hostnames, the infras-
tructural IP addresses of the nodes, the listening ports of
the PacketModeller, and the out gates of the corresponding
ProzyHosts. Upon DATA message reception (2) the Packet-
Proxy first checks whether the sending node has already
registered at the NodeManager (3). If no registration exists,
the packet is dropped immediately. Otherwise, the encap-
sulated original Ethernet frame and the dynamic communi-
cation parameters are included in a new RAWEtherFrame
packet (4) which is then transmitted to the corresponding
WlanNIC of the ProzyHost (5). If the wireless parame-
ters have been modified since the last frame, the changes
are inherited by the WianNIC. When a RAWEtherFrame
packet arrives at the PacketProzy (11), the original Ether-
net frame is extracted and sent as DATA message to the
PacketModeller of the corresponding external node (12). IP

addresses and ports are set according to the entries in the
NodeManager.

The external nodes are modelled as ProxyHosts. A Proxy-
Host is a compound module of OMNeT++, i.e. it does
not contain any message processing logic but simply adds
a logical interface to the existing WilanNIC module. The
WilanNIC receives the RAWEtherFrame messages from the
PacketProzy. 1t extracts the wireless parameters and config-
ures its parameters accordingly (6). The RAWEtherFrame
is then further processed through the Ieee80211NicAdhoc
stack of the INET framework (7). Henceforth, the exist-
ing IEEE 802.11 model implementations of INET takes care
of the packet (8) until it is received again by a ProzyHost
module (9). When the PacketProzy gets a packet from the
WlanNIC (10), it is finally forwarded over the system net-
work (11) to the external node (12).

2.3 Procedures

In the following, the different procedures in VirtualMesh
are shown step-by-step covering the communication between
the real node and simulation model as well as the commu-
nication inside the simulation model. Actually, three pro-
cedures exist in VirtualMesh. First, the external node has
to register itself at the simulation model (node registration).
Then it transmits packets (packet transmission) to its repre-
sentation in the simulation model. After packet processing
inside the simulated network, an internal representation of
a node receives the packet and then transmit it to the con-
nected external node (packet reception). The numbers in
the brackets (5.x and 7.y) reflect the steps in Figure 4 and
Figure 6.

2.3.1 Noderegistration

1. The node with a VirtualMesh interface boots. The
configuration of the virtual interface contains the IP
address and the port of the simulation model.

2. The node’s PacketModeller sends a REGISTER mes-
sage to the model (4.4 - 4.6).

3. The model adds the node to the NodeManager, con-
nects it to a ProxyHost, and replies with an acknowl-
edgement (6.1 - 6.3). Positions and mobility of the
ProxyHost are already configured inside the simulation
model.

4. Upon reception of the acknowlegement, the node is reg-
istered and can send/receive traffic to/from the model.

2.3.2 Packet transmission by an external node

1. The source application at the node sends a packet to
the virtual interface vif0 (4.1, 4.2).

2. The PacketModeller encapsulates this packet, adds the
dynamic wireless parameters (e.g. channel and trans-
mission power), node identification, and then redirects
the packet as DATA message to the model (4.3 - 4.6).

3. The cRAWSocketRTScheduler passes and schedules the
packet to the PacketProzy (6.1, 6.2).

4. The PacketProzy creates a RAWEtherFrame message
with the decapsulated Ethernet frame of the DATA
message and the information about the sender and des-
tination node from the NodeManager (6.3, 6.4).

Traffic to/from nodes

g | =

1D h IP port | virtual MAC
cRAWSocketRTScheduler ANBBCCODEEFF | node01 10.1.0.2 | 2040 | anssccoveerr
AABB:CCDDEESS node03 10.1.0.9 | 4050 | AaBB:cC:DDEE:88

\ 4
@ 0]

PacketProxy NodeManager

@ [_T packet]

simulated host

~
~
~
Seae
\,
N\,

[T packet

ProxyHost

simulated host ProxyHost

WianNI
| © Uit WianNIC

Sacoe”

[T packet |
Figure 6: Packet flow inside the simulation model.

