
An Integrated Simulator for Inter-Domain
Scenarios

Matthias Scheidegger, Florian Baumgartner, Torsten Braun

Institute of Computer Science and Applied Mathematics
University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

Email: (mscheid|baumgart|braun@iam.unibe.ch)
Tel: +41-31-63189557 Fax: +41-31-6313261

Abstract. The simulation of large-scale inter-domain networks is use-
ful for various aspects of network planning and management. It is also a
challenge due to its scalability problems, and the often incomplete knowl-
edge about the network in question. Automatic configuration of the sim-
ulator based on network measurements may also be required. None of
the many proposed approaches to network simulation are suitable for
all possible simulation scenarios. A combination of several approaches
provides much more flexibility. We describe a hybrid network simula-
tor capable of combining packet-based simulation with a wide variety of
other simulation approaches. A combination of packet-based simulation
with analytical models is presented. This simulator is part of Intermon,
an integrated system for the collection, processing, modeling, simulation
and visualization of inter-domain data. The collected information is used
for simulations allowing a “what-if” analysis of real networks. This paper
describes the architecture and the underlying analytical models, and it
evaluates the hybrid simulator.

1 Introduction

With the growing Internet and increased customer demands for quality of service,
systems and tools for the monitoring and management of networks become more
and more indispensable. This includes tools to monitor traffic within the network,
and tools to analyze the gathered measurements in order to identify present
and potential future problems in the network. Simulation is a powerful tool for
predicting network performance but there are a number of problems that must
be overcome to make it usable in the inter-domain context.

First and foremost is the problem of scalability. Classical network simula-
tors like ns2 do not scale to the network sizes and traffic volumes of today’s
inter-domain networks. Much research has gone into making simulators more
scalable. Furthermore, simulation scenarios must be carefully configured if they
should accurately predict the effects of changes in the real network. This should
ideally be done automatically from measurement data. A simulator should thus
provide a mechanism to support this task. Another problem is that many exist-
ing simulators assume perfect knowledge of the network’s topology and traffic



flows, which is rarely the case because of technical and political reasons. Even if
an ISP has measurement data available it is very unlikely to publish it, as this
could present a competitive advantage to other ISPs. Simulators should thus
also be able to model parts of the network based on coarse-grained information
obtained using network tomography tool, for example.

The “advanced architecture for INTER-domain quality of service MONitor-
ing, modeling and visualization” (Intermon) project aims to develop an archi-
tecture for monitoring, modeling, simulation, prediction and the visualization of
inter-domain quality of service. This includes tools for the monitoring process
itself as well as the development of models and simulators to predict the behavior
of inter-domain networks.

Within this project the Hybrid Simulator has been developed and imple-
mented. It is based on the observation that none of the various simulation ap-
proaches that have been proposed in the literature fulfill all requirements from
above. Instead, a combination of several approaches may provide much greater
flexibility. The hybrid simulator extends the packet-based simulator ns2 with
other simulation approaches by using a hot-plug mechanism that can insert
modules into the ns2 topology. These modules simulate parts of the network
using other, more adequate approaches.

A first plug-in implements an analytical modeling approach for multi-domain
networks, which is based on the assumption that, at a given time, the Internet can
be divided into areas where congestion is negligible, interconnected by bottleneck
links. Congestion free areas are treated as black boxes with several ingress and
egress points. Packet loss and delay caused by excessive queuing are only in the
bottleneck links. Creating models for congestion free areas has the advantage
that the simulation of packet losses and excessive queuing can be restricted
to a small part of a simulation scenario (the bottleneck links), thus greatly
reducing the complexity of the scenario as a whole. In fact it is sufficient to
model congestion free areas using quasi-stationary delay distributions. Apart
from its scalability advantage this approach may be useful to model network
areas of which we do not know the exact topology. Moreover, a mechanism has
been implemented that can automatically configure scenarios using measurement
data provided by the Intermon architecture.

Suggested application areas for the hybrid simulator include end-to-end QoS
evaluation of single flows – simulated using traditional packet-based models –
over a complex backbone network, or the effect of changes in a backbone network
(e.g. addition/removal of links, capacity changes, big changes of network load
due to new SLAs, etc.) on flows traversing the network.

