
Improved Locality-Aware Grouping in Overlay
Networks

Matthias Scheidegger and Torsten Braun

IAM, Universität Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

Abstract The performance of peer-to-peer and overlay networks de-
pends to a great extent on their awareness of the underlying network’s
properties. Several schemes for estimating end-to-end network distances
have been proposed to simplify this task. The mOverlay framework iden-
tifies groups of nodes that are near to each other in the network topol-
ogy. Instead of distances between nodes mOverlay measures distances
between groups. However, mOverlay’s locating procedure has a number
of drawbacks. We propose an alternate method for identifying groups
using Meridian’s closest node search. Simulation results based on Plan-
etLab measurements indicate that the Meridian-based approach is able
to outperform mOverlay in terms of joining delay, the size of the identi-
fied groups, and their suitability for a distance estimation service.

1 Introduction

Peer-to-peer and overlay networks use logical topologies rather than the physical
topology of the underlying network. This allows them to achieve many desirable
aims like high scalability or high resilience to node failure. Nevertheless, creating
a logical topology without considering the properties of the underlying network
may lead to considerable inefficiency. A single logical link connecting two nodes
may in fact span many links on the physical network. This property is commonly
referred to as the stretch of an overlay topology. Overlay networks usually per-
form better if neighbors in the overlay topology are also close to each other in
the physical network.

Most early designs for peer-to-peer and overlay networks, like the unstruc-
tured peer-to-peer networks Gnutella [7] and Freenet [8], are unaware of the
underlying network. More recent designs often consider the properties of the un-
derlying network in some way. For example, a binning scheme based on round-
trip times [10] can be used to optimize content-addressable networks (CANs) [9].
The routing algorithm in Pastry [11] also considers the round-trip time between
overlay nodes to find the optimal next hop when forwarding queries. Application-
level multicast is especially sensitive to the choice of topology. Accordingly, these
systems focus on optimizing this aspect. Scribe [13] uses Pastry’s routing algo-
rithm to build efficient multicast trees. The MULTI+ approach [12] hierarchically
groups overlay nodes according to their IP network prefixes to create a multicast
tree. This is based on the idea that similar IP prefixes indicate a neighborship
in the network.

Since adaptation to network properties is a common problem in peer-to-peer
and overlay networks, several frameworks and services have been proposed to
help with this task. One of them is mOverlay [1], a locality-aware overlay that
assigns nodes to groups depending on their distance in the underlying network.
A dynamic landmark procedure determines the closest group for each overlay
node. Each mOverlay group has a set of leader nodes, which store measured
distances to other groups. Using this structure, overlay applications can easily
distinguish between local links and more expensive links to other groups. Fur-
thermore, these groups can be used as equivalence classes for distance estimation.
If two nodes are in the same group, their respective distances to a remote node
should be approximately the same. The distance between two nodes can there-
fore be estimated by the distance between their respective groups. In many cases
an application only needs to find the closest overlay node to a given IP address
and is not interested in the exact distance between the overlay node and the
end system in question. Meridian [2] is a lightweight framework that efficiently
solves this closest node problem. Each Meridian node keeps track of an incom-
plete, fixed-size set of other Meridian nodes, which is updated using a gossip
protocol. When a node receives a closest node request it will choose the nearest
node to the destination from its set and forward the request to that node.

