Implementation and Configuration of a Linux
Differentiated Services Router

Giinther Stattenberger Torsten Braun

University of Berne
Institute of Computer Science and Applied Mathematics

[stattenb|braun]@iam.unibe.ch

NEC

November 23, 2000

CR Categories: C.2.1 Network Architecture and Design;
C.2.2 Network Protocols

General Terms: Differentiated Services, Quality of Service
Additional Keywords: Linux, Implementation

Abstract

Despite of the increasing bandwith, that is available for users, there is a great
demand for Quality of Service support in the Internet. Especially new applications
like Voice over IP, Video on Demand and Digital Video Broadcast need a reliable
bandwidth guarantee and certain delay / jitter values. The Differentiated Services
approach is able to provide both, end-to-end bandwidth and delay guarantees to the
users offering different services suitable for various applications. Our implementation
of Differentiated Services on Linux Routers will be the basis for several research ac-
tivities to investigate the behaviour of this promising approach to support Quality of
Service.

*The work presented in this paper is supported by NEC Europe Ltd., Adenauerplatz 6, D-69115 Heidel-
berg, Tel: +49 6221 90511-0

Contents

I A Short Overview of Diff Serv

1 Introduction

2 Per Hop Behaviour (PHB)
2.1 Expedited Forwarding / Premium Service

2.2 Assured Service

3 DiffServ Components

3.1 Classifier L e
3.2 Marker L e
3.3 Metero e
3.4 Shaper e e
3.5 Policer e

4 DiffServ Router Types

4.1 First Hop Router o
4.2 Ingress Router. oL
4.3 Interior Router L
4.4 Egress Router

IT Setting Up a DiffServ Router

5 Compiling the DiffServ Code

5.1 Source Files e
5.2 Building and loading the DiffServ Modules
5.3 Activating the Modules L

6 Description of the DiffServ Modules

6.1 Queues e e
6.2 The DiffServ Table Module L.
6.3 Service Handler
6.4 Classifier e
6.5 Precedence Handlero oL

6.6 Premium Service Shapero 18
6.7 Premium Service Policer 19
Router Configuration Example Scripts 19
7.1 First Hop Router 20
7.2 Ingress Router 20
7.3 Imterior Router 21
74 Egress Router o 21

Part 1
A Short Overview of DiffServ

1 Introduction

Differentiated Service (DiffServ) is a well known way to support Quality of Service in the
Internet. It is — unlike Integrated Services — based on an aggregation of flows and therefore
without the need of multifield classification at each hop. Reservations are made for any
aggregation of flows (e.g. for all flows between two subnets). These reservations are rather
static since no dynamic reservations for a single connection are possible for scaling reasons.

IP packets are marked with different priorities, either in an end system or in a router.
According to the different priority classes, the DiffServ routers reserve corresponding shares
of resources (i.e. bandwidth and buffer space). Marking the packets is done by writing a
DiffServ Codepoint (DSCP) into the Type of Service - byte (ToS byte) of the IP header (see
figure 1).

Currently
DSCP
unused
I I I I I -
\ _ -
N -
\ -7
\ -7
\ -7
\ -7
\ -7
\ - -
Versi0n| IHL | TOS Total Length
Identification Flags Fragment Offset
TTL | Protocol Header Checksum
Source Address
Destination Address

Figure 1: DiffServ Codepoint in the IP Header

Currently the first six bits of the ToS byte are used for the DSCP. All router implementations
should support the recommended DSCP-to-PHB mapping. A PHB (per hop behaviour) is
a forwarding behaviour which a router performs on a packet. In DiffServ such a forwarding
behaviour is built of a combination of several components. These components are discussed
in section 3. A chain of routers supporting the same PHB will provide an end-to-end Quality
of Service.

2 Per Hop Behaviour (PHB)

Several services and their corresponding codepoints have been defined in the Internet com-
munity. Nowadays, DiffServ is mainly based on the two traffic classes defined in [2] and [1].
We will now give a short overwiew of those two classes.

2.1 Expedited Forwarding / Premium Service

Premium Service refers to the traffic handling commonly known as expedited forwarding
which is defined in [2]. This service shall provide low delay, low loss and low jitter at a fixed
rate. It will appear to the endpoints like a “virtual leased line”. To fulfill those requirements,
traffic marked for expedited forwarding has to meet very short queues. Therefore one has to
ensure that there is not more EF-traffic arriving at one router than the router’s settings allow
to be transported. The departure rate at each hop should be independent of the intensity
of any other traffic arriving at the router. DiffServ routers will for example give premium
service packets priority over other traffic but in this case strictly police any traffic exceeding
the negotiated limit to prevent premium service to starve any other traffic. Another very
important topic is that reordering of EF packets must not appear. The recommended
codepoint for the EF PHB is 101110.

2.2 Assured Service

Assured Forwarding defines a service which assures a high probability to forward the traffic
through the network as long as the bandwidth does not exceed the negotiated limit. How-
ever, any traffic exceeding the profile will be forwarded too, but with higher probability to
be dropped in case of congestion. It is also very important, that reordering of packets of
the same microflow is strictly forbidden again.