The remainder of this document is structured as follows: In Section 2 the
Intermon architecture, the integration of the simulator in the system, and the
hybrid simulator itself are described. Section 3 gives an overview about the ana-
lytical models used by the hybrid simulator. In Section 4 the simulation results
are compared with measurements from a laboratory network, and Section 5 con-
cludes the paper.



2 Architecture

The Intermon architecture (Fig. 1) has been designed as a highly distributed
system. Measurements, data storage, simulation and visualization can all be
hosted on individual systems. The communication elements are implemented
in Java using the Java Messaging Standard API (JMS) as a communications
middleware.
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Fig. 1. A global view of the Intermon architecture

A central goal of the Intermon project is the integration of the different
components into a single Intermon toolkit architecture. The integrated tools
cover mechanisms for structure discovery of inter-domain topologies, as well as
for measurement, modeling, simulation, and visual data mining of inter-domain
traffic [1]. The key elements of the system are a global controller (GC), which
accepts and forwards user requests, and the tool managers, which control the
tools and convert messages between tool and GC into the appropriate format.

Since the Intermon system is distributed and depends on intense communi-
cation between the components, security issues have to be taken into account.
Accordingly, all Intermon components communicate through a dedicated Virtual
Private Network (VPN). Another advantage of the VPN is the simplified config-
uration of firewalls which may exist between the different hosts in the Intermon
VPN.

2.1 Generating and Processing Simulation Jobs

Many applications of the Intermon toolkit, like “what-if” scenarios for example,
require the use of simulation. A set of four distinct simulators, one of which is



the hybrid simulator described below, has been implemented and integrated into
the Intermon system in order to be able to adequately solve different simulation
tasks and to study the advantages of different simulation approaches [2]. All
integrated simulators can be interactively configured and controlled through a
common graphical user interface, which can also be used to configure the meters
deployed throughout the network gathering measurement data, and to visualize
the simulation results.

A generic XML-based simulation job description format has been developed
to control the different integrated simulators in a common way. This format
separates the data into sections containing simulator-specific data and sections
with simulator-independent data. Simulation job descriptions are structured as
follows:

Topology information: The topology usually consists of data previously col-
lected by the InterRoute tool [3], which queries BGP data and reconstructs
the topology based on route advertisements and route withdrawals. There-
fore this data reflects the current status of the inter-domain scenario to be
simulated.

User applied changes: Any changes to the topology a user makes through the
GUI are listed in this section. As the possible actions differ depending on
the selected simulator, the content of the GUI dialogs is different for every
simulator. Possible changes include removing a link, changing its capacity, or
adding flows to the scenario, amongst others. Here, the user can also select
and configure the analytical models used in the hybrid simulator described
below.

Simulator specific parameters: Each simulator has some simulator specific
parameters that are not related to the topology. They are encoded within
this section. This allows the user to supply general instructions and param-
eters to the simulator. Examples of such parameters are the duration of the
simulation and the granularity of the results.

The XML job description is generated by the graphical user interface and sent
via the global controller to the tool manager of the appropriate simulator.

Since network simulations can require a lot of computing power and also
can produce a huge amount of data, scalability was a central aspect during
the design and the implementation of the hybrid simulator’s tool manager and
its underlying tool chain (see Fig. 2). The system supports the processing of
simulation requests in parallel and thus supports multiprocessor computers as
well as computer clusters.

The first steps in job processing consist of converting the XML simulation job
description into configuration files for the hybrid simulator, and then starting the
simulator. This is done by the demultiplexer component. After the simulation
has finished, the multiplexer components takes care of processing the simulator
tracefiles and stores the results in a data repository. Finally, it returns a message
telling the system by which URL the results can be obtained.

The messages returned by the hybrid simulator’s tool manager include some
descriptive comments on the content of the reply and indicate the processing
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Fig. 2. The hybrid simulator’s tool chain for the automatic processing of simulation
requests

time and the status (e.g. running, ok, canceled, broken) of the simulation job.
As the simulators may produce several different types of results, multiple result
sections may be included in the reply, one for each desired measure (e.g. time
series of throughput, or of end-to-end delay on a certain path). The sub-results
have their own descriptive comment and a type identifier to help visualization.

