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Abstract
This paper describes a concept based on application
adaptivity and Differentiated Services (DiffServ) in order
to provide the Quality-of-Service (QoS) required by real-
time applications. Assuming the availability of different
service classes, we propose that a real-time application
always selects the lowest / cheapest service class that
still can meet the application requirements. The selection
depends on RTP-based QoS monitoring and on additional
probing of the quality of the next lower service class. The
service class selection algorithm has been implemented
within an IP telephony application and evaluated in a
test-bed consisting of Linux-PC based DiffServ routers.
The evaluation proves the suitability of the approach but
also shows several issues for further improvement.

1 Introduction

Real-time applications such as audio/video conferencing
are only useful if a certain quality can be provided to the
user. Several approaches trying to attain this goal have been
investigated. Most of today’s real-time applications in the
Internet are based on RTP and its companion, RTCP. The
QoS feedback information sent from receivers to senders
using RTCP messages allows the senders to detect the cur-
rent transmission characteristics (such as available band-
width, packet loss and delay jitter) and to modify the trans-
mission parameters (e.g. bit rate, compression level or al-
gorithm). This kind of adaptivity is attractive in scenarios
where Best-Effort is the only available service. However,
even adaptive applications can’t guarantee a quality mini-
mum if the available bandwidth is too low. In those cases,
resource reservation is required for achieving the desired
transmission. Differentiated Services are a promising ap-
proach to provide such a reservation mechanism on the In-
ternet.

In this paper, we combine the two concepts of appli-
cation adaptivity and DiffServ. We describe a concept that
tries to use a better / more expensive service class such as
Expedited Forwarding whenever required and a more sim-
ple / cheaper service class such as Best-Effort whenever
possible. The application can switch between those service

classes. The switching decision is based on monitoring the
current QoS feedback, thus enabling the user to minimize
costs by only using DiffServ in situations where Best-Effort
can’t provide the desired QoS. Our service class switch-
ing approach assumes a strict ordering of the service lev-
els in terms of provided quality. The switching decision is
not only based on the current quality of the real-time flow,
but also on the quality of a second, low-bandwidth probing
flow monitoring the next lower service level. Probing has
also been proposed in the DiffServ context for endpoint ad-
mission control [1], but in contrast to endpoint admission
control we are probing a lower / cheaper service class in-
stead of a higher / more expensive class. Our approach also
assumes that prices differ for different service classes (i.e.
better service costs more) and are dependent on the traffic
volume. Thus, the user should be interested to always use
the lowest / cheapest possible service class. Even without
traffic volume based pricing the approach might be useful
since it helps to better distribute traffic load to the service
classes.

Section 2 describes the basic class switching algo-
rithm. This algorithm has been integrated into a complete
IP telephony application, whose implementation is de-
scribed in Section 3. A detailed performance evaluation
has been performed, which proves the suitability of the
presented concept. The performance measurements and
the lessons learned from that are discussed in Section 4.
Finally, Section 5 concludes the paper.

2 Switching between service classes

2.1 Ordering of service classes

The ability to order service classes with respect to their
QoS guarantees is a prerequisite of the algorithm discussed
here. [9] states that “PHBs selected by a Class Selector
Code Point SHOULD give packets a probability of timely
forwarding that is not lower than that given to packets
marked with a Class Selector codepoint of relative order,
under reasonable operating conditions and traffic loads.”
This means that higher order PHBs with a numerically
higher DiffServ codepoint should provide a service that is



at least equal or better than lower order PHBs. To express
such relations between classes we introduce symbols>a,
≥a, =a. a denotes a specific QoS parameter and can
be j for jitter, d for delay, etc. For example,C1 ≥j C2

expresses that service classC1 is better than or equal to
C2, with respect to parameterj, which usually stands for
jitter.

2.2 Switching between service classes

Assuming that it is possible to order the available DiffServ
classes, the following algorithm can be used to always se-
lect the lowest (cheapest) class being able to provide the
desired service. Note that the decision strategies are open
and need to be defined more accurately. The decisions may
also be non-deterministic.