There are four different assured service classes defined, each allocationg a specific share of
resources (i.e. bandwidth and buffer space) and thus having a different level of forwarding
assurance. Within these classes packets can be marked with three possible drop precedence
values. In case of congestion the in-profile traffic will be protected by preferably dropping
packets with higher drop precedence. An overview of the codepoint values for the assured
forwarding classes is given in table 1.

3 DiffServ Components

Each implementation of a DiffServ router consists of a combination of different components
(see figure 2), which interact in a certain way to ensure the proper forwarding of traffic
according to the requirements of the individual PHB. Not all components are required in
each DiffServ node, this depends on the router and on the service type. Those components
provide different traffic conditioning functions that range from simple marking to complex
shaping and policing actions.

AF Classes

N YV % »
& & & &
& ¢
o0 § low 001010 010010 011010 100010
'a—fé medium | 001100 010100 011100 100100
<§§ high 001110 010110 011110 100110
A~
Table 1: Assured Forwarding Codepoints
*************** > Meter 77777777777777777777773
. i ¥ |
Packets ‘ ‘
—| Conditioner : Marker ES)haDef/ I
ropper ‘

Figure 2: Combination of DiffServ Components in a Router

3.1 Classifier

A classifier matches packets according to its profile and forwards them to the corresponding
component for further processing. There are two types of classifiers

e Multi-Field Classifier: A multi-field (MA) classifier matches on a combination of
IP header fields (adresses, protocol ID, ToS byte) or even port numbers.

e Behaviour Aggregate Classifier: Contrary to the MA classifier the behaviour
aggregate (BA) classifier only classifies on the DSCP of the packets.

3.2 Marker

Markers set the DSCP of IP packets. By setting the codepoint of packets, they are added
to a traffic aggregate which provides important information for BA classifiers. Marking can
be done statically (i.e. all packets are marked the same way) or depending on the state of
some meter. This functionalty is normally used in ingress routers for tagging the traffic flow
of a single host or for retagging whole traffic aggregates coming from a connected DiffServ
domain.

3.3 Meter

Meters measure the amount of traffic that passes by. They are located in the forwarding
chain of almost all traffic aggregates as they provide the basic information for many DiffServ
components, like markers, shapers and policers.

3.4 Shaper

Shapers delay some packets on their transmisson path in order to bring the traffic flow into
compliance with some Traffic Conditioning Specification (TCS). Those packets are stored
in some queue and discarded if not enough buffer space is available. A properly configured
shaper therefore provides some burst protection while not dropping the packets of the bursty
traffic source. The usual location of a shaper is behind a classifier at the ingress router.

3.5 Policer

Unlike the shaper a policer does not store any packets but simply drop any packets that do
not meet the traffic conditioning specification. A policer can be implemented as a shaper
with little or no buffer space. Policers are normally used in interior- and egress routers as
they rely on the traffic being correctly shaped.

4 DiffServ Router Types

A simple DiffServ Network with 2 ISPs is shown in figure 3. It shows the four DiffServ
Router types, that form the two DiffServ domains and connect the two hosts and provide
an end-to-end quality of service. This router specifications are valid only for traffic from
domain A to domain B. For traffic flowing in the opposite direction the boundary routers
(ingress and egress routers) change their types. Note, that a router may also act in two
ways, e.g. as interior router for one traffic flow while being ingress router for another. This
can be seen in figure 3 for the router adjacent to Host B. The next sections describe the
requirements of these four router types which follow the DiffServ architecture [3].

4.1 First Hop Router

A first hop router normally is responsible for marking incoming packets according to its
profile. This profile allows to define a DiffServ Code Point (DSCP) for each flow specified
by the six-tuple (source address / netmask, source port, destination address / netmask, des-
tination port, protocol, DSCP). For small networks this functionality can be easily included
in an ingress router.

. Host E
& Domain A Host B

Domain B

Figure 3: A simple DiffServ Network

4.2 Ingress Router

The configuration of the ingress router is the most complex one because at the ingress point
each flow has to be handled seperately and therefore not all properties of flow aggregation
are available. The ingress router has to ensure, that the traffic entering the DiffServ domain
conforms to any traffic conditioning specification (TCS) between it and the connected do-
main. Therefore, it will have to perform some traffic conditioning functions like shaping or
dropping.

4.3 Interior Router

Routers not located at the border of a DiffServ domain can be very simple, as the most
complex functions of classification and traffic conditioning are performed at the ingress and
egress points of the network. However an interior node may perform some limited traffic
conditioning like codepoint-remarking or policing to ensure the proper forwarding behaviour
of the traffic classes. Normally the interior router should not have to perform any policing
actions, therefore it is useful to trace those actions to detect serious misconfigurations at
the border routers.