2.2 Hybrid Simulator

The hybrid simulator aims to combine packet-based simulation with other simu-
lation approaches to increase modeling flexibility and to overcome the limitations
of the single simulation approaches used. In order to be able to integrate other
simulation approaches with packet-based simulation, the ns2 network simulator
has been modified and extended. The main changes apply to the ns2 node, whose
structure is shown in Fig. 3. The typical node structure consists of an address
classifier, a port classifier and a set of agents acting as traffic sources and sinks.
The address classifier routes incoming packets either directly to outgoing links
or to a port classifier forwarding the packets to an appropriate agent. We added
a mechanism to the node structure to defer the delay and loss behavior of a
node to loadable external modules, which can be implemented using arbitrary
simulation approaches.

While the internal predictor module implements some minimal functionality
to apply delay patterns to passing packets, its main function is to defer the
respective computation to dynamically loadable external modules. In this case
the predictor only provides an interface to the external module and takes care
of delaying or dropping the packet inside the simulator.

Apart from the functions allowing for dynamic loading and unloading as well
as initialization and configuration of the module, a predictor module only has
to provide a single function process packet, which is called for each arriving
packet. Depending on the return value, the module interface within the node
either delays or discards the packet (for values ≥ 0 or < 0, respectively). With
each call to the this function, the predictor gets information about the packet
itself, the previous and the next hop, and the simulation time. If the module
requires another representation it has to generate it by itself, based on the events
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Fig. 3. Extension of the ns2 nodenetwork simulator with an interface for delay and
loss predictor modules

it receives. For example, if the module uses fluid flow representation internally,
it will have to convert the packet arrival events into an estimate of current
bandwidth.

3 An Analytical Modeling Extension for ns2

The extension mechanism described in Section 2.2 allows to load arbitrary mod-
ules into ns2 nodes. A first fully useable extension module is based on a set of
analytical models, which can be used to scalably model the behavior of whole
inter-domain networks. In this section we introduce the ideas and concepts these
models are based on and describe how they can be applied to improve the scal-
ability of inter-domain simulation scenarios.

Scalability is often an issue when simulating large-scale computer networks.
Especially packet-based simulators like ns2 do not scale to scenarios with large
topologies and high traffic volumes because of the large number of events to
be processed. Many approaches to this scalability problem have been proposed.
While parallel simulation [4,5] is arguably the most prominent one, alternatives
include approaches such as fluid flow simulation [6,7,8], time stepped hybrid sim-
ulation [9] and packet trains [10], to name a few. Scalability in network simulation
is generally achieved by reducing the level of detail (or accuracy) of the simula-
tion scenario or of the simulation algorithm. Carefully chosen, such abstractions
can considerably reduce the complexity of large-scale simulations without signif-
icantly distorting the results. However, an abstraction suitable for one task is not
necessarily the right choice for other tasks. For the Intermon project a simula-
tor was needed that can scalably simulate inter-domain networks while allowing
for automatic measurement-based configuration, and which provides adequate
abstractions for parts of the network where the topology cannot be determined.

We propose a model that is based on the assumption that, over certain time
spans, networks like the Internet can be divided into areas where congestion is
negligible, and which are interconnected by bottleneck links. We treat congestion
free areas as black boxes, which we call domain models. Modeling congestion free
areas has the advantage that we can neglect packet losses and excessive queuing
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in large parts of the network and restrict the model to quasi-stationary delay
behavior. Apart from its scalability advantage this approach is primarily useful to
model network areas of which we do not know the exact topology. Domain models
can be based on empirical cumulative distribution functions (ECDFs) to simulate
the delays of packets crossing the domain. The ECDF is chosen depending on
the ingress and egress points on which the packet enters and leaves the domain,
respectively. A big advantage of this concept is that delay measurements from a
real network can be directly used to configure a domain model. It is important
to note that ECDF models, while giving good reproductions of observed first
and second-order moments in measurements, ignore any non-stationarity of the
sample.

