
Advanced architecture for INTER-
domain quality of service MONitoring,

modelling and visualisation

INTERMON-IST-2001-34123

Integration of the Inter-Domain Modelling and
Simulation Toolkit

(Deliverable 11)
Deliverable

Work-package No. / Title WP5 – Modelling and Simulation

Planned Issueing Date 30-06-30

Distribution WP5 Partners

Document Identifier im-wp5-v100-D11-pf

File name im-wp5-v100-D11-pf.doc

Version V 1.00

Editor/Author University of Bern

Contact Person(s) Matthias Scheidegger <mscheid@iam.unibe.ch >

Authors Maurizio Bartoli (TILAB)

Florian Baumgartner (UniBe)

Christof Brandauer (SAR)

Roberto Canonico (CINI)

Pedro A. Aranda Gutierrez (TID)

Tamas Mahr (BUTE)

Maurizio Molina (NEC)

Fabrizio Orlandi (TILAB)

Matthias Scheidegger (UniBe)

Carsten Schmoll (FHG)

Joern Seger (UniDo)

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 2 of 59

Change History
V0.01 Empty document with TOC

V0.02 Partial integration of contributions and slightly revised TOC

V0.03 Included virtually all contributions. Back to partners for revision.

V0.04 Updated references and author list. Additional FHG contributions. Some graphics
fixed. BUTE’s final fixes included. TILAB’s changes merged. Moved basic xml model
structure to own section (proposal by TILAB). SAR v2 merged. Included a section
about integration levels and status.

V0.10 Renamed and restructured parts of Chapters 1 and 2. Did the layout for text and
XML / source code.

V1.00 Christof’s corrections included. Fixed page headers. Renamed adapter and tool
manager to simulation manager (Paul’s suggestion). Carsten’s fixes added. Included
Ilka’s picture and fixed layout after that.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 3 of 59

Table of Contents
EXECUTIVE SUMMARY ___ 6

1 TOOLKIT STRUCTURE ___ 7
1.1 INTRODUCTION __ 7
1.2 ROLES AND STATUS OF THE SIMULATION APPROACHES _____________________________________ 8

1.2.1 Hybrid Simulation ___ 8
1.2.2 Time series simulator __ 8
1.2.3 RTC-FSIM___ 8
1.2.4 Inter-IP ___ 9

1.3 RELATIONS TO THE GENERAL ARCHITECTURE __ 9

2 COMMUNICATION __ 11
2.1 INTERACTION WITH THE GENERAL ARCHITECTURE__ 11

2.1.1 Starting a simulation process ___ 11
2.1.2 Querying a simulation process __ 12
2.1.3 Simulations Results Handling ___ 12
2.1.4 Visualisation of Results __ 12

2.2 INTERFACE TO THE VISUAL DATA MINING MODULE_______________________________________ 13
2.3 USING THE BGP-4 TOPOLOGY DESCRIPTION IN SIMULATION PROCESSES________________________ 14

2.3.1 View of the Internet delivered by the BGP-4 tools ___________________________________ 14
2.3.2 The End to End QoS scenario ___ 14
2.3.3 Static use of BGP4 data ___ 15
2.3.4 Dynamic use of BGP4 data ___ 15

3 TOOLKIT IMPLEMENTATION ___ 16
3.1 HYBRID SIMULATOR ___ 16

3.1.1 General Integration___ 16
3.1.2 Model Implementation___ 17
3.1.3 NS-2 Plug-In Interface __ 21

3.2 TIME SERIES SIMULATOR ___ 24
3.2.1 The GUI module ___ 24
3.2.2 The GC component ___ 25
3.2.3 Simulation manager and simulator ___ 25
3.2.4 Simulator Architecture __ 25

3.3 FLUID SIMULATOR___ 27
3.3.1 Introduction___ 27
3.3.2 Integration of IPFIX Measurements __ 27
3.3.3 RTC-FSIM Implementation ___ 30

3.4 INTER-IP ___ 30
3.4.1 Interd__ 31
3.4.2 Intrad__ 31
3.4.3 INTER-IP Integration ___ 32

3.5 GENERIC SIMULATION CONTROL MODULE FOR THE CLIENT GUI_____________________________ 32

4 DATA FORMATS AND APIS __ 34
4.1 SIMULATOR-INTERNAL FORMATS ___ 34

4.1.1 Formats and APIs used in Hybrid Simulation_______________________________________ 34
4.1.2 Formats used in Time Series Simulation___ 42
4.1.3 Formats used in INTER-IP ___ 45

4.2 INTRA-TOOLKIT FORMATS AND APIS __ 47
4.2.1 Basic XML Format for Models __ 47
4.2.2 General Time Series __ 48
4.2.3 Question ___ 48

4.3 EXTRA-TOOLKIT FORMATS AND APIS__ 49
4.3.1 VDM Interface Formats and APIs__ 49
4.3.2 BGP-4 Topology Description ___ 53

5 APPENDIX __ 56

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 4 of 59

5.1 IMPORT FILTER EXAMPLE SOURCE CODE ___ 56
5.2 REFERENCES ___ 59

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 5 of 59

List of Figures
Figure 1.1 - The two stages of integration... 7

Figure 1.2 – Architecture view of simulation toolkit integration ... 10

Figure 2.1 - Starting a simulation .. 11

Figure 2.2 - Passing simulation results ... 12

Figure 2.3: Visual Data Mining Module ... 13

Figure 2.4 - View of the Internet as provided by the BGP tools .. 14

Figure 3.1 - Structure of the interface between NS-2 and the MDModel plug-in 17

Figure 3.2 - Multi-domain model topology structure.. 18

Figure 3.3 - Multi-domain model list structure ... 19

Figure 3.4 - Mapping of ns-2 and plug-in internal Ids.. 20

Figure 3.5 – Structure of the plug-in mechanism .. 22

Figure 3.6 - Time series simulator integration... 24

Figure 3.7 - ON/OFF states of 10 flows... 28

Figure 3.8 - Rates of flow #1 ... 28

Figure 3.9 - Superposition of the 10 ON/OFF flows .. 29

Figure 3.10 – Inter-IP integration... 32

Figure 3.11 - Simulation control GUI ... 33

Figure 4.1 - Example multi-domain configuration.. 35

List of Tables
Table 4.1 – Intra-domain entities... 45

Table 4.2 – Inter-domain entities... 46

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 6 of 59

Executive Summary
This document describes the implementation and integration work done by the InterMON work
package 5 partners based on the specifications from Deliverable 6, “Modelling and Simulation Toolkit
Specification”. D6 described several modelling approaches and, based on these, a number of
simulation approaches. The common basis for all these modelling and simulation approaches is the
inter-domain point of view. Traditional simulation approaches try to model the network as exactly as
possible (some even simulate MAC layer behaviour), making simulation scenarios of inter-domain
networks virtually impossible due to scalability problems. Choosing a suitable abstraction reduces this
scalability problem and enables the simulation of large scale inter-domain scenarios, at the cost of
reduced exactitude. Four of these approaches were implemented, hybrid simulation by the University
of Bern, time series simulation by Budapest University of Technology, RTC-FSIM by Salzburg
Research and Inter-IP (called “Planisfero” in D6) by Telecom Italia Lab. Additional work was done by
NEC (http traffic generator), University of Dortmund (VoIP generator, VDM interface) and CINI
(integration work).

One part of the integration task was the implementation and integration of the statistical and analytical
models into simulators. Also in some cases third party software and frameworks had to be integrated
to build a simulator framework. RTC-FSIM is an good example for that. This part of integration is
complete for most of the simulator approaches. Very little issues remain in this respect. The detailed
implementation and integration reports for each simulator approach can be found in Section 3, the
implementation and integration status of each approach in Section 1.2.

At a higher level, the simulators have to be integrated into the global InterMON architecture. This
involves a customized GUI interface to build simulation scenarios and to select the appropriate
simulators to evaluate them. The topology visualisation tool from work package 6 is reused here and
can be customized to the simulators’ needs. Further needed is a mechanism to pass simulation
requests to the simulator’s simulation manager over the global controller, done using the Java
Messaging System JMS, which also allows persistent storing of simulation requests and their results
for later reuse. Finally, a standardized way to return the simulation results back to the system is
required, so the user can examine them using the tools supplied by the visual data mining toolkit. This
is done by writing an import filter for every simulator approach that converts the simulators output
(event traces, time series, etc.) to the VDM format used in the visual data mining module.

Section 1.3 gives an overview over this part of the integration architecture. Section 2 contains more
detailed information about the involved procedures and signalling and Section 3.5 specifies the
generic simulation control module for the GUI. While the simulators have not been fully integrated
using this design, the services themselves are already implemented and ready to use.

Because of the great number of tools, modules and interfaces in the work package, and more so in the
project, an important focus was the definition of data formats. In the InterMON project the use of XML
as a basis for data formats is mandated. However, especially third party tools like measurement
programs and simulator environments use their own proprietary formats specialized to their purpose.
Thus, a wrapper program is necessary in many cases. Moreover, modules often use similar, but not
exactly the same, kinds of information. This is the case with simulators for example: Every simulator
has some notion of topology and traffic models, but the details differ from simulator to simulator. A
format with as little redundancy, while retaining the simulators particularities, had to be found.

The descriptions of data formats involved in the modelling and simulation toolkit are described in
Section 4, which also cover the interface definitions between the several parts of the toolkit and the
remaining architecture.

In the appendix the reader can find example source code for interfaces specified in earlier sections.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 7 of 59

1 Toolkit Structure

1.1 Introduction
Work package 5 of the InterMON project investigates and develops novel approaches to inter-domain
modelling and simulation, which were described in Deliverable 6, “Modelling and Simulation
Specification” [D6]. There, several different approaches were proposed, each specialized for a set of
questions the simulator user may want to find answers for. Of the simulation approaches, four were
finally implemented: The Hybrid Simulator originally described in Section 4.2 of D6, Time Series
simulation as described in Section 4.4 of D6, the fluid simulator RTC-FSIM from Section 4.3 of D6,
and Inter-IP, the implementation of the models shown in Section 3.7 of D6. Section 1.2 briefly
describes the ideas behind all the implemented approaches and their main areas of application.

Inter-domain
performance

models

Traffic
Models

Topology Models
(AS and border

router level)

Simulation Toolkit

Hybrid Time
Series

RTC-
FSIM

Inter-IP

Integration Stage 1
– Integration of
models into
simulators

Integrated InterMON toolkit architecture
for inter-domain QoS analysis

Integration Stage 2
- Integration into
InterMON general
architecture

Figure 1.1 - The two stages of integration

Integration of the modelling and simulation toolkit consists of two stages (as shown in Figure 1.1): The
first stage is the integration of the various developed models into simulators. An example for this stage
is the development of the model plug-in mechanism in ns-2 described in Section 3.1.3. For the time
series and the RTC-FSIM simulators this also included the integration of third party tools such as
Matlab and Simulink. This stage of integration is described in the simulators’ implementation reports
located in Section 3.

Stage two is the integration of the modelling and simulation toolkit into the global controller
architecture of the InterMON project, where a common way to build and start simulation runs had to be
specified and implemented. Subtopics of this are the integration into the GUI, message passing
through the GC, persistence of the generated results and interfacing towards the visual data mining
module, which gives the user the ability to examine the simulators’ output. Section 2 describes the
processes in detail. All parts of this global integration design that are not simulator dependent have
been implemented. However, the simulators themselves do not fully comply with this design yet. See
Section 1.2 for details on their integration level.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 8 of 59

1.2 Roles and Status of the Simulation Approaches

1.2.1 Hybrid Simulation
Role
The hybrid simulation module combines packet-based simulation of ns-2 with analytical models by
using a hot-plug mechanism, which makes single ns-2 nodes behave like whole networks (e.g.
autonomous systems). This abstraction allows the user to simulate large topologies in a fraction of the
time a full scale packet-based simulation would take.

Suggested application areas for the hybrid simulator include

• End-to-end QoS evaluation of single flows – simulated using traditional packet-based models
– over a complex backbone network.

• The effect of changes in a backbone network (e.g. addition/removal of links, capacity changes,
big changes of network load due to new SLAs, etc.) on flows traversing the domain.

Integration Status
Stage one of the hybrid simulator integration is complete. The module loading mechanism in ns-2 as
well as a general purpose multi-domain model module have been implemented, integrated and tested.
Integration stage two has only been specified so far. No implementation on this level has been done
yet.

1.2.2 Time series simulator
Role
The time series simulator evaluates the QoS state of the network in terms of throughput, drops, delay
and jitter. Since the simulator is based on aggregate load information the QoS values represent an
average for the traffic as a whole.

Suggested applications:

• Analysing the effect of additional traffic on the QoS state of the network.

• Analysing the effect of rerouting a part of the traffic on the QoS state of the network.

Integration Status
The time series simulator has nearly completed stage one: The simulator engine runs and can parse
the input XML files. However, the code generating formatted simulator output has not been
implemented yet. Also, integration stage two has only been specified at present. No implementation
exists.

1.2.3 RTC-FSIM
Role
The Rate and Time Continuous Fluid Simulation (RTC-FSIM) is a novel fluid simulation approach
developed within the InterMON project. In contrast to other fluid-based modelling techniques which
require an event-based simulator for the execution of the model, the RTC-FSIM approach models all
traffic as continuous signals and describes the signal transformations by means of differential
equations.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 9 of 59

As there are no events in the RTC-FSIM approach it does not suffer from the performance drawbacks
that may arise from the ripple effect [Liu] in event-based fluid simulators. The performance of RTC-
FSIM basically depends on the implementation for solving the differential equations.

As RTC-FSIM performance is completely independent of the link speeds and amount of traffic it is
particularly well suited for scenarios with high link speeds and large amounts of aggregated traffic.
Another key feature of RTC-FSIM is the ability to increase the simulation speed by allowing for less
accurate results.

It is therefore suggested to employ RTC-FSIM in large inter-domain scenarios. The simulator
produces queuing delay, loss, and throughput results. As the simulator is fully integrated with IPFIX
measurements it is very useful for evaluating alternative routes for portions of the observed traffic. For
the definition of that "portion" the full flexibility of the IPFIX meter rules is available. As an example,
the "portion" could be defined as all traffic going to destination domain X; it could be all IP telephony
flows; it could be all Web traffic coming from domain Y.

