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Abstract— Distributed systems such as peer-to-peer networks architecture is unlikely to succeed. All ISPs would have to
and distributed servers can optimize their performance by alapt-  agree on a common design and publish details about the
ing to the underlying network. End-to-end measurements arén  gir;ctyre and performance of their networks, which they are

important basis for such adaptivity. Although most applicaions .
measure similar properties of the network, the measuremerst usually reluctant to do because they fear to lose competitiv

are mostly done in application-specific ways. In this paper w advantage. Therefore, we believe that a peer-to-peernlesig
propose a general peer-to-peer measurement service based o preferable.

clusters of endpoints that_show virtually identi_cal QoS prerties Performing and storing end-to-end QoS measurements for
when observed from outside the cluster. We discuss the clesing every pair of Internet endpoints clearly does not scalerdhe

concept as well as its use in the measurement service, and Wef hitect b d . int
present a measurement-based method for the remote identiie '0'€: W€ PropoSe an architecture based on grouping endpoin

tion of clusters. This method allows for detecting clustershat into clusters based on their distance in the.network topolog
are not part of the peer-to-peer network. Our evaluation shavs We effectively replace endpoint-to-endpoint measurement

that the presented method is able to reliably detect clusterusing with cluster-to-cluster measurements, which greatly cegu
measurements of round-trip time or of available bandwidth. the problem’s complexity. For example, if two endpoints are
very close together, measurements from a distant obsesver t
both endpoints will be very similar and can be merged. This
During recent years the focus of many developers happroach requires a mechanism to identify suitable clsister
moved away from the standard client-server model toward$ endpoints. In this paper we describe an architecture for
more scalable and robust distributed designs. Many cliet-measurement service based on clusters, and we present
server applications now support redundant and distributafdd evaluate a method to remotely identify clusters based on
servers, and many peer-to-peer systems and overlay netwarieasurements of available bandwidth and round-trip tirhe. T
have been proposed for distributed information storagg. (eproposed method does not require cooperation from the eemot
Chord [1]), file serving for large communities (e.g. BitTemt measurement peers and thus facilitates local and increment
[2] or Slurpie [3]) and multicast [4], [S], [6], [7], [8]. The deployment.
QoS between endpoints greatly impacts the performance offhe remainder of this document is structured as follows:
a distributed application and the choice of topology is mfteRelated work is presented in Section Il. Section IlI disesss
a determining factor for its efficiency and robustness. It ihe clustering concept and presents our measurement-based
therefore important to dynamically adapt the system to th@proach to remote cluster identification. Evaluation af th
properties of the underlying network. approach is shown in Section IV, and Section V concludes
End-to-end measurements are a prerequisite for such adée- paper.
tivity. Most distributed applications measure end-to-dad
tency, delay jitter, or available bandwidth. Delegatingame
surements to a more general, application-independent meaSeveral global Internet end-to-end measurement services
surement service would have many benefits. First, coolidipatand distance estimation services have been proposed. SONAR
the measurement activities of several applications caddee [10] defines an API for distance estimation services. Client
the measurement overhead. Second, storing the combigedd a list of IP addresses to the SONAR server, which
measurements would allow for predicting QoS and identifyeturns the estimated distances for each address. IDMaps
ing longer-term developments. Suitable algorithms tylpica [11] is a more recent proposal for a host distance estimation
require a certain ‘critical mass’ of data, which is providad service. It is based on so callédcersinside ISP networks
the combined measurements of several applications. Tairdmeasuring latency between each other. The distance between
common API would facilitate the development of distributetvo endpoints is then approximated by the distances to their
applications. tracers, plus the distance between those tracers. mOverlay
Some actual networks (e.g. Géant-2 [9]) provide a simil§t2] aims at constructing a locality-aware overlay network
service using dedicated meters and measurement serviels inEndpoints are organized into groups based on proximitygusin
the network. However, global deployment of this kind o& dynamic landmark procedure for joining endpoints. The

I. INTRODUCTION

II. RELATED WORK



endpoint groups maintain information about their distatece _|_|_ D RIIRE
other groups and so provide a distance estimation service. @__\l_\r —Time— — Time—
QRON [13] is a more general framework for QoS-aware L me—

overlay routing, aimed at providing an overlay service roetw 2 D "~
based on overlay brokers (OBs). The overlay provides paths — Time— — Time—

with given QoS properties between OBs. MULTI+ [6] is a Influences of path segments Resulting measurements

topology-aware overlay multicast protocol based on héiar
cal grouping of peers according to their IP network prefixes.
The approach constructs optimal overlay multicast tre@sgus
Skitter [14]. . - . .