In recent work [4] we have proposed an overlay distance measurement service
using local groups similar to those in mOverlay. In addition, our approach is also
able to detect if remote nodes are close together. This is achieved by analyzing
time series of distance measurements to remote hosts (obtained using ping for
example). Similarities in any two time series indicate that the respective remote
nodes are close to each other. This enables two improvements. First, the service
can be deployed locally because remote hosts only need to respond to standard
tools like ping and do not have to run any special software. Second, when looking
at the network from a given position, far away groups are often indistinguishable
from each other and can be viewed as a single entity. In such cases we only need to
store a single data record for a set of groups, which improves the scalability of the
service. Initially, we planned to use mOverlay as a mechanism to identify local
groups. However, we have found that replacing a part of mOverlay’s locating
algorithm with Meridian’s closest node search improves its accuracy and reduces
the time it takes for a node to join the overlay network. Our contribution in
this paper is the modified locating algorithm, which we compare to the dynamic
landmark procedure originally proposed for mOverlay in [1]. The resulting group
structure is also useful to simplify the task of optimizing overlay topologies,
which is a hard problem if the topology is large. Topologies based on groups
preserve inter-node distances but are much smaller than topologies based on
individual nodes and are thus well-suited for solving optimal routing problems.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated work, including mOverlay and Meridian. Section 3 describes the modified
locating algorithm. In Section 4 we present the simulators used to compare the
two approaches, and we discuss the simulation scenarios and results in Section 5.
Section 6 concludes the paper.

Group 4 Group 1

Group 5 Group 7

Group 8

Group 6

Group 3

Group 2

Rendezvous
Point

Joining
Node

Neighborships of
the visited groups

Path taken by
the algorithm

Figure 1. A joining node contacts the mOverlay rendezvous point and finds the nearest
group 3 via groups 4 and 1.

2 Related Work

2.1 mOverlay

The mOverlay [1] framework uses a two tier overlay structure. At tier one, nodes
that are close to each other form groups and communicate directly with other
members of the same group. At tier two, groups select a number of nearby
groups as their neighbors. The groups are chosen such that they can be used as
equivalence classes concerning the distance metric. This reduces the endpoint-to-
endpoint distance estimation problem to the much smaller problem of estimating
distances between groups. Moreover, this structure can serve as a basis for con-
structing efficient overlay topologies because it distinguishes between efficient
short distance links inside the groups and potentially inefficient long distance
links between groups. In order to decide whether or not a joining node belongs
to a given group the following grouping criterion is used [1]:

When the distance between a new host Q and group A’s neighbor groups
is the same as the distance between group A and group A’s neighbor
groups, then host Q should belong to group A.

New nodes iteratively search for a group that meets this grouping criterion.
When a node joins the overlay network it first contacts a rendezvous point and
obtains contact information for a set of randomly chosen boot hosts. For each
boot host it starts a locating process, which tries to find a suitable group for the
node. Using several locating processes increases the robustness of the approach.
The algorithm starts by contacting a boot host, which returns a set of distances
between the boot host’s own group and its neighbors. The joining node then
measures and compares its own distances to these neighbor groups. If the group-
ing criterion is met the process terminates and the node joins the group of the
boot host. Otherwise, the new node chooses the neighbor group that is nearest
to it and repeats the process. After a predefined number of unsuccessful itera-
tions, or if all available groups have been visited, the new node creates its own
group. When a node creates a new group it selects its neighbors from the clos-
est groups it has seen during the locating process, and their neighbors. It then
contacts each of the selected neighbors in order to allow them to adjust their
own neighbor tables if needed. Figure 1 illustrates the locating algorithm. Solid
arrows indicate steps in the algorithm and dashed ones indicate neighborships
between the groups that are used to check the grouping criterion.

2.2 Meridian

Meridian [2] is a “framework for performing network positioning without embed-
ding nodes into a global virtual coordinate space.” It has a another focus than
mOverlay. Its three main functions are closest node discovery, central leader
election, and multi-constraint search. For our work we use Meridian’s closest
node discovery. Meridian nodes form a loosely connected overlay network. They
exchange information about other overlay nodes using a gossip protocol and
keep track of a fixed number of peer nodes. These nodes are sorted into non-
overlapping, concentric rings of exponentially growing width around the Merid-
ian node (see Figure 2). The ith ring contains nodes with latencies between αsi−1

and αsi from the center, and the outermost ring contains nodes with latencies
αsi∗ and more. Within each ring, the nodes are selected to maximize diversity,
which is quantified through the hyper-volume of the k-polytope formed by the
selected nodes. A closest node search aims to identify the Meridian node that is