RTC-FSIM can also be used to simulate the effect of additional traffic beside the measured traffic.
The addition can be a general load increase by some factor, a previous IPFIX measurement or a
general traffic model (e.g. of Web traffic).

Integration Status
The RTC-FSIM approach is completely implemented in a Matlab / Simulink environment. However,
running simulations still requires human interaction, which prevents automated simulation processes.
Use of IPFIX measurements is fully integrated into RTC-FSIM, even if so far only artificial data have
been used. Stage two integration has been planned and some simple, preliminary integration was
already done earlier.

1.2.4 Inter-IP
Role
The INTER-IP module evaluates the end-to-end packet or volume transfer delay performance for a
traffic relation (i.e. a flow identified by the source and destination IP address and by the service class if
differentiated service is used) that crosses multiple domains in a Differentiated Services context.

A suggested application in the InterMON context could be the rapid comparison (on the base of the
delay metric) of alternative routes for the same flow. The tool is able to compute the end-to-end delay
performance in a small amount of time (if compared to simulation) because is based on a pure
analytical model resolved in a closed form.

Integration Status
Stage one of integration is complete. Stage two has been specified, and some preliminary integration
has already been done. Users can already specify the name of a file containing the predefined
example scenarios and a simulation type, which are sent to the simulator via the global controller and
the simulation manager. The results are them sent back to the GUI.

1.3 Relations to the General Architecture
The simulation and modelling toolkit makes use of the main architecture components GUI and Global
Controller (GC) and presents the simulation specific simulation managers for integrating the simulation
software into the InterMON system. Figure 1.2 shows the part of the InterMON architecture that is
involved in the task of modelling and simulation.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 10 of 59

Simulation C

Simulation B

Simulation A

Global
DB

Document
Repository

Client GUI

+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction

RTC-FSIM

Time Series

Hybrid Sim

Global
DB

Document
Repository

Client GUI

+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction

Simulation CInter-IP

Figure 1.2 – Architecture view of simulation toolkit integration

The Client GUI is extended with an application module to start and control simulation tasks. This
module is described in detail in section 3.5. Messages between an instance of the Client GUI and the
Simulators always pass the GC. Inside the GC functions handle the forwarding of simulation requests
to the targeted simulators. These functions may check and/or modify the messages. They can also
access the data base attached to the GC and make use of Repository functions.

The four simulators shown in Figure 1.2 depict four different classes of simulators (i.e. hybrid
simulation, time series simulation, RTC-FSIM, and Inter-IP). A number of different simulation types are
used by the InterMON system (see chapter 3). This requires the presence of an simulation manager
component near to the actual simulator instance to allow for remote configuration and results transfer
in a way that is understandable by InterMON's GC.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 11 of 59

2 Communication
This section presents the communication entities, processes, and messages that are involved in using
the modelling and simulation toolkit within the InterMON architecture.

2.1 Interaction with the General Architecture
Communication processes inside the simulation toolkit exchange messages between GUI, GC,
simulation manager and database. The Global Controller acts as a communication centre (server).
The GUI and the Simulation manager (clients) connect to it on startup and build a communication
channel.

Communication between GUI and GC, as well as Simulation manager and GC, uses Java Message
Services (JMS). This allows for asynchronous transfer of notification messages and task requests. A
synchronous mode, where the sending client is blocked until a result is returned, is also possible.

The database access uses JDBC (Java data base connectivity) methods to store results and query
the data base (mysql).

2.1.1 Starting a simulation process
To configure and run the simulation a user needs to start the InterMON GUI and to login to the
system. He then selects 'Modelling and Simulation' from the Tools menu and chooses 'Start
Simulation' from that section. Input data for the simulation process in queried from the user (details in
section 3.5). When the Submit-Button is clicked the GUI generates a start simulation request from the
user's choices and input parameters. Values in the request message determine the targeted
simulation type and simulator instance. The request is send directly to the Global Controller which in
turn hands it down to the selected simulator instance. The GC itself will store the request so that other
requests (e.g. for the status) and result messages can be matched to the request and handled
properly. Upon receiving the “start simulation” request the simulation manager parses and checks the
request. It also tests whether or not it can start the task directly or has to queue it (in case of too much
current workload). The manager finally constructs a reply for the user which it sends to the GC. The
GC determines the source of the matching request and tells the user the reply from the simulator.

Simulation C

Simulation B

Simulation A

Global
DB

Document
Repository

Client GUI
+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction

RTC-FSIM

Time Series

Hybrid Sim

Global
DB

Document
Repository

Client GUI
+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction

1

2

3

Simulation CInter-IP

Figure 2.1 - Starting a simulation

The numbers in Figure 2.1 denote the order of performed communication processes.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 12 of 59

2.1.2 Querying a simulation process
The process for querying the status for a previously started simulation request is very similar to
starting the simulation itself. The only difference is that the request only needs to specify 'status' as the
requested command and include some reference parameter which uniquely identifies the started
simulation task.

2.1.3 Simulations Results Handling
Simulation result data is pushed from the simulation manager into the InterMON system, i.e. to the
GC. Whenever a simulation process has finished it can tell its manager about that fact using a
signalling function. The manager will in turn collect all the results from the simulator (often stored by
the simulator in some files) and format these accordingly to the output formats. This data is extended
with information from the original simulation start request (at least a unique task ID). A message of
type “simulation result” is built that is send directly to the Global Controller. The GC stores that reply in
conjunction to the original request. Based on this message a notification message is sent to the GUI.
This message does not contain the (potentially huge) simulation result data sets. The user may then
request the system to perform some kind of data analysis on the simulation results. Figure 2.2 shows
the process. Afterwards the user may request the system to perform some kind of data analysis and
visualisation on the simulation results. He can refer to these data sets using a unique ID for the
simulation task.

Simulation B

Simulation A

Global
DB

Document
Repository

Client GUI
+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction

Simulation CRTC-FSIM

Time Series

Hybrid Sim

Global
DB

Document
Repository

Client GUI
+

Global Controller

Task Processing

Report Management

User-GC
interaction

GC-GDB
interaction1

2

Simulation CInter-IP

Figure 2.2 - Passing simulation results

2.1.4 Visualisation of Results
When a simulation has finished and the results are transferred to the GC and stored there, the user
can request further analysis (e.g. statistical functions) to be applied to the results. Often this involves
the preparation of images from the processed data sets. This is the task of the visual data mining
toolkit. GUI components for selecting and starting visualisation tasks can base their input on the data
sets obtained from the simulation processes (in addition to direct evaluation of captured traffic traces).
In that case a visualisation request is issued to the GC which refers to the results of a specific
simulation task. This request is enriched by the GC with the referred data and passed to the VDM
component (review architecture overview in Deliverable 4). The detailed process of the visualisation
and the transfer of image information to the user is not in the scope of this deliverable.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 13 of 59

2.2 Interface to the Visual Data Mining Module
The Visual Data Mining (VDM) module will be used as the interconnection path between data
production and data representation. It contains three sub-modules, which are called Filtering/Data
Mining, Mapping and Rendering (please refer to [D7] and [SM02]).

The most important component is the Filtering/Data Mining module, which imports the proprietor data
into the VDM-Module, formats this data and does the required Data Mining.

The VDM Module looks as seen in Figure 2.3.

To be able to define even complex data mining algorithms, the data mining filters could be chained, as
seen in Figure 2.3. Therefore the import-filter will create a Filter Data Item (FDI) which is able to be
transferred from one filter to another. The FDI, which was produced by one filter, could also be used
within multiple other filters as an input FDI. The Class Reference of the Filter Data Item is given in
Section 4.3.1.2.

The schemes will define what the filter will expect to get as an input item and variation item (which will
be defined below) and it will define what data will be produced for the output. The function of a
scheme is to give a detailed description of the communication data in a kind, a VDM module can
understand. So the VDM is able to detect “wrong” connections within chains.

The conversion between two filters is needed to be able to define “general” filters, which are easy to
reuse within different filter chain pipelines. The conversion module will also be called “Mapper”
because it maps data from one (input) scheme to an (output) scheme.

The variation is the definition of variables within the filtering process. One example could be an
interval length for an aggregation or a threshold value.

VDM-Modul

Filter I
(Input)

Filter II Filter IIIXML XML XML

Conversion Conversion

Conversion/
Mapping Rules

Database

Filter
Library (C++ &

JNI)

Variation VariationVariation

1 2

3

raw
prorietary data

Mapping

Input Scheme

Output Scheme

Variation Scheme

1

2

3

Simmulation

Measure-
ment

raw

pro
rie

tary d
ata

raw
prorietary data

Figure 2.3: Visual Data Mining Module

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 14 of 59

2.3 Using the BGP-4 topology description in simulation processes

2.3.1 View of the Internet delivered by the BGP-4 tools
The data collected by the BGP4 tools yields the following view of the Internet for each autonomous
system they are deployed in:

a) border routers of the autonomous system where the tools are deployed

b) AS-PATHs: The collection of possible paths to all destination prefixes in the Internet as seen
from the autonomous system where the tools have been deployed.

c) Routing events which reach the autonomous system during the observation period.

AS

BR

BR

BR

AS

AS

AS
AS

AS

AS

AS

AS

AS

Figure 2.4 - View of the Internet as provided by the BGP tools

Common practice design rules mandate that the border routers appear as the next hop for external
networks in the BGP4 data. Routes injected by the AS into the Internet (AS-path = ^$) will behave
differently, because the router injecting the route into the BGP4 protocol doesn't necessarily have to
be the router which has the network directly connected to it. This behaviour is compatible with the
black box model and the proposed traffic matrix with entries reserved to AS internal traffic sources and
sinks.

Additional information delivered by the BGP-4 tools includes topology events. Topology events are
updates, either announcements of new or existing routes or withdrawals, which can be used to
generate a dynamic description for all paths involved in the end to end QoS scenario which is being
simulated.

2.3.2 The End to End QoS scenario
The End to End QoS scenario is bound by the IP address of two end systems which have to be
interconnected through the Internet. The topology information for this scenario is restricted to routes
and updates for the most specific prefixes to these IP addresses, since routing is done by directing the
packets to the Interface in the router which leads to the next hop for the most specific prefix for the
corresponding IP address.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 15 of 59

2.3.3 Static use of BGP4 data
The first way to use the topology data in simulation is to use the static components of the
BGPTopologyTree, i.e. the AS's, border routers and links, mapping them as elements in ns2 scripts
(or other simulator’s configurations), on top of which the end to end traffic flows are sent.

2.3.4 Dynamic use of BGP4 data
2.3.4.1 Including dynamic creation and destruction of links in the topology

Changes in the AS policies might lead to changes in the paths followed by specific traffic flows. These
changes result in modifications in the topology which are stored as announcements and/or
withdrawals of routes. This information can be integrated into ns2 scripts to simulate the effect of
creation and destruction of links in the topology.

2.3.4.2 Simulating the BGP-4 protocol

The BGPTopologyTree may include different levels of dynamic behavioural information. The first level
is information on how the BGP-4 protocol behaves. It is thinkable that the network layer simulation
scripts might include simulations of the BGP-4 protocol behaviour, which could be fed with this kind of
information.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 16 of 59

3 Toolkit Implementation

3.1 Hybrid Simulator

3.1.1 General Integration
3.1.1.1 GUI Interaction

Like the other simulation approaches, the hybrid simulator follows the general scheme for issuing
simulation requests. Using the topology visualisation tool and a topology derived from BGP messages
the simulation scenario is set up. Callback methods supplied to the GUI application pop up dialogs
when a link or domain is (right-)clicked in the editor. The basic functionality of these pop up dialogs
allow the user to define a set of pre-selected properties for the inter-domain link or the autonomous
system.

For links, the user must be able to select a bandwidth from a set of predefined bandwidths of typical
link media. Alternatively, non-standard link bandwidths are configurable by manually typing in the
desired bandwidth value. A special value for link bandwidth is zero, which can be used to simulate link
failure. If known, the queue capacity (parameter K in the hybrid simulation inter-domain link model)
should also be configurable from the pop up dialog, to allow the user to fine-tune the scenario.

Clicking on autonomous systems’ symbols also pops up a dialog, which allows to the user to choose
from a number of delay models and to further configure them as necessary. In an advances case, the
list of available delay models would be derived from a runtime query of the database and a set of
fixed, artificial delay models.

By handling the callbacks appropriately the user can be given the possibility to define a from-to
relationship between ASs. This can be used to provide a third kind of dialog with a choice a flows that
can be configured between the two ASs. Again, the list of available flows could depend on the
available flow measurements in the InterMON database.

When the user has finished editing the scenario, the topology and the list of changes done to it is sent
back to the appropriate GC component.

3.1.1.2 GC Component

When the request from the GUI reaches the simulator-specific GC component it is usually not
complete. Many parameters will be missing from the graph, such as the actual link bandwidths and AS
delay models of nodes and links that were not explicitly configured by the user. These missing values
must now be inserted into the request. Depending on the availability of measurement data for the
network entities, default values, e.g. infinite bandwidth for inter-domain links and zero delay for ASs, or
values distilled from measurements performed on the network entities’ real world counterparts are
used. Once this process is completed, the request is sent on to the simulation manager.

3.1.1.3 Simulation manager and Simulator

The simulation manager converts the request coming from the global controller into the request format
specified in 4.1.1, i.e. an ns-2 script and a set of internal XML model descriptions, and sends it to the
simulator. After the simulation run, the resulting trace file is converted to VDM format using a
simulator-specific input filter to the data mining module (see also Section 4.3.1.1 for more information
about this step). Finally, the converted results are stored as a persistent java bean together with the
original request. The user can then further examine the results using the visual data mining module or
store the results for later use.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 17 of 59

3.1.2 Model Implementation
The MDModel plug-in is a somewhat simplified implementation of the analytical model introduced in
the section about hybrid simulation of Deliverable 6 (“Specification of the Inter-Domain Modelling and
Simulation Toolkit”). The simplifications mainly concern the lack of support for multiple traffic classes
as used in differentiated services networks, for example. Also, the implementation of inter-domain link
models is restricted to the queuing model approach since the alternative hierarchical function trees are
mainly useful in the context of multi-class traffic and queuing models have been researched more
thoroughly. This section presents the structure and the main concepts of the implementation, i.e.
interfacing to ns-2, calculating network load distribution and simulating the dropping delay behaviour of
single paths in the multi-domain model. Some major changes had to be done to the mathematical
model of load distribution and will be discussed below.