Several of these approaches group endpoints accordinthBS restriction to a S|.ngle observation node enables local
gggloyment of the service.

their closeness in the network, either based on IP addres . )
or based on measurements. While comparing IP addresses_lglusters have several purposes in the measurement service.

simple, similar IP addresses do not necessarily correstmnd:'rSt’ endpoints may exchange measurements if they belong

closeness in the topology. The measurement-based meth§gd1e same local cluster. Second, exchanged measurements
nay be combined if the targets belong to the same remote

are more robust in this respect. However, they can only eég h hi | q h &h
mate distances between members of the overlay and therefgHSte"- Together, this greatly reduces the measuremeht an
orage overhead of the service. There is usually a ‘natural

require large scale deployment to be useful. The measutemél

based remote cluster identification method presented m trLﬁcaI clluster fora given endpﬁm;[ no?elelther{n} (l;r IFSf];:iSt
paper overcomes this constraint, which makes even loShjpercluster (€.g.its LAN). The local cluster can be infaityn

deployment of the distance estimation service a viableoapti d€t€rmined by choosing a set of widely distributed refeeenc
endpointsk and finding the maximum clust€r that satisfies

[1l. REMOTE CLUSTERIDENTIFICATION RN C = (. The resultingC is the local cluster.
A. Clusters These ‘natural’ clusters are the basic building blocks of

We propose a measurement service that provides a comniids measur_ement service. Within the clustercthu_ster leader
measurement API to client applications and optimizes the-mdCL) coordinates the measurements of subordinate nodes
surement process by coordinating their measurementtesivi (SN) and collects the results in a database. Before starting
The service is based on creating groups of endpoints that r&neasurement a subordinate node first announces the up-
sufficiently close together in the topology to be able toatle COMiNg measurement to the CL. The CL may either tell the
use each other's end-to-end measurements. Furthermdhe, if>N {0 Proceed, or it may return an appropriate prediction
remote measurement targets are sufficiently close to eaen Ol_toge_ther with a confidence value. Recent measurements resul
the measurements shall be combined. This requires a oriteri? Nigher confidence values. The SN may choose to accept
to decide whether two given endpoints are close enough toH& Prediction. Otherwise, it performs a real measuremedt a

in the same group, which is given by the following definitioﬁend_s t_he results to the _CL. Passive measurements (e.g. from
of a cluster monitoring an RTP session) may also be a data source. CLs

Let N be the set of endpoints in the network. : N x May also _exchange data between cl_usters to cpmplement and
N — R{ is a time dependerdistance functiorif and only refine avallablg data, or to re_quest _dlstance estl_mateseh_etw
if, for all n € N, dy(n,n) = 0. Note that, in contrast to re_mote endpomts_. While th_|s design has a single point of
Euclidean geometry, neither symmel(rd(n,m) _ d(m,n)) failure (the CL), it can easily be adap_ted to use the more
nor the triangle inequatio(\d(n,m) +d(m,o0) > d(n, 0)) are robust local host cache approach used in mOverlay [12].
required. Given a distance functidnwe callC C N acluster
with respect tad if and only if, for all pointst in time

|di(0,n) —di(o,m)| <e, VYnmeC,YVoe N\C (1)

Fig. 1. Impact of common path segments on end-to-end measuts

B. Time Series

With a single point of observation a single measurement to
two endpoints is not enough for cluster detection. However,
wheree is a threshold that depends on the statistical err@imilarity in several successive measurements may irgliaat
The endpoinb is called theobserving nodeTwo endpoints neighborship. We therefore use time series of measurements
from the same cluster are callegighbors The sets{n} and for distance difference estimation. From the field of networ
N are trivial cases of clusters. @f C D, we call clusterC a tomography [15], [16] we know that time series of end-to-end
subclusterof cluster D and D a superclusterof C. delay measurements can in fact indicate whether two nodes

