
Client based auto-configuration in heterogeneous networks

Tobias Roth, Torsten Braun, Matthias Scheidegger

Institute of Computer Science and Applied Mathematics, University of Bern

E-mail: {roth, braun, mscheid}@iam.unibe.ch

August 24, 2005

Abstract

This paper describes an extension to the
FreeBSD start-up system called profiles. It is
primarily targeted at mobile nodes and allows
them to auto-detect in what network they are
located and to configure themselves accordingly.
In case no known network is detected, a fall-
back configuration will be used. Each network
to be used needs an initial, manual configu-
ration. The network then gets auto-detected
whenever the node is powered up or brought
back from a power-saving state.

1 Introduction

Service discovery is a generic term for me-
thods that allow two or more independent de-
vices to talk to each other and to use the ser-
vices the others provide. This has to hap-
pen without external configuration, in a purely
ad-hoc manner, and is therefore primarily tar-
geted at mobile devices such as laptops or per-
sonal digital assistants. However, often when
a laptop is being used, it is located in a well-
known network, for example at home or at
the workplace. It is thus desirable to have
the laptop probe for these known networks at
start-up, and to configure itself automatically
if it finds one. This helps to minimise start-
up times by only deploying service discovery

when the laptop is started up in an unknown
location, i.e. to use service discovery only as a
fallback solution.

Related work can be divided into two cate-
gories. On one side, there are complete service
discovery solutions that handle acquisition of
IP connectivity as well as service discovery and
service promotion. On the other side, there are
many small tools that allow laptops to auto-
matically discover when they are started up in
a known network and acquire IP connectivity.
Most of these tools deal with configuration of
network parameters only, and do not do service
configuration or discovery. We can therefore
define the task carried out by the latter cate-
gory as laptop multihoming, while the former
category does service discovery. The presented
work combines both realms.

Since GNU/Linux[1] distributions differ
highly in the way they manage the boot pro-
cess, the task of laptop multihoming cannot
be solved in a generic way for GNU/Linux sys-
tems. In the BSD family of operating systems,
FreeBSD[2] and NetBSD[3] provide a similar
and advanced way of managing system start-
up. This was the reason to use FreeBSD as
the reference platform for the implementation
in this work, while trying to be as portable
as possible, so that adaptation to other Unix
derivatives and different GNU/Linux distribu-
tions can be achieved with a minimum of work.

1



The requirements of an auto-configuration
system for laptops were identified as follows.
After an initial one-time configuration, where
the characteristics of different networks are de-
fined, the system must be able to automatically
recognise in which of these pre-configured net-
works it is started up. Changes within the vis-
ited networks are not required, which means
the configuration is completely client-side. If a
known network is detected, the laptop may use
services offered by the network, and it may of-
fer services itself. For example, the laptop may
use a proxy server provided by the network,
and may export a portion of its own filesys-
tem via NFS. Service discovery may take place
when no known network is detected, i.e. when
the laptop is started in an unknown environ-
ment. Other requirements are:

• The functionality of booting from a read-
only medium must not be disrupted.
Therefore, no files may be written to the
boot device during booting.

• Start-up has to be fully automatic. A sort
of boot-menu, where the user decides what
the active profile shall be, is not desired.

• Low redundancy: Only overrides of the
default configuration need to be specified
for each network.

• Hooks must be present allowing third-
party applications to configure themselves
based on the current location.

• All available communication media must
be supported. If the laptop has both an
ethernet and a wireless network interface,
both interfaces must be considered during
network probes.

The set of auto-configured parameters can
have a broad spectrum. A minimal configu-
ration could define nothing but basic network

connectivity. Extensions such as proxy set-
tings, NFS mounts or exports, the printer en-
vironment, firewall settings and many others
are imaginable.

2 Related work

As already mentioned, related work can be
grouped into two categories: Solutions for ser-
vice discovery and solutions for laptop multi-
homing. This section gives an overview over
representatives of both categories.

The IETF zeroconf[4] protocol attempts
to standardise service discovery. The most
widely used implementation of this protocol is
Bonjour[5] from Apple. It implements both ac-
quisition of a routable IP address and the ac-
tual discovery and promotion of available ser-
vices. It could be combined with the presented
profiles system by allowing a system to fall
back to Bonjour in case no known network can
be detected.