The plug-in was written in C++ (approx. 3000 lines of code) and was confirmed to be compiling and
running on Linux (Intel), Solaris (SPARC) and MacOS X (PowerPC). Only the GNU C++ compiler has
been used to compile it, so using other compilers might introduce minor problems.

3.1.2.1 Plug-In Structure

To avoid confusing the reader, we will investigate the structure of the MDModel plug-in in a top-down
way, starting with the interface to ns-2 and proceeding to the structure of the various subsystems.
From the perspective of ns-2 the plug-in has the simplified structure shown in Figure 3.1.

NS-2
Loads plug-in and instantiates
an MDMIface

Configures the MDModel by
sending a "config" command
to the MDMIface

Notifies the MDMIface of passing
packets and gets back the delay
or a drop indication

MDMIface
Builds the MDModel using the
MdlFactory when receiving
"config"

Adapts the process_packet call to
the MDModel interface

Implements the command()
interface to ns-2

MdlFactory
Reads XML files and builds
models from them

MDModel
Contains and manages all models
of the multi-domain model

Does conversion between event-
based and analytical simulation

Controls load, loss and delay
calculations

build_mdmodel()

process_packet()

Figure 3.1 - Structure of the interface between NS-2 and the MDModel plug-in

When the plug-in module is loaded only an MDMIface object is created, which serves as the interface
(and potentially and adaptor) between the actual multi-domain model code and ns-2. It also interprets
generic command strings sent from ns-2 using the command() method. Once the plug-in module has
been loaded it has to be configured before it can be used. To do so, NS-2 sends a “config” command

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 18 of 59

containing the filename of the XML multi-domain model description to the MDMIface, which delegates
the actual construction and configuration of the model to the factory method build_mdmodel() of
the class MdlFactory (which is static and thus does not have to be instantiated). The MdlFactory class
implements the XML parsers for all types of models (multi-domain model, domain models, inter-
domain link models and traffic generators) and can recursively construct the submodels of the multi-
domain model. Once the MDModel object has been successfully built it is returned to the MDMIface,
which stores a pointer to it and subsequently forwards all event notifications from NS-2 to it.

Inside the MDModel there are two separate data structures managing the submodel objects at the
same time in order to provide efficient access for algorithms with different requirements. One is the
linked graph structure shown in Figure 3.2: All submodels have pointers to their successors.
Additionally, IDLinks store a type identifier and a connector index for their successors since they serve
as graph edges and can be connected to any other type of submodels, to a several connectors in the
case of a domain1 model. Some of the models may only be predecessors (InLinks, TrafficGens),
others may only be successors (OutLinks). Moreover, connections crossing the logical border to ns-2
can connect to InLink and OutLink objects. They implement the conversion between analytical
simulation and the “event-based world”. A discussion of the algorithms used in that context can be
found further below. This structure is useful when implementing graph traversal algorithms like the
calculation of the delay distribution of a path.

Figure 3.2 - Multi-domain model topology structure

To better manage the models it contains, MDModel also stores lists of pointers to them. This is not
only useful for direct access to the submodels. Routing inside the multi-domain model also depends
on lists of pointers to IDLinks, one for each possible pair of inbound and outbound links and one for
each traffic generator. Figure 3.3 shows the situation from Figure 3.2 from this perspective.

1 The name domain models is somewhat historic. AS would better reflect the actual use.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 19 of 59

TrafficGen 1 IDLink 0

IDLink 12

MDModel

Domain 0

Domain 2

OutLink 0

OutLink 2

InLink 0

InLink 2

inlinks outlinks idlinksdomains trafficgens routes tgen_routes

N ,N

1

0,0

Figure 3.3 - Multi-domain model list structure

The lists of border links (InLinks and OutLinks), domains and traffic generators are trivial. The inter-
domain links of the multi-domain model are linked in a more complex way, however, in order to
maintain information about the routing paths. routes points to a n × m matrix, where n is the number
of inbound links into the multi-domain model and m is the number of outbound links, whose elements
in turn point to route. Routes are simply stored as lists of pointers to IDLinks, which suffices to
uniquely define them. There is also a list of routes related to the traffic generators, tgen_routes,
storing only a single path per traffic generator. Its purpose is to describe the path the generated traffic
takes from the generator itself to the model border.

There is still one open issue with traffic generators, however. It would be very convenient for the user
if InLinks could be assigned traffic generator objects whose traffic load values would be added to the
bandwidth estimates. With this feature it would be possible to easily and efficiently create background
traffic while keeping detailed simulation of single flows in the packet-based space.

3.1.2.2 Interfacing to NS-2

Interfacing between ns-2 and the plug-in modules was somewhat enhanced to allow for a more
elegant solution of node identifier translation. The problem with node identifiers is that because ns-2
generates them at runtime they are not known during the configuration phase of a simulation scenario.
However, the plug-in module has to know them in order to be able to find the inbound and outbound
links a packet passes and so to distinguish between the paths a packet can take inside the model.
Both ns-2 and MDModel use integer identifiers for nodes and border links, respectively. With proper
configuration a solution with lookup tables like shown in Figure 3.4 solves this problem.

When a packet passes an enhanced node the plug-in receives a message carrying the previous and
next hop identifiers. Using a simple lookup table it can then determine, which path the packet would
take and thus what loss probability and delay distribution should be applied to it.

The remaining problem with this solution is the impossibility to configure this mapping before the
simulation runs. We solve this by giving nodes additional names (ASCII strings) in the ns-2 script and
refer to these names within the module configuration file. Once the simulation starts, a mapping
between these names and the integer runtime identifiers inside ns-2 can be created. This mapping is
stored in the file “nodenames”. The plug-in module can then read this file and replace the configured
names in its mapping with the runtime integer identifiers.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 20 of 59

Figure 3.4 - Mapping of ns-2 and plug-in internal Ids

3.1.2.3 Load Distribution

In Deliverable 6 the calculation of load distribution in multi-domain models was specified using so
called transit matrices. While implementing the approach we found that even if the approach works
well for isolated network domain models it is problematic for multi-domain models. Calculating the
equilibria of such systems is not a problem, but due to the missing routing information in the models
they tend to be too high. For example, a system with of 2Mbit/s offered load could have an equilibrium
outbound load of 2.3Mbit/s without any internal sources! Introducing restraints on the parameters and
changes to the algorithm calculating the load distribution ultimately also failed because of this absence
of routing information.

The solution now implemented is therefore directly based on routing information (which has to be
present in multi-domain models anyway). At simulation time t we have the bandwidth estimates bi,e
between all border node pairs i and e of the multi-domain model. A simple algorithm using knowledge
of routing paths is now used to calculate the bandwidth distribution. Let Ri,e be the routing path (i.e. a
sequence of inter-domain links) between i and e. The outgoing load of an inter-domain link l
depending on the offered load L is written as l(L).

Set the offered loads on all inter-domain links to 0

FOREACH i,e DO

∆L ← bi,e

R ← Ri,e

FOREACH l in R DO

L ← current offered load on l

∆L ← l(L + ∆L) – l(L)

Set current offered load on l to L + ∆L

END

END

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 21 of 59

When the algorithm has completed, the offered and outgoing load of every inter-domain link in the
multi-domain model is known (Note that if a link is not a member of any routing path its load value
remains zero, which is what would be expected).

Depending on the number of links and routing paths in a multi-domain model the above algorithm can
take a rather long time to complete. Therefore, it should not be executed whenever a bandwidth
estimate changes. MDModel updates the system in regular intervals unless the bandwidth estimate on
an InLink changes noticeably. In these cases we don’t have to recalculate the loads for the whole
system. It suffices to take the load difference at the ingress router and update only the affected path
using the inner loop of the above algorithm.

3.1.2.4 Packet Loss and Delay Simulation

Based on the load distribution calculations presented in the previous section, a multi-domain model’s
delay distributions and loss ratios can be calculated. Both of these are found by traversing the inter-
domain link and domain models along a routing path through the multi-domain model.

The packet loss ratio along the routing path Ri,e = lr1
,K ,lrn

is simply given by

1− pf (l)
l∈Ri ,e

∏

where pf (l) is the packet forwarding probability of link l. This is the probability that the link’s queue
(actually the preceding router’s queue) is not full when a packet arrives.

Delays along a path can be simulated analogously. Let Dl be the random variable of the delay caused
by link l, and let Dl,k be the random variable of delay on the corresponding path in the domain between
the inter-domain links l and k. Then the delay on the path between ingress router i and egress router e
is given by

Di,e = Dl
l∈Ri ,e

∑ + D(lk , lk+1)
k= r1

rn−1

∑

These values can be simulated by traversing all inter-domain link and domain models along the path,
generate a random value for each of them and taking the sum of the results. For large multi-domain
models this calculation might take too long. In such cases an alternative approach would be to
combine the delay distributions of all the models into a single probability distribution. This can be by
convolving the discrete distributions of all random variables along the path. Having a single discrete
delay distribution of a path further allows to easily calculate statistical moments like the mean delay or
the path’s jitter, which would be Var(Di,e) (if jitter is interpreted as delay variation).

3.1.3 NS-2 Plug-In Interface
3.1.3.1 Introduction

The base of the ns extension, to delay packets within a node, is implemented rather straightforward.
An new object ISPDelay is available, which can be attached to ns nodes and provides interfaces for
the external modules. The command syntax is something like:

set c1 [new ISPDelay]
$n1 attach-isp-module $c1

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 22 of 59

This object provides the following mechanisms:

• It provides an API to have an external module attached. The external module provides
information about packet delay and whether a packet has to be dropped. Information about
the last visited node and the next node as well as information about the packet itself are
provided to the external module.

• It updates some header information, required by external modules of other nodes.

Standard ns2
packet processing

ISPDelay

Incoming
packet

Ns2 node

External
Module

Figure 3.5 – Structure of the plug-in mechanism

Figure 3.5 shows the relationship between the ns2 node, the ISPDelay object, and the external
module. An ISPDelay object, which is part of the ns2 node does not alter the simulator behavior
unless an external module is attached. However, if a simulation has to be set up using external
modules, it is important to attach the ISPDelay object to all nodes, even if no external modules are
attached. This is necessary for the other external modules to work properly.

3.1.3.2 Topology Setup

The simplest way is to source "ispns.tcl" and use the new commands IM-duplex-link, IM-simplex-link
and IM-node, to create links and nodes. This commands behave almost exactly like their ns2
counterparts, but take care of some additional administrative work. The ISPDelay object is placed at
the entry point of a ns2 node. To attach an external module, a command like

[$n1 entry] attach-module /tmp/isp_test.mod

has to be used. [$n1 entry] returns a reference to the object at $n1's entry point: the ISPDelay
module. The attach-module command of the ISPDelay object attaches the external module in the file
isp_test.mod to the node. As an example, the following script sets up a topology with three nodes in a
row with simplex links between and external modules attached to the node in the middle:

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 23 of 59

set ns [new Simulator]

set n1 [$ns IM-node "Knoten-0"]
set n2 [$ns IM-node "Knoten-1"]
set n3 [$ns IM-node "Knoten-2"]

[$n1 entry] attach-module /home/baumgart/ns2-extension/modules/isp_test.mod
[$n1 entry] modcmd delay 0.1

$ns IM-simplex-link $n0 $n1 1Mb 19ms DropTail
$ns IM-simplex-link $n1 $n2 1Mb 19ms DropTail

The additional parameter to the IM-node method "Knoten-0" is used to label nodes with names. After
the initialization of the last node, a file "nodenames" is written, which lists the "names" of the node and
the numbers, which were assigned by ns. This numbers are used by ns in it's trace and log-files and
are also used by the external module API to reference the previous, the next and the local node.
Therefore this file can be used throughout the analysis of simulation results and also by the external
modules. Reading this file during module initialization provides information to the external module,
which node is references by which number.

3.1.3.2.1 New ns Commands

Only few additional ns commands have to be used to set up a topology with external modules.

• $ns IM-node <label>
This command instantiates a new node and returns the object reference to the new node. It
behaves similar to "$ns node" , but requires an additional parameter to label the node with an
unique label. This labelling results in the "nodenames" file, which allows an external module to
lookup the label for an specific node id.

• $ns IM-simplex-link <src> <dest> <bw> <delay> <queue>
This command behaves identically to the simplex-link command, but automatically updates
the object reference tables within of the ISPDelay object.

• $ns IM-duplex-link <src> <dest> <bw> <delay> <queue>
This commands behaves identically to the duplex-link command, but automatically updates
the object reference tables.

3.1.3.2.2 Module Commands

There are some commands to configure the ISPDelay object or to query information. Usually these
commands are not used directly, but called by the high level ns commands IM-node, IM-simplex-link,
IM-duplex-link. The following commands are currently implemented:

• $c attach-module <modulefile>
This command is used to attach an external module to a node. After the module is attached it
is called to provide information about delay and loss for each single packet entering that node.
<modulefile> is simply the fully qualified pathname of the file containing the external
modulefile.

• $c obid $ref $id
$c obid me $id
The ISPDelay module provides information about the previous and the next node to the
external modules. Unfortunately on the C++ level, a ns node does not maintain a reference to
a neighbouring node or a link to that node, but only a reference to a component, the link head,
within that link. To provide information about the previous and the next node to the external
modules, a reference to a link head has to be mapped to the node-id of the target node of that
link. Therefore each ISPDelay module maintains a table with (object-reference,id) pairs, which

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 24 of 59

allow to map the object reference of a link-head to the id of the link's target node. This
command usually does not have to be directly, but is called automatically by the IM-simplex-
link and IM-duplex-link commands.
A special syntax is to use the string me instead of the object reference. In that case the
ISPDelay module will assume that $id is the id of the node it is attached to. This command is
automatically called during node instantiation by the IM-node command.