In order to detect neighbors we define distance diffeare close to each other in the network topology. This can be
ence functionsé,(n,m), which take values close to O if used to detect the routing tree between a measuring node and a
di(o,n) —di(0,m) =~ 0 (the positive case), and greater valuegroup of peer nodes [17]. The basic idea is illustrated in Fig
otherwise. We require these functions to be commutatiee, iThe three boxes on the left show the evolution of a given link
do(m,n) = d,(n,m). In Section I1I-C we present a combinedproperty (e.g. queuing delay) over time. The two boxes on
distance difference function that can identify neighbaof the right show the impact on the end-to-end measurements.
a single observing node using time series of measurememiste that the influence of the common link (the two negative



peaks) is observed by both peers, whereas the influenceimfoduce a threshold parametey € [0, 1]. The criterion for
the other links can only be observed by one peer each. Sumghbor detection thus becom@s(x,y) < to.
similarities can be used to estimate the length of the commorThe O, distance difference function in (3) detects similar
path segment. The closer the peers, the more similarities ecaeasurement values, but it does not detect systematig-diffe
be observed. In the following we use these observationsdnces between time series. Accordingly, we define a second
define a measurement-based cluster identification approacfunction to check if the time series are unbiased estimatbrs
Time series methods require uniform intervals betweeaach other. The relative bias between two time seriasdy
observations. However, measurements often come in igiegulith mean valueg andy is calculated with
intervals. They can be described as tuplew, p) of a value 1 —%/7
) . —Z/y, <y
v observed at time for peerp. We define a common base B(x,y) = { 1 —3/7, o> (4)
time T),;, and a time step\t. The step size is given by the Y/, y
minimum time interval between two consecutive observatiohgain, we have chosen the definition such thiate,y) =
of the same peer, i.eAt = min,ecp (mini(tp,i+1 — t,,,i)) B(y, x). Using the threshold parametgy the second criterion
where P is the set of all peers. Then, we compute thbecomesB(z,y) < tp. This definition of B is closely related
normalized time series by linear interpolation of the inpub the parameter of Oy, in (3): If Oy(z,y) = 0 for time series
series at the instantg,,,;,, + ¢ - At. r andy, it follows that B(z,y) < b. Accordingly, values for
Measurements we have performed on the Internet indicalteeshold: 5 should be chosen in the ran@e ¢to].
that the standard deviation of available bandwidth growsWe combine both criteria for cluster identification.
approximately linear with the mean. We transform this multifwo endpoints are considered neighbors if they satisfy
plicative relationship between deviation and underlyirend O, (z,y) < to A B(x,y) < tg. The algorithm therefore de-
into an additive one by applying the natural logarithm torgve pends on the three parametérso, andig. We will investi-
element of the normalized time series. Note that this ongate the influence of both functions in Section IV.
applies to measurements of available bandwidth. We cannot give definite values for the parameters because
we do not have anw priori knowledge about the statistical
error in the input time series. However, the parameters can
In order to detect whether two measurement targets dre approximated by applying cluster identification to a det o
neighbors we compute distance differences between thleifown reference clusters. The parameters should be chosen
respective time series. Distance difference values clos@ t such as to maximize the number of detected neighborships
indicate a neighborship. We combine two separate distangkile keeping the number of false positives close to zero.
difference functions to make the cluster identificationgess
more robust. These distance difference functions are eg i
both, time series of round-trip time and available bandwidt The cluster identification procedure was evaluated in three
although with different parameters to account for the déffé separate experiments. In the first experiment we investigat
characteristics. the impact of the three parametérsto, andtg based on a
If two remote endpoints belong to the same cluster, tharge set of averaged round-trip time measurements, and we
distance measured to one endpoint should be a good estingtew that the approach is able to reliably identify clustére
for the distance to the other. Accordingly, the first disancsecond experiment demonstrates that the approach als@ work
difference function identifies pairs of time seriesy where with non-averaged round-trip time measurements. In thd thi
this is the case. We considgrto be a good estimate of if y. experiment we use measurements of available bandwidth to
lies within ann-percent band around,. We detect violations identify clusters.

of this rule using the following function
oy (e, ys) = 0, (- b)a?t <y <w/(1-0) (2) In the first experiment we have used data from PlanetLab
1, otherwise . . ) .
[18] consisting of time series of round-trip time measured
Parameterb denotes the size of the band. E.g..= 0.02 every 15 minutes during three days. Each value in the time
denotes a 2% band. We chose the definitioropfirom (2) series represents the mean of 10 RTT probes. The measure-
to ensure thaby, (x+,y:) = ob(yz, 7¢). Based orp, we define ments were done between 77 PlanetLab nodes. Every endpoint
the distance difference functian,, which calculates the ratio measured the round-trip time to each of the other 76 endpoint