FOREVER
wait for new QoS monitoring diagnosis
create list L of requirements that cannot be met
IF L empty

create QoS monitoring diagnosis for next lower class
IF diagnosis is sufficient

select next lower class
ELSE

keep current class
ENDIF

ELSE
search next higher class with respect to L
IF found

select this class
ELSE

keep current class
ENDIF

ENDIF
LOOP

Since we can assume that a higher service class provides
the same or a better service than any lower service class,
the decision whether to switch from the current to a higher
service class only depends on the monitored performance
of the current service class. If the desired QoS parameters
aren’t met the next higher available service class is selected
for the application’s data flow.

In the other direction, however, it is not sufficient to
base the decision on the current class’ performance only.
Switching back to a lower service class only makes sense
if its QoS parameters would meet the desired levels. How-
ever, we don’t know any more about the situation in the
lower service class than that it is equal or worse, compared
to the current class. One approach might be to periodi-
cally switch back to a lower service class and see whether
it provides the desired service. Unfortunately, short-term
QoS degradation may occur if the service in the lower class
turns out to be insufficient. Voice over IP applications are
particularly sensitive in that respect. Thus, it is necessary
to probe the lower service class in parallel to the regular

real-time data flow. If the probing indicates that the QoS
requirements might also be met in the lower class, switch-
ing back may be considered safe.

An important issue are the parameters of the probing
flow, in particular its bandwidth and probing period length.
We propose to use a certain fraction of the data flow’s band-
width for the probing traffic, similar to RTP/RTCP. The
probing period must be long enough to get a good estimate
of the QoS in the lower service class.

One can certainly think about probing a higher service
class, too. However, there are two reasons not to consider
this option further in our case: First, probing causes
additional network load and, in order to minimize that,
we decided to use probing for the next lower class only.
The second reason is that a temporary switch to the higher
class does not lead to a worse service according to our
assumption and does, therefore, not cause QoS degrada-
tion. The only scenario where probing for higher classes
would be reasonable would be to probe multiple classes
simultaneously, with the goal to select the most suitable
one directly. Although that would accelerate convergence
of the algorithm, the bandwidth consumption would be
significantly higher. One negative point of the approach is
the possibility of network oscillations when it is applied by
many users at the same time. However, that effect may be
reduced by varying the probing time randomly. It should
also be mentioned that our approach is not intended to be
used by applications generating the bulk of network usage,
but rather as a way to optimally exploit a given service
level agreement.

3 DSPhone implementation

To evaluate the approach a simple RTP based VoIP appli-
cation has been implemented. It is called DSPhone, which
stands for DiffServ Phone. Instead of live audio recording
and playback the program supports audio file I/O to make
tests reproducible. The RTP implementation of DSPhone
includes a significant part of the features required by [2].
Since it is focused on point-to-point connections the appli-
cation only supports sessions with two participants, which
reduces the program’s complexity. Although the detailed
design of DSPhone is beyond the scope of this paper, an
introduction of the central concepts is necessary.

Transmission parameters like the currently used Diff-
Serv class are stored in an instance of thePolicy class. To
be able to experiment with different approaches it is neces-
sary to isolate the algorithms calculating these parameters
and make them exchangeable. The abstract classPolicer
(not to be confused with a router’s policing functionality)
does that by defining a common interface for these algo-
rithms. At the beginning of a session and on arrival of new
transmission quality measurements the active Policer de-



cides whether and how the parameters in Policy are to be
changed. Simple Policers only take SR/RR (RTP Sender
and Receiver Reports) packets into account, more complex
ones also use the values supplied by aScoutobject, which
conducts and evaluates probing of another service class.

Each Policer determines the values of the parameters
contained in Policy. These include the DS codepoint of
outgoing packets and the packets’ payload format and size.
The DS codepoints correspond to the ones from [13] and
select either Best-Effort, four Assured Service classes (aka
Assured Forwarding) with increasing QoS guarantees, or
Premium Service (aka Expedited Forwarding). Addition-
ally, the pseudo codepointIGNORE can be used, causing
DSPhone to use the system default.

All measurements and statistics related to the current
session are stored in the RTPStats class. Policers use those
attributes to assess the situation, focusing mainly on jitter,
delay and packet loss ratio. These values must be normal-
ized to the interval [-1,1] byevaluation functionsbefore
they can be used in a logical expression (-1 stands for “in-
sufficient”, 0 for “sufficient” and 1 for “exceeded”). De-
pending on the decision algorithm, a parameter exceeding
the expectations can compensate for the slightly insuffi-
cient behavior of another.