• $c trace [file]
This command enables tracing if packets. Once this command is executed, a trace file is for
this external module is written. For each packet the trace file contains a line like:

1.1 last: 1 this: 2 next: 3 size: 1000 type: cbr src: 0 dst: 3 ttl: 30 dly: 0.2

The first token is the simulation time, the other fields provide information about the packet and
the involved nodes. If [file] is omitted, the trace file is simply written to stdout.

• $c stat
This command returns some statistics in a simple text form like:

mod: /tmp/isp_test.mod in: 0 out: 0 loss: 0.0 avg-delay: 0.0

This lists some simple some statistics about the packets received and transmitted by the
module, the packet loss and the average delay. The average delay is simply the sum of all
delays calculated by the module, divided by the number of transmitted packets.

3.2 Time Series Simulator
This integrated simulation tool consists of three
parts. A GUI module that drives creation of a
simulation request, a java bean that runs inside
the global controller and modifies and
completes the request it received from the GUI
module and forwards it to the simulation
engine, to the third part, that receiving the
completed request executes it. In the following
we discuss the three parts.

3.2.1 The GUI module
The Requester module in the GUI is not a
monolithic module but consists of as many
parts as many simulators exists in the system
as depicted in Figure 3.6. When a simulation is
to start, a visualization application is initiated to
visualise the topology in any way and to handle
user requests. Each sub module provides a
call-back function to other GUI elements to let
them delegate GUI events such as a user click
on a link or on a router:

void processGUIEvent(GUIEvent e)

This call-back method can decide then, how to
handle the event based on its type. If it
recognises the event type, then it should pop
up a window and let the user make changes
specific to the scenario he want to run.

GUI Application GUI Application

Callback Callback

Sim ulation dependent message

GC

Topic

Sim ulator
Bean

IM DB
Bean

Topic

Topic Topic

Simulation Requester

Tool manager
++

sim ulator

Tool manager
++

sim ulator

Tool manager
++

sim ulator

Tool manager
++

sim ulator

Simulator dependent message

Figure 3.6 - Time series simulator
integration

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 25 of 59

After the user finished the configuration the GUI application invokes the setInput() method of the
Requestor (sub)module that is used to send the topology data to the Requestor. Then the simulation
specific module can pop up a window to ask any information it still requires to complete the request.

In the end the module creates a simulation specific scenario description based on the topology data
received from the GUI application and the introduced changes and send it to the Global Controller.

3.2.2 The GC component
The java bean in the Global Controller, just like the module in the GUI, processes the message in a
simulator specific way. That means that for every simulator type there may exist a bean in the GUI.
However, it is only needed if any post-processing of the message from the GUI module is needed. It
may alter the data in the request it received. It can retrieve any traffic or node model information
regarding to the defined simulation and simulation time from the InterMON database as depicted in
Figure 3.6.

In case of the time series simulator this component has the important task of retrieving data from the
InterMON database. On the GUI the user specifies the network topology and may introduce some
changes. This component has the task then to retrieve load information generated by one of the traffic
metering tools (eg. IPFIX). For every router specified by the user it has to find, retrieve, optionally
resample and convert the traffic to the XML format specified in 4.1.2.8 and additionally it has to define
the traffic distributions (see 4.1.2.9) too. All this information can be derived from measurements of
traffic in an AS between each pair of border routers. So, we measure the traversing traffic based on its
entry and exit point in the AS.

Certainly, all this information should be present in the database before a user initiates a simulation.
This requires proper setup of the measurement tools well in advance, to make them measure the
traversing traffic.

Finally it should send all the configuration information in a simulation specific format that enables the
given simulator to run the simulation scenario.

3.2.3 Simulation manager and simulator
The simulation manager could only be a wrapper interface between the java Global Controller and the
C/C++ simulators. It receives the simulation description from the GC and starts the simulation engine
parameterised by a file name that contains this description.

Additionally it can execute some control logic (eg. a number of iterations) defined by the message
received from the GC. This logic should be defined again in a simulator specific way so every
simulation manager should understand only those instructions that are described in its 'language'.

As the simulator engine finished, the simulation manager collects the results from certain files
generated by the engine and converts the data to VDM format (see 4.3.1.1). This format is then
serialized and sent back to the GC.

3.2.4 Simulator Architecture
In the following sections the main components of the simulator are introduced as Scheduler, Node,
Model.

3.2.4.1 Scheduler

An object of the Scheduler class is responsible for running a simulation scenario. After the scenario is
built up based on the configuration file, the execution is carried out in a loop of the following steps.

1. Pick up a node.

2. Initialise the node.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 26 of 59

3. Execute the node.

4. Propagate the results of the execution

By calling the init method of the node the scheduler let it prepare for the execution. Execution means
that the node (more precisely the (input/output)model) processes the time series describing the load
and produces time series describing load for the successive nodes. Propagation means that these
produced time series get set as input at the successive nodes.

A node should be executed only if the time series of load is present. This is either defined in the
configuration file or computed from the output of other nodes. This reveals that prior execution the
Scheduler should queue the nodes into an appropriate order to let those time series be computed that
are not available in the beginning.

The ordering algorithm starts from nodes whose inputs are defined. These will be the first nodes to
execute. In the next turn those nodes will be executed that has already got their inputs from the nodes
in the first turn. And so on. The simulation cannot cope with circles in traffic but since this would not be
a realistic scenario we can exclude this case.

After all the nodes was executed the Scheduler gathers the state information of nodes that were listed
in the question section of the configuration file, and compiles the output XML.

3.2.4.2 Node

The Node class is a framework for the traffic handling models. Each node contains two models, one to
handle the traffic that enters to the domain and one to handle the one that leaves it. The models are
dynamically loaded as the node is created.

Each node has two registers for neighbouring nodes. One for nodes in the same domain and one for
nodes in neighbouring domains. The class provides two different method to register the different
neighbours. If any of these registers contain more than one neighbour, then a traffic distribution file
should be specified to that register. These traffic distributions tell the node how to divide the outgoing
or the incoming traffic among the appropriate set of neighbours.

After all the topology and routing (traffic distribution) information is specified (at configuration time), the
Scheduler invokes the init, process and propagate methods. The init method initialise the appropriate
(input/output) model. The process method opens all the input files for the model that should be
executed and executes is. In the end the propagate method sets the output files as input to the
appropriate neighbours.

3.2.4.3 Model

This class is the abstract base class of any node model. It defines a common functionality like setting
the input (setInput()) for this model, initialising (init()) and executing the model (process()).

Since the load (what is the input for a node model) is stored in temporary files, setting the input means
that the file name of the appropriate time series has to be handed to the model.

On initialization the model opens an output and a state file. These files will be filled during the
execution.

The derived classes of this class differ mainly in the executing method. This is where the model
behaviour should be defined. To pass model parameters the process method defines a string
parameter. This string can be parsed by the model specific code to set the parameters. The rest of this
method is usually a loop that consumes the input file and in every step computes and outputs the QoS
state of the node to the state and output files. Every model fills as many output files as many inter-
/intra domain neighbours the containing node has. (Input models – intra-domain, output models –
inter-domain neighbours.) The distribution of the module output among the output files are defined in
the traffic distributions.

Since the time series of traffic and traffic distribution is processed only by models the format and the
contained information of these files can vary from model to model.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 27 of 59

The implemented models:

• NullModel: This simply copies the input to the output introducing only a static delay and
distributing the output among the neighbours. This is used as input model since the inside of a
domain is supposed to be ideal except a static mean delay.

• LeakyBucket: This models a simple FIFO queue with limited server capacity and queue
length. It handles aggregate load information and produces throughput, drop, delay and jitter
state information (the latter two at low accuracy). Parameters for the model are: server
capacity, maximal queue length, actual queue length.

• Class4LeakyBucket: This models the same queue as the LeakyBucket model but this handles
aggregate and packet level load information too. It produces the same QoS state as the
LeakyBucket model but at a higher accuracy. Basically it implements the same queuing
model as the LeakyBucket but while packets are queued and served as expected, the
aggregate traffic information is used to modify the model parameters such as service rate,
total queue length. The concept is that the traffic is modelled as aggregate background traffic
and the (probably important) long packets [Hof03]. This queuing model will queue the long
packets and serve them as a normal queuing system, while the aggregate traffic information
will decrease the service rate and increase the queue level, hence increase the drops and the
delay. The model parameters are: server capacity, maximal queue length, actual queue
length, background traffic mean packet length.

3.3 Fluid Simulator

3.3.1 Introduction
The Rate and Time Continuous Fluid Simulation (RTC-FSIM) is a novel fluid simulation approach
developed within the InterMON project. In contrast to other fluid-based modelling techniques which
require an event-based simulator for the execution of the model, the RTC-FSIM approach models all
traffic as continuous signals and describes the signal transformations by means of differential
equations. The function of the RTC-FSIM simulator is to solve these differential equations that model
the system behaviour. A detailed description of the RTC-FSIM approach can be found in [D6],
[Ber02a], [Ber02b], [Ber02c].

3.3.2 Integration of IPFIX Measurements
One of the main tasks concerning the integration of the simulator into the InterMON platform is the
automated generation of the simulation model and its traffic inputs. The traffic inputs are derived from
the main passive monitoring functionality implemented in InterMON, namely the IPFIX flow meter [D8].
It enables the measurement of flow volumes within a configurable time interval. IPFIX provides a very
flexible flow definition [IPFIX] which allows for traffic measurements at very different granularities. A
flow is simply defined as a set of packets that have a common set of properties, e.g. packet header
fields. In this sense, a flow pattern (i.e. the set of common properties) can be defined such that it
matches the total traffic of a link; on the other hand, the flow pattern can be very specific and match
only some packets of an application level flow (e.g. only the SYN packets of a TCP connection
between two applications).

At the end of a reporting interval, the IPFIX meter sends the measured flow information to a data
collector. The data collector then writes the received information into the InterMON database. The
IPFIX traffic flow table is specified in [D10, Section 3.5]. It is important to note that at the end of the
following reporting interval the new measurements of a flow are stored as a new record in the flow’s
data base table, i.e. the previous measurement is not overwritten with the new one. The number of
bytes / packets (table entries: NUM_BYTES / NUM_PACKETS) are stored in a cumulative way, i.e.
summed up from the beginning of the measurement task.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 28 of 59

In the following we describe how the IPFIX traffic measurements can be used for the generation of the
RTC-FSIM input signal(s).

Basically, each IPFIX flow is subdivided on the time axis into the reporting intervals. For each
reporting interval, the number of bytes (packets) is measured. Our approach is to interpret this
measurement series as the output of an ON/OFF traffic source. In each reporting interval, the flow
can be either in OFF state (i.e. no packets were measured) or in ON state. From the number of bytes
sent in an ON interval, an average rate of flow i in reporting interval j can be derived as

jji

jiji
ji TOFFSETPACKETLASTTIME

BYTESNUMBYTESNUM
rate

−

−
= −

,

1,,
, ___

__
.

The variable names are equal to those used in the database table description of an IPFIX data flow
from [D10, section 3.5]. Additionally, Tj denotes the time instant when the reporting interval j started.
For the first reporting interval, i.e. j = 1, Tj should be set as TIME_FIRST_PACKET_OFFSET.

In Figure 3.7 the approach is illustrated. On the y-axis the different flows are shown: if a flow sent
data during a reporting interval (denoted by the dashed red vertical lines) then a solid black horizontal
line is drawn according to the duration of the ON time. The gaps between the black lines represent
the OFF periods for that flow.

time

flow id flow #1

Figure 3.7 - ON/OFF states of 10 flows

If we select one of these flows, e.g. flow #1, and look at the rates during each reporting interval, the
result could look like Figure 3.8.

Rate of
flow #1

time

Figure 3.8 - Rates of flow #1

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 29 of 59

Such a time series is created from each flow measurement. In order to generate a signal that
represents the total load of the measured interface, a superposition of these ON/OFF sources is built.
The resulting sum could look like Figure 3.9.

It is described below in 3.3.3 how this time series is used as an input signal for the fluid simulator.

time

Rate of
sum

Figure 3.9 - Superposition of the 10 ON/OFF flows

3.3.2.1 Measurement Requirement

The correctness of the above sketched approach can only be guaranteed if an important condition is
fulfilled: each packet must be accounted for exactly once.

In the simplest case, a useful set of patterns could consist of a single flow pattern that matches on all
traffic passing the interface. This would result in a single ON/OFF flow.

If there are packets that do not match on any flow pattern then the IPFIX flow measurement captures
only a portion smaller than 100% of the total traffic. On the other hand, if a packets are accounted for
more than once then this would be a distortion of the real traffic passing the interface.

It may, nevertheless, be necessary to define the flow patterns such that a single packet matches more
than 1 flow pattern. As an example, assume that a user is interested in a question like: “What
consequences would it have (in terms of QoS parameters like delay, packet loss) if all traffic going to
destination X would be routed over AS B instead of AS A. In that case a useful set of IPFIX flow
patterns would consist of 2 filters, one that matches on all packets with a destination IP address of X
and a second filter that matches on all other packets. This would require the ability to define a filter
with a logical “NOT” rule, e.g., destination IP address NOT equal X. However, the current
implementation of the IPFIX meter does not allow such a rule. As a workaround, the filters could be
defined such that:

• Filter 1 that matches on all destination IP addresses

• Filter 2 that matches only on destination IP address X

In that case all packets with a destination of X are accounted for in both filters. If, in each reporting
interval, the number of bytes measured in Filter 2 is subtracted from the number of bytes measured in
Filter 1, the desired results can be obtained. Note that it is necessary to a) start the measurement
rules at the same time and to b) use the same reporting interval for both rules.

While it is possible to perform this subtraction at the collecting station it is not strictly necessary to do
so. The collector may simply save the measured values of each flow to the database. It is sufficient to
perform the subtraction after the user defined the simulation scenario and before the traffic
measurements are passed to the simulation.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 30 of 59

3.3.3 RTC-FSIM Implementation
3.3.3.1 Current status

The RTC-FSIM approach is completely implemented in a Matlab / Simulink environment. The
implementation provides components for a multi-class server station with and without priorities. These
components are provided in a separate file as a Simulink library from where they can be copied into a
new simulation scenario. Currently, the transformation of a topological description into the Simulink
object graph has to be done by hand. The IPFIX measurements are already fully integrated into the
simulation environment. Note that so far we used artificial values as no real measurement data was
available until now.

