
Performance of a Bandwidth Broker for DiffServ
Networks

Günther Stattenberger and Torsten Braun

Institute of Computer Science and Applied Mathematics,
University of Bern,

Neubrückstr. 10,
3012 Bern,
Switzerland�

stattenb, braun � @iam.unibe.ch
http://www.unibe.ch/˜rvs

Abstract. The need of a powerful tool for the management of large backbone
networks is growing. Furthermore, new applications and user behavior require
the ability to quickly adapt the network configuration to a dynamically changing
environment. We present an architecture and an implementation of a bandwidth
broker for DiffServ network management. The performance evaluation shows,
that our implementation is able to serve as the central management station for a
network containing several hundred nodes while still providing a short flow setup
time. Further improvements of the current implementation are discussed, too.

1 Introduction

Managing a backbone network of even a medium size Internet Service Provider (ISP)
is a difficult and time-consuming task. The sheer number of routers and the heterogene-
ity of the network (i.e. the routers are bought from different vendors and therefore have
different command line interfaces for configuration) complicate the configuration of the
network and this often results in a rather static configuration of the backbone routers.
However, in modern communication networks dynamic and frequent changes in the
settings of some of the backbone routers are necessary to fulfill the requirements (e.g.
bandwidth reservations) of customers (e.g. mobile users). A bandwidth broker (BB) can
support the network administrator of an ISP network in various ways: first the hetero-
geneity of the network can be hidden behind a uniform configuration interface. Further-
more, the configuration of the routers can be automated and completely delegated to
the broker. The BB offers a small set of possible contracts to the customers (so-called
Service Level Agreements, SLAs) and takes care of the correct completion of those
contracts. The users can therefore dynamically set up and release resource reservations
at high rates, which is very convenient and satisfactory for the customer.

The difficulties of deploying an interdomain service in the internet are listed and
discussed in [11]. For example, a big barrier are the necessary upgrades for providers,
since all ingress interfaces of the whole domain must police. In addition, the current
lack of router support poses a big problem. Serious concerns about operational cost and



2 Günther Stattenberger and Torsten Braun

complexity have to be considered, too. Some of those problems are addressed by exist-
ing architectures of bandwidth brokers [9, 10]. All of them try to reduce the complexity
of the configuration procedure. The different approaches mainly follow the design of
the two-tiers managment architecture presented in [8].

In this paper we present an architecture and an implementation of a bandwidth
broker capable to manage and configure even large-scale networks with an acceptable
speed. This broker introduces a novel object-oriented way of interconnecting the man-
agement and configuration layer of the common bandwidth broker architecture. This
interconnection is built on top of a QoS Management API [15], that can be used to build
a virtual network representation that combines a topology database and the knowledge
of the amount of traffic reserved at each router interface. The features of the broker
include a generic communication interface for user - broker communication as well as
for broker - broker communication and a policy database providing methods for subnet-
based admission control. Altogether we are able to show the ability of our architecture
to perform the necessary actions in several separated ISP networks in order to provide
end-to-end service guarantees for the user.

The rest of this paper is organized as follows: Section 2 discusses some bandwidth
broker implementations of other authors, in Section 3 we explain our bandwidth broker
architecture using a single-ISP broker as an example. Section 4 evaluates the memory
consumption and the reservation setup speed of this architecture. Section 5 discusses
several enhancements of the basic architecture and their possible effects on the overall
performance.

2 Related Work

Several bandwidth brokers have been designed and developed through the last years
since having been introduced in [8]. This section will focus on the differences of some
of the most referenced bandwidth broker implementations [4, 6, 7, 10, 17], and discuss
some of their characteristics and drawbacks. While not presenting a broker implemen-
tation for DiffServ [6] is included in this discussion for more general aspects of network
management.