4.4 Egress Router

An egress router can perform traffic conditioning functions on traffic leaving the DiffServ do-
main depending on the TCS between it and the connected domain. This functions normally
will not depend on multifield classification but act on a behaviour aggregate. Therefore
the configuration of the egress router is less complex than the configuration of the ingress
router.

different SLAs

Queuing Systems

I
oML

Pracedence
Handler AF1

Precedence
Handier AF2

>RED

Classification Precedance

I }
eighted Fair

Queuing or
| ‘ ‘ i ‘ ‘ ‘ ‘ Priority Rountt Robin

Handier AF4

Premium Ser-
vice Handler

: iy
Precedence
Handier AF3 i* ”HHH

Best-Effort

I
I

Network
Control Traffic

Figure 4: View of a First Hop, an Ingress or an Egress Router

Y

Queuing Systems
{1 queue per service class)

Assured Service Class 1

-

Assured Service Class 2

>RED
Agsured Service Class 3 ”HHH
i i Assured Service Class 4 l
Classification » | ‘ | i | | | | »
eighted Fair
Queuning or

Premium Service | ‘ ‘ i ‘ ‘ ‘ ‘ Priarity Round Robin

I
I

Best-Effort

Network
Control Traffic

Figure 5: View of an Interior Router

10

Part II
Setting Up a DiffServ Router

5 Compiling the DiffServ Code

5.1 Source Files

Our actual implementation of DiffServ is built on top of a Linux 2.2.9 Kernel and some
special software packets. Therefore we need a 2.2.9 Kernel Source tree [5] and a release
of iproute2 version 2.2.4 (actually we use [6]) which are available at the given URLs. Ad-
ditionally we need the dstable package and the kernel- and iproute2 patches that contain
the DiffServ implementation of the University of Berne. This will soon be available in the
public domain and can then be accessed by NEC Europe Ltd. (send an email request to
brunner@ccrle.nec.de).

5.2 Building and loading the DiffServ Modules

We assume, that the kernel sources and all other source files are unpacked and placed at
the usual location /usr/src/ (see also the README file of the linuxds distribution). Then
we can apply the patch containing the DiffServ code by using

patch —-backup --strip=<depth> --input=<file>

To select the DiffServ modules for compiling the option Code maturity level options rightarrow
Prompt for development and/or incomplete code/drivers has to be enabled. Now one can
select the DiffServ modules in the Kernel configuration skript, submenu Networking Options
— QoS and fair queueing.

Once the kernel and the modules have been built and installed correctly (see [7] for details)
the next step is to compile iproute2. First the Makefile at the iproute2 directory has to
be changed: the KERNEL_INCLUDE path should point to the correct linux kernel include
directory. Some other changes depend on the libc - version and should be performed after
consulting the README file. Now iproute2 can be compiled by make.

The last step is to compile dstab by running make in the dstab directory.

Now we can reboot the new kernel and load the DiffServ Modules into the kernel memory.
This can be done manually by the superuser

modprobe <module>

where <module> is the name of the module to be loaded. During the installation the
modules were copied to the /1lib/modules/kernel-version /misc directory. All module
names begin with sch_, appended the module names introduced in section 6.

It is much easier to load the modules at boot time by adding their names to the /etc/modules
file. Now the modules will be loaded automatically every time the computer boots up.

11

5.3 Activating the Modules

As DiffServ heavily interferes with the traffic forwarding scheme it is now necessary to give
a short introduction to Linux’ traffic control mechanisms. A more detailled description can
be found in [8] and [9].

The kernel part of the traffic control functions is separated in four components, namely
queueing disciplines, classes within a queueing discipline, filters and policing. The queueing
disciplines provide the important functions of enqueueing and dequeueing. The queueing
discipline may have one or more classes. The classes do not store the packets by themselves
but use other attached queueing disciplines for that purpose. Therefore by combining several
queueing disciplines, a very flexible way of traffic control can be set up (see section 4).

The user level program to control the interaction between the interface and the queueing
disciplines is called tc (traffic control), which is included in the iproute2 package. It is used
to set up new queueing disciplines, to attach new queueing disciplines to classes, to change
the settings and finally to remove them completely. The usage of tc is:

tc [OPTIONS] OBJECT {COMMAND | help}
where

OPTIONS = { -s([statistics] | -d[details] | -r[raw] }
OBJECT = { qdisc | class | filter}

As, apart from dstable, which is not invoked via tc, all DiffServ modules are queueing
disciplines we now concentrate on the tc qdisc options.

tc qdisc [add| del | replace | change | get] \
dev <device> <node> handle <handle>: <module> <options>

where the options are listed below:

e <device>: The router’s interface to which the module shall be attached. This is
normally the outgoing interface of the traffic on this router.

e <node>: The location of the module in the tree of queueing disciplines. <node>
is either root or parent <parent_id>:<child_id> using parent_id as the parent’s
handle and child id as the child-class index of the parent (normally this is 1 as most
queueing disciplines have only one child).

e <handle>: An identification number for the module used for building the tree of
queuing disciplines.

The module names <module> and their options will be described in detail in sections 6.3
- 6.7.

12

6 Description of the DiffServ Modules

6.1 Queues

The different DiffServ components normally don’t store any packets but rather rely on
attached queues where they can forward the packets to. There are different queueing algo-
rithms, which are included in various packages. For our DiffServ implementation we use a
FIFO (first in first out) and a token bucket filter queue (TBF) included in iproute2 and a
TRIO queue (Threeway RED queue) implemented by ourselves.