In the Brussels demo version the RTC-FSIM was integrated into the InterMON toolkit with a simple
measurement-based interface.

3.3.3.2 Planned integration

After a simulation scenario has been defined via the GUI, a simulation request is sent from the
simulation manager to a java wrapper object that’s responsible for the fluid simulator. The RTC-FSIM
wrapper transforms the XML-based description of the simulation task into a sequence of commands
that can be executed by simulator.

In case of the RTC-FSIM, the simulator is implemented in Matlab / Simulink [MATHW]. Therefore, the
output of the transformation is a Matlab script.

3.3.3.2.1 Traffic

The scenario description contains a section on the input traffic which is the superposition of ON/OFF
flows as described above. The wrapper transforms this time series into a simple ASCII file with two
columns: a time value in the first column and a rate value in the second column. If the scenario
contains descriptions of several flow aggregates then this step is repeated for each flow superposition.

Besides the creation of the text file(s) containing the time series, commands that read from these text
files are added to the Matlab script. Basically, the time series is read into a Matlab internal array
which is then used as the input signal to a server station.

3.3.3.2.2 Topology

The topology information that is sent in the simulation request is automatically transformed into the
Simulink object chart. The already available components for a server station are used as the main
building block. In the transformation process, the topology information is mapped to Matlab commands
that build up the Simulink model in a non-interactive way.

3.4 INTER-IP
The INTER-IP tool evaluates the end-to-end packet or volume transfer delay performance for a traffic
relation (i.e. a flow identified by the source and destination IP address and by the service class if
differentiated service is used) that crosses multiple domains in a Differentiated Services context.

A suggested application in the InterMON context could be the rapid comparison (on the base of the
delay metric) of alternative routes for the same flow.

The delay calculation is totally analytical and based on queuing models for the links. Each link is
modelled by a one server, multi-class queue with a strict priority class and up to five classes serviced
in a round-robin way (this model is similar to the MDRR scheduling discipline implemented on CISCO
giga-routers [CISCO]).

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 31 of 59

The queue model is derived from the M/G/1 priority queue [Kle76] model with some modifications for
the classes serviced in a round-robin way. The packet delay is computed only for the traffic in the strict
priority class; it is assumed that in this class are mapped delay-sensitive applications like Voice-Over-
IP or interactive applications. The traffic mapped on the other classes is supposed to be of type “bulk”
(i.e. applications based on large volume transfer, generally using TCP) and the model allows for
computing the volume transfer delay. The model takes into account that the M/G/1 priority queue is an
inaccurate model for GPS scheduling because the absolute priority doesn’t reflect the scheduler
behaviour. The model considers also the nature of TCP traffic neglecting the packet level because the
end-user perceives the network performance relative to the flow level.

The formula resolving this model is in closed form and had been validated using simulations [P1115].
This allows for a practically real-time performance evaluation.

The end-to-end delay is derived from the composition of the delays experienced on each link crossed.
The mean delay is computed using the additive property for the average delay.

The tool has two components that are described in the paragraphs below.

3.4.1 Interd
This module has in charge the computation of the end-to-end delay performance for a certain number
of traffic paths (identified by a list of couples AS/Border Routers crossed).

The average end-to-end delay is obtained as the sum of the average delays evaluated for all the hops
belonging to the path that are:

• inter-domain links: in this case the delay performance is evaluated using the queue model
described above; each class of traffic on these links is characterized by the average length of
the packets for the strict priority class and of the files for the other classes2;

• intra-domain hop: in this case the delay is directly available, as the delay of each class for
each BR-to-BR traffic relations (per-class delay matrix) is directly supplied to the module. The
intra-domain delay is considered constant and independent from the load of the network
crossed. This assumption has been made because in an inter-domain context the bottlenecks,
due to the large cost of the bandwidth in the inter-domain connections, are located on the links
interconnecting two different domains. As a consequence, the intra-domain delays are
probably negligible, relatively to the end-to-end delay, and the error made by assuming these
delays as independent from the load of the network crossed is not too large.

A particular case of intra-domain hop regards two components of the end-to-end delay: the delay from
the source to the egress router in the originating domain and the delay from the ingress router in the
destination domain to the destination of the traffic. The problem with these components is that a
precise evaluation needs information about internal topology, routing, link loads and scheduler weights
for the two domains. If this information is available, the module Intrad described in the next section
could be used. But for the same reasons seen above it is possible to neglect these components or to
use a fake value calculated from the delay-matrix in such a way to be representative of a generic
“internal” (to the source or destination AS) delay.

The intra-domain delay matrix can be measured (using the MonRes or Ipfix modules features) or
calculated using the module described below.

3.4.2 Intrad
This module has in charge the per-class delay matrix computation. The per-class delay matrix is also
needed as input of the module Interd described above.

2 The assumption is that it is possible that the mapping of the traffic on the classes is unique for all the domains
crossed

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 32 of 59

The input data are listed in 4.1.3.1; since the Autonomous System administrators will probably not
share a part or even all of them, it should be possible to have them stored in a dedicated section of the
local database.

3.4.3 INTER-IP Integration
The Interd and Intrad module are binaries executables (compiled C language) called by a Java class,
which is driven by the Simulation manager via XML-RPC. The communication with the GUI and the
Global (or Local) Controller is performed by the JMS messaging system. The design is depicted in
Figure 3.10.

From the user’s perspective, the simulator is configured in the GUI inside the INTER-IP requester
module, which pops-up when a simulation request is performed from the “Modelling and Simulation”
menu.

The Simulation manager can retrieve the missing data of the scenario specified by the requester
directly from the InterMON database. In case such data were not available, it is planned to achieve a
level of integration such that features of other InterMON modules can be used; for example:

• the list of alternative routes for a traffic relation could be supplied by the topology visualization
tool;

• information about the average volume size transferred in a connection (traffic class
characterization) could be supplied by the Ipfix tool;

• information about link loads could be supplied by the MonRes and/or Ipfix tools

The Simulation manager can also configure a what-if analysis by elaborating the actual data and
computing a new set of inputs resulting from the changes requested by the user in the INTER-IP
requester module.

Inter -IP tool

TM + GC

XML -RPC

C code

Java wrapper

txt

GUI

DB

Inter -IP
requester

Data parser + What -if configuration

Inter -IP toolInter -IP tool

TM + GC

XML -RPC

C code

Java wrapper

txt

GUIGUI

DBDB

Inter -IP
requester
Inter -IP
requester

Data parser + What -if configuration

Figure 3.10 – Inter-IP integration

3.5 Generic Simulation Control Module for the Client GUI
In order to configure and start new simulation tasks a common GUI component is implemented. This
component is build in the form of an application plug-in module3 for the InterMON GUI. It is available in
the 'Tools/Modelling and Simulation' section of the GUI menus. This module implements a common
front end for the different simulations yet it is flexible enough to allow specifying additional parameters
specific to each type of simulation.

3 technically: a class derived from BaseApplication

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 33 of 59

The Simulation configuration front end has three main dialogs which are organised into three tabbed
panes:

1) a generic dialog to enter common parameters like task ID, task description and start time and also
select the type of simulation which shall be performed (packet based, flow based, analytical, etc.)

2) a dialog where the user can choose from a list of stored network topologies (collected by the
topology toolkit) and also attach configuration changes to elements in the network by clicking on
elements inside the network view (e.g. change link bandwidth or delay, configure router attributes)

3) a simulation specific dialog in which the user can enter additional parameters specific to the
currently selected simulation type, e.g. simulation granularity or exported items. This dialog is
supplied by the integrator of that simulation type.

Figure 3.11 shows a screen shot of this module (first dialog shown):

Figure 3.11 - Simulation control GUI

The user first needs to select a type of simulation from the drop down box. He can also view a
description of the selected simulation type then to see if this type fits his simulation requirements.
when a simulation has been selected, generic parameters are queried. The user's selection
determines which parameters can be given to the simulation on the third tab and which attributes can
be set on network elements in the second tab.

When the user selects 'submit simulation task' (on the third tab) all entered parameters are collected
and put into one simulation start request message (written in XML). This message is then forwarded to
the Global Controller where the GUI has registered. The GC will give the request to the appropriate
simulation then (for details see Chapter 2).

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 34 of 59

4 Data Formats and APIs

4.1 Simulator-Internal Formats

4.1.1 Formats and APIs used in Hybrid Simulation
4.1.1.1 Format of Hybrid Simulation Model XML Descriptions

The plug-in modules for the ns-2 network simulator used in the hybrid simulation approach can all be
configured using an XML file, or a collection of XML files in the case of a multi-domain model. This
section describes the detailed format of all currently implemented models and submodels from a top-
down perspective.

4.1.1.1.1 Basic structure

Every hybrid approach model description follows a basic XML format described in 4.2.1 to allow for
better handling in databases. The remaining model definitions in the hybrid family have the following
structure:

<modinfo>
<name> Model name </name>
<comment> Optional comment </comment>

</modinfo>
<model category=(domain|idlink|trafficgen|multi) type=?>

[…]
</model>

The fields under the modinfo tag are used to identify the described models in repositories, databases
or graphs, for example. Model names should be short but descriptive so they can be used in
automatically generated graphs. Examples for good names are “AS51423” and “Domain A”.
Comments may contain further information about the described model, for example its creation date,
the kind of measurements used to parameterize it or more detailed information about the modeled
network entity. We deliberately leave this for the users to decide.

The actual model description is stored under the model tag, which is characterized by the attributes
category and type. category designates which kind of model is used (either a domain model, an
inter-domain link model, a traffic generator or a multi-domain model) and type selects a specific
model in a category. In the case of traffic generators this chooses between different kinds of modeled
traffic aggregates, for example. If a category only has one type of model this parameter may be
omitted.

4.1.1.1.2 Multi-Domain Models

Multi-domain models are containers for all other types of models (we speak of a multi-domain model’s
submodels). From the perspective of the ns-2 plug-in mechanism they do the interfacing between ns-2
and model space. Name translation is an important part of this task. From the perspective of model
space they control calculations concerning more than a simple model, like load distribution over more
than one domain model or cumulative delay along a path.

There are four parts (and thus four main tags) to a multi-domain model description, one to configure
the interface towards ns-2 (border tag), one to include the submodels (submodels tag), one to
connect them all together (topology tag) and a fourth one defining the routing paths along the
models (routing tag). The following sections each describe one of these parts.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 35 of 59

Border Section
Interfacing between the event-based world of ns-2 and the analytical models used in the plug-ins
requires some configuration. To be able to map a packet event of ns-2 to a path in the multi-domain
model we need to specify the number of inbound and outbound links, as well as their counterpart
nodes in ns-2. Unfortunately, node names in ns-2 can only be determined at runtime. Therefore, we
need two mappings, one between the model’s link indices and symbolic names and one between
these symbolic names and ns-2 runtime names. The first mapping is configured in the XML model
description. The corresponding section in the XML file takes the following form:

<border inlinks=number outlinks=number>
<inbound link=number> Symbolic name </inbound>
…
<outbound link=number> Symbolic name </outbound>
…

</border>

The attributes inlinks and outlinks of the border tag specify the number of inbound and
outbound links, respectively. Then a list of symbolic names follows, one for every link. The inbound
tag maps the given symbolic name to the inbound link specified with the link attribute. The
outbound tag works analogously for outbound links. Note that missing mappings can either trigger an
error or cause all packets on related paths to be dropped. Also, the same symbolic names can be
used with multiple link numbers.

Submodels Section
In this section, surrounded by the “submodels” tag, the models contained in the multi-domain model
are listed. Each list entry has the form <type>filename</type>, where type is either domain,
idlink or trafficgen, for domain models, inter-domain link models and traffic generators,
respectively. The models of each type are numbered internally according to their appearance in the
list, starting with zero. Entries of different types can be freely mixed. The file names can also be
absolute or relative path names. In fact, submodels of a multi-domain model “mdmodel.xml” will be
usually stored in a subdirectory “mdmodel”. A typical submodel specification of a file “MDM” would
look like this:

<submodels>
<domain> MDM/domain_A.xml </domain>
<domain> MDM/domain_B.xml </domain>
<idlink> MDM/idlink_AB.xml </idlink>
<idlink> MDM/idlink_BA.xml </idlink>
<trafficgen> MDM/tgen_1.xml</trafficgen>
<idlink> MDM/idlink_1A.xml </idlink>

</submodels>

This would yield the submodels of the multi-domain model shown in Figure 4.1. The file pointed to by
a list entry must contain a model description of the correct type.

A B

AB

BA

Traffic
Generator

1

1A

Figure 4.1 - Example multi-domain configuration

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 36 of 59

Topology Section
The topology section of multi-domain models specifies the connections between the models loaded in
the submodels section and between these models and the inbound and outbound links of the multi-
domain model. Connections are defined by specifying a source connector, a destination connector
and the identifier of the inter-domain link between. A special format is used to refer to connectors:

D:<id>:<c> The connector <c> of the domain model with index <id>. These can be
specified as source or destination connectors.

T:<id> The traffic generator with index <id>. Traffic generators can only be used
as source connectors.

I:<c> The inbound link <c> of the multi-domain model. Inbound links can only
be source connectors.

O:<c> The outbound link <c> of the multi-domain model. Outbound links can
only be destination connectors.

These connector selectors are used on the connect tag, which look like this:

<connect from=source connector to=destination connector>inter-domain link ID</connect>

This connects two models (or inbound/outbound links) using the inter-domain link model specified by
its numeric identifier. The topology section of a multi-domain model, below the topology tag,
consists of a complete list of connect entries.

Routing Section
While the topology section defines the connections between the models contained in a multi-domain
model, the paths packets take along these connections must be configured separately. This is done
with a list of path entries below a routing tag. These take the form
<path from=number to=number> IDLINK_ID … IDLINK_ID </path>

to specify the path between inbound and outbound links given by their numeric identifiers, or

<path type="tgen" from=number to=number> IDLINK_ID … IDLINK_ID </path>

to specify the path between a traffic generator and an outbound link, again given by their numeric
identifiers. The path itself is defined by a list of numeric inter-domain link identifiers. This section must
include all possible inbound/outbound combinations and a path for every traffic generator of the multi-
domain model.