When developing a bandwidth broker several design choices are quite canonical,
therefore the different architectures and implementations differ in several details only:
A flow database that contains the flow requests from the users is available in each im-
plementation, only the interface to this database is different. For example, [4] uses a set
of configuration commands usable by a client host, while [17] uses a web interface to
the database that only a network administrator is allowed to use. The second database
which occurs in all implementations is a policy database. This is the database decid-
ing whether a flow request can be served or not. COPS (Common Open Policy Server)
is chosen in several implementations [7, 17] to handle the communication between the
bandwidth broker (Policy Decision Point (PDP)) and the routers (Policy Enforcement
Point (PEP)) but also alternative approaches are being proposed, such as SNMP in [10]
or TCP sockets and telnet in [6, 4]. If a detailed flow description is documented, this
also contains the same entries throughout several different implementations: source and



Performance of a Bandwidth Broker for DiffServ Networks 3

destination addresses as well as ports, protocol ID, start time, duration and service level
information (such as bandwidth etc.).

One point that is missing in many documentations about implementations is the
discussion about topology knowledge. One implementation [10] proposes to introduce
special route discovery signaling using the IP record route option, but other implemen-
tations neglect this topic. A topology database is used in [6], but the authors fail to
mention, how this database is built and kept up to date.

Regarding the performance of the different implementations the evaluation tests that
are presented in the publications merely represent a functionality test not exceeding the
setup of DiffServ reservations at one single router. No tests are shown how many routers
can be configured by the implementation simultaneousely, and how much time it takes
for a flow reservation request to be processed.

3 The Bandwidth Broker Architecture and Implementation

Our bandwidth broker implementation is based on the implementation of the QoS Man-
agement framework [15] for a Linux DiffServ (DS) router. The framework roughly
consists of three abstract C++ classes, that define a generic interface for the three basic
building blocks of a DiffServ network: a router, an interface at a router and a traffic con-
ditioner at the interface. The implementation of this framework for the Linux DS router
implements specific C++ classes derived from those abstract base classes to support the
specific needs of the Linux Router (e.g. command line syntax, routing table format ...).
Different router hardware is supported by deriving special child classes for each type of
router.

The BB uses those three classes to build a representation of the underlying net-
work topology. It can configure the router hardware by using common configuration
commands (such as add flow). Those generic commands are translated into the con-
figuration scripts by the corresponding Router instance. This solves the problem of
supporting various kinds of router hardware by adding a software layer flexible enough
to deal with various routers by using different derivations of a common base class. The
base class provides an interface identical to all routers thus hiding the differences from
the user.

The API additionally provides the necessary functionality to keep track of the amount
of bandwidth reserved for a specific DiffServ class at each interface of each router.
Figure 1 shows the architecture in more detail: Our bandwidth broker contains a flow
database, that holds all registered flows. This is one of the two databases that are always
present in a broker implementation. The second one, the policy database is not used in
this simple scenario but will be added in the multi-ISP scenario (see Figure5). As a
new feature, our architecture has a virtual representation of the network to be managed.
This representation contains all routing tables of the routers from the network, thus pro-
viding a topology database. This database will use a large amount of memory, but the
forwarding path of a flow can be obtained very quickly without additional signaling. In
addition, this virtual network offers the common router configuration interface of the
management framework to the broker’s management software, making it easier for new
management implementations to be deployed. Our implementation keeps track of the



4 Günther Stattenberger and Torsten Braun

link utilisation as well as the reserved bandwidth per link. Those parameters are stored
in two tables, enabling the broker to perform basic admission control based on the link
utilisation. Finally a user interface offers a set of generic flow management commands
(add flow, delete flow, change flow, list flows) to the customer.

...

...

...
...

Router R2
Router R4
Router R5 350

1300
400

Router R5
Router R4
Router R2

1500
400

600Router R1
Router R2
Router R2

Router R2
Router R2
Router R1

Network X

Host A

Host A

AF3 5500

AF1 500

EF 300

Network Y

Host C

Host B

45771
45770
45769
45768
14872
24673
37652
16275

Flow Table

Pool
Flow ID

User 
Interface

Utilisation Table

Reservation Table

Topology Database
(virtual network)

Bandwidth
Broker

Fig. 1. The bandwidth broker architecture for an isolated network

During the initialization the broker automatically generates a network representa-
tion. This can be done either by reading a local topology database from the hard disk,
or by broadcasting a broker advertisement message. Each router has to reply to this ad-
vertisement message giving its host name and its router type. We chose this approach
because of its stability against changes in the topology, although we had to accept the
resulting need of a router daemon running on each router. Since we anyhow depend on
a router daemon to perform the configuration commands from the bandwidth broker,
this is not a big drawback.