5. The destination MAC address is added to the control Due to traffic interception, traffic redirection to a simu-
information of this packet. lation model, and the optional node virtualization, the ar-
chitecture of VirtualMesh introduces some additional delays
6. The RAWEtherFrame message is transmitted to the to the system. We have therefore performed several experi-
corresponding ProzyHost (6.5). ments in order to quantify these delays and detect possible

bottlenecks.
(a) WianNIC extracts the wireless settings from the To determine the round-trip times (RTT), we have used
RAWEtherFrame message and configures its wire- simple ping (ICMP echo) measurements in a network simil-
less parameters (6.6). iar to the one in Figure 2. The network consists of one com-

(b) The packet is handled by the Teee80211NicAdhoc puter hosting the simulation model (OMNeT++ 3.4b2), two
(6.7) and processed by the wireless model (6.8). real nodes with VirtualMesh interfaces (PCEngines ALIX3),

and one computer with host virtualization (XEN 3.2.1) hold-
2.3.3 Packet reception by an external node ing several virtual node instances. The two hosts (Pentium
D 930 3GHz, 2 GB RAM) and the nodes are interconnected
by a 1 Gbps Ethernet network.

Our evaluation includes the latencies/delays introduced
by the network including virtualization, the traffic intercep-
tion/redirection, and by the model. In the following figures,
each data set represents measurement series of 100 ICMP
echoes. The results are shown as boxplots, i.e. a bold line
marks the median value, box lines represent lower and upper
quartiles, and the circles mark outliers.

1. ProzyHost receives a packet through the WianNIC' (6.9)
and passes it to the PacketProzy (6.10).

2. The PacketProzy encapsulates the Ethernet frame in-
side a new DATA message and sends it to the corre-
sponding external node (6.11, 6.12).

3. The PacketModeller at the external node then decap-

sulates the packet and injects the Ethernet packet to First, we measured three different network latencies, i.e.,
the network stack of the node (via the virtual interface between two physical hosts, between a physical host and a
vif0) (4.7 - 4.11) para-virtualized host, and between a physical host and a

full-virtualized host. Full virtualization provides a complete
simulation of the underlying hardware. A full-virtualized

3. EVALUATION host therefore uses the real device drivers which then work

For functional evaluation, we have tested several existing on top of an emulated hardware layer. All software includ-
Linux applications such as secure remote shell (ssh) and file ing the operating sytem and device drivers runs unmodified,
transfers using FTP and secure copy (scp). These appli- in the same way as on the raw hardware. In contrast, para-
cations just work without any problems over the simulated virtualization introduces some adaptations to the guest op-

network of VirtualMesh. erating system. The software interface of a para-virtualized

0.9
0.8
0.7

0.6
0.5
0.4
0.3 ! }

S I

0.1

RTT [ms]

(@) (b) (©
Scenario
Figure 7: Network latency between two hosts: phys-

ical host to physical host (a), to para-virtualized host
(b), and to fully virtualized node (c).

machine is similar but not identical to that of real hardware.
Therefore, the drivers for network and block devices are re-
placed. In our scenario, the para-virtualized host employs
our standard embedded Linux system which is also running
on a real node. It makes use of the new para-virtualization
feature of recent Linux kernels (paravirt_ops) that allows it
to run on native hardware and as para-virtualized machine.
The para-virtualized kernel accesses the network and block
devices through a Xen specific driver. The main advantage
of para-virtualization is its improved performance compared
to full virtualization.

Our results in Figure 7 confirm that the additional delay
introduced by virtualization is nearly negligible with less
than 0.2ms for communication between a physical host and
another physical host (a), or between a physical host and a
para-virtualized host (b). If we replace the para-virtualized
node with a fully virtualized node the delay obviously signif-
icantly increases due to the hardware emulation layer (see
(c) in Figure 7). It still remains acceptable with 0.35ms,
though. Nevertheless, we decided to use para-virtualization
for VirtualMesh as it introduces nearly half the delay. More-
over, the standard Linux kernel already includes the para-
virtualization features by default. The introduced delay by
the traffic redirection should be as small as possible in or-
der to have no significant influence on the simulated wireless
network as the hardware behaviour is simulated in the sim-
ulation model. Moreover, the replacement of the Ethernet
driver does not affect the accuracy of VirtualMesh.