The bottleneck links between two domains of a simulation scenario are rep-
resented by inter-domain link models. Here, packet loss and queuing delay are
simulated. The basic parameters of an inter-domain link model are similar to
those of a link in a packet-based simulator. Nonetheless, inter-domain link mod-
els are not event-driven but rely on parameters like offered load and link capacity.
Figure 4 shows this modeling view.

Traffic in the network is modeled using application traffic models, which serve
as scalable models for large aggregates of application traffic like VoIP, Video,
HTTP, etc. They take the form of a function f(t) that yields the load generated
by the traffic aggregate given a (monotonously rising) point in time. Also, traffic
caused by ns2 packets passing the extended node is also modeled by application
traffic models.

By combining domain, inter-domain link and application traffic models we
create a multi-domain model, which can then be inserted into the extended ns2
simulator. We refer to this combination of analytical models and packet-based
simulation as hybrid simulation. To determine how to handle a packet when
it reaches the multi-domain model through the extension interface we have to
update and inspect the model at the time of the packet arrival. This is done in
three steps: First, the application traffic models must be updated, which includes
the bandwidth estimators that convert between packet arrival events and load
estimates. Second, any changes in traffic load have to be distributed through
the multi-domain model. Then, we can decide whether to drop the packet or



to delay it by a certain value by inspecting the domain and inter-domain link
models along the path between the ingress and egress points of the packet.

One useful partitioning scheme for the above approach is to model autono-
mous systems (ASs) as domains, and their border links as inter-domain links.
This partitioning is reasonable since the ingress routers of an AS may police
flows to prevent congestion inside the AS. Moreover, the interior links usually
have bigger capacities than inter-AS links, and internal routes may be changed to
distribute traffic load. A possible application of this combination of fine grained
packet-based simulation and coarse grained analytical models could be scenar-
ios like a multi-site virtual private network. The local networks would then be
modeled inside ns2, while the network in between would be modeled as a multi-
domain model.

3.1 Modeling of Delay and Packet Loss

Packet loss and delay depends on the interaction of links and traffic flows in the
network. We chose to model inter-domain links with the simple M/M/1/K queue,
that is, an analytical queue with Poisson arrival and service processes, a single
server (the physical link) and system capacity K. The arrival and service rates λ
and µ depend on the offered load on the link and the link’s capacity, respectively.
The system capacity K, if unknown, can be set to a typical value (for example,
128-packet buffers are rather common in routers). Recent work [11] suggests
that the arrival process would be better modeled as a Batch Markovian Arrival
Process (BMAP). Also, sophisticated techniques like traffic-based decomposition
[12] or the decomposition approach in Sadre et al. [13] could be used. These
techniques also consider the effect of correlations in network traffic, which the
M/M/1/K queue clearly ignores. However, while these approaches use traffic
models that statistically describe traffic behavior over long time periods, the
traffic models in our approach only describe the state of traffic sources at specific
time instants – when a packet arrives at the multi-domain model. Correlations
are thus only ignored on the small time-scale. The system’s behavior in the long
run is not modeled but rather simulated and hence also includes the effects of
correlations.

In order to model the behavior of the inter-domain link we have to find the
probability pi of the system to be in state i, where state K means the queue is
full, and state 0 means the system is empty and does not send. The M/M/1/K
queue is a birth and death process with arrival and departure rates λ and µ,
respectively. For a birth and death process of this kind the probabilities pi are
given by

pi =


1−λ/µ

1−(λ/µ)K+1 , i = 0

(λ/µ)ip0 , i > 0
(1)

if λ 6= µ, and

p0 = p1 = . . . = pK =
1

K + 1
(2)



if λ = µ. As stated above, pK is the probability of the system being full. There-
fore, pK is also the loss ratio of the link. The functional representation of the
inter-domain link used in the section about multi-domain models above can thus
be written as L(λ) = (1−pK)λ, with pK calculated according to formulas 1 and
2. From the probabilities pi we can further construct a discrete density function
of the link’s delay distribution. The number of bytes that are in the system when
another byte arrives is proportional to the time this byte has to wait before it
is sent to the link. δpr is the propagation delay on the link, which depends on
physical properties of the link, e.g. its length. The discrete delay distribution
looks like this (

p0 · · · pK−1 pK

δpr + 1
µ · · · δpr + K

µ ∞

)
(3)

The infinite delay in the case of a full queue indicates that this packet is effec-
tively lost.