After this step the bandwidth broker fetches all routing tables from the network.
It now has the full knowledge of the topology on the IP layer, which is sufficient for
our task (i.e. configuring DiffServ flows). In addition, all necessary traffic conditioners
needed to support DiffServ are already set up and a default configuration is loaded. This
default configuration simply consists of empty DiffServ reservations at each interface.

The bandwidth broker can now load an initial DiffServ configuration to the net-
work. This is perhaps necessary, if there are contracts with adjacent bandwidth brokers
concerning DiffServ traffic entering or leaving the domain from outside. Additionally
a network administrator can choose to reserve a certain amount of bandwidth for Diff-
Serv traffic in advance in order to reduce the total configuration overhead in the back-
bone. The programmer of a bandwidth broker should generally take care of reducing
the amount of reconfigurations of a backbone router. Overprovisioning, i.e. reserving
more bandwidth than it is actually needed by the running applications is one way to
relieve the backbone routers [2].



Performance of a Bandwidth Broker for DiffServ Networks 5

Finally, the bandwidth broker is ready to accept incoming reservation requests from
the customers. The protocol that is used for the communication between the bandwidth
broker and the user is described in [14]. This protocol allows the user to specify a flow
(i.e. source and destination) together with the required bandwidth and excess bandwidth
as well as some flags indicating the additional requirements of the flow (e.g. realtime
traffic). For each request the BB sequentially queries the routing tables from the source
to the destination and thus finds all routers that potentially might need to be recon-
figured (the result is equivalent to a traceroute from source to destination). This
approach results in a delay thet is proportional to the diameter of the topology (i.e. the
average number of hops between two arbitrary nodes). As an alternative, [10] proposes
to use the IP record route option and ICMP messages to discover the route of a given
flow. This has the advantage of providing up-to-date information, but adds an additional
delay to the setup procedure. Furthermore, the problem of route breakdowns and the re-
sulting reconfigurations in order to provide guaranteed QoS to all registered flows is
not addressed. This topic is addressen in Section 5.3, where we show, how a central
topology database could be kept up to date quite easily.

Following this, an appropriate DiffServ Codepoint (DSCP) based on the require-
ments of the user is chosen. Now the ingress router can be configured. Note that in a
DiffServ network the ingress router has always to be reconfigured, since it is respon-
sible for shaping the traffic based on the exact flow description. The bandwidth broker
can check, if it is necessary to perform reconfigurations at the core and egress routers
(e.g. adjust the EF rate limiter in a core router [1]). This is based on the brokers val-
ues of the total amount of traffic and the reservations at each interface. Usually there is
more bandwidth reserved than actually used due to over-provisioning, and no reconfig-
urations have to be done. The broker only has to update its bandwidth usage variables
for the interfaces. This approach speeds up the flow setup significantly.

In this rather simple scenario of an isolated network only a very basic form of ad-
mission control is performed: at each router we check, if the newly allocated amount
of bandwidth for the service classes does not exceed a pre-configured threshold. If so
the flow is rejected. It is guaranteed, that a certain amount of bandwidth is avaliable for
best effort traffic in every case. A more elaborate form of admission control based on a
subnet-indexed policy database will briefly be discussed in Section 5.1.

Finally the BB stores the flow request in its global flow database. This database
assigns a unique flow ID to each new flow and passes this flow ID to the user. All future
operations depending on this specific flow setup are referenced by this ID.

4 Performance Evaluation

The performance evaluation of our architecture shows, how fast the bandwidth broker
can handle flow requests when managing a reasonable large network. In addition, we
were interested in the memory consumption of the bandwidth broker, which we expect
to be quite large because of the central topology and flow databases. All measurements
were performed on a dual-processor AMD Athlon MP 2000+ Linux PC with 2 GB main
memory. For the evaluation several test topologies have been created using the tiers [3]
program. This program randomly generates a topology consisting of a single WAN with



6 Günther Stattenberger and Torsten Braun

several MANs and several LANs per MAN. The number of routers per network can be
chosen freely. We generated topologies containing 157, 208 305, 535, 710, 928, and
1010 nodes.