[
s
,

s
!
)

Figure 2. Meridian nodes arranged into rings based on their distance

closest to a given end system E in the network. To start the procedure we send
a request to an arbitrary Meridian node. This node measures its latency to E
and selects the nodes with similar latencies from its cache. It then contacts each
of these nodes and asks them to measure and report their latency to E. The
node with the smallest latency to E becomes the next hop, and the procedure
repeats. When the next hop is only insignificantly closer than the current one
the closest node search terminates and the current node is selected.

2.3 Other Work on Distance Estimation

A considerable amount of work on network distance estimation has been pub-
lished in recent years. One of the earliest designs, IDMaps [14], is a distance
estimation service that relies on tracers placed at key locations throughout the
network. The distance between two clients is estimated by the sum of the dis-
tances between the nodes and their respective nearest tracers, plus the distance

between those tracers. Dynamic Distance Maps [15] uses a similar way to es-
timate distances, but uses the tracers to hierarchically decompose the Internet
into regions. An important part of the work on network distance estimation fo-
cuses on coordinate-based approaches, which normally embed measured network
distances in n-dimensional Euclidean space such that the Euclidean distance be-
tween two nodes is a good estimate of their distance in the network. GNP [16]
is a prominent member of this family. Clients measure their distance to a fixed
set of landmark nodes with known coordinates and compute their own coor-
dinates using simplex downhill minimization. It has been argued that its fixed
set of landmarks impairs GNP’s scalability and makes it vulnerable to attacks
and node failures. Consequently, more robust approaches like Lighthouse [17]
have been proposed. Here, subset of overlay nodes may be used as landmarks, or
lighthouses. Vivaldi [18] does not use any landmarks. Instead, it passively mon-
itors network traffic to obtain distance measurements and applies a distributed
algorithm to iteratively adjust the coordinates of the nodes.

3 An Alternative Locating Algorithm

A problem of mOverlay is its topology. Because the groups choose neighbors from
their close proximity the logical links between the groups are very short. This
affects the performance of the locating algorithm, since the algorithm follows
the topology and thus can only make small steps towards the target node. If
the target node is far away, taking bigger steps would be more efficient. Another
problem is that mOverlay’s topology is prone to so-called net-splits.

Group 3

Group 5Group 6

Group 4 Group 1

Group 7

Group 8

Group 2

Rendezvous
Point

Joining
Node

Grouping check using
verification nodes

Path taken by
the algorithm

Figure 3. Alternative algorithm using Meridian’s closest node search and mOverlay’s
grouping criterion

In order to overcome these problems we have defined an alternative group
locating algorithm based on both mOverlay and Meridian. We take the group
concept from mOverlay but change the overlay structure. The groups no longer
have neighbors. Instead, the group leaders become Meridian nodes. When a new
node wants to join, it locates a boot node using the rendezvous point. Then,
it asks this boot node to start a Meridian closest node search with the joining
node itself as target. The search returns the address of the closest group leader.
At this point, the new node checks the grouping criterion to find out whether
or not to join this group. If the criterion is met the new node joins the group.
Otherwise, it creates a new group and becomes a Meridian node itself.

Unfortunately, we cannot directly use mOverlay’s grouping criterion, because
in our alternative approach groups do not have neighbors. We solve this problem
using Meridian’s node cache. The group leader found by Meridian’s closest node
search selects a randomly chosen set of verification nodes from its node table and
creates a list of addresses and latencies to these nodes. The new node receives
this list and in turn measures its latency to each of the verification nodes. This
provides us with two comparable sets. Furthermore, because mOverlay’s group-
ing criterion is formulated in general terms we also need to specify exactly when
two distances can be considered “the same.” We say distances x and y are the
same if

x ≥ y ∧ (1− g) · x ≤ y
∨ x < y ∧ (1− g) · y ≤ x

(1)

for a grouping threshold g ∈ [0, 1). The test checks the relative difference between
two distances. For example, with a grouping threshold of 0.05 we consider two
distances the same if they are within ±5% of each other. A new node joins a
group if test (1) succeeds for every verification node. The algorithm is illustrated
in Figure 3.