6.1.1 FIFO Queue

The algorithm of the FIFO queue is the most simple one: packets are enqueued until the
buffer space is filled and discarded afterwards, dequeueing is done in the order of appearance.
There exist two types of FIFO queues, one based on packet counting, the other based on
byte counting. The commands for the FIFO queues are

pfifo limit <size>
and
bfifo limit <size>

for packet-based and byte-based queues, taking the buffer size as the only argument.

6.1.2 Token Bucket Filter

A token bucket filter is a rate-delimiting mechanism, which can be attached to a queue. In
case of the iproute2-TBF it is a FIFO queue and the TBF is at the dequeueing point. The
token bucket filter algorithm uses a certain variable ¢ representing an amount of bytes (the
bucket) which is periodically filled up at the configured rate of the TBF. A dequeue event
for a packet of size s can only be performed, when enough tokens are available (¢ > s). If
the bucket is full, no more tokens can be stored.

A token bucket filter has the following usage:
tbf rate <bandwidth> buffer <burstl> limit <burst2>

where the rate specifies the bandwidth of the token bucket filter, the buffer size limits long
term bursts whereas the limit size limits short term bursts. A more detailled explanation
can be found in the source code [10].

13

A
1.
2
F=
Q
o
s
(@)
c
g
Q.
(@)
S
O 1 T ;
queue length

Figure 6: Dropping probability of a RED queue

6.1.3 TRIO Queue

The TRIO (Threeway RED for In and Out) queue is an extension of the RED (Random
Early Drop) queue, which shall be introduced first. In contrast to the FIFO queue the RED
queue starts dropping packets before the buffer space is filled. The probability of being
dropped is a function of the queue length (see figure 6).

The TRIO queue now uses three different dropping probability functions for three different
packet types on one queue (see figure 7). The three packet types are called low-, medium-
and high dropping precedence packets according to the dropping probability funcion they
are applied to. The effect of a TRIO queue is, that low dropping precedence packets are
protected by the earlier dropping of high- and medium dropping precedence packets. A
typical queue-state for a TRIO queue is shown in figure 7: the red and yellow marked high-
and medium dropping precedence packets only occur in the first part of the queue, while the
low dropping precedence packets can be stored up to the maximal queue size. This results
in shorter queues for high- and medium dropping precedence traffic and a longer queue for
low dropping precedence traffic and so the chance of low dropping precedence traffic to be
dropped is reduced to a minimum.

The command for the TRIO queue looks like this:

trio limit <queue_length> \

low_begin <startl> low_end <end1> \
medium_begin <start2> medium_end <end2> \
high_begin <start3> high_end <end3>

The queue length is given in packets and the remaining six parameters are the settings for
the three dropping probability functions for low-, medium- and high dropping probability

14

A
11
Pn)
%
Qo
o
S
o))
c
o3
Q
o
°
0 —t % ! —
high_ high medium_ medium_ low_ low_
begin end begin end begin end
0 max

gueue length

Figure 7: Dropping probabilities and state of a TRIO queue

traffic.

6.2 The Diff Serv Table Module
6.2.1 The dstab command

Most DiffServ queueing discipline modules need a table of flows — aggregated or not —
that describes the actions the queueing discipline has to perform on these flows. For this
purpose we implemented a module — the dstable module — providing some functions for
those tables to be loaded into the memory of the router (the /proc-filesystem) and to be
accessed by the queueing disciplines. A table can be loaded by

dstab 1 <index> <filename>

where <index> is a number by which the table can be accessed by the queuing disciplines.
Other options are available for removing a table <index> from the memory

dstab f <index>
(f is an abbreviation for “flush”) and printing a specific table
dstab p <index>

or all active (that is non-empty) tables

15

dstab a

A description of the dstab command and the table format can also be found in the README
file at the dstab-directory.

6.2.2 The Table Format

A table entry consists of a line representing a single or aggregated flow, which itself consists
of eleven fields separated by whitespaces (i.e. blanks or tabs). Comment lines start with a
#. The table entry elements are:

e source address: The source IP-address can be either a host or a network address.
More advanced subnetting can be managed by the netmask (see the next entry).

e netmask for source address: The value of the netmask and the source address are
combined via an AND operation and the result is used as reference to match the flow.
Therefore the netmask 255.255.255.255 restricts the traffic source to a specific host
whereas the netmask 0.0.0.0 can be used to ignore the source address.

e source port: The source port value can be used to restrict a flow to a specific
UDP/TCP port number. The wildcard * can be used to ignore this field.

e destination address: see source address
e destination address netmask: see source address netmask
e destination port: see source port

e protocol: This value can be used to specify a certain IP protocol. Valid entries are
strings like “UDP”, “TCP” or “ICMP”. To ignore the protocol, use *.

e classpoint for incoming traffic: This identifier serves as matching entry for al-
ready marked packets in a behaviour-aggregate classifier. Only the three most signif-
icant bits will be compared. Possible entries are the strings “ps”, “rt”, “asl”, “as2”,
“as3” and “as4”. These values represent the different traffic classes “premium ser-
vice”, “routing traffic” and “assured service” of class 1 — 4 and are replaced by their
codepoint values which are proposed in [1], [2] and [4]. To ignore the classpoint, * can
be used again.