For the evaluation it is necessary to run a very large number of configuration dae-
mons in parallel. Using a dedicated Linux router per daemon would be too much a
financial and organisational overhead, since the load (in terms of CPU time) such a
daemon creates on a PC is minimal — its only job is the execution of configuration
commands, that are not computationally intensive. Therefore, we were able to run a
number of router configuration daemons (about 200) on a single PC without creating
too much load on the CPU. This does not at all diminish the amount of work to be done
by the bandwidth broker since the access link is by far fast enough to handle all flow
requests. Most likely, the bandwidth broker would be even faster than shown in our re-
sults, since the configuration requests are handled one after another on a single machine
and are not processed in parallel on multiple machines. The only restriction we had to
make was to disable the changes in the routers forwarding path: one can understand
easily that a large amount of configuration daemons changing the settings of the Linux
router simultaneously would result in a huge confusion and cause the router to crash.
However each router configuration daemon program still parses each flow request and
creates the necessary configuration scripts that would be needed to configure the router.
Thus as much as possible of the computation expense is preserved.

The load on the bandwidth broker is created by requesting many flow reservations in
a short period of time. Those reservation requests are generated by a small application
that sends a request to the bandwidth broker, waits for the acknowledgement from the
broker and immediately afterwards sends another request. By sending several hundreds
of reservation requests from this program we can easily calculate the time the bandwidth
broker needs for setting up a flow.

4.1 Results

For calculating the memory consumption, we used 7 tiers topologies. Using the Bellman
- Ford distance vector (DV) algorithm [16] routing tables have been generated for each
node in the networks and saved to the harddisk. With this algorithm each router has a
routing table containing an entry for each router in the network. For each node of those
topologies a router configuration daemon program has been executed. This daemon
reads the routing table from the harddisk and passes it to the BB. The broker collects
all routing tables from the daemons and builds the topology database.

The memory consumption of a centralized application is always a critical issue. Our
bandwidth broker relies on two large databases — the topology database containing the
routing tables and the flow database. The flow database is not very critical because
only a very small amount of data has to be stored per flow (ca. 50 - 60 byte), and the
memory consumption of this database grows linear with the number of established flows
requests. However, in our scenarios the total size of all routing tables will grow quadrat-
ically with the number of nodes in the topology. This is an effect of the DV algorithm,
that creates an routing table entry for each router of the network. Nevertheless we can
estimate, how much memory a router instance consumes when its routing table contains
a reasonable number of entries (ca. 10000 - 30000). This is approximately the size of



Performance of a Bandwidth Broker for DiffServ Networks 7

the routing table of a backbone router in a large ISP network. A simple quadratic inter-
polation shows, that the amount of memory per routing table containing 30000 entries
is about 15 MB. This means that with our workstation equipped with 2 GB memory we
could manage more than 100 backbone routers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  200  400  600  800  1000

M
B

yt
es

Topology Size

Memory Consumption

Fig. 2. Memory consumption of the bandwidth broker

Figures 3 and 4 show the flow reservation speed of the bandwidth broker. Each flow
request reserved an amount of 100 kbit/s bandwidth between randomly chosen source
and destination nodes. However, the amount of bandwidth reserved has absolutely no
influence on the setup speed of the bandwidth broker. The time measurements were
performed using the UNIX time command. This command measures the total (wall-
clock) time a command needs for execution, as well as the “user time”, i.e. the time that
is spent in the program code, and the “system time”, the time that was spent by the sys-
tem, e.g. for performing I/O calls. The results show the total time the client application
spent performing a given number of flow requests.

Topology Size Best Case Speed Worst Case Speed
(Flows/s) (Flows/s)

710 1546.3 970.9
928 1836.2 1280.4

1010 1490.9 930.2
Table 1. Flow setup speed

In Figure 3 the performance of the bandwidth broker under optimal circumstances is
presented. This is, when the bandwitdh broker has already allocated enough bandwidth
on the whole forwarding path (by overprovisioning) so that only the ingress router has



8 Günther Stattenberger and Torsten Braun

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  200  400  600  800  1000  1200

S
et

up
 T

im
e 

[s
]

Flows

Topology 157
Topology 208
Topology 305
Topology 535
Topology 710
Topology 928

Topology 1010

Fig. 3. Flow reservation time of the bandwidth
broker (best case)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000  1200

S
et

up
 T

im
e 

[s
]

Flows

Topology 157
Topology 208
Topology 305
Topology 535
Topology 710
Topology 928

Topology 1010

Fig. 4. Flow reservation time of the bandwidth
broker (worst case)

to be reconfigured. Each graph represents one topology and shows the time that was
needed to set up 0 – 1000 flows in seconds. In Table 1 we show the speed of the band-
width broker measured in flow setups per seconds, measured over 10000 Flows setups.