We believe that this combined approach to grouping nodes solves the prob-
lems discussed above. Meridian’s closest node search makes the search more
efficient. The approach is also less prone to net-splits than mOverlay because
Meridian nodes maintain a more diverse set of peer nodes. The loose overlay
structure also makes the system more resilient to node failure. A possible draw-
back of our algorithm is that it only checks the grouping criterion for a single
group, which bears the danger that the algorithm might skip over the optimal
one. Fortunately, the results in Section 5 suggest that this kind of error is rare.

4 Implementation of Simulations

In order to compare the performance of mOverlay’s locating algorithm to our
alternative algorithm we have implemented simulators for the two approaches.
Both simulators are based on a black box network model given by a matrix of
the end-to-end latencies between each pair of endpoints in the simulation. For
our experiments we use a matrix derived from all-sites ping data measured on
PlanetLab [5]. In both simulators the nodes join the overlay network one after
the other, in pseudo-random order (given by the seed value). For each node we
record the time that expires until it joins a group or creates its own group.
When the simulation ends we examine the resulting groups according to several
criteria, which we discuss in Section 5.

4.1 mOverlay

We simulate mOverlay with a simple message-based approach where each mes-
sage fits into a single packet and the message processing at a node does not take
any time. Thus, a request-response message exchange takes exactly one round-
trip time to complete, which is a lower bound for any real implementation of the

framework. Furthermore, we skip mOverlay’s initial request to the rendezvous
point because the performance of this step depends heavily on the implementa-
tion of the mechanism (e.g. a well-known address, a DNS-based approach, etc.)
and possibly on the placement of the rendezvous point.

In the simulator, the locating processes of a joining node run in parallel and
stop when one of them finds a group that meets the grouping criterion. A locating
process also stops if its next hop would be a group it has already visited. If none
of the locating processes are successful, the joining node gives up and creates a
new group. Locating processes keep a list of visited groups. When a new group is
created its neighbors are selected from the lists of all its locating processes. The
first two joining nodes are special cases. They automatically create new groups
because the grouping criterion cannot be evaluated without further nodes. As
mentioned in Section 3, mOverlay does not define how to test if two distances
are the same. However, we need to test this to check the grouping criterion. We
have used test (1) from Section 3 also for the mOverlay simulation because it is
a natural choice.

4.2 Meridian

In contrast to the mOverlay simulator, where we implemented all necessary mes-
sages, we did not implement the Meridian approach ourselves. Instead, we have
used the official Meridian C++ implementation [3]. We have written wrapper
code to redirect any messages to a simulation back-end instead of the network,
and we have changed Meridian’s time-keeping code to use the simulation time
instead of the system clock. Each Meridian node is now a C++ object in the
simulator rather than a physical node on the network. When it sends a packet
the simulator determines the appropriate transmission latency using the under-
lying network model and schedules the packet arrival at the destination node
accordingly. The wrapper objects also evaluate the grouping criterion at the end
of a joining procedure and create a new group if necessary.

The simulation back-end is event-based. There are three kinds of events:
one for inserting a new node into the scenario, one for triggering Meridian’s
periodic gossip protocol, and one for packet arrivals at a Meridian node. We
start the simulation by scheduling node join events every seven seconds (which
corresponds to Meridian’s default gossip interval). When a node joins it starts by
sending a closest node query to a Meridian node. This search is handled entirely
by the original code. When the query returns, the joining node contacts the
identified closest node to retrieve a list of verification nodes, which the wrapper
code extracts from the Meridian object’s latency cache. In the simulator we use
a maximum of five verification nodes.

