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Abstract— Distributed systems such as peer-to-peer networks
and distributed servers can optimize their performance by adapt-
ing to the underlying network. End-to-end measurements arean
important basis for such adaptivity. Although most applications
measure similar properties of the network, the measurements
are mostly done in application-specific ways. In this paper we
propose a general peer-to-peer measurement service based on
clusters of endpoints that show virtually identical QoS properties
when observed from outside the cluster. We discuss the clustering
concept as well as its use in the measurement service, and we
present a measurement-based method for the remote identifica-
tion of clusters. This method allows for detecting clustersthat
are not part of the peer-to-peer network. Our evaluation shows
that the presented method is able to reliably detect clusters using
measurements of round-trip time or of available bandwidth.

I. I NTRODUCTION

During recent years the focus of many developers has
moved away from the standard client-server model towards
more scalable and robust distributed designs. Many client-
server applications now support redundant and distributed
servers, and many peer-to-peer systems and overlay networks
have been proposed for distributed information storage (e.g.
Chord [1]), file serving for large communities (e.g. BitTorrent
[2] or Slurpie [3]) and multicast [4], [5], [6], [7], [8]. The
QoS between endpoints greatly impacts the performance of
a distributed application and the choice of topology is often
a determining factor for its efficiency and robustness. It is
therefore important to dynamically adapt the system to the
properties of the underlying network.

End-to-end measurements are a prerequisite for such adap-
tivity. Most distributed applications measure end-to-endla-
tency, delay jitter, or available bandwidth. Delegating mea-
surements to a more general, application-independent mea-
surement service would have many benefits. First, coordinating
the measurement activities of several applications could reduce
the measurement overhead. Second, storing the combined
measurements would allow for predicting QoS and identify-
ing longer-term developments. Suitable algorithms typically
require a certain ‘critical mass’ of data, which is providedby
the combined measurements of several applications. Third,a
common API would facilitate the development of distributed
applications.

Some actual networks (e.g. Géant-2 [9]) provide a similar
service using dedicated meters and measurement servers inside
the network. However, global deployment of this kind of

architecture is unlikely to succeed. All ISPs would have to
agree on a common design and publish details about the
structure and performance of their networks, which they are
usually reluctant to do because they fear to lose competitive
advantage. Therefore, we believe that a peer-to-peer design is
preferable.

Performing and storing end-to-end QoS measurements for
every pair of Internet endpoints clearly does not scale. There-
fore, we propose an architecture based on grouping endpoints
into clusters based on their distance in the network topology.
We effectively replace endpoint-to-endpoint measurements
with cluster-to-cluster measurements, which greatly reduces
the problem’s complexity. For example, if two endpoints are
very close together, measurements from a distant observer to
both endpoints will be very similar and can be merged. This
approach requires a mechanism to identify suitable clusters
of endpoints. In this paper we describe an architecture for
a measurement service based on clusters, and we present
and evaluate a method to remotely identify clusters based on
measurements of available bandwidth and round-trip time. The
proposed method does not require cooperation from the remote
measurement peers and thus facilitates local and incremental
deployment.

The remainder of this document is structured as follows:
Related work is presented in Section II. Section III discusses
the clustering concept and presents our measurement-based
approach to remote cluster identification. Evaluation of the
approach is shown in Section IV, and Section V concludes
the paper.

II. RELATED WORK

Several global Internet end-to-end measurement services
and distance estimation services have been proposed. SONAR
[10] defines an API for distance estimation services. Clients
send a list of IP addresses to the SONAR server, which
returns the estimated distances for each address. IDMaps
[11] is a more recent proposal for a host distance estimation
service. It is based on so calledtracers inside ISP networks
measuring latency between each other. The distance between
two endpoints is then approximated by the distances to their
tracers, plus the distance between those tracers. mOverlay
[12] aims at constructing a locality-aware overlay network.
Endpoints are organized into groups based on proximity using
a dynamic landmark procedure for joining endpoints. The



endpoint groups maintain information about their distanceto
other groups and so provide a distance estimation service.
QRON [13] is a more general framework for QoS-aware
overlay routing, aimed at providing an overlay service network
based on overlay brokers (OBs). The overlay provides paths
with given QoS properties between OBs. MULTI+ [6] is a
topology-aware overlay multicast protocol based on hierarchi-
cal grouping of peers according to their IP network prefixes.
The approach constructs optimal overlay multicast trees using
Skitter [14].