In both results we can see, that the speed (i.e. the slope of the graph) does not
directly depend on the topology size. The important parameter is in fact the diameter
of the topology. Due to the randomness of the topology generation the diameters differ
from e.g. 20.5 hops for the 710 nodes topology to 12.2 hops for the 928 nodes topology.

Figure 4 and Table 1 show the performance of the bandwidth broker under worst
conditions: now the bandwidth broker had to reconfigure every router along the path.
We had to force this situation by disabling the overprovisioning algorithm in the band-
width broker. Again we can see the aforementioned dependency on the diameter of
the topology. The total performance of the broker is however not bad considering the
fact that compared to the best case scenario we have to reconfigure in average 12 – 20
routers per flow. But reconfiguring a core router is much easier than an ingress router,
since only a single variable has to be changed (the limit of the aggregated bandwidth),
while at the ingress router a new traffic conditioner has to be inserted and configured.

5 Further Improvements

The results presented in the previous section show, that our architecture is capable of
configuring a backbone network at a reasonable high speed. Nevertheless, there are still
some possibilities for optimization. First of all, the computing power (CPU speed and
I/O bandwidth) of the bandwidth broker host has a big impact on the overall perfor-
mance. Further results on this topic can be found in [13].

5.1 Hierarchical Bandwidth Brokers

Dividing an ISP domain into independently managed subnetworks will distribute the re-
quests of the users to different bandwidth brokers, each capable of performing a certain
amount of flow setup procedures per second. Therefore the overall capacity of manage-
able user requests can be extended. Such a hierarchy of bandwidth brokers has already



Performance of a Bandwidth Broker for DiffServ Networks 9

been presented in [18]. The authors can show, that this can reduce the processing over-
head for a flow reservation.

Such an enhanced version of the bandwidth broker can also be used for a multi-
ISP scenario, when we cannot assume, that all routers belong to the same domain.
This is a much more realistic scenario, and has multiple applications, e.g. in Mobile IP
management.

User 
Interface

...

45771
45770
45769
45768
14872
24673
37652
16275

Pool
Flow ID

...

Network X

Host A

Host A

AF3 5500

AF1 500

EF 300

Network Y

Host C

Host B

Flow Table

...
...

Router R2
Router R4
Router R5 350

1300
400

Router R5
Router R4
Router R2

1500
400

600Router R1
Router R2
Router R2

Router R2
Router R2
Router R1

Utilisation Table

Reservation Table

Topology Database
(virtual network)

Bandwidth
Broker

Interface
Broker
Inter−

Network A

Network X

Network Y

...

AF3 5500

AF1 2000

EF 3500

Policy Database

Fig. 5. The bandwidth broker architecture for multi-ISP scenarios

In [9] a hierarchy of brokers (called Resource Control Points) is presented, too. The
authors mention, that dividing the network into parts, each managed by a single broker
is not trivial and needs the knowledge of the topology as well as information about the
expected SLAs. Therefore this topic is still under development.

Figure 5 shows the necessary extensions for a BB capable to communicate with
other brokers: The protocol between the brokers as used by the inter-broker communi-
cation interface can be the same as in the user-broker communication, as it has been
described in [14]. Using this protocol the brokers can reserve aggregations of flows by
masking the source / destination address just like any user can reserve a flow at the
broker. In addition, a policy database for restricting the amount of traffic from / to other
domains is necessary. This policy database contains the information about the amount
of traffic the specific subnets are allowed to send. This rather coarse access restriction
can surely be improved, but it is e.g. sufficient to limit the number of users on a lim-
ited access network (e.g. a wireless access point). Based on this policy database we can
provide admission control on the subnet of sender / receiver address of a flow.