The following solutions all solve the task of
laptop multihoming, i.e. they take care of the
acquisition of a routable IP address, but do not
perform discovery of offered services. Two sys-
tems for FreeBSD and two systems for Debian
Linux[6] are presented.

Setnetparm[7] for FreeBSD offers a boot-
menu to select the current location. It supports
adjusting of the basic networking parameters,
everything else location-specific must be han-
dled through external shell scripts. While au-
tomatic detection of the environment may be
added relatively painless, the limiting factor of
this approach is that it was meant to adjust
networking parameters only.

The location.sh[8] script for FreeBSD can
automatically detect in what environment the
laptop is located. When it finds a known lo-
cation, it creates symlinks for all relevant files
under /etc that will point to location-specific
files. The drawbacks of location.sh are that

2



the script has to write to /etc at every boot,
that the original files have to be restored when
the script is to be removed from the system,
and that changes to /etc may require changes
to location.sh. Also, there is no simple way to
use files from /etc as default for some networks
and override them for others.

Whereami[9] for Debian Linux is extremely
flexible and can do everything profiles can do.
This flexibility, however, is achieved through
complexity. The actions that are taken when
a certain location is detected are all defined
by separate scripts. This approach, though,
makes whereami relatively stable against dis-
tribution changes.

Guessnet[10] for Debian Linux consists
mainly of code used to auto-detect known net-
works. It runs with a very simple configuration
file, much like that of the profiles script. It can
be integrated with Debians ifupdown facility to
reach the same flexibility as whereami. System
integration is better than with whereami, yet
the complexity is almost the same.

3 System Environment

3.1 The FreeBSD 5 boot process

To understand the design of the presented
work, it is necessary to understand the op-
eration of the FreeBSD boot process. This
section gives a short description of the rcng
start-up mechanism, as it was introduced in
FreeBSD 5.0. The mechanism was adopted
from NetBSD and is described in [11] in more
detail.

1. init(8) is the last stage of the boot
process. It calls rc(8) and if that call
succeeds, init(8) starts multi-user
operation.

2. rc(8) invokes rcorder(8) to find out in
what order to execute the scripts located
in /etc/rc.d/.

3. rcorder(8) computes this order by
looking at specific tags at the beginning
of each start-up script.

Every service and operation has its own
script in /etc/rc.d/. There is a script for file-
system checks, one for configuring interfaces,
one for starting sshd(8) and so on. The script
for sshd(8) for example can contain tags that
indicate that sshd(8) should not be run before
the network interfaces are configured. This al-
lows to define an order in which the rc.d scripts
are being executed.

3.2 Union mounts

Next to this ordering of start-up scripts,
union mounting is the second requirement for
the presented approach. When a filesystem
is union-mounted, the new name-space at the
mount point is the union between the mounted
filesystem and the original mount point. This
has the effect of a two-layer filesystem. Reads
are first conducted in the upper layer (the
mounted filesystem). The lower layer is only
accessed when the upper layer cannot satisfy a
read request for a specific file. All writes are
made to the upper layer (though this is of no
importance for the implementation of profiles).

4 Design and Operation

When an rc.d script is inserted into the boot
sequence, this script has control over the ac-
tions of all rc.d scripts executed later in the
boot process. Insertion at a specific place in
the rcorder chain can be achieved by putting
the right tags at the beginning of the script.
The script is run after the filesystem checks
are done, but before the root filesystem is re-
mounted in read/write mode. This is the ear-
liest possible moment for executing the pro-
file script without risking filesystem corrup-
tion. While placing it before the filesystem

3



check script would be possible (and was done
in early versions of profiles), it was decided
that executing the filesystem checks indepen-
dently from the chosen profile will avoid possi-
ble problems.

The operation of the script is as follows: It
reads from /etc/rc.conf which profiles have to
be probed for and in what order. Each pro-
file consists of a file that contains a file sys-
tem inside. This filesystem can be mounted,
and it contains a set of files that are specific
for this profile. When probing for the pro-
file, the filesystem is union-mounted over the
standard /etc directory, allowing the profile-
specific set of files override those inside the
standard /etc. For example, if one profile
wants to override the name-servers used, it will
contain a resolv.conf file, which will override
the resolv.conf file from the standard /etc di-
rectory.