5 Simulation Results

5.1 Simulation Scenario

For the simulations we have used a matrix of round-trip times between 77 Plan-
etLab nodes, based on all-sites ping data from PlanetLab [5]. The simulator

estimates the one-way delay between two endpoints by dividing the appropriate
round-trip time by two. At the time of writing, 694 machines hosted by 335 sites
were part of PlanetLab. This means that each site hosts only slightly more than
two machines on average. Consequently, we can expect to find groups of only
a few nodes each in our scenario, especially since the 77 nodes in the network
model were randomly selected from the available PlanetLab nodes. For each
node pair we have also acquired a time series of round-trip times, which we use
for evaluation. The time series contain round-trip time measurements made ev-
ery 15 minutes during one day. We have originally planned to use more than 77
nodes, but we have removed several nodes from the original set due to missing
values in the time series. Simulations have been run with different values for
various parameters. Furthermore, each set of parameters was simulated using
100 different seeds, which we obtained from random.org [6].

5.2 Evaluation Criteria

We get the joining delays for every node, and the identified groups from a simula-
tor run. While the comparison of the joining delays is straightforward, quantify-
ing the quality of the identified groups is not. Grouping can exhibit two kinds of
errors, false positives and false negatives. A node joining a group when it should
not is considered a false positive and increases the error of grouping. A false
negative occurs when a node erroneously does not join a group and creates a
new one instead. This results in too many groups and impairs the efficiency and
scalability of the overlay network. Unfortunately, due to the black box nature of
our network model, we cannot say a priori whether a node should join a group
or not. Nevertheless, we can define three criteria for the quality of the identified
groups.
• First, the members of a group should be close to each other. Accordingly, we

compute the mean round-trip time between members of the same group. Groups
with only one node are ignored in this case.
• Second, bigger groups are preferable because they reduce the complexity

of the overlay network. We use the average number of nodes per group as the
second criterion.
• The third criterion stems from the use of the identified groups as a basis for

a distance estimation service. One important assumption in mOverlay is that if
two nodes A and B are in the same group, the distances AC and BC to a node
C outside the group are virtually the same. This property enables significantly
better scalability of the service. However, it must also hold over time. Otherwise,
we would have to reorganize the groups constantly. We define the third criterion
accordingly: If A and B are in the same group, ACt should be a good prediction
for BCt, where t is the time of measurement. We verify this using the time
series of round-trip times between the two nodes. Two measurements ACt and
BCt are out-of-band of each other if

ACt ≥ BCt ∧ (1− b) ·ACt > BCt

∨ ACt < BCt ∧ (1− b) ·BCt > ACt
(2)

 0.1

 1

 10

 100

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
in

tr
a-

gr
ou

p
R

T
T

 (
m

se
c)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 4. Mean intra group distance
for several grouping thresholds

 1

 10

0.01 0.02 0.05 0.1 0.2 0.5

G
ro

up
 s

iz
e

(n
od

es
)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 5. Avg. nodes per identified
group for several grouping thresholds

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
ou

t-
of

-b
an

d
ra

tio

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 6. Mean out-of-band ratio using a
10% band, for several grouping thresholds

for a relative bandwidth b ∈ [0, 1). The out-of-band ratio between two nodes is
the ratio of out-of-band measurements in the respective time series. In this paper
we use a bandwidth of 10% (b = 0.1).

The graphs in the remainder of this section use a dot-and-whisker format
showing the mean with a 95% confidence interval, obtained by running the sim-
ulation with 100 different seeds. We have also slightly staggered the graphs along
the horizontal axis to improve readability.

5.3 Quality of the groups

As a first comparison we look at the quality of the groups identified by mOverlay
and our alternative approach. For both we use parameters that we have found
to produce near optimal results. We set the maximum number of neighbors for
mOverlay groups to eight and the number of parallel locating processes to five.
For the Meridian-based approach we set the maximum number of verification
nodes to five.