If an ISP wants to split its network into several independent management domains,
the separation will most likely be done on a IP subnet basis: Usually nodes with the
same subnet mask are topologically close and therefore aggregation can be performed



10 Günther Stattenberger and Torsten Braun

much easier. In addition, the separation of the ISP network into several IP subnets auto-
matically uniquely maps a bandwidth broker to the nodes of the subnet: As mentioned
in Section 3 each broker can send a broadcast message for detecting the network topol-
ogy. Due to the correlation of broadcast addresses and subnet masks each broker only
gets a reply from nodes within its management domain. Any flow reservation request
containing a source or destination IP address unknown to the broker denotes a flow
involving several domains. The broker will then forward the flow request to the band-
width broker the flow will cross next. For getting the IP address of the bandwidth broker
of a foreign network, an additional service has to be established at the border routers.

5.2 Parallelizing the Broker

As already mentioned in Section 4 the flow requests are currently handled sequen-
tially. Since configuring the network implies the bandwidth broker waiting a significant
amount of time, it would be better to handle the user requests in parallel threads. Since
it is not very likely, that many consecutive flow requests require the reconfiguration of
one single backbone router, the probability of decoupling is quite high and a significant
performance boost will result.

5.3 Topology Changes

Throughout this paper we assumed the topology to remain static after the startup of
the bandwidth broker. This allowed us to simplify the design of the topology and the
reservation databases. However, this assumption may not be valid in a large network
over a longer time interval. Although the routes to popular destinations seem to be
reasonable stable — despite the large number of BGP updates [12] — it might happen
that a route changes while a reservation is still relying on the forwarding given by this
route. We now want to shortly discuss possible solutions for this problem, which is still
not solved in any bandwidth broker implementation.

The problem of routing changes is the aggregation of flows in the core routers:
the core routers do not store per-flow information because of scalability reasons but
only the overall sum of bandwidth is kept. If a link goes down, the underlying routing
protocol might change the routing in a way, that one part of the flows is now routed via
a interface, but another part via another interface of this router (and / or might not cross
this router at all). Since the core router only has information about the aggregate sum of
bandwidth we cannot know how to divide this sum into parts needed for the new routes.

One possible solution would be the allocation of the total sum of bandwidth on the
new outgoing interfaces. This of course would result in a large overprovisioning and
waste of bandwidth and is therefore not desirable. We propose another solution that
breakes the rule of only storing aggregate information in the core routers in a way, that
the bandwidth broker maintains a reservation value not only for each interface of a core
router but for each routing table entry (see Table 2).

With this additional information we can correctly change the topology and reserva-
tion database in case of routing changes: Let us assume, the link of Interface 1 breaks,
and the routing protocol provides us with the following new routes: destinations Dest �

and Dest � are now routed via interface Ifc � , while Dest � is routed via Ifc � . The new



Performance of a Bandwidth Broker for DiffServ Networks 11

Destination Gateway Interface Reservation
Dest � Gatew � Ifc � 500
Dest � Gatew � Ifc � 300
Dest � Gatew � Ifc � 700
Dest � Gatew � Ifc � 700
Dest � Gatew � Ifc � 500
Dest � Gatew � Ifc � 200

Table 2. Example for the new routing table
format

Destination Gateway Interface Reservation
Dest � Gatew � Ifc � 500
Dest � Gatew � Ifc � 300
Dest � Gatew � Ifc � 700
Dest � Gatew � Ifc � 700
Dest � Gatew � Ifc � 500
Dest � Gatew � Ifc � 200

Table 3. The routing table after the topology
changes

routing table now looks like Table 3. The bandwidth newly to be configured at the in-
terfaces can easily be computed from the routing table: Ifc � needs 1700 units, while
Ifc � will be configured 1200 units.

Deletion of a routing table entry is also quite simple: we will only have to check
the new routing table, over which gateway the addresses of the deleted subnetwork will
now be routed. The only thing we have to do now is to add the bandwitdh used for the
deleted network to the reservation entry of this gateway.