C. Distance Difference Calculation

IV. EVALUATION

A. Cluster Identification with Averaged Round-Trip Times

3

of pairsz, y; outside a band of sizk of each other. resulting in77 - 76 = 5852 time series of round-trip time.
N_1 The original data from PlanetLab included measuremenis fro
Op(z,y) = 2i=0 %(@t;Yt) (3) more than 77 endpoints, however with gaps. Therefore, we
N have used the maximum subset of endpoints that provided

where N is the length of the times series. A value of full mesh of complete measurements. Cluster identifinatio
Op(z,y) = 0 means that 100% of both time series are insideas done using the measurements from the first 1.5 days. The
each others band. Unfortunately, is sensitive to outliers. measurements from the second 1.5 days were used to verify
In order to make the approach more robust to outliers wiee results.
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Fig. 2. Ratio of confirmed neighbor detections with = 0.1% Fig. 4. Number of confirmed neighbor detections per observagtoint

100% | whether the second halves of the respective time series show

similar behavior. We considered the detection confirmeblef t
time series’ values were within a 5% band of each other 95%
90% | e T of the time. Using the&), function from (3) we can formulate
this asOsq (2',y") < 5%.
We have compared the number of confirmed neighbor

Ratio of correct neighbor detections

80% | 1 detections with the number of total detections for several
t5=0%, no bias detection —— parameter sets. Fig. 2 shows the results for several values
506 ho bias detection a of b (the size of the relative band im,) and of to (the
709 L. '075% nobias detection --a- ‘ maximum ratio of values outside the band). The bias detectio
1% 2% 3% 4% 5% parametertz was constantly 0.1%. We can see from Fig. 2

Value of parameter b that 100% of the neighbor detections were confirmed for small

Fig. 3. Ratio of confirmed neighbor detections without biagedtion values oftp and b. This shows that the approach is able
to correctly determine whether two given endpoints belong
to the same cluster. Values of greater than 3 resulted in

Since measurements were available from each of the 3maller ratios of confirmed detections. The choice of patame

endpoints to all other endpoints we have performed 77 aluste also significantly influences the quality of the detections.
identification procedures, one for each endpoint as an obsEhe greatertp, the lower the ratio of confirmed detections.
vation point. Each time, we computed the distance diffegenblonetheless, onlyo = 5% and values ofb greater than 3
functions for every pair of the 76 other endpoints. Depegdirfesulted in less than 90% confirmed detections.

on the thresholdsy andip we then decided whether a given In order to evaluate the contribution of bias detection to
pair of endpoints are neighbors (belong to the same clube cluster identification method we have performed the same
ter). These computations were repeated with several differ experiment using only the out-of-band criterion from (3). |
values for parameters, tp, andtg. In order to examine bias detection really has a positive influence we shouldrebse
the influence of bias detection we have also performed thassignificantly smaller ratio of confirmed neighbor detetsio
experiment without using the distance difference functthn Fig. 3 shows the results of this experiment. While the ratio

Two criteria were used to verify the results of the experdf confirmed neighbor detections only slightly decreases fo

ment. First, if two given endpoints were identified as neiyisb small values ofto andb, the effect is significant for greater
from a given observation point, then the second 1.5 dayseof tvalues. For example, the ratio of confirmed detections with
measurements should confirm this. The second halveg of to = 5% andb = 5% decreases by 7.5%, from 84% with bias
the respective time series should still be good estimateacti detection (Fig. 2) to 76.5% without bias detection (Fig. 3).
other and thus satisf@,(2', y’") < to for suitable values ob For all parameters, small values lead to better ratios of
andto. Second, the average round-trip time between neighbaenfirmed neighbor detections. However, there is always a
should be small compared to the average round-trip timgade-off between the number of confirmed neighbor detestio
between other pairs in the data set. The full-mesh structmed the number of false negatives, i.e. the number of entpoin
of the available measurement data allowed us to verify thisirs that would be confirmed as neighbors but are not
easily. We discuss the results of applying both criteriahi@ t detected as such. Fig. 4 illustrates this. The average numbe
following two sections. of confirmed neighbor detections per observation point is

1) Verification Using the Second Half of the Measurementgery small forb = 1% and rises considerably with higher

For every pair of endpoints identified as neighbors we verifizzalues ofb. This trade-off must be considered when choosing
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. L L B. Cluster Identification with Non-averaged Round-Trip &m
parameters for cluster identification. The criteria showdtibe

more restrictive than necessary for a given applicatiorteNo 1€ results from Section IV-A show that the presented
that the number of identified neighbor pairs per observatigficthod is able to identify clusters based on end-to-enddtoun

point is rather small because PlanetLab [19] nodes are yvidérlIIO tlme_ measurements performed from a 5|r_19Ie point of
dispersed throughout the Internet, with only a few nodes p(éll‘)servatlon. However, the measurement values n thg op{a re
site. At the time of writing, PlanetLab consisted of 606 rpdd€Sent the mean of ten measurements each, which significantl
distributed over 286 sites. Other measurement scenarigs njaduces their variance. Consequently, we have also eealuat

lead to much higher numbers of identified neighbor pairs. 1€ a@Pproach with non-averaged measurements. o
We have gathered 25 two-day time series of round-trip time,