4.1.1.1.3 Domain Models

Domain models represent autonomous systems or generic network clouds inside the analytical model.
In contrast to earlier work done in the InterMON project they don’t play a significant role in the
simulation of load distribution anymore. They now merely serve to connect a number of inbound inter-
domain link models to a number of outbound ones. Also, delay specifications have changed from
earlier versions. Delays are now mainly simulated using empirical cumulative distribution functions
(ECDFs), which can be directly derived from delay measurements over actual network domains. There
are three levels of detail for delay simulation depending on the quality of measurement data. If only a
single delay value can be obtained – when using traceroute for example – the domain model can
be configured to have a fixed delay on all its paths. In the case of a single time series the
corresponding ECDF can be calculated and the domain model will yield equally distributed delays on

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 37 of 59

all its paths. The most detailed representation of domain delay is the case where delay measurements
of every path are available. Then, an ECDF will be calculated for each one of these paths.

After the common header for InterMON models of the hybrid family, the model tag starts the domain
model description with the category attribute set to “domain” and the type attribute being ignored,
because there currently is only one type of domain model. Next, the two tags inbound and
outbound are expected, each containing positive integer values and giving the number of inbound
and outbound inter-domain links connected to the. The main part of a domain description is placed
under the depred tag (delay predictor tag), which includes a type attribute to select one of the three
delay models. This attribute can take the values "fixed_value", "single_distr" or
"multi_distr". In the fixed value case the value of the depred tag is a single floating point value.
In the case of a single ECDF a white-space separated list of floating point values is expected, which
are then used to parameterize the distribution. The most complicated case is the one where several
distributions are concerned. It looks like this:

<depred type=”multi_distr”>
<path from=number to=number>
 FLOAT … FLOAT
</path>
…

</depred>

The path tag has the two attributes from and to that select the concerned inbound and outbound
links and thus uniquely define the path across the domain. Again, a sequence of floating point values
is used to specify the distribution. To be valid, a multiple distribution delay predictor has to contain
distributions for every path, i.e. a path entry for every from/to combination.

4.1.1.1.4 Inter-Domain Links

Inter-domain links play an important role in multi-domain models. They serve as logical connections
between other submodels (configured in the topology section of multi-domain model descriptions), as
basis for the calculation of load distribution and packet loss ratios and as simulators of the “dynamic
part” of delay.

Of the several types described theoretically in earlier work only one (the default queuing model) is
currently implemented. It can be configured using a remarkably small set of parameters, namely the
capacity K of the simulated queuing system.

<K>positive integer</K>

which influences the loss ratio and the maximum delay caused by the link (bigger values of K yield
smaller loss and greater delay), and the link rate

<rate>bandwidth spec</rate>

whose value has the format (<INT>K | <INT>M | <INT>G | INF) for kbit/s, Mbit/s, Gbit/s capacities or
infinite capacities (upper-/lowercase does not matter). Infinite bandwidth links serve as purely logical
links without packet loss or delay. They are mainly used between the inbound and outbound links of a
multi-domain model and the internal submodels, since the behaviour of these links is already
simulated by ns-2. Internally, bandwidths are stored in floating point kbit/s values.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 38 of 59

4.1.1.1.5 Traffic Generators

It is very difficult to define a meaningful common subset of configuration parameters other than the
one already included in multi-domain model specifications. Consequently, the only common part of
traffic generator specifications is the root tag

<model category=”trafficgen” type=?>
…

</model>

The type attribute selects one of the available traffic generators. Currently, there are only two values
to choose from, “tgen_null” for the Null traffic generator, which has no further tags or attributes,
and “tgen_http” for the http traffic generator . There are two parameters to the http generator, the
number of sources and the direction of simulated traffic, which can be either “client to server” to
generate the traffic behaviour of client requests, or “server to client” for the generator to model the http
server’s replies to the clients. These parameters can be configured using the following tags:

<sources>number</sources>

for the number of clients modeled and either

<direction>cli->ser</direction>

or

<direction>ser->cli</direction>

to select the direction of the modeled traffic.

4.1.1.2 NS-2 External Module API

This section described the format of external modules and how to implement them. External modules
are executable object files. They have to be written in C++ and are derived from a class "ISP_module".
These modules then can be loaded dynamically into ns and attached to single nodes. Within a single
ns topology setup, different nodes may have different modules attached. For the loading the dlopen
mechanism is used.

4.1.1.2.1 Loading of External Modules

The concept of loading executable objects is simple and follows these steps:

1. The file with the executable object is loaded via the dlopen() function. The object has to be
derived from the ISP_module class.

2. A pointer to an initialization function within the loaded object is obtained by performing a
symbol lookup with the dlsym() function. This initialization function simply calls the constructor
of the object and returns the reference to the new instance. The symbol required for the
lookup is defined with the ISP_MODULE_INIT(<classname>)macro.

3. The init function is called, constructing an instance of the obejct defined in the external module
file.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 39 of 59

The base-class ISP_module looks like:

class ISP_module
{
 public:
 ISP_module(const int n);
 virtual ~ISP_module();
 virtual double process_packet(int prev_node_id,
 int next_node_id, double ti, struct ISP_pinfo *p);
 virtual int command(const int argc,
 const char*const* argv);

 protected:
 int node_id;
};

Since all functions are virtual, an derived class only has to provide the constructor. Of course that a
external module will have no further functionality. The process_packet(...) function, is called for each
packet received by a node. This function decides, for how much time a packet is delayed or whether a
packet is dropped. Any positive-zero value causes a packet delay (in secs), a negative value causes a
packet drop.

The ISPDelay object provides information about the last visited node, the next node, the simulation
time and the information about the packet. The nodes are specified by their ns-number (see also the
nodenames file). The simulation time is in secs. The ISP_pinfo structure will be explained later.

4.1.1.2.2 Passing Commands to external modules

The command function is used to pass commands from the ns tcl frontend to the external module. A
simple argc-argv mechanism is used to pass the parameters to a command(...) function, which can
provided by the external module. Argc is the number of tokens on the command line and argv is a
vector of char pointers to the single token strings. The command(...) function should return 0, if the
command was successful. Any other value is interpreted as an error code. To configure an external
module the command

$o modcmd [t1] [t2] [t3] [t4]

is used. $o is the reference to the ISPDelay object, which has the module attached.

4.1.1.2.3 The "struct ISP_pinfo" type

This structure is used to pass information about the packet to the external module. The structure is
defined as follows:

struct ISP_pinfo
{
 union { // if ipv4, address is in [0]
 int32_t v4;
 int32_t v6[4];
 } src;

 union {
 int32_t v4;
 int32_t v6[4];

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 40 of 59

 } dest;

 int32_t size;
 int32_t ttl;
 int32_t protocol; // not yet implemented
 int32_t pkt_type; // the ns packet type

 int32_t flowid; // not yet implemented
 int32_t prio; // not yet implemented
};

Even if the ISP_pinfo structure does support IPv6 and IPv4, the packet handling for IPv6 and IPv4
packets within ns is rather similar. The src and dest fields, which are capable to store either a IPv4 or
IPv6 address are used in a ns manner and simply store the number of the source and destination
node as a simple integer. The size and ttl fields have the same meaning as in the original IPv4/v6
headers. The protocol field is currently not used, since ns does not maintain such a field in its internal
IP packet header. As an alternative ns provides a pkt_type field, which provides information about the
packet type. As can be seen the pkt_type is used much more general than the protocol id in the IP
header. The following table lists the values defined within ns.

#no Traffic-type #no Traffic-type
1 TCP 26 REJECT
2 UDP 27 TELNET
3 CBR 28 FTP
4 AUDIO 29 PARETO
5 VIDEO 30 EXP
6 ACK 31 INVAL
7 START 32 HTTP
8 STOP 33 ENCAPSULATED
9 PRUNE 34 MFTP
10 GRAFT 35 ARP
11 GRAFTACK 36 MAC
12 JOIN 37 TORA
13 ASSERT 38 DSR
14 MESSAGE 39 AODV
15 RTCP 40 IMEP
16 RTP 41 RAP_DATA
17 RTPROTO_DV 42 RAP_ACK
18 CtrMcast_Encap 43 TFTC
19 CtrMcast_Decap 44 TFRC_ACK
20 SRM 45 PING
21 Request 46 DIFF
22 ACCEPT 47 RTPROTO_LS
23 CONFIRM 48 LDP
24 TEARDOWN 49 GAF
25 LIVE 50 REALAUDIO

51 PUSHBACK

Most of the values defined within ns do only make sense in a special environment or in combination
with very specific ns2 extensions. However, packet or traffic types like TCP, UDP or CBR can be used
to differentiate between packets.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 41 of 59

4.1.1.2.4 The "nodenames" file

The node ids, which are used within the trace files and also by the API to the external module are set
by ns. Since the external module has to know, which node got which ids a "nodenames" file is written,
simply listing line by the line, the id of a node with the label provided to the IM-node command. A
typical nodenames file looks like:

 0 Knoten-0
 1 Knoten-1
 2 Knoten-2
 3 Knoten-3

The first column represents the node id the second column the label of the node.

4.1.1.2.5 Compiling external modules

There are a few special compiler and linker commands necessary to compile the external modules.
Most of the flags are rather standard. The -fPIC flag is required to compile position independent code,
the -shared flag takes care of linking the executable object. The following table shows the Makefile
used to compile the sample module, described in the next section.

INCLUDE = -I../ns-2.26
CFLAGS = $(INCLUDE) -O6 -Wall -fPIC
LD = g++ -shared
CPP = g++ -c
all: isp_test.mod
isp_test.o: isp_test.cc isp_test.h
 $(CPP) $(CFLAGS) isp_test.cc -o isp_test.o
%.mod: %.o
 $(LD) $< -o $@
 cp $@ /tmp
clean:
 rm -f *.mod *.o *~ nodenames

4.1.1.3 A Sample Module

The next paragraphs show the header and the source files of a simple external module.

// The header file of the sample module

#include "../ns2/ispmodule/isp_module.h"

class ISP_test : public virtual ISP_module
{
 public:
 ISP_test(int n);
 double process_packet(int prev, int next, double ti, struct ISP_pinfo *p);
 int command(const int argc, const char*const* argv);

 private:
 double delay;
};

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 42 of 59

// The source file of the sample module
#include <stdio.h>
#include "isp_test.h"

ISP_MODULE_INIT(ISP_test)

ISP_test::ISP_test(int n) : ISP_module(n)
{
 delay=0.1; // default delay
 return;
}

double ISP_test::process_packet(int prev, int next, double ti, struct ISP_pinfo *p)
{
 return delay; // just return the delay value
}

int ISP_test::command(const int argc, const char*const* argv)
{
 if(argc==2 && !strcmp("delay",argv[0]) && atof(argv[1])!=0) {
 delay=atof(argv[1]); // convert string to float and set new delay
 return 0; // okay
 }
 return 1; // error
}

ISP_MODULE_INIT(ISP_test) is a call of the macro, which is necessary to provide the symbols for the
dlopen mechanism used during loading the module. The argument has to be the classname of the
derived class. The example above simply adds a static delay of 0.1 seconds to each packet passing
the node. This delay can be altered by a command "delay". Assuming this module is attached to a
node $n, the command to set the delay to 0.2 seconds would be something like:

[$n entry] modcmd delay 0.2

The module commands (everything after the modcmd token) only depends on the external module.

4.1.2 Formats used in Time Series Simulation
The simulation engine is configured by an XML file. This file describes the scenario the simulation
engine should run. The description of the XML scheme follows.

4.1.2.1 Scenario

A scenario tag defines the topology (NetworkDescription), the traffic (Source) and the routing
(TrafficDistrib) tags. Inside these tags are defined the set of nodes and links that forms the simulated
network, the load on these nodes and links and the distribution of the traffic inside the domains
respectively.
<xs:element name="scenario">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="1" minOccurs="0"
 name="networkDescription" type="NetworkDescription"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
 name="source" type="source"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 43 of 59

 name="trafficDistrib" type="trafficDistrib"/>
 <xs:element maxOccurs="unbounded" minOccurs="0"
 name="question" type="question"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

4.1.2.2 NetworkDescripition

The NetworkDescription tag describes the network as a set of autonomous systems (tsismAS) and
links between these systems (iDContact).
 <complexType name="NetworkDescription">
 <sequence>
 <element name="description" type="xs:string"/>
 <element maxOccurs="unbounded" minOccurs="0" name="as"
 type="tssimAS"/>
 <element maxOccurs="unbounded" minOccurs="0" name="iDContact"
 type="iDContact"/>
 </sequence>
 </complexType>

4.1.2.3 TssimAS

All autonomous system is identified by an id attribute. Autonomous systems are modelled by border
models.
 <complexType name="tssimAS">
 <sequence>
 <element name="description" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="borderModel"
 type="borderModel">
 </sequence>
 <attribute name="id" type="int" use="required"/>
 </complexType>

4.1.2.4 BorderModel

Each autonomous system is modelled by its border routers and a static delay that is a mean value of
the internal delays of the autonomous system.
 <complexType name="borderModel">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="1" name="brNode"
 type="brNode"/>
 </sequence>
 <attribute name="meanDelay" type="float" />
 </complextype>

4.1.2.5 BrNode

A border router in a simulation is a framework for the traffic handling models. Each border router
consists of two model. One handles the traffic that enters the autonomous system, the other handles
the traffic that leaves the autonomous system. Border routers are identified by a unique id attribute.
 <complexType name="brNode">
 <sequence>
 <element name="inputModel" type="model" />
 <element name="outputModel" type="model" />
 </sequence>
 <attribute name="id" type="string" use="required"/>
 </complexType>