6 Summary and Conclusion

In this paper we have presented the design of a centralised bandwidth broker for Differ-
entiated Services networks. Our implementation is based on a generic QoS management
framework providing the necessary functionality. The performance evaluations of our
implementation focused on two critical factors of possible bottlenecks: the memory
consumption and the flow processing time of the central bandwidth broker. We could
show, that the amount of main memory nowadays available at a workstation is sufficient
to hold a large topology database. The flow setup time presented here was limited by
the CPU speed and memory bandwidth of the hardware used during the measurements.
Besides using faster hardware additional enhancements of the current architecture have
been proposed, such as a hierarchical bandwidth broker architecture or parallelising of
the flow request processing. Hierarchical architectures have already proven successful
in increasing the performance of a bandwidth broker and also a parallel processing will
help to make the broker perform even better.

7 Acknowledgement

The work described in this paper is part of the work done in the project Mobile IP
Telephony (MIPTel) funded by the Swiss National Science Foundation (Project No.
2100-057077.99/1).

References

1. B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney, S. Davari,
V. Firoiu, and D. Stiliadis. RFC 3246: An Expedited Forwarding PHB (Per-Hop Behavior),
March 2002. Obsoletes RFC2598 [5].



12 Günther Stattenberger and Torsten Braun

2. G. Dermler, M. Günter, T. Braun, and B. Stiller. Towards a Scalable System for Per-Flow
Charging in the Internet. In B. Bodnar, editor, Applied Telecommunication Symposium, vol-
ume 32 of Ariel Sharon Simulation Series, 2000.

3. Matthew Doar. Tiers topology generator. http://www.geocities.com/ ResearchTriangle/
3867/ sourcecode.html.

4. Bandwidth Broker Implementation. www.ittc.ukans.edu/ � kdrao/ BB/ bbreport.html.
5. V. Jacobson, K. Nichols, and K. Poduri. RFC 2598: An Expedited Forwarding PHB, June

1999. Obsoleted by RFC3246 [1].
6. I. Khalil and T. Braun. Implementation of a Bandwidth Broker for Dynamic End-to-End Re-

source Reservation in Outsourced Virtual Private Networks. In The Conference on Leading
Edge and Practical Computer Networking, November 2000.

7. P. Kivimäki. Policy Based Networks & Bandwidth Broker. www.atm.tut.fi/ workshop01/
workshop01-bb.pdf.

8. K. Nichols, V. Jacobson, and L. Zhang. RFC 2638: A Two-bit Differentiated Services Ar-
chitecture for the Internet, July 1999.

9. G. Politis, P. Sampatakos, and I. Venieris. Design of a Multi-Layer Bandwidth Broker Ar-
chitecture. In Sathya Rao and Kaare Ingar Sletta, editors, Next Generation Networks — Net-
works and Services for the Information Society, volume 1938 of Lecture Notes in Computer
Science, October 2000.

10. O. Pop, T. Mahr, T. Dreilinger, and R. Szabo. Vendor-Independent Bandwidth Broker Ar-
chitecture for DiffServ Networks. In Proceedings of the IEEE International Conference on
Telecommunications, 2001.

11. QBone Premium Service. http://qbone.internet2.edu/premium/, March 2002.
12. J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP Routing Stability of Popular Destinations.

In Proceedings of the Internet Measurement Workshop 2002, November 2002.
13. G. Stattenberger. Scalable Quality of Service Support for Mobile IP Users. PhD thesis,

University of Bern, December 2002.
14. G. Stattenberger and T. Braun. QoS Provisioning for Mobile IP Users. In H. Afifi and

D. Zeghlache, editors, Conference on Applications and Services in Wireless Networks, ASW
2001, Paris, July 2001.

15. G. Stattenberger, T. Braun, and M. Brunner. A Platform - Independent API for Quality of
Service Management. In Proceedings of the IEEE Workshop on High Performance Switching
and Routing, May 2001.

16. A. S. Tanenbaum. Computer Networks. Prentice Hall,
�����

edition, 1996.
17. A. Terzis, J. Ogawa, S. Tsui, L. Wang, and L. Zhang. A Prototype Implementation of the

Two-Tier Architecture for Differentiated Services. In Proceedings of the Fifth IEEE Real-
Time Technology and Applications Symposium, June 1999.

18. Zhi-Li Zhang, Z. Duan, and Y. T. Hou. On Scalable Network Resource Management Using
Bandwidth Brokers. In Proceedings of the Network Operations and Management Sympo-
sium, April 2002.