2) Verification Using Average End-to-end Round-Trip Tim&heasured usingi ng. The first halves of the time series
A second way of verifying the results of cluster identificati \yere again used for cluster identification while the second
is to compare the average round-trip times between idemdialves were used for verification. We have selected 25 distin
fied neighbors to the average round-trip times between oth&{gpoints from the sites of five universities as measurement
endpoint pairs. We have used the set of average round-{i@ers. The round-trip times were measured every five seconds
times between each pair of endpoints as a reference. If §3¢ 48 hours from a single endpoint at the University of Bern.
cluster identification method performs well the round-tiipe  Ag in Section IV-A we have applied the cluster identification
between identified neighbors should be among the smallesticedure several times with different parameter setsfis@r
the reference set. We verify this using a percentile-péileen tjoy was also done similarly. For each detected neighbar pai
plot of the set of average round-trip times between identifi§ye have compared the second halves of the time series. If the
neighbors and the reference set (Fig. 5). values were within a 5% band of each other 95% of the time

We can clearly see that the round-trip times between identte would consider the detection confirmed. The results are
fied neighbors are very small compared to the round-tripgimehown in Fig. 6.
between other pairs of endpoints. Rer = 0%, b = 1%, and We observe that the ratio of confirmed neighbor detections
tg = 0.1%, 94% of the round-trip times between identifiedlso reaches 100% with non-averaged round-trip time values
neighbors are smaller than the first percentile of the ref@e However, the algorithm becomes more sensitive to changes in
set. 100% are smaller than the second percentile. Even waththree parameters. Fig. 6 shows that the ratio of confirmed
b = 5%, 88% of the identified neighbors have average roundeighbor detections rapidly decreases with rising valdes o
trip times smaller than the second percentile of the refarerand¢o. On the other hand, the algorithm rejects all endpoint
set. For comparison, we have also included the plots fpairs withb < 3%. Since outliers are much more frequent
cluster identification without bias detection. The paramet with non-averaged values, we also had to chogsereater
were otherwise the same. Again we can see a positive imp#tn 0%. The increased variance of non-averaged measuremen
of the bias detection functio® on cluster identification. In values thus effectively reduces the range of useful chaites
the caseb = 5%, only 40% of the identified neighbors hadparameters. The same effect can be observed for bias detecti
average round-trip times smaller than the second pereanftil Fig. 6 shows that cluster identification without bias detect
the reference set, as compared to 88% with bias detectiomsults in significantly more errors. However, compared to
Nevertheless, the results for= 1% without bias detection the experiment with averaged round-trip values, the difiee
are still rather good. 100% of the round-trip times betwedretween both cases is much bigger. We conclude that the
identified neighbors were smaller than the fifth percentfle presented cluster identification approach is also usefuido-
the reference set. averaged measurements of round-trip time.



V. CONCLUSION

100% F 1
£ 0w | ' ) 1 A general end-to-end measurement service for distributed
g 80% | y 1 Internet applications has advantages over proprietansurea
T 0% ¢ N 1 ment mechanisms built into the applications. Several edlat
% 60% | 1 proposals already exist. In this paper we h_av_e proposgd_ra pee
2 50% | S 1 to-peer-based measurement service for distributed aiglits
8 40% | R S based on the concept of clustering nodes that, when observed
o . . . . .
S 3% ¢ 10=5%, t5=0.2% ——— 1 from outside the cluster, show virtually identical qualdy
= 20% {giéﬂfﬂ' ;:;g;g:;; e 1 service properties over time. We have presented a method to
o 10% | lo=3%, no blas getection e 1 identify such clusters remotely using time series of round-

0% — p=0%%. o DR feterton = m : trip time and of available bandwidth, which enables clustgr

15% 2% 25% 3% 35% 4% 45% 5% p i . ! m
Value of parameter b of endpoints outside the peer-to-peer network. Therefie,

approach does not require global deployment to be pradticab
Fig. 7. Ratio of confirmed neighbor detections with avagabandwidth  Eyaluation of this cluster identification method using meeas
ments from the Internet has shown promising results.
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