Several of these approaches group endpoints according to
their closeness in the network, either based on IP addresses
or based on measurements. While comparing IP addresses is
simple, similar IP addresses do not necessarily correspondto
closeness in the topology. The measurement-based methods
are more robust in this respect. However, they can only esti-
mate distances between members of the overlay and therefore
require large scale deployment to be useful. The measurement-
based remote cluster identification method presented in this
paper overcomes this constraint, which makes even local
deployment of the distance estimation service a viable option.

III. R EMOTE CLUSTER IDENTIFICATION

A. Clusters

We propose a measurement service that provides a common
measurement API to client applications and optimizes the mea-
surement process by coordinating their measurement activities.
The service is based on creating groups of endpoints that are
sufficiently close together in the topology to be able to directly
use each other’s end-to-end measurements. Furthermore, ifthe
remote measurement targets are sufficiently close to each other
the measurements shall be combined. This requires a criterion
to decide whether two given endpoints are close enough to be
in the same group, which is given by the following definition
of a cluster.

Let N be the set of endpoints in the network.dt : N ×
N 7→ R

+
0 is a time dependentdistance functionif and only

if, for all n ∈ N , dt(n, n) = 0. Note that, in contrast to
Euclidean geometry, neither symmetry

(

d(n, m) = d(m, n)
)

nor the triangle inequation
(

d(n, m) + d(m, o) ≥ d(n, o)
)

are
required. Given a distance functiond we callC ⊆ N a cluster
with respect tod if and only if, for all pointst in time

|dt(o, n) − dt(o, m)| < ε, ∀ n, m ∈ C, ∀ o ∈ N \ C (1)

where ε is a threshold that depends on the statistical error.
The endpointo is called theobserving node. Two endpoints
from the same cluster are calledneighbors. The sets{n} and
N are trivial cases of clusters. IfC ⊆ D, we call clusterC a
subclusterof clusterD andD a superclusterof C.

In order to detect neighbors we define distance differ-
ence functionsδo(n, m), which take values close to 0 if
dt(o, n)− dt(o, m) ≈ 0 (the positive case), and greater values
otherwise. We require these functions to be commutative, i.e.
δo(m, n) = δo(n, m). In Section III-C we present a combined
distance difference function that can identify neighbors from
a single observing node using time series of measurements.
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Fig. 1. Impact of common path segments on end-to-end measurements

This restriction to a single observation node enables local
deployment of the service.

Clusters have several purposes in the measurement service.
First, endpoints may exchange measurements if they belong
to the same local cluster. Second, exchanged measurements
may be combined if the targets belong to the same remote
cluster. Together, this greatly reduces the measurement and
storage overhead of the service. There is usually a ‘natural’
local cluster for a given endpoint noden, either{n} or its first
supercluster (e.g. its LAN). The local cluster can be informally
determined by choosing a set of widely distributed reference
endpointsR and finding the maximum clusterC that satisfies
R ∩ C = ∅. The resultingC is the local cluster.