The functions used in DSPhone areej , ed andepl, for
“Evaluate Jitter”, “Evaluate Delay” and “Evaluate Packet
Loss”, and have been chosen to represent the effect of the
respective parameter on the transmission quality. They are
defined as follows:

ej(x) =

{
1− 1

1+( x·tps )4 , x > 0

0, otherwise

The constants (for scale) chooses the turning point of the
function. tp is a constant needed to makes correspond
directly to that point. The form of the function represents
typical properties of jitter: low jitter has small effects, but
higher values necessitate larger jitter buffers. Therefore,
s should be chosen to be the smallest jitter value where a
larger buffer becomes necessary.

ed(x) =

{
1− e− x−ss , x > s
c(x−s)
s , otherwise

ed has two constants:s chooses the function’s zero point
(the desired delay value);c (for compensation) specifies
the effect of delay below this value (ed(0) yields c). This
function was chosen because a relatively small increase of
delay can have significant effects on the conversation qual-
ity in low delay environments, but almost none when the
delay is already high.

epl(x) =
{
m · x, x ≥ 0
0, otherwise

The simple functionepl only has one constant, the slope
m, which is usually equal to 1. Since the loss ratio is al-
ready in the interval [0,1] it can be used directly most of
the time. If necessary,m can make the evaluation more
strict. The functions presented here have been chosen to
represent certain properties of the measures they normalize
and have shown reasonable performance during the experi-
ments. They will have to be replaced by more suitable ones
in order to optimize the approach, however.

The probing mentioned in 2.2 is done byScoutob-
jects. They create application specific RTCP packets and
send them forth and back between the peers to estimate de-
lay, jitter and loss ratio of a specific service class. Since
they resemble ICMP Pings, these probes are called RTCP
Ping packets. Once a test series has been completed the
Scout object sends the result to the Policer. DSPhone im-
plements the following Policers:DefaultPolicercontains
no decision algorithm but uses fixed values and is used if
no other Policer is selected.StaticPoliceris a non-dynamic
Policer with selectable transmission parameters, such as the
DiffServ class point. It was used to obtain reference values
for the experiments below.

Two Policers implement the approach proposed in sec-
tion 2. The simpler one of them isSwitchingPolicer, which
can only choose between two service classes. Therefore, it
is best suited for situations where there are just two classes,
a cheap and an expensive one. In this context they are
called “low” and “high” class. To evaluate the situation
SwitchingPolicer compares the sum of the single evalua-
tion functions to a threshold value. If the sum exceeds the
threshold the situation is judged as bad. If the current class
is high and evaluation of the situation yields good results
a fallback to the low class is considered, depending on the
measurements done by the Scout. Making actions depend
on the sum enables us to let good results of one measure
compensate for bad ones of another. To avoid changing
the class too frequently, evaluations are only done after
three RTP SR/RR packets have been received (This value
is configurable). The algorithm implemented in Switching-
Policer follows closely the one from section 2.2:

When new measurement data becomes available, it
calculates the evaluations of loss ratio, jitter and delay us-
ing the functionsepl, ej anded. Then, if the application
is currently sending low priority traffic and the sum of the
evaluations is greater than the threshold value, it switches
to the high service class and activates a Scout to observe the
low class. On the other hand, if the application is sending
high priority traffic and if both the evaluation sum is less
than the threshold and the Scout object reports good condi-
tions in the low service class, the algorithm switches to the
low class and deactivates the Scout.