The second experiment evaluates the delay introduced by
the PacketModeller (see Figure 8). RTTs between two vir-
tual hosts with and without traffic interception by virtual
interface vif0 and PacketModeller are measured. The re-
sult shows a moderate increase of less than 0.15ms which is
nearly negligible.

Our third experiment is showing the additional delays in-
troduced by packet processing through the simulation model
(see Figure 9). Packet processing in the current version of
VirtualMesh is about 3ms for two context switches between
real space to simulated space including simple processing
inside the model (a). Our one-hop and two-hops measure-
ments match this result approximately with 7ms for four
context switches (b) and 10ms for eight context switches
(c). The RTT of 22ms for the three-hop measurement with
twelve context switches between real network and the simu-

0.35

0.25

0.2 ‘

0.15

0.1

RTT [ms]

0.05

(@ (b)

Scenario

Figure 8: RTT between two virtualized nodes with-
out PacketModeller (a) and with PacketModeller

(b)

25
s —
=20
=
[vd
B2
S 15
[}
2 T
g
o 10
=
g :
[0}
8 sp—
[2 ——
0

@ (b) (©) (d)
Scenario
Figure 9: Processing latency of the simulation model

(a) and the resulting RTTs for a one-hop (b), two-
hops (c), and three-hops (d) connection.

lation shows some increased delay, which has to be evaluated
in more detail.

We further performed some TCP throughput measure-
ments by the simple FTP file transfer over multiple hops.
The results are shown in Figure 10. The retrieved through-
put values with 34 Mbps for the one-hop connection, 15
Mbps for the two-hop connection, and 7.5 Mbps for the
three-hop connection make us confident that VirtualMesh
is a valuable infrastructure for the pre-deployment testing
of WMNs. Furthermore, they show a significant decrease of
the throughput depending on the number of hops similar to
the 1/(hop count) decrease shown in literature [12, 13].

4. CONCLUSIONS

After development and evaluation with network simula-
tors, Wireless Mesh communication solutions require exten-
sive pre-deployment testing of their target platform imple-
mentations. This is difficult to achieve in a real test-bed
as irrepressible sources of interference exist. Furthermore,
the variety of testing topologies is limited and mobility tests
are impracticable. Therefore, we propose VirtualMesh as a
new testing architecture to be used before going to a real
testbed. VirtualMesh is based on interception of wireless
traffic at nodes and redirection to a simulation model that
provides more flexibility and a controllable environment.

40

35

25

20 -

15

Throughput [Mbps]

10 +

@ (b) ©

Scenario

Figure 10: TCP throughput measurements for one-
hop (a), two-hops (b), and three-hops connections

(c).

The wireless drivers of the nodes are replaced by a virtual

device which redirects the traffic to an OMNeT++ simula-
tion model instead of transmitting it over the air. This is
fully transparent to the Linux network stack and the appli-

cations. The virtual driver further acts in the same way than

a wireless network driver under Linux and all configuration
parameters may be set using the usual configuration tools.
Our experiments have proven the functionality of the Vir-

tualMesh testing infrastructure. VirtualMesh introduces neg-

ligible additional delays for the traffic redirection and mod-
erate delays per real node inside a simulated path. The TCP
throughput measurements show the ability of VirtualMesh
to handle enough traffic to be used as a pre-deployment test-
ing system.

5.

ACKNOWLEDGMENTS

The work presented in this paper was partly supported by
the Swiss National Science Foundation under grant number
200020-113677/1.