These ‘natural’ clusters are the basic building blocks of
the measurement service. Within the cluster thecluster leader
(CL) coordinates the measurements of thesubordinate nodes
(SN) and collects the results in a database. Before starting
a measurement a subordinate node first announces the up-
coming measurement to the CL. The CL may either tell the
SN to proceed, or it may return an appropriate prediction
together with a confidence value. Recent measurements result
in higher confidence values. The SN may choose to accept
the prediction. Otherwise, it performs a real measurement and
sends the results to the CL. Passive measurements (e.g. from
monitoring an RTP session) may also be a data source. CLs
may also exchange data between clusters to complement and
refine available data, or to request distance estimates between
remote endpoints. While this design has a single point of
failure (the CL), it can easily be adapted to use the more
robust local host cache approach used in mOverlay [12].

B. Time Series

With a single point of observation a single measurement to
two endpoints is not enough for cluster detection. However,
similarity in several successive measurements may indicate a
neighborship. We therefore use time series of measurements
for distance difference estimation. From the field of network
tomography [15], [16] we know that time series of end-to-end
delay measurements can in fact indicate whether two nodes
are close to each other in the network topology. This can be
used to detect the routing tree between a measuring node and a
group of peer nodes [17]. The basic idea is illustrated in Fig. 1.
The three boxes on the left show the evolution of a given link
property (e.g. queuing delay) over time. The two boxes on
the right show the impact on the end-to-end measurements.
Note that the influence of the common link (the two negative



peaks) is observed by both peers, whereas the influence of
the other links can only be observed by one peer each. Such
similarities can be used to estimate the length of the common
path segment. The closer the peers, the more similarities can
be observed. In the following we use these observations to
define a measurement-based cluster identification approach.

Time series methods require uniform intervals between
observations. However, measurements often come in irregular
intervals. They can be described as tuples(t, v, p) of a value
v observed at timet for peerp. We define a common base
time Tmin and a time step∆t. The step size is given by the
minimum time interval between two consecutive observations
of the same peer, i.e.∆t = minp∈P

(

mini(tp,i+1 − tp,i)
)

where P is the set of all peers. Then, we compute the
normalized time series by linear interpolation of the input
series at the instantsTmin + i · ∆t.

Measurements we have performed on the Internet indicate
that the standard deviation of available bandwidth grows
approximately linear with the mean. We transform this multi-
plicative relationship between deviation and underlying trend
into an additive one by applying the natural logarithm to every
element of the normalized time series. Note that this only
applies to measurements of available bandwidth.

C. Distance Difference Calculation

In order to detect whether two measurement targets are
neighbors we compute distance differences between their
respective time series. Distance difference values close to 0
indicate a neighborship. We combine two separate distance
difference functions to make the cluster identification process
more robust. These distance difference functions are applied to
both, time series of round-trip time and available bandwidth,
although with different parameters to account for the different
characteristics.

If two remote endpoints belong to the same cluster, the
distance measured to one endpoint should be a good estimate
for the distance to the other. Accordingly, the first distance
difference function identifies pairs of time seriesx, y where
this is the case. We consideryt to be a good estimate ofxt if yt

lies within ann-percent band aroundxt. We detect violations
of this rule using the following function

ob(xt, yt) =

{

0, (1 − b)xt ≤ yt ≤ xt/(1 − b)
1, otherwise

(2)

Parameterb denotes the size of the band. E.g.,b = 0.02
denotes a 2% band. We chose the definition ofob from (2)
to ensure thatob(xt, yt) = ob(yt, xt). Based onob we define
the distance difference functionOb, which calculates the ratio
of pairsxt, yt outside a band of sizeb of each other.

Ob(x, y) =

∑N−1

t=0 ob(xt, yt)

N
(3)

where N is the length of the times series. A value of
Ob(x, y) = 0 means that 100% of both time series are inside
each others band. Unfortunately,Ob is sensitive to outliers.
In order to make the approach more robust to outliers we

introduce a threshold parametertO ∈ [0, 1]. The criterion for
neighbor detection thus becomesOb(x, y) ≤ tO.