A more complex algorithm is implemented inServi-
cePolicer. It takes all of the service classes and properties
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Figure 1: Topology of the test network

defined in [13] into consideration and evaluates jitter,
delay and loss ratio independently with three threshold
values (tj , td andtpl). As in SwitchingPolicer the situation
is only reevaluated after three SR/RR packets have been
received. The relations for the single requirements are
chosen as follows (j ; jitter, d ; delay, pl ; packet
loss ratio): “Premium service>d,pl assured service 4
>d,pl ... >d,pl assured service 1>d,pl best effort” and
“premium service>j assured service 4=j ... =j assured
service 1=j best effort” (premium and assured service are
synonyms for expedited and assured forwarding). These
relations are assumptions and unrealistic if the premium
service class is overloaded. The classes are clearly ordered
with respect to delay and packet loss. However, the jitter
relation forms two equivalence classes, one containing
premium service and one containing all other classes.
Rising jitter must therefore cause a transition to premium
service, irrespective of the currently used service class.
This makes it unclear to which class the application should
return to once the situation permits it. In this case the
original algorithm must be defined more precisely: The
“next lower” class to fall back to is determined by the
service class observed by the current Scout object. When
the algorithm changes to a higher class, such a Scout
object gets created to measure the behavior of the class the
application is about to leave. Given that ServicePolicer
changes from assured service 1 to premium service, it must
consequently fall back to assured service 1. After falling
back the next class to be measured must be determined.
This is uniquely defined by the relation>d,pl. In the above
example the “next lower” class after falling back would be
best effort.

4 Performance Evaluation

4.1 Setup of the experimentation network

DSPhone was tested in an IP network with the follow-
ing setup: The endpoints are connected over three Diff-
Serv routers, which in turn are connected to an interfering
sender. This sender generates additional network load by

sending UDP packets over three different routes to the des-
tination endpoint. Figure 1 shows the topology (The shown
IP addresses only include the lower 16 bits). This routing
behavior can be achieved by creating two alias addresses on
the destination host (Challenger). All links are 100 Mbit/s
ethernet in duplex mode.

All hosts run the same DiffServ-enabled Linux kernel
2.2.17 with different configurations: The second and third
hop routers, Atlantis and Endeavour, are configured as
interior nodes. Discovery is configured as ingress or as
interior node, depending on the test. On the source and
destination hosts no DiffServ modules are loaded. During
the tests an unidirectional flow was sent from Columbia
to Enterprise. It consisted ofµ-Law encoded audio
data with 8000 Hz sample rate and had a packetization
interval of 30 ms. Interfering UDP traffic was sent from
Challenger to all three intermediate hops using a program
called UDPgen, which is able to send UDP packets with
programmable, time variable bandwidth usage. UDPrcv
measured the resulting bandwidth on the destination host.

4.2 Best-effort performance

In order to be able to correctly analyze the following tests,
we analyzed the behavior of DSPhone without DiffServ us-
ing DefaultPolicer. This was done in three experiments
with different network loads, i.e. without interfering traf-
fic, with a fully congested network and with slowly rising
traffic going from zero to full in 60 seconds.

The results were mostly predictable. Packet loss, delay
and jitter all increased sharply once the network entered a
congested state. However, the experiments also revealed a
few peculiarities. First, jitter calculation showed rounding
errors when the delay was very low. Second, roundtrip
time during full congestion was about 5 ms higher than the
calculated one-way delay from source to destination (1400
bytes of payload per packet, router queues storing 100
packets each), which is obviously due to the routers work-
ing at maximum load. The third experiment showed steep
slopes in roundtrip time progression, followed by almost
constant periods. Figure 2 indicates a strong correlation
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Figure 2: Best-Effort with slowly rising congestion

between these slopes and the development of router load:
Every time a router reaches its maximum throughput the
queue starts to grow, leading to a steep increase in round-
trip time. Once the queue is full and packets get dropped,
the loss ratio increases also. Obviously the delay begins to
rise some time before the routers start dropping packets.
Hence, by including the change in delay in the parameters
considered by SwitchingPolicer and ServicePolicer (see
below), one could avoid a significant part of the packet
loss. At the time the routers start dropping packets the
application would already have changed the service class
and could thus avoid any packet loss.