6.
[
2]

8]

[4]

[5]

REFERENCES

I. F. Akyildiz and X. Wang. A survey on wireless
mesh networks. Communications Magazine, IEEE,
43(9):523-S30, 2005.

P. Barham, B. Dragovic, K. Fraser, S. Hand, and

T. Harris. Xen and the art of virtualization. In 9th
ACM symposium on Operating systems principles
(SOSP), Bolton Landing, NY, USA, October 19-22
2003.

J. C. Bicket, D. Aguayo, S. Biswas, and R. Morris.
Architecture and evaluation of an unplanned 802.11b
mesh network. In 11th Annual International
Conference on Mobile Computing and Networking
(MOBICOM 2005), pages 31-42, Cologne, Germany,
August 28 - September 2 2005.

R. Bless and M. Doll. Integration of the freebsd
tcp/ip-stack into the discrete event simulator
omnet+-+. In 36th conference on Winter simulation
(WSC °04), pages 1556-1561, 2004.

R. Draves, J. Padhye, and B. Zill. Routing in
multi-radio, multi-hop wireless mesh networks. In 10th
annual international conference on Mobile computing

(10]

(11]

(12]

(17]

and networking (MobiCom ’04), pages 114-128, New
York, NY, USA, 2004.

M. Engel, M. Smith, S. Hanemann, and B. Freisleben.
Wireless ad-hoc network emulation using
microkernel-based virtual linuxsystems. In 5th
EUROSIM Congress on Modeling and Simulation,
pages 198-203, Cite Descartes, Marne la Vallee,
France, September 6-10 2004.

S. Ivanov, A. Herms, and G. Lukas. Experimental
validation of the ns-2 wireless model using simulation,
emulation, and real network. In 4th Workshop on
Mobile Ad-Hoc Networks (WMAN’07), pages 433-444,
Bern, Switzerland, February 26 - March 2 2007.

S. Jansen and A. McGregor. Performance, validation
and testing with the network simulation cradle. In
14th IEEE International Symposium on Modeling,
Analysis, and Simulation (MASCOTS °06), pages
355-362, Washington, DC, USA, 2006.

R. Karrer, A. Sabharwal, and E. Knightly. Enabling
large-scale wireless broadband: The case for taps. In
2nd Workshop on Hot Topics in Networks (Hot-Nets
II), Cambridge, MA, USA, November 2003.

T. Krop, M. Bredel, M. Hollick, and R. Steinmetz.
Jist /mobnet: combined simulation, emulation, and
real-world testbed for ad hoc networks. In WinTECH
07, pages 27-34, New York, NY, USA, 2007. ACM.
D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,

K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless
network protocols. In IEEE Wireless Communications
and Networking Conference (WCNC' 2005), volume 3,
pages 1664 — 1669, March 2005.

D. Sun and H. Man. Performance comparison of
transport control protocols over mobile ad hoc
networks. Personal, Indoor and Mobile Radio
Communications, 2001 12th IEEE International
Symposium on, 2:G-83-G—87 vol.2, Sep/Oct 2001.
C.-K. Toh, M. Delwar, and D. Allen. Evaluating the
communication performance of an ad hoc wireless
network. Wireless Communications, IEEE
Transactions on, 1(3):402-414, Jul 2002.

A. Varga. The omnet++ discrete event simulation
system. In Furopean Simulation Multiconference
(ESM’2001), Prague, Czech Republic, June 6-9 2001.
E. Weingértner, F. Schmidt, T. Heer, and K. Wehrle.
Synchronized network emulation: matching prototypes
with complex simulations. SIGMETRICS Perform.
Ewval. Rev., 36(2):58-63, 2008.

Y. Zhang and W. Li. An integrated environment for
testing mobile ad-hoc networks. In 8rd ACM
international symposium on Mobile ad hoc networking
& computing (MobiHoc ’02), pages 104-111, New
York, NY, USA, 2002. ACM.

A. Zimmermann, M. Gunes, M. Wenig, U. Meis, and
J. Ritzerfeld. How to study wireless mesh networks: A
hybrid testbed approach. Advanced Information
Networking and Applications, 2007 (AINA ’07), pages
853-860, May 2007.