The Ob distance difference function in (3) detects similar
measurement values, but it does not detect systematic differ-
ences between time series. Accordingly, we define a second
function to check if the time series are unbiased estimatorsof
each other. The relative bias between two time seriesx andy
with mean valuesx andy is calculated with

B(x, y) =

{

1 − x/y, x ≤ y
1 − y/x, x > y

(4)

Again, we have chosen the definition such thatB(x, y) =
B(y, x). Using the threshold parametertB the second criterion
becomesB(x, y) ≤ tB. This definition ofB is closely related
to the parameterb of Ob in (3): If Ob(x, y) = 0 for time series
x andy, it follows that B(x, y) ≤ b. Accordingly, values for
thresholdtB should be chosen in the range[0, tO].

We combine both criteria for cluster identification.
Two endpoints are considered neighbors if they satisfy
Ob(x, y) ≤ tO ∧ B(x, y) ≤ tB. The algorithm therefore de-
pends on the three parametersb, tO, andtB . We will investi-
gate the influence of both functions in Section IV.

We cannot give definite values for the parameters because
we do not have anya priori knowledge about the statistical
error in the input time series. However, the parameters can
be approximated by applying cluster identification to a set of
known reference clusters. The parameters should be chosen
such as to maximize the number of detected neighborships
while keeping the number of false positives close to zero.

IV. EVALUATION

The cluster identification procedure was evaluated in three
separate experiments. In the first experiment we investigate
the impact of the three parametersb, tO, and tB based on a
large set of averaged round-trip time measurements, and we
show that the approach is able to reliably identify clusters. The
second experiment demonstrates that the approach also works
with non-averaged round-trip time measurements. In the third
experiment we use measurements of available bandwidth to
identify clusters.

A. Cluster Identification with Averaged Round-Trip Times

In the first experiment we have used data from PlanetLab
[18] consisting of time series of round-trip time measured
every 15 minutes during three days. Each value in the time
series represents the mean of 10 RTT probes. The measure-
ments were done between 77 PlanetLab nodes. Every endpoint
measured the round-trip time to each of the other 76 endpoints,
resulting in 77 · 76 = 5852 time series of round-trip time.
The original data from PlanetLab included measurements from
more than 77 endpoints, however with gaps. Therefore, we
have used the maximum subset of endpoints that provided
a full mesh of complete measurements. Cluster identification
was done using the measurements from the first 1.5 days. The
measurements from the second 1.5 days were used to verify
the results.
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Fig. 2. Ratio of confirmed neighbor detections withtB = 0.1%
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Fig. 3. Ratio of confirmed neighbor detections without bias detection

Since measurements were available from each of the 77
endpoints to all other endpoints we have performed 77 cluster
identification procedures, one for each endpoint as an obser-
vation point. Each time, we computed the distance difference
functions for every pair of the 76 other endpoints. Depending
on the thresholdstO andtB we then decided whether a given
pair of endpoints are neighbors (belong to the same clus-
ter). These computations were repeated with several different
values for parametersb, tO, and tB. In order to examine
the influence of bias detection we have also performed this
experiment without using the distance difference functionB.

Two criteria were used to verify the results of the experi-
ment. First, if two given endpoints were identified as neighbors
from a given observation point, then the second 1.5 days of the
measurements should confirm this. The second halvesx′, y′ of
the respective time series should still be good estimates ofeach
other and thus satisfyOb(x

′, y′) ≤ tO for suitable values ofb
andtO. Second, the average round-trip time between neighbors
should be small compared to the average round-trip times
between other pairs in the data set. The full-mesh structure
of the available measurement data allowed us to verify this
easily. We discuss the results of applying both criteria in the
following two sections.

1) Verification Using the Second Half of the Measurements:
For every pair of endpoints identified as neighbors we verified
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Fig. 4. Number of confirmed neighbor detections per observation point

whether the second halves of the respective time series show
similar behavior. We considered the detection confirmed if the
time series’ values were within a 5% band of each other 95%
of the time. Using theOb function from (3) we can formulate
this asO5%(x′, y′) ≤ 5%.