The values above are intended to identify a specific flow and serve as a filter mask to be
used in a classifier. On the other hand the following values will be used as parameters by
the queueing disciplines.

e classpoint for outgoing traffic: This is a parameter for the service handler
that specifies the classpoint to which a packet matching the first eight entries will
be marked. Valid entries are the same as for incoming traffic; the wildcard value *
can be used to keep the service handler module from retagging the packets.

16

e low dropping precedence rate or class index or premium service traffic rate:
This field has different meaning depending on the queueing discipline. For the assured
service precedence handler it specifies the rate of low dropping precedence traffic. It is
used as the rate of the token bucket filter limiting the amount of low dropping prece-
dence packets. The premium service shaper interprets the value as a class index. Any
traffic matching the profile (the first eight entries) will be forwarded to the class with
the given index attached to the premium shaper (this will normally be a token bucket
filter). The premium policer interprets the value as the maximum rate of premium
service traffic that is allowed to cross the router. It will use it as the rate of its built-in
token bucket filter.

e medium dropping precedence rate: this entry is only used by the assured service
precedence handler to set the rate of its second token bucket filter, which limits the
rate of medium dropping precedence traffic.

6.3 Service Handler

The service handler module marks incoming packets according to the profile found in the
table at location <index>. It tags each packet matching the first eight table entries using
the classpoint for outgoing traffic. It is normally used as the root queuing discipline
in first hop - or ingress routers. To install a service handler use

serv_handler table_id <index>

with <index> describing the table_id number.

6.4 Classifier

The classifier forwards the traffic to one of its seven child classes, depending on the DSCP
of the packets. The assured service packets will be enqueued to child classes 1 —4, premium
service packets to child class 5, routing traffic to child class 6 and best effort traffig goes to
child class 7. If there is no service handler the classifier will be the root queueing discipline.
For dequeueing the classifier module also acts as a Priority - Weighted Round Robin. This
means that the classifier will dequeue class 5 with the highest priority, class 6 with the second
highest priority and all other classes are dequeued with least priority. These remaining
classes (i.e. assured service and best effort traffic) are handled by a weighted round robin,
that is each class has a different probability of being dequeued. This probability is compared
with the share this traffic class got, which again is calculated from a log of the last packets
sent. The log size and the probabilities of the first four classes are the parameters of the
classifier command:

dsclsfr asl <weightl> as2 <weight2> as3 <weight3> \
as4 <weight4> log_size <size>

17

low dropping
precedence

Token yes

available?

Classification
medium dropping
precedence

Token
available?

set
high dropping
precedence

high dropping
precedence

Figure 8: Functionality of the Precedence Handler

As the first four classes will normally be used for assured service, the according weights are
labelled asl — as4. The log size specifies the number of packets that are taken into account
for calculating the shares of each traffic class. The weights are decimals between 0.0 and
1.0; their sum must be smaller than 1.0 as the rest is the share of bandwidth best effort
traffic will get. This share must be > 0.0 (see [3]).

6.5 Precedence Handler

The precedence handler is responsible to remark assured service packets to medium or
high dropping precedence if the total amount of assured service traffic exceeds the nego-
tiated limit. For this purpose it uses the last two table entries (the low_priority and the
medium_priority field) as the limits for bandwidth of low respectively medium dropping
precedence traffic. The limitation is done by two internal token bucket filters (see figure 8).

As it is required to handle the four assured service classes independently, it is necessary to
install four precedence handlers — one for each class. The installation is done by

prec_handler table_id <handle> dscp <class>

specifying <class> the assured service class (asl — as4) and <handle>the tableid of the
assured service flows’ table.

6.6 Premium Service Shaper

The premium service shaper provides the functions to handle several premium service mi-
croflows separately by installing an individual classe for each flow. To each class a queue

18

matching the requirements of premium service (e.g. a token bucket filter, see [2]) can be
attached. For this reason the premium service shaper is used only in first-hop - and ingress
routers. It is called using

premium_shaper table_id <handle> classes <number>

given as parameters the number of classes to be installed and a handle to a table containing
each premium service microflow and the corresponding class number in the class index

field.

6.7 Premium Service Policer

The premium service policer does not store the incoming packets in a queue but only limits
the total amount of bandwidth using a token bucket filter. The policer is therefore used in
interior and egress routers to control and limit the amount of aggregated premium service
traffic at the router. To install a premium service policer use

premium_policer table_id <handle>

with a handle to a table including a line with (normally) empty adress- and port fields but
only the rate of the token bucket filter in the premium service rate field.

7 Router Configuration Example Scripts

Referring to sections 4 and 6 we will now present scripts to set up a small DiffServ Network
that we built at University of Berne.

From now on we suppose that the DiffServ modules are already loaded into the kernel (see
section 5.2). Then we can easily configure the router at the command line using the tc
and dstab commands (see sections 5.3 and 6.2.1). To simplify the setup procedure, calling
the configuration commands is mostly done by a small script. The router setup presented
in the following sections can be interpreted as a “traffic forwarding tree”, starting at the
root queueing discipline with the packets going up to the queues at the leafs of the tree and
being dequeued the same way they went up. Those trees are shown in figures 9 — 11.