4.3 Expedited forwarding performance

The next step was to evaluate DSPhone’s behavior when
using a statically selected service class. The goal was to
determine how much the use of higher order PHBs can
protect a flow from the adverse effects of congestion in a
lower PHB. As in the third test of DefaultPolicer, all three
routers were put under load using UDP traffic with slowly
increasing bandwidth. However, the RTP packets were
tagged with the expedited forwarding codepoint while
the interfering traffic remained best effort. As could be
assumed because of earlier measurements [14] no packet
loss occurred. Jitter remained low and stable. On the other
hand the graphs show a remarkable increase in roundtrip
time starting approximately when the third router reaches
its load maximum (Figure 3). A possible explanation is a
timing problem on the destination host. When the rate of
arriving packets is very high the active UDPrcv processes

can delay the scheduling of DSPhone. Arriving SR packets
can’t get accepted on time, causing higher roundtrip times.
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Figure 3: Expedited Forwarding with slowly rising
congestion

4.4 Switching between Best-Effort and Expedited
Forwarding

Next, we look at the performance of service class switch-
ing. In the first experiment we used simple switching be-
tween Best-Effort and Expedited Forwarding. We have
generated three aggressive traffic peaks, which flow across



three different routes from Challenger towards the destina-
tion, 10, 15 and 40 seconds after the experiment started.

Class switching was correctly performed. Shortly af-
ter the interfering peaks became active, the application de-
cided to switch to the high service class. The first peak has
a strong impact on the loss rate of our real-time flow (Fig-
ure 4(a)), while the second peak does not have any impact
on it due to the protection by EF service. The third peak
has a less significant impact on the flow’s packet loss since
switching to the high service class occurred directly after
the third peak became active. The reason for this is that the
decision is being performed periodically and, in the first
case, the peak became active directly after an evaluation
of the flow’s QoS (QoS evaluations are indicated by points
on the graph). Consequently, packet loss was already high
when the next evaluation took place. A more frequent
QoS evaluation would further minimize the delay of ser-
vice class changes and thus minimize the QoS degradation.
Please note that QoS evaluations are more frequently per-
formed while using the low service class since RTCP diag-
nostics are more frequent than Scout evaluations.

Another possibility to minimize the switching delay
would be to take an increasing round-trip delay as a conges-
tion indication and switch to the higher class without wait-
ing for packets to be dropped. The progression of round-
trip time in comparison to packet loss (Figure 4(b)) shows
why this is reasonable. Alternatively, using active queuing
strategies such as RED [12] could also improve the switch-
ing behavior, because packet loss increases more slowly,
thus leaving the algorithm time to switch classes.

The figures also illustrate the decisions whether to
fall back to the low service class (Figures 4(a) and (b)).
These decisions are based on probing. The scout thread
periodically evaluates the probing results of the low class
and decides if it would be reasonable to move back to
Best-Effort.

4.5 Switching between several service classes

As an example for switching among more than two service
classes we flooded the paths Challenger→ Atlantis→ En-
deavor→Enterprise and Challenger→Endeavor→Enter-
prise with UDP Best-Effort traffic, starting 3 seconds after
the real-time flow. 30 seconds later an AF Class 1 peak fol-
lowed. This scenario should force the algorithm to move
from BE to AF1, and later to AF2.

The class switching behaviour turned out as expected.
Figure 5(a) shows two short packet loss peaks at the
beginning of a congestion period. However, they are very
short, due to the quick reaction time of the application. The
figure also shows the measured packet loss rate of the scout
thread and illustrates how the application returned to the
lower service class as soon as the measurements permitted
it. Figure 5(b) additionally shows the corresponding

round-trip delay and jitter measurements. Again, the
packet loss rate was the dominating factor in the service
class switching decision. Delay and jitter were too small
to have significant impact on the switching decision.

5 Conclusions

This paper presented an approach to provide QoS for
real-time applications. We implemented a Voice over
IP application that was able to adapt to varying network
conditions by selecting an appropriate DiffServ service
class in order to get the desired QoS. The strategy is to
always select the lowest (cheapest) service class which
is sufficient to deliver that QoS. The performance of the
proposed concept has been evaluated in a Linux router
based DiffServ experimentation network. The performance
measurements proved that an adaptive application can
react fast enough to network congestion situations and
can minimize service degradations. By using a probing
mechanism the application can switch back to a lower
service class as soon as congestion disappeared. Although
the results are very encouraging there are several issues
for further improvement. In particular, the network
congestions could be discovered earlier if not only delays,
jitter and packet loss are considered but also a significant
increase of delay. Another improvement can be expected
by the deployment of active queuing mechanisms for
Best-Effort traffic.
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