Using the above results we can compute the loss ratio by multiplying the
forwarding probabilities (1− pK) of all the inter-domain links on the path. Sim-
ilarly, the time it takes for a packet to traverse a path P can be described as a
random variable δP with

δP =
n∑

i=1

δLi +
n−1∑
i=1

δLi,Li+1 (4)

where δL is the random variable of the delay caused by inter-domain link L, and
δL,K is the random variable of delay in the domain between the inter-domain
links L and K (δL,K is only defined if L is a predecessor of K). Having a random
variable of a path’s delay further allows to easily calculate values like the path’s
mean delay or jitter.

4 Evaluation

A first evaluation experiment for the hybrid simulator was done by comparing
measurements from a testbed network to the results from the corresponding
simulation scenario. The testbed was set up using the extended cross traffic
topology shown in Fig. 5(a), which is useful to evaluate the performance of
the inter-domain link and multi-domain models as well as the ns2 toolchain. A
comparison of domain models to real network behavior is less useful as these
models are directly based on measurements from these networks. All nodes were
Intel-based Linux systems, interconnected by 100 mbit ethernet links.

A reference flow was sent from A to H, and cross traffic was sent from B
to G and from C to G. All three traffic sources consisted of multiple 1 mbit/s
CBR streams with Pareto interarrival times and exponential hold times. The
traffic load produced by these sources can be seen in Fig. 5(b). For reference,
the theoretical maximum capacity of the the links is indicated as a line in the
Figure.
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As the delay introduced by the nodes was expected to be minimal we chose to
model them by domain models with zero delay. The ethernet links were modeled
with inter-domain link models. Interfaces to ns2 were attached at A and H,
and a reference stream generated by ns2 was sent along the path A-D-E-F-H to
determine delay and loss ratio as well as to test the interface code itself.
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Figs. 6 and 7 show a comparison of the measurements and the simulation re-
sults. The delays in the testbed showed very little variance even with full queues,
which is due to the CBR characteristic of the generated traffic. Consequently,
the inter-domain link models, expecting Poisson arrivals, overestimated the traf-
fic’s burstiness. However, the mean of delay was similar in both, testbed results



and simulator traces. As can be seen in Fig. 6 both graphs match rather well.
Only when nodes E and F are under full load, packet forwarding in the routers
begins to slow down slightly, which leads to the small gap between simulated
and measured delays.
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Fig. 7. Comparison of throughput from testbed and simulation scenario

In contrast to delay the throughput in the testbed proved to be rather bursty,
probably because of interrupt timing in the routers. This didn’t have much effect
on the delay as the effect was hardly noticeable in comparison with queuing delay.
However, the resulting small transient queues caused the throughput graph to
be rather noisy. The graph in Fig. 7 was therefore smoothed using a box filter.
Nonetheless, it can be seen that the simulated values closely match the testbed
measurements.

5 Summary

In this document we presented a hybrid simulator for the scalable analysis of
inter-domain networks. Measurements from other tools in the Intermon toolkit
can be used to automatically generate scenarios, which makes the system suitable
for “what-if” analysis. A tool chain handles the XML simulation job descriptions
coming from the GUI, converts them to a local format, and generates an XML
reply based on the simulation results.

The simulator itself is based on the combination of packet-based simulation
with other simulation approaches to increase flexibility and scalability. A plug-in
mechanism extension to the ns2 simulator allows to attach arbitrary extension



modules to a ns2 node. A plug-in module enhances ns2 by providing scalable
analytical and stochastic models for the modeling of inter-domain networks. The
evaluation showed that delay and throughput values obtained by the simulator
are very similar to direct measurements in a laboratory test network.

Since the underlying network can be abstracted by an appropriate network
model (e.g. the presented analytical), the size of the network does not have a
direct impact on the complexity of the simulation. This increases the scalability
of the simulation and, combined with the capability to simulate networks without
an exact knowledge about their internal structure, makes the hybrid simulator
a perfect tool for the measurement based simulation of large network scenarios.
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