First the configuration tables have to be loaded. These tables contain the flows which have
to be handled by the queueing disciplines of the router, and some parameters. After that
the tree of queueing disciplines can be built via tc. The names of the queueing discipline
modules have been presented in section 6. We may omit calling the FIFO queues as this
are the default queueing disciplines for routing and best effort traffic.

We suppose to create a separate table for each queueing discipline at each interface to keep
tab on where each traffic flow goes to. As in our test network we use but one interface per
router for DiffServ, we have to create four tables: one for the service handler, the premium
service shaper, the precedence handler and the premium service policer.

19

All reservations are made for connections between Host A (10.1.1.1) and Host B (10.1.4.2)
and are restricted to the two hosts (netmask 255.255.255.255). For a better understanding
the port numbers indicate whether we use premium (port 50xx) or assured service (port
51xx) and also the bandwidth in MBit/s (ports xx05, xx10, xx30 for 5, 10 and 30 MBit/s).
We do not discriminate between TCP and UDP (wildcard * in the protocol field).

The tables presented here combine several tables used for testing and were not used in the
experiments, as we just tested each flow seperately. Yet they can be used as an example,
especially for flow (or bandwidth) aggregation. We make reservations for 5 and 30 MBit/s
premium service and 5 and 10 MBit/s assured service. The whole assured service bandwidth
will be marked for low dropping precedence, any traffic exceeding this limit will be marked
high dropping precedence (i.e. no medium dropping precedence traffic). Note, that within
the tables all bandwith values are in bytes/s!

7.1 First Hop Router

The first hop router marks the incoming packets which match one (IP-address/netmask,
port, protocol, dscp) tuple of its table to the specified classpoint for outgoing traffic.
The appropriate MF classifier and marker are located in the serv_handler-module. This
module gets a table as an option, which includes the MF-profile and the corresponding
DSCP. Note, that this can also be used to remark packets, although not shown in the
examples of table 2.

7.2 Ingress Router

The ingress router classifies the incoming packets and forwards them to the correct queueing
disciplines. This is done by a MF-classifier, because at the ingress point each flow has to
be handled separately as described in section 4. The classifier module dsclsfr has seven
classes, four to handle the assured service classes and one each for premium service, routing
traffic and best effort.

Assured service has to be handled by a meter, which measures the bandwidth of assured
forwarding traffic and passes the results to a marker, which — if necessary — retags the
packets to medium or high dropping precedence. Afterwards the traffic is stored in a TRIO
queue. This is done by the precedence handler and the trio modules. The settings for
the TRIO queue are just an example and have to be adjusted to the amount of traffic and
the router hardware.

In the ingress router premium service is handled by a shaper (the premium_shaper module,
that needs a queue and a bandwidth regulation mechanism. This can be provided by the
token bucket filter module tbf. Again the settings of the TBF | namely long- and short
term burst size have to be adjusted individually.

As FIFO queues are the default traffic conditioning components attached to the classifier
classes unless others are specified, we do not need to install any queueing disciplines at the
sixth and seventh class (routing traffic and best effort traffic) as FIFO queues are sufficient
for this kind of traffic.

20

For a complete overview of the configuration of a ingress router see also figure 9 and table
2.

7.3 Interior Router

Again the interior router has to classify incoming packets but it has the possibility of taking
advantage of the traffic aggregation. Therefore the tables of the interior router only have
set the classpoint for incoming traffic field and all other fields are wildcarded.

Within an interior router there is no need to perform any complex traffic conditioning
functions but it may check, whether the bandwidth limitations are fulfilled. If not, it may
drop some packets, which can be done by the premium_policer module for premium service
or by the trio queues for assurred service. Again the FIFO queues for the last two classifier
classes (see figure 10) can be omitted.

7.4 Egress Router

An egress router may perform traffic conditioning to meet the TCS between the downstream
domain and itself. As this only affects traffic aggregations the classifier is again a BA-
classifier (i.e. the profile in the table only contains a DSCP). The traffic conditioning is
composed of a premium policer for premium service and four precedence handlers for
the four assured service classes (see figure 11).

21

Table 2: Router Configuration Tables

First Hop Router (serv_handler.table)

srcaddr srcmask srcport dstaddr
10.1.1.1 255.255.255.255 5005 10.1.4.2
10.1.1.1 255.255.255.255 5030 10.1.4.2
10.1.1.1 255.255.255.255 5105 10.1.4.2
10.1.1.1 255.255.255.255 5110 10.1.4.2

dstmask dstport proto srcdscp
255.255.255.255 5005 * *
255.255.255.255 5030 * *
255.255.255.255 5105 * *

* *

255.255.255.255 5110

Ingress Router (premium shaper.table)

srcaddr srcmask srcport dstaddr
10.1.1.1 255.255.255.255 5005 10.1.4.2
10.1.1.1 255.255.255.255 5030 10.1.4.2

Ingress Router

srcaddr srcmask srcport dstaddr
10.1.1.1 255.255.255.255 5105 10.1.4.2
10.1.1.1 255.255.255.255 5110 10.1.4.2

dstmask dstport proto srcdscp
255.255.255.255 5005 * ps
255.255.255.255 5030 * ps