We have compared the number of confirmed neighbor
detections with the number of total detections for several
parameter sets. Fig. 2 shows the results for several values
of b (the size of the relative band inOb) and of tO (the
maximum ratio of values outside the band). The bias detection
parametertB was constantly 0.1%. We can see from Fig. 2
that 100% of the neighbor detections were confirmed for small
values of tO and b. This shows that the approach is able
to correctly determine whether two given endpoints belong
to the same cluster. Values ofb greater than 3 resulted in
smaller ratios of confirmed detections. The choice of parameter
tO also significantly influences the quality of the detections.
The greatertO, the lower the ratio of confirmed detections.
Nonetheless, onlytO = 5% and values ofb greater than 3
resulted in less than 90% confirmed detections.

In order to evaluate the contribution of bias detection to
the cluster identification method we have performed the same
experiment using only the out-of-band criterion from (3). If
bias detection really has a positive influence we should observe
a significantly smaller ratio of confirmed neighbor detections.
Fig. 3 shows the results of this experiment. While the ratio
of confirmed neighbor detections only slightly decreases for
small values oftO and b, the effect is significant for greater
values. For example, the ratio of confirmed detections with
tO = 5% andb = 5% decreases by 7.5%, from 84% with bias
detection (Fig. 2) to 76.5% without bias detection (Fig. 3).

For all parameters, small values lead to better ratios of
confirmed neighbor detections. However, there is always a
trade-off between the number of confirmed neighbor detections
and the number of false negatives, i.e. the number of endpoint
pairs that would be confirmed as neighbors but are not
detected as such. Fig. 4 illustrates this. The average number
of confirmed neighbor detections per observation point is
very small for b = 1% and rises considerably with higher
values ofb. This trade-off must be considered when choosing
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parameters for cluster identification. The criteria shouldnot be
more restrictive than necessary for a given application. Note
that the number of identified neighbor pairs per observation
point is rather small because PlanetLab [19] nodes are widely
dispersed throughout the Internet, with only a few nodes per
site. At the time of writing, PlanetLab consisted of 606 nodes
distributed over 286 sites. Other measurement scenarios may
lead to much higher numbers of identified neighbor pairs.

2) Verification Using Average End-to-end Round-Trip Time:
A second way of verifying the results of cluster identification
is to compare the average round-trip times between identi-
fied neighbors to the average round-trip times between other
endpoint pairs. We have used the set of average round-trip
times between each pair of endpoints as a reference. If the
cluster identification method performs well the round-triptime
between identified neighbors should be among the smallest in
the reference set. We verify this using a percentile-percentile
plot of the set of average round-trip times between identified
neighbors and the reference set (Fig. 5).

We can clearly see that the round-trip times between identi-
fied neighbors are very small compared to the round-trip times
between other pairs of endpoints. FortO = 0%, b = 1%, and
tB = 0.1%, 94% of the round-trip times between identified
neighbors are smaller than the first percentile of the reference
set. 100% are smaller than the second percentile. Even with
b = 5%, 88% of the identified neighbors have average round-
trip times smaller than the second percentile of the reference
set. For comparison, we have also included the plots for
cluster identification without bias detection. The parameters
were otherwise the same. Again we can see a positive impact
of the bias detection functionB on cluster identification. In
the caseb = 5%, only 40% of the identified neighbors had
average round-trip times smaller than the second percentile of
the reference set, as compared to 88% with bias detection.
Nevertheless, the results forb = 1% without bias detection
are still rather good. 100% of the round-trip times between
identified neighbors were smaller than the fifth percentile of
the reference set.
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B. Cluster Identification with Non-averaged Round-Trip Times

The results from Section IV-A show that the presented
method is able to identify clusters based on end-to-end round-
trip time measurements performed from a single point of
observation. However, the measurement values in the data rep-
resent the mean of ten measurements each, which significantly
reduces their variance. Consequently, we have also evaluated
the approach with non-averaged measurements.