Figure 4 shows the mean round-trip times between group members for the
grouping thresholds 1%, 2%, 5%, 10%, 20%, and 50% (using a logarithmic scale

for better readability). For both approaches a lower threshold also leads to
smaller distances between group members. The effect is much bigger for mOver-
lay because the grouping threshold affects every iteration of the locating process,
while the Meridian-based locating algorithm only uses the grouping threshold
for its final step. Nevertheless, the round-trip times between group members of
mOverlay are always bigger on the average than those of the Meridian-based ap-
proach. Moreover, the confidence intervals for mOverlay are bigger. We conclude
that the Meridian-based approach performs better than mOverlay with respect
to the first criterion.

The second aspect we examine is the average number of nodes per group.
Figure 5 shows the group size for the same grouping thresholds as Figure 4. The
groups identified by the alternate approach are bigger for grouping thresholds
up to 10%. In contrast, mOverlay identifies much bigger groups with grouping
thresholds above 10%, but this comes at the price of much greater round-trip
times between group members. As expected, group sizes are rather small because
of the wide distribution of the nodes.

If the identified groups shall be used as a basis for a distance estimation
service they must also have a low out-of-band ratio. We look at this aspect using
again the same parameters for grouping threshold and a 10% band for the out-
of-band test. The results can be seen in Figure 6. The Meridian-based approach
has shows a smaller out-of-band ratio than mOverlay for all grouping thresholds,
and it shows less variance. Again, mOverlay shows high sensitivity towards the
grouping threshold while the out-of-band ratio of the Meridian-based approach
only increases slightly with growing grouping threshold.

5.4 Joining delay

In addition to a good quality of the identified groups it is also desirable to find the
groups in the shortest time possible. We compare the two approaches using the
same parameters as in Section 5.3. Figure 7 shows the joining delay per node for
several grouping thresholds. Again, mOverlay proves to be much more sensitive
towards the grouping threshold than the Meridian-based approach. Moreover,
unless the grouping threshold is extremely high the alternate algorithm finds
the local group much faster than mOverlay.

The joining delay of mOverlay nodes is not only sensitive to the choice of
grouping threshold. Figure 8 shows the influence of the maximum number of
neighbors per group and the number of parallel locating processes. Here we used
a grouping threshold of 5% and a maximum of 2–10 neighbors per group. Fur-
thermore, the three graphs show the effect of using 1, 5, or 10 parallel locating
processes. We observe that a lower maximum of neighbors per group and fewer
locating processes running in parallel cause a significant reduction in joining de-
lay. Furthermore, the increase in joining delay appears to become smaller the
more parallel locating processes we employ. However, regardless of the parame-
ters the variance of the results is always quite large.

It appears that mOverlay can match the speed of the alternate approach if
we reduce the number of parallel locating processes and the maximum number of

 0

 500

 1000

 1500

 2000

 2500

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
jo

in
 ti

m
e

(m
se

c)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 7. Mean joining delay per node
for several grouping thresholds

 0

 500

 1000

 1500

 2000

 2500

 2 3 4 5 6 7 8 9 10

M
ea

n
jo

in
 ti

m
e

(m
se

c)

Maximum number of neighbors per group

mOverlay, 1 locating process
mOverlay, 5 locating processes
mOverlay, 10 locating processes

Figure 8. Mean joining delay in
mOverlay for various parameters

0%

10%

20%

30%

40%

50%

60%

 2 3 4 5 6 7 8 9 10

M
ea

n
ou

t-
of

-b
an

d
ra

tio
 (

10
%

 b
an

d)

Maximum number of neighbors per group

mOverlay, 1 locating process
mOverlay, 5 locating processes

mOverlay, 10 locating processes

Figure 9. Mean out-of-band ratio in
mOverlay for various parameters

neighbors per group. Nevertheless, the effect on the quality of the groups is severe
as Figure 9 shows. Less than ca. 6 neighbors per group cause a significant increase
in the out-of-band ratio. Using only one locating process also has a noticeable
negative effect. On the other hand, the benefit from using more locating processes
rapidly declines. The difference between five and ten parallel locating processes
is mainly the size of the respective confidence intervals. Figure 9 also justifies our
choice of parameters for mOverlay. The improvement for more than a maximum
of eight neighbors per group and five locating processes is small while the increase
in joining delay is still noticeable.