(precedence_handler.table)

dstmask dstport proto srcdscp
255.255.255.255 5105 * asl
255.255.255.255 5110 * asl

outdscp

ps
ps
asl
asl

outdscp
*

*

outdscp
%

*

Interior and Egress Routers (premium policer.table)

srcaddr srcmask srcport dstaddr
0.0.0.0 0.0.0.0 * 0.0.0.0

dstmask dstport proto srcdscp
0.0.0.0 * * ps

outdscp
%

Interior and Egress Routers (precedence handler.table)

srcaddr srcmask srcport dstaddr
0.0.0.0 0.0.0.0 * 0.0.0.0

Qmibmmw Qm%oiwnogmanamnw
0.0.0.0 * * asl

outdscp
%

Iprio

o o o

class
1
2

Iprio
625000
1250000

rate
4375000

Iprio

1875000

mprio

o o o

mprio

mprio

mprio

mprio
0

22

Precedence
Handler TRIO |

.
.
L]

Precedence
Handler TRIO |
Service . Premium S| . i
Handler |—| Classifier 4' Shaper }%| | Classifier 4'5"0?{“0(';”‘ S|
FIFO FIFO
FIFO FIFO

Figure 9: Configuration tree for a combined Figure 10: Configuration tree for interior
first hop / ingress router routers

Precedence
Handler TRIO |

.
.
L

Precedence
Handler |—| TRIO |
e Premium
|Cla$|f|er 4|P0Iicer S|

FIFO

|

i

FIFO

Figure 11: Configuration tree for egress
routers

23

First Hop Router

#! /bin/bash

#

TC=/home/gast/tc/tc
TABLEO=/home/gast/diffserv/serv_handler.table
DEVO=ethl

#

dstab 1 O $TABLEO

#

Figure 12: First Hop and Ingress Router Scripts

$TC qdisc add dev $DEVO root handle 1: serv_handler table_id 0

Ingress Router

#! /bin/bash

#

TC=/home/gast/tc/tc
TABLEO=/home/gast/diffserv/precedence_handler.table
TABLE1=/home/gast/diffserv/premium_shaper.table

DEVO=ethl

#

dstab 1 0

dstab 1 1

#

$TC
#

$TC
$TC
$TC
$TC
$TC
#

$TC
$TC
$TC
$TC
$TC
$TC

qdisc

qdisc
qdisc
qdisc
qdisc
qdisc

qdisc
qdisc
qdisc
qdisc
qdisc
qdisc

$TABLEO
$TABLE1

add

add
add
add
add
add

add
add
add
add
add
add

dev

dev
dev
dev
dev
dev

dev
dev
dev
dev
dev
dev

$DEVO

$DEVO
$DEVO
$DEVO
$DEVO
$DEVO

$DEVO
$DEVO
$DEVO
$DEVO
$DEVO
$DEVO

root handle 2: dsclsfr asl 0.4 as2

parent
parent
parent
parent
parent

parent
parent
parent
parent
parent
parent

handle
handle
handle
handle
handle
handle

0.3 as3 0.1 as4

11: prec_handler table_id O dscp asl
12: prec_handler table_id O dscp as2
13: prec_handler table_id O dscp as3
14: prec_handler table_id O dscp asé4

15: premium_shaper table_id

101: trio limit 200 low_begin
102: trio limit 200 low_begin
103: trio limit 200 low_begin
104: trio limit 200 low_begin
105: tbf rate 5000kbit buffer
106: tbf rate 30000kbit buffer 3000kbit limit 3000kbit

1 classes 2

0.8 low_end 1 medium_begin
0.8 low_end 1 medium_begin
0.8 low_end 1 medium_begin
0.8 low_end 1 medium_begin
500kbit limit

0.1 log_size 63

500kbit

medium_end 0.6 high_begin
medium_end 0.6 high_begin
medium_end 0.6 high_begin
medium_end 0.6 high_begin

0 high_end 0.
0 high_end 0.
0 high_end 0.
0 high_end 0.

2
2
2
2

24

m.
z-
z:
z:

op
0P
0 pu
0P

us Y3ty 0
us YTy 0
°-ysty 0
ue U3ty 0

€9 °zTs™80T 1'0 Hse 1°0 £se €°0

ur8eq~yS8ty 9°'(Q pus wnIpsuw %'(Q urSeq uwnipsuw
ut8eq y8ty 9-(Q pus untpsu $'(Q urleq unTpsuw
ur8eq~ySty 9°'(Q pus wnIpsw %'(urSeq unipsu
ut8sq ySty 9'(Q puswnIpsw %'(Q urSseq WNIpsW