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 44 of 59

4.1.2.6 LeakyBucket Model

This tag defines the parameters of a LeakyBucket model in the time series simulator. The parameters
are the service rate, the time scale, the actual and the maximal queue length.
<xs:complexType name="LeakyBucket">
 <xs:all>
 <xs:element maxOccurs="1" minOccurs="1" name="rate"
 type="xs:unsignedLong"/>
 <xs:element maxOccurs="1" minOccurs="1" name="timeScale"
 type="xs:unsignedLong"/>
 <xs:element maxOccurs="1" minOccurs="1" name="queueLen"
 type="xs:unsignedLong"/>
 <xs:element maxOccurs="1" minOccurs="1" name="queueMax"
 type="xs:unsignedLong"/>
 </xs:all>
 </xs:complexType>

4.1.2.7 IDContact

An iDContact tag defines a link between two border nodes of two autonomous systems. It can define
point-to-point links by listing the two ends, or multiple access links by listing more than two ends.
<element name="iDContact">
 <complexType>
 <sequence>
 <element name="brNodeId" type="string" minOccurs="0"
 maxOccurs="unbounded">
 </element>
 </sequence>
 </complexType>
</element>

4.1.2.8 Source

Every <source> tag is bounded to a border router. It defines the traffic that enters the router's
autonomous system in form of time series. This definition does not make any restriction on the format
of the time series. It is up to the simulation models to interpret the values defined in the time series.
<element name="source">
 <complexType>
 <sequence>
 <element name="traffic" type="ts" />
 </sequence>
 <attribute name="brNodeId" type="string" use="required" />
 </complexType>
</element>

4.1.2.9 TrafficDistrib

This tag defines the routing information for the simulator models. Since the models handle aggregate
traffic values, the usual routing information is not interpretable for them. Instead for every router model
there is a traffic distribution defined that describes how the traffic should be distributed among the
successive routers (see architectural section on models). This information is coded, similarly to the
traffic, in time series.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 45 of 59

<element name="trafficDistrib">
 <complexType>
 <sequence>
 <element name="traffic" type="ts" />
 </sequence>
 <attribute name="brNodeId" type="string"/>
 </complexType>
</element>

4.1.3 Formats used in INTER-IP
There are two different set of data for the INTER-IP tool, one for the intra-domain evaluation, and
another one for the inter-domain case. The what-if analyses are handled by the Simulation manager,
which takes care of computing different sets of input for multiple instances of the inter-domain module.

4.1.3.1 Intra-domain Evaluation

The complete internal topology of the domain is required, plus the statistical characterization of the
traffic along with load information:
• List of AS internal routers with specific functionality: border, access or core;
• List of AS internal links, with their associated capacity and OSPF metrics. For a DiffServ network,

we also need the scheduling parameters;
• Per-class traffic load;
• Per-class traffic model: the average length of the packets for the strict priority class and of the files

for the other classes4;

These data are synthetically represented in Table 4.1.

Table 4.1 – Intra-domain entities

Network Entity Attribute Type Description

Node ID string Identifier of the node

Node Function string, the value can
be: core, access,
border router

Node functionality

Node Description string A complete description of the node

Link ID integer Identifier of the link

Link headend string Identifier of the source node5

Link tailend string Identifier of the destination node

Link bandwidth double Bandwidth of the link expressed in
bits per second

Link OSPF weight integer OSPF weight of the link

Link Class code integer A class identifier. For strict priority
and Best Effort standard code (EF
and BE) are used

Link MDRR weight integer MDRR scheduler weight specified
for each class except for the strict

4 The mapping of the traffic on the classes has to be unique for all the domains crossed
5 The links are modelled as uni-directional. A bi-directional link is the combination of two uni-directional links

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 46 of 59

priority one. Best Effort is
mandatory. If Best Effort is the only
round robin class the weight can be
zero

Link Traffic double The per-class traffic of the link
expressed in bits per second

Class Class code integer A class identifier. For strict priority
and Best Effort standard codes (EF
and BE) are used. Only Best Effort
is mandatory.

Class Class
description

string A complete description of the class

Class Average length integer For each class the mean length of
the packet (if the class is strict
priority) or the mean volume size
transferred (for the round robin
classes) is specified. Both values
are expressed in bits

4.1.3.2 Inter-domain Evaluation

The topological and statistical characterization of the end-to-end connection must be specified:
• List of Autonomous Systems crossed by the end-to-end connection;
• List of the Border Routers connected to the above links;
• The internal Delay Matrix for each of the above ASs;
• List of the inter-domain links traversed by the flows;
• Per-class traffic load for each of the above links.

These data are synthetically represented in Table 4.2.

Table 4.2 – Inter-domain entities

Network Entity Attribute Type Description

AS ID Integer Identifier of the AS

Border Router BR code string Border router identifier6

Border router BR description string Text description of the border
router

Link ID integer Identifier of the link

Link Headend_id string Identifier of the source border
router7

Link Headend_AS_id string Identifier of the AS of the source
border router

Link Tailend_id string Identifier of the destination border
router

Link Tailend_AS_id string Identifier of the AS of the

6 At least one border router for AS is mandatory.
7 The links are modelled as uni-directional. A bi-directional link is the combination of two uni-directional links

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 47 of 59

destination border router

Link Bandwidth double Bandwidth of the link expressed in
bits per second

Link Class code integer A class identifier. For strict priority
and Best Effort standard codes (EF
and BE) are used

Link MDRR weight integer MDRR scheduler weight specified
for each class except for the strict
priority one. Best Effort is
mandatory. If Best Effort is the only
round robin class the weight can be
zero

Link traffic double The per-class traffic of the link
expressed in bits per second

Delay_matrix BR_to_BR delay double The per-class delay (in seconds)
expressed for each couple of
Border Router. The crossing delay
of a single8 Border Router is
conventionally assumed to be zero

Traffic Relation TR_id string Identifier of a traffic relation

Traffic Relation TR_list string A list of couples AS,BR crossed by
the traffic relation

Class Class code integer A class identifier. For strict priority
and Best Effort standard codes (EF
and BE) are used. Only Best Effort
is mandatory.

Class Class description string Text description of the class

Class Average length integer For each class the mean length of
the packet (if the class is strict
priority) or the mean volume size
transferred (for the round robin
classes) is specified. Both values
are expressed in bits

4.2 Intra-Toolkit Formats and APIs

4.2.1 Basic XML Format for Models
A very simple XML structure for descriptions of models from all simulation approaches has been
defined. It is mainly useful for handling in a database. The actual content was left to be defined in a
simulator-specific way.

Every model description follows a basic structure: The top level tag is imonmodel, which identifies the
XML file as a model description belonging to one the InterMON simulation approaches. Exactly which
approach is meant is further selected by the family attribute. Possible values of family can be
hybrid for the approach described here, fluid for the fluid flow approach done by Salzburg

8 for example for non-collaborative AS we don’t know anything about BRs and we can collapse thye whole AS
to a fake BR

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 48 of 59

Research, ts for the time series simulator done by BUTE, and analytical for the “Inter-IP”
approach by TILAB.

4.2.2 General Time Series
A general time series consists of a sequence of tuples. Each tuple has two attributes: a time that
defines the independent variable in the time series; and a unit that defines the measurement unit of
the time variable.

Each tuple in the time series consists of a sequence of values, each of that has a name. In this way
arbitrary number of dimensions can be defined for the time series and it is up to the user of the time
series to interpret the values and names.
<complexType name="ts">
 <sequence>
 <element name="tuple" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="value" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="time" type="float" />
 <attribute name="unit" type="string" />
 </complexType>
 </element>
 </sequence>
</complexType>

4.2.3 Question
The question tag is a sequence of node ids. In this section the user expresses his interest in the
specified nodes. At the end of the simulation state information of only these node will be retrieved. If
no node is listed, then all node's state information will be returned.
<element name=”question”>
 <complexType>
 <sequence>
 <element name=”brNodeId” minOccurs=”0” maxOccurs=”unbounded”>
 <complexType>
 <simpleContent>
 <extension base=”string”>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 49 of 59

4.3 Extra-Toolkit Formats and APIs

4.3.1 VDM Interface Formats and APIs
4.3.1.1 Writing an Import Filter

Every tool, which wants to display the produced data within the visualisation process, has to
implement an import filter. This filter has to transfer this data from the proprietary format of the tool to
the well defined Filter Data Item which could be transferred via xml from one host to another (this will
be done by using the Global Controller), or via handle, if the next filter resides on the same host.

To write an import filter, the programmer only has to derive the abstract c++ Class importFilter
and fill the virtual method _import(string& inputInfo). The inputInfo string is not
restricted and could be used in any way. It is recommended to use this string to define the import file,
or to define a configuration file (please use xml), in which the import of data is described.

Within this method, the Output Filter Data Item has to be filled. But before this step, the programmer
should think seriously about the data she/he wants to provide to the module:

1. Is the data multi dimensional?

2. what parameters are independent, what are dependent

3. what type is the data

The most important thing is to identify the independent and dependent variables, therefore here is a
small definition for this:

Independent variables
Independent variables exists without any other knowledge. The only thing, which has to be taken into
account, is that the data should be inserted into the independent list in any kind of order. In most
cases, the time is an independent parameter and will be taken as the first dimension. The implied
order here is the order of time itself (8pm is earlier than 10pm). The independent variable itself does
not imply this order and even does not imply any kind of constant intervals between two timestamps.

The independent list (which contains the values of one independent variable) could easily be
accessed via the []-operator. The abstract value, which will be given back, is the base class for the five
VDM-Types: integer, non aggregateable integer, floating point, time and string. An reference to this
base class could be found under section 4.3.1.3.

Example:
unsigned int pos = 42;
abtractValue& item = independentValueList[pos];

Dependent variables
Dependent variables could not exist without the knowledge of the independent variables. This means,
one dependent variable is always defined, if every independent variable within one table is set to a
specific value.

Example:
valueList::pos_identifier pos;

pos[“timeline”] = 5;
pos[“router”] = 12;
abtractValue& item = ValueList->at(pos);

If the programmer has a clear vision of the data structure, she/he will have the following methods to
create tables and scalars:

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 50 of 59

OutputItem = ItemHandle(new FilterDataItem(“coolFilter”));
scalar* newScalar = OutputItem.getItem()->createNewScalar(“coolName”, vdminteger);
table* newTable = OutputItem.getItem()->createNewTable(“coolerName”);
newScalar = integer(“23”); // strings will work as input value
independentList* newIndepList = newTable->createNewIndepList(“timeline”,
 vdmtime);

/* fill independent list */

newTable->postInit(); // no more independent variables
dependentList* newDepList = newTable->createNewDepList(“coolvalues”,
 vdmfloatpoint);

/* fill dependent list */

for (int i=0; i<size; i++) {
 newIndepList.insertItem(indepvalueXY);
 /* this is a “fast hack” for dependent values and only works in one
 dimensional data arrays */
 newDepItem.insertItem(depvalueXY);
}

In this example, the data will be inserted into the independent and into the dependent lists in parallel
by just inserting the values. Normally more dimensional data will be filled one after another (first al
independent variables, then the dependent.

This will be done in the following way:
OutputItem = ItemHandle(new FilterDataItem(“coolFilter”));
table* newTable = OutputItem.getItem()->createNewTable(“coolerName”);

independentList* newIndepList1 =
newTable->createNewIndepList(“timeline”, vdmtime);

independentList* newIndepList2 =
newTable->createNewIndepList(“router”, vdmnagint);

/* fill independent list */
for (int i=0; i<size; i++) {
 newIndepList1.insertItem(indepvalue_1_XY);
 newIndepList2.insertItem(indepvalue_2_XY);
}
newTable->postInit(); // no more independent variables

dependentList* newDepList =
newTable->createNewDepList(“coolvalues”, vdmfloatpoint, true);

/* fill dependent list */
for(int j=0; j<newIndepList1.size(); j++)
 for(int j=0; j<newIndepList1.size(); j++){
 pos[“timeline”]=j;
 pos[“router”]=k;
 newDepItem.insertItemAt(depvalueTojAndk, pos);
 }

A complete example of parsing a comma separated file will be given in 5.1.

When the _import method is written, the filter could be accessed by the following VDM-Code:
#include <string>

#include "csvImportFilter.h"
#include "FilterDataItem.h"

int main()

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 51 of 59

{
 string Filename("./traces/aa.csv");

 /****** IMPORT FILTER ******/
 /* The csvImportFilter is derived from the ImportFilter and creates
 a system conform data structure */

 /* creating the filter */
 csvImportFilter myfirstFilter;

 /* importing the file defined above and translate it to the FDI */
 myfirstFilter.import(Filename);

 /* get the item handle to transfer the item to the next filter */
 ItemHandle transItem = myfirstFilter.outputItem();

 /* write the imported data to disk in defined XML */
 myfirstFilter.outputFile("traces/aa.xml");

 /* send the transItem to the next filter */

}

4.3.1.2 FilterDataItem Class Reference

The Filter Data Item is the internal transport object to transfer data from one filter to another.

The Filter Data Item class reference was produced by doxygen:
#include <FilterDataItem.h>

Detailed Description
Class to transport a filter data item between two filters.

The Filter Data Item contains the data for "inter filter communication". This could be:

1. tables: A table is a multi dimensional information storage. It contains independent variables,
which opens up the dimensions of the data space and the dependent variables, which are
the main data within the multi dimensional array

1. scalars: A scalar is one item, that is defined by name, type and value. Scalars could carry
maximum/minimum values etc. for example.

every table or scalar could be accessed by name via hashmaping (name_map is just a typedef of a
hashmap for strings, see hashfunc.h).
ItemHandle-Communication
Within the filter communication (from the outside of filter), a new handle has been introduced, to be
able to destroy old objects more easy. For further information see ItemHandle.
Within filters, these item handles are not used.

Public Methods
• FilterDataItem (const string &Name=string())

Constructor.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 52 of 59

• ~FilterDataItem ()
Destructor.

• name_map (table *) TableList
hashmap to access tables.

• name_map (scalar *) ScalarList
hashmap to access scalars.

• string getName ()
returns the name of this Filter Data Item.

• void setName (const string &Name)
sets the name of this Filter Data Item.

• table * createNewTable (const string &Name)
creates a new table with name "Name", puts it into the tablelist.

• scalar * createNewScalar (const string &Name, const VDMtype
type)
creates a new scalar and adds it into the scalarlist.