6 Conclusions

The locating algorithm of mOverlay has a number of drawbacks. We have pre-
sented an alternate algorithm that combines Meridian’s closest node search with
mOverlay’s grouping criterion. In order to compare the mOverlay algorithm to
the Meridian-based approach we have implemented simulators for each, using a
black box network model based on PlanetLab measurements. We compare the

performance of both approaches based on the time it takes for a new node to
find a group, the round-trip time between group members, the average number
of nodes per group, and the suitability of the grouping for distance estimation,
measured by the so-called out-of-band ratio.

From the simulation results we conclude that the Meridian-based locating
algorithm is faster in most cases. It also identifies larger groups, and the nodes
inside the groups are closer together than the nodes in mOverlay groups. More-
over, the groups identified with the alternate algorithm also have a smaller out-
of-band ratio, which indicates better suitability for a distance estimation service.

References

1. X. Y. Zhang et al., “A construction of locality-aware overlay network: mOverlay
and its performance,” IEEE JSAC, vol. 22, no. 1, pp. 18–28, January 2004.

2. B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network location
service without virtual coordinates,” ACM SIGCOMM’05, Philadelphia, Pennsyl-
vania, USA, August 21–26, 2005.

3. Meridian C++ code, http://www.cs.cornell.edu/People/egs/meridian/code.php
4. M. Scheidegger, T. Braun, and F. Baumgartner, “Endpoint Cluster Identification

for End-to-End Distance Estimation,” ICC’06, Istanbul, Turkey, June 11–15, 2006,
ISBN 1-4244-0355-3.

5. J. Stribling, “All-pairs-pings for PlanetLab,” http://pdos.csail.mit.edu/˜strib/pl app.
6. random.org – True Random Number Service, http://www.random.org.
7. The Annotated Gnutella Protocol Specification, http://rfc-

gnutella.sourceforge.net/developer/stable/index.html.
8. Clarke et al., “Protecting Free Expression Online with Freenet,” IEEE Internet

Computing, February 2002, pp. 40–49
9. S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A scalable

content-addressable network,” SIGCOMM 2001, Aug 2001.
10. S. Ratnasamy, M. Handley, R. Karp and S. Shenker, “Topologically aware overlay

construction and server selection,” IEEE Infocom’02, New York, NY, June 2002.
11. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems,” IFIP/ACM Middleware 2001, Hei-
delberg, Germany, pp. 329–350, November 2001 .

12. L. Garcés-Erice, E. W. Biersack, and P. A. Felber, “MULTI+: Building topology-
aware overlay multicast trees,” in QofIS’04, September 2004.

13. M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE JSAC, Vol. 20,
No. 8, pp. 1489–1499, 2002.

14. P. Francis, S. Jamin, J. Cheng, Y. Jin, D. Raz, and Y. Shavitt, “IDMaps: A global
internet host distance estimation service,” IEEE/ACM ToN, Vol. 9, No. 5, pp. 525–
540, October 2001.

15. W. Theilmann and K. Rothermel, “Dynamic distance maps of the Internet,” IEEE
Infocom 2000.

16. T. S. E. Ng and H. Zhang, “Predicting Internet network distance with coordinates-
based approaches,” ACM IMC 2003.

17. M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti, “Lighthouses for scalable
distributed location,” IPTPS 2003.

18. F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network
coordinate system,” ACM SIGCOMM 2004.