We have gathered 25 two-day time series of round-trip time,
measured usingping. The first halves of the time series
were again used for cluster identification while the second
halves were used for verification. We have selected 25 distinct
endpoints from the sites of five universities as measurement
peers. The round-trip times were measured every five seconds
for 48 hours from a single endpoint at the University of Bern.

As in Section IV-A we have applied the cluster identification
procedure several times with different parameter sets. Verifica-
tion was also done similarly. For each detected neighbor pair
we have compared the second halves of the time series. If the
values were within a 5% band of each other 95% of the time
we would consider the detection confirmed. The results are
shown in Fig. 6.

We observe that the ratio of confirmed neighbor detections
also reaches 100% with non-averaged round-trip time values.
However, the algorithm becomes more sensitive to changes in
all three parameters. Fig. 6 shows that the ratio of confirmed
neighbor detections rapidly decreases with rising values of b
and tO. On the other hand, the algorithm rejects all endpoint
pairs with b < 3%. Since outliers are much more frequent
with non-averaged values, we also had to choosetO greater
than 0%. The increased variance of non-averaged measurement
values thus effectively reduces the range of useful choicesof
parameters. The same effect can be observed for bias detection.
Fig. 6 shows that cluster identification without bias detection
results in significantly more errors. However, compared to
the experiment with averaged round-trip values, the difference
between both cases is much bigger. We conclude that the
presented cluster identification approach is also useful for non-
averaged measurements of round-trip time.
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C. Cluster Identification with Available Bandwidth

In Sections IV-A and IV-B we have evaluated the presented
cluster identification method using measurements of round-trip
time. Nevertheless, the method should also be able to detect
clusters based on measurements of available bandwidth. We
investigate this using a similar experiment as in Section IV-
B. We have gathered sixteen 24-hour time series of available
bandwidth between a single observation point at the University
of Bern and various endpoints in other universities’ sites.
The available bandwidth was estimated by downloading a
sufficiently large file via HTTP, which was repeated every five
minutes during 24 hours. We have used TCP throughput as
an estimate for available bandwidth since it does not require
any special software on the measurement peers. The results
presented in [20] show that TCP throughput is a good estimate
of available bandwidth.

As in the previous experiments we have used the first
halves of the time series for cluster identification and the
second halves for verification of the results. However, we
have used different parameter values than with round-trip
time measurements for the verification because of the high
variance of the measurements. We have reduced the threshold
for outliers to 2% but have increased the bandb to 10%. Note
that cluster detection used transformed values as described in
Section III-B while the verification was done using the original
values.

Fig. 7 shows the results of the experiment. Again, the
method is able to reach a 100% ratio of confirmed neighbor
detections. However, the parametertB (bias threshold) has
much more impact than with round-trip times. WithtB =
0.2% the ratio of confirmed detections was constantly 100%.
Increasing it totB = 0.5% resulted in a 25% smaller ratio for
b > 3.5%. Without any bias detection the ratio of confirmed
neighbor detections even dropped below 50% in some cases.
Another difference to the previous experiments is the effect
of parameterb, which decreases for values greater than 3%.
With round-trip times it grew with higher values. The choice
of parametertO has an influence similar to the one for non-
averaged measurements of round-trip time.

V. CONCLUSION

A general end-to-end measurement service for distributed
Internet applications has advantages over proprietary measure-
ment mechanisms built into the applications. Several related
proposals already exist. In this paper we have proposed a peer-
to-peer-based measurement service for distributed applications
based on the concept of clustering nodes that, when observed
from outside the cluster, show virtually identical qualityof
service properties over time. We have presented a method to
identify such clusters remotely using time series of round-
trip time and of available bandwidth, which enables clustering
of endpoints outside the peer-to-peer network. Therefore,the
approach does not require global deployment to be practicable.
Evaluation of this cluster identification method using measure-
ments from the Internet has shown promising results.
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