4.3.1.3 Value Items

Within the Visual Data Mining every value-object is defined in name, type and value. Every type of
value-object is derived by the abstract class called abstractType.

There have been five types defined for data values (integer, non aggregateable integer, floating point,
string and time). The abstract Type looks like follows:

abstractType Class Reference
defined as an abstract class for all VDM-types.
#include <VDMtypes.h>

Inheritance diagram for abstractType:

abstractTyp

floatpoint integernaggint timeElem vdmstrin

Public Methods
• abstractType ()

empty constructor.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 53 of 59

• virtual ~abstractType ()
virtual empty destructor.

• virtual string str ()=0
method to return a string of his own (used for xml writing).

• virtual void setValue (const string &input)=0
sets the value by a string (used for xml parsing).

• VDMtype getType ()
returns the Type of this VDMItem.

• virtual abstractType * clone ()=0
clones the Type without knowing the correct type.

• virtual abstractType & operator+= (abstractType &absType)=0
adds two values without knowing the correct type.

• virtual abstractType & operator= (abstractType &absType)=0
inserting the value into another object.

• virtual bool operator> (abstractType &absType)=0

Static Public Methods
• VDMtype getVDMtype (const string &type)

static method to convert a string to a VDMType.

• abstractType * createType (VDMtype type, const string *str=0)
static method to create a new object with the basetype.

Some operators are still missing and will be implemented as soon as possible.

4.3.2 BGP-4 Topology Description
4.3.2.1 High level description of a general purpose Internet topology object derived from BGP-4

routing information.

The description of a Topology as shown in Figure 2.4 is relatively simple.

A topology consists of an certain number of autonomous systems which are linked together through a
given amount of links. If the autonomous system has supplied routing information to the topology tree
(i.e. has the BGP-4 Topology Tools deployed) or not, it will include either several border routers or
none. Any routing event will be attached to the border router which detected it.

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 54 of 59

Links will always be point to point. They are the physical representation for the TCP session which
carries the BGP-4 routing information between two autonomous systems. The endpoints of a link
might be a border router (when the BGP-4 topology tools are being used in the AS) or an AS (when
the link was derived from the topology). All three combinations (i.e. BR to BR, AS to BR and AS to AS)
are possible.

4.3.2.2 Particularisation of the topology object to the end to end QoS scenario

This general principle used to describe BGP-4 topologies can be refined by including prefix
information in the source and destination autonomous system. This information marks both endpoints
of the scenario. So an AS may also include an IP prefix if it is one of the endpoints of the scenario.

4.3.2.3 XML Schema

The relations explained in the previous paragraph can be easily translated into following XML
Schema.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://BGPTopology" xmlns="http://BGPTopology">

<!-- definition of simple elements -->
<xsd:simpleType name="aspath">

<xsd:restriction base="xs:string">
<xsd:pattern value="([0-9]*|[0-9]+([0-9]+)+)"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="asid">

<xsd:restriction base="xs:unsignedShort"/>
</xsd:simpleType>
<xsd:simpleType name="timestamp">

<xsd:restriction base="xs:unsignedLong"/>
</xsd:simpleType>
<xsd:simpleType name="updateType">

<xsd:restriction base="xs:string">
<xsd:pattern value="[AW]"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ipAddress">

<xsd:restriction base="xs:string">
<xsd:pattern value="([0-9]{1,2}|1[0-9]{2}|2[0-5]
 [0-9]\.){3}([0-9]{1,2}|1[0-9]{2}|2[0-5][0-9])"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ipPrefix">

<xsd:restriction base="xs:string">
<xsd:pattern value="([0-9]{1,2}|1[0-9]{2}|2[0-5]
 [0-9]\.){3}([0-9]{1,2}|1[0-9]{2}|2[0-5][0-9])/
 ([0-9]|[12][0-9]|3[0-2])"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="temperatureType">

<xsd:restriction base="xs:string">
<xsd:pattern value="(cold|warm|hot)"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="linkType">

<xsd:restriction base="xs:string">
<xsd:pattern value="(AS|BR)"/>

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 55 of 59

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="endPointType">

<xsd:restriction base="xs:string"/>
<xsd:attribute name="type" type="linkType" use="required"/>

</xsd:simpleType>
<!-- definition of attributes -->
<xsd:attribute name="state" type="temperatureType" use="required"/>
<xsd:attribute name="type" type="linkType" use="required"/>
<!-- definition of complex elements -->
<!-- a routing event has
 a type,
 a tiemstamp,
 a prefix
 and may have an ASPATH -->
<xsd:complexType name="update">

<xsd:sequence>
<xsd:element name="Type" type="updateType" minOccurs="1"
 maxOccurs="1"/>
<xsd:element name="Timestamp" type="timestamp"
 minOccurs="1" maxOccurs="1"/>
<xsd:element name="IPPrefix" type="ipPrefix"
 minOccurs="1" maxOccurs="1"/>
<xsd:element name="ASPath" type="aspath" minOccurs="0"
 maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<!-- a routing event list
 has always one or more routing events -->
<xsd:complexType name="eventList">

<xsd:element name="Update" type="update" minOccurs="1"
 maxOccurs="unbound"/>

</xsd:complexType>
<!-- a border router
 has always an IP address
 and may have a routing event list -->
<xsd:complexType name="borderRouter">

<xsd:sequence>
<xsd:element name="IPAddress" type="ipAddress"
 minOccurs="1" maxOccurs="1"/>
<xsd:element name="EventList" type="eventList"
 minOccurs="0" maxOccurs="unbound"/>

</xsd:sequence>
<xsd:attribute name="state" type="temperatureType"
 use="required"/>

</xsd:complexType>
<!-- an AS has always one ID
 and zero or one prefixes
 and zero or more border routers -->
<xsd:complexType name="autonomousSystem">

<xsd:sequence>
<xsd:element name="ASid" type="asid" minOccurs="1"
 maxOccurs="1"/>
<xsd:element name="IPPrefix" type="ipPrefix"
 minOccurs="0" maxOccurs="1"/>
<xsd:element name="BR" type="borderRouter" minOccurs="0"
 maxOccurs="unbound"/>

</xsd:sequence>
</xsd:complexType>
<!-- a Link has always two endpoints -->
<xsd:complexType name="link">

<xsd:sequence>

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 56 of 59

<xsd:element name="EndPoint" type="endpointType"
 minOccurs="2" maxOccurs="2"/>

</xsd:sequence>
</xsd:complexType>
<!-- a topologyGraph has at least one AS and one Link -->
<xsd:complexType name="topologyGraph">

<xsd:sequence>
<xsd:element name="AS" type="autonomousSystem"
 minOccurs="1" maxOccurs="unbound"/>
<xsd:element name="Link" type="link" minOccurs="1"
 maxOccurs="unbound"/>

</xsd:sequence>
</xsd:complexType>
<!-- Reference to topologyGraph to define BGPTopologyTree -->
<xsd:element name="BGPTopologyTree" type="topologyGraph"/>

</xsd:schema>

5 Appendix

5.1 Import Filter Example Source Code

Void csvImportFilter::_import(const char* InputInfo)
{
 if (status == fileLoaded) {
 cdbg << "file is yet loaded\n";
 return;
 }

 /*** create a new Filter Data Item and give it to the handle ***/
 OutputItem = ItemHandle(new FilterDataItem("csvImportItem"));

 /*** create a new table and a new scalar within the FDI ***/
 table* csvTable = OutputItem.getItem()->createNewTable("csvTable");
 scalar* csvScalar =
 OutputItem.getItem()->createNewScalar("NumberOfItems", vdminteger);

 /*** create and fill the independent List ***/
 independentList* indepList = csvTable->createNewIndepList("timeline",
vdmtime);

 char line[255];

 ifstream inputFile(InputInfo);
 if (inputFile.fail())
 throw (filterError("Tracefile not found"));
 int count=0;
 inputFile.getline(line,255); // first line is only description - skip it
 while(!inputFile.eof()) {
 inputFile.getline(line,255);
 if ((line[0] == '#') || (line[0] == ' ') || (line[0] == '\n'))
 continue;
 char* line_ptr = line;
 timeElem time;

 /*** we are using the unix time struct ***/
 tm Time;

 bzero(&Time,sizeof(struct tm));
 Time.tm_mday = atoi(line_ptr);

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 57 of 59

 while(line_ptr[0]!='-') ++line_ptr;
 ++line_ptr;

 /**** parsing month ****/
 if (strncmp(line_ptr, "Jan", 3) == 0)
 Time.tm_mon = 0;
 if (strncmp(line_ptr, "Feb", 3) == 0)
 Time.tm_mon = 1;
 if (strncmp(line_ptr, "Mar", 3) == 0)
 Time.tm_mon = 2;
 if (strncmp(line_ptr, "Apr", 3) == 0)
 Time.tm_mon = 3;
 if (strncmp(line_ptr, "May", 3) == 0)
 Time.tm_mon = 4;
 if (strncmp(line_ptr, "Jun", 3) == 0)
 Time.tm_mon = 5;
 if (strncmp(line_ptr, "Jul", 3) == 0)
 Time.tm_mon = 6;
 if (strncmp(line_ptr, "Aug", 3) == 0)
 Time.tm_mon = 7;
 if (strncmp(line_ptr, "Sep", 3) == 0)
 Time.tm_mon = 8;
 if (strncmp(line_ptr, "Oct", 3) == 0)
 Time.tm_mon = 9;
 if (strncmp(line_ptr, "Nov", 3) == 0)
 Time.tm_mon = 10;
 if (strncmp(line_ptr, "Dec", 3) == 0)
 Time.tm_mon = 11;

 while(line_ptr[0]!='-') ++line_ptr;
 ++line_ptr;

 Time.tm_year = atoi(line_ptr);

 /* assume the year */
 if (Time.tm_year < 69)
 Time.tm_year +=100;
 timeElem TimeElement;
 TimeElement.setValue(&Time);

 /* insert the time into the independent list */
 indepList->insertItem(TimeElement);
 count++;
 }
 inputFile.close();

 /*** tell the table that there are no more independent varaibles ***/
 csvTable->postInit();
 ifstream inputFile1(InputInfo);

 /*** create new independent variables ***/
 dependentList* depListOpen =
 csvTable->createNewDepList("Open", vdmfloatpoint);
 dependentList* depListHigh =
 csvTable->createNewDepList("High", vdmfloatpoint);

 dependentList* depListLow =
 csvTable->createNewDepList("Low", vdmfloatpoint);
 dependentList* depListClose =
 csvTable->createNewDepList("Close", vdmfloatpoint);
 dependentList* depListVolume =

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 58 of 59

 csvTable->createNewDepList("Volume", vdminteger);

 inputFile1.getline(line,255); // first line is only description –
 // skip it again
 while(!inputFile1.eof()) {
 inputFile1.getline(line,255);
 if ((line[0] == '#') || (line[0] == ' ') || (line[0] == '\n'))
 continue;
 char* line_ptr = line;
 while(line_ptr[0]!=',') ++line_ptr;
 ++line_ptr;

 /**** parsing comma separated values ****/
 floatpoint Open(atof(line_ptr));
 depListOpen->insertItem(Open);
 while(line_ptr[0]!=',') ++line_ptr;
 ++line_ptr;

 floatpoint High(atof(line_ptr));
 depListHigh->insertItem(High);
 while(line_ptr[0]!=',') ++line_ptr;
 ++line_ptr;

 floatpoint Low(atof(line_ptr));
 depListLow->insertItem(Low);
 while(line_ptr[0]!=',') ++line_ptr;
 ++line_ptr;

 floatpoint Close(atof(line_ptr));
 depListClose->insertItem(Close);
 while(line_ptr[0]!=',') ++line_ptr;
 ++line_ptr;

 integer Volume(atoi(line_ptr));
 depListVolume->insertItem(Volume);
 }
 inputFile1.close();

 /*** add the counter as a scalar value to the Filter Data Item ***/
 integer int_count(count);
 (*csvScalar) = int_count;

 cdbg << "file import done\n";
 status = filtered;
}

Integration of the Inter-Domain Modelling
and Simulation Toolkit

IST-2001-34123

im-wp5-v001-D11-di.doc

im-wp5-v100-D11-pf.doc Page 59 of 59

5.2 References

[Ber02a] G. Bergholz, Signalflußsimulation für Nachrichtenverkehrsmodelle, Technical Report SR-ANC-
B0I1, September 2002

[Ber02b] G. Bergholz, Mehrklassen-Signalflußsimulation für Nachrichtenverkehrsmodelle, Technical Report
SR-ANC-B0I2, December 2002

[Ber02c] G. Bergholz, U. Hofmann, I. Miloucheva, , P. Haber, C. Brandauer, InterMON Rate and Time
Continuous Fluid Simulation Technology (RTC-SIM) compared with current fluid simulation
research, Technical Report SR-ANC-B0I3, December 2002

[CISCO] http://www.cisco.com/warp/public/63/mdrr_wred_overview.html#mdrr_overview

[D6] InterMON partners, InterMON Deliverable 6: Modelling and Simulation Specification, December
2002

[D7] InterMON partners, InterMON Deliverable 7: Specification of visual data mining and user interface,
2002

[D8] InterMON partners, InterMON Deliverable 8: Prototype of inter-domain QoS monitoring
components, 2002

[D10] InterMON partners, InterMON Deliverable 10: Prototype of inter-domain data base with policy-
controlled data collection, 2002

[Hof03] ABSTRACTTYPE

[Kle76] L. Kleinrock, Queuing Systems, Vol.2: Computer Applications, John Wiley & Sons, 1976

[Liu] B. Liu et al, Fluid Simulation of Large Scale Networks: Issues and Tradeoffs, Las Vegas, NV, June
1999

[MATHW] http://www.mathworks.com/index.shtml

[P1115] EURESCOM project P1115 (Saltamontes), Traffic Engineering in Differentiated Services Networks,
(Volume 3)

[Qui03] J. Quittek et al, Requirements for IP Flow Information Export, June 2003, work in progress

[SM02] Seger, Michaelis, Concept of configurable filters for Visual Data Mining Systems, in Proceedings
Inter-domain Performance and Simulation (IPS) Workshop, Salzburg, 2002