€9 9zTs™80T 10 ¥S® 1°0 £S® €70 TS® %0

pse
gse
Zse
1se

7 pus~MoT
7 pue™MOT
7 pus~moT
T pus~mMoT

ut8eq ySTy 9'(0 PUS WNTPEW F'(Q UTSeqTWNIPeW T Pue MOT §°0
ur8eqy8Ty 9°(Q PusTWMIpsW §'(UTSeqTUMIPSW | PUSTMOT §°0
ut8eq ySty 9'(0 Pus WNTpeW F'(Q UTSeqTWNIPeW T Pus MOT §°0
ur8eqy8Ty 9°Q PuUSTWNIPSW F'(UTSSqTUNIPSW | PUSTMOT §°0

ur8eq MO 00Z ITWIT OTI3 :$0T
ur8sq Mo Q0 FTWIT OTI3 :€0T
ur8eq MOT 00Z 3TWIT OTI3 :ZOT
ut8eq MOT Q0 FTWIT OTI3 :T0T

T

pr-arqes zxsorrod untwexd :gGf

dosp (0 pr~sTqe3 zsTpuey osxd :pT
dosp o prerqes IsTpuey osid :gf
dosp o prTeTqes Ierpuey dexd :g7
dosp (0 pr~srqe3 zsTpuey osxd :TT

pr-arqes xsorrod umtwexd :GT
ut8eqTmoT 00T 3TWIT OTI3 :§T
ur8eqMOT Q0g ITWIT OTI3 :gT
ut8eqTmoT 00T 3TWIT OTI3 :ZT
ur8eqMoT Q0g ITWIT OTI3 :7T

$1d110g 199N0Y SS9ISF pue IOLIU €T 9InSL,g

sTpuey T:%T
sTpuey Tig]
sTpuey 1:ZT
sTpuey T:TT

aTpuey G:
aTpuey f:
sTpuey g:
sTpuey g:
sTpuRy T:

aTpuey gG:
aTpuey {:
sTpuey g:
aTpuey g:
sTpuey T:

[4
[4
[4
4
4

4
4
[4
4
4

ausxed
quaxed
ausxed
qusxed

qusaxed
ausxed
quarxed
qusxed
ausxed

ZSe §°([Se IFSTOSp :Z STPURY 300X

qusxed
ausxed
quaxed
ausxed
qusxed

ISe IFSTOSP :g STPUEYy 300I

OAFA$
0AFa$
OAFA$
0AFa$

0AFa$
OAFA$
OAEA$
0AFa$
OAFA$

0ATa$

ASpP
ABp
ASpP
ABp

X))
AP
ASp
X1)
AP

ASp

ppe
ppe
ppe
ppe

ppe
ppe
ppe
ppe
ppe

ppe

TATEYLS
0d14YL$

yseq/utq/

ostpb
ostpb
ostpb
osTpb

ostpb
ostpb
osTpb
osTpb
ostpb

ostpb

oL$
AR
o1$
AR

#
01$
oL
D18
01$
oL$

#
D1$

#

T T qeasp
0 T qeasp

#*

Tq3e=0A3a

aTqes - 1eoTTod untwexd/AIesF3TP/15€8 /oWOy /=T TAYL
aTqes I9Tpuey souspessid/AxesFFTp/15e8/owoy /=0T TdVL
21 /21/3se8d/smoy /=)L

#
i#

I9INO0Y SS9ISH

O0AId$ AP pPpe
0AIa$ AP ppe
0AFa$ AP pPpe
0AIa$ AP ppe
OAId$ AP pPpe

OAZA$ A°P PPE

TATEYLS

yseq/utq/

osTpb
ostpb
osTpb
ostpb
osTpb

ostpb

01$
218
01$
AR
AR

#
01$

#

T T qeasp

#

TU3e=0A3a
wﬁDMP.HmuﬂHomlﬁﬁﬁEme\bhmmHwﬁv\Pmmw\mﬁon\uﬂmqm<H

52q/23/3se3/smoy /=)L

#
i#

J93N0Y Jolaajuy

25

References

[1] J. Heinanen et al. Assured Forwarding PHB Group, RFC 2597, June 1999
[2] V. Jacobson et al. An Expedited Forwarding PHB, RFC 2598, June 1999
[3] S. Blake at al. An Architecture for Differentiated Services, RFC 2475, December 1998

[4] K. Nichols et al. Definition of the Differentiated Services Field (DS Field) in the IPvj
and IPv6 Headers, RFC 2474, December 1998

[5] ftp://ftp.kernel.org/pub/linux/kernel/v2.2/linux-2.2.9.tar.gz
[6] ftp://ftp.sunet.se/pub/Linux/ip-routing/iproute2-2.2.4-now-ss990824.tar.gz
[7] ftp://sunsite.cnlab-switch.ch/ftp/mirror/Linux-HOWTO /Kernel-HOWTO.txt

[8] W. Almesberger Linuz Network Traffic Control — Implementation Overview,
ftp://lrcftp.epfl.ch /pub/people/almesber /pub/tcio-current.ps, April 1999

[9] S. Radhakrishnan Linuz - Advanced Networking Overwiew, August 1999
[10] A.Kuznetsov, /usr/src/linux/net/sched/sch_tbf.c

[11] F. Baumgartner et al. Differentiated Internet Services in: G. Cooperman, E. Jessen, G.
Michler (eds.): Workshop on Wide Area Networks and High Performance Computing,
Lecture Notes in Control and Information Sciences 249, Springer, June 1999, pp. 37-60,
ISBN 1-85233-642-0

26