An rc.conf file is mandatory for every pro-
file, because it contains instructions on how to
recognise the network environment. These in-
structions contain which interface to use, in-
terface specific configuration parameters (for
example the media type or the ssid for wire-
less networks) and the test method. The test
method can be DHCP, ping or arp. With
DHCP, the profile script tries to acquire a valid
DHCP lease. With ping, it tries to ping the
IP address of a known host (which is also de-
fined in profile-specific rc.conf file). With arp,
the arp cache is inspected to see if the known
host is present on the network but not sending
back echo replies. The test methods can also be
chained. For instance, to distinguish between
two different DHCP based networks, a ping
test can be conducted after the DHCP test was
successful. Arp tests can be used to distinguish
between two networks with the same IP space
and the same known host IP address. This flex-
ibility allows to handle complex setups, such as
IPsec protected wireless ad-hoc networks.

If the network probes for one profile are

unsuccessful, the profile-specific union-mount
over /etc is unmounted and the next profile is
tried. If a profile is successfully probed for,
the union-mount is not unmounted and the
boot process continues as usual, allowing the
profile-specific files to override their counter-
parts in /etc and affect the remainder of the
boot process. This also has the benefit that
for each profile, only the files that should be
overridden need to be present, everything else
is taken from the standard /etc directory. If no
profile matches the current environment, boot-
ing continues without a union-mount in place,
allowing the standard /etc directory to act as
a fallback or default profile.

The presented approach is not only suited
to manage system start-up, but also sus-
pend/resume cycles commonly used with lap-
tops. A system can be suspended, discon-
nected from the network, carried into a dif-
ferent environment, reconnected and resumed.
Upon suspension, the profile script uses rcorder
to compute a list of rc.d start-up scripts. Since
each start-up script also supports a stop ar-
gument, the profile script can go through the
computed list in reverse order and call each
script with the stop argument. When the lap-
top is resumed, the profile script acts the same
as when the system is started, i.e. it checks in
what network it is located and lets the system
execute the remaining rc.d scripts. All scripts
that are not dependent on the current location
are tagged with a special keyword that pre-
vents stopping and restarting during the sus-
pend and resume cycle. With this approach,
location changes during laptop suspension can
be detected when the system resumes.

5 Porting

In this section, the possibility of port-
ing profiles to other free unix-like operating
systems, namely GNU/Linux, NetBSD and

4



OpenBSD[12] is discussed.

A port to another operating system has two
requirements: The target system must have an
ordered sequence in its start-up scripts and it
must support a form of union mounts. So far,
only NetBSD satisfies both dependencies na-
tively. OpenBSD offers union mounts but lacks
the sophisticated start-up scheme of NetBSD
and FreeBSD. A port to NetBSD could thus
be done with only slight modifications, while
for a port to OpenBSD, more work would be
necessary to compensate for the deficiencies in
its start-up mechanism.

For GNU/Linux, the situation is a bit dif-
ferent. When the profiles project was started,
the kernels available for GNU (Linux 2.6 and
GNU Hurd[13]) did not support union mounts
natively. All projects that add union mount
support to Linux were in alpha stage or were
said to be nothing more that a proof of con-
cept. Today, there is still no native support for
union mounts in the Linux kernel, however the
status of the available add-ons has improved
quite a bit. The following two projects that
enhance the Linux kernel with union mounts
could be considered for use in a port of profiles
to GNU/Linux: Unionfs[14] and the Cowloop
driver[15]. Still in proof of concept state is the
Translucency loadable kernel module[16].

GNU distributions all differ in their start-
up scheme. Some use a SystemV style start-
up mechanism (Debian, Fedora[17]), some
use OpenBSD-like rc scripts (Slackware[18]),
and some go towards a mix of SystemV and
NetBSD rcng (Gentoo[19]). Configuration of
network services also differs between each dis-
tribution. This diversity makes it necessary to
look at each distribution separately when at-
tempting to port profiles to GNU/Linux.

6 Conclusion

The presented approach provides an im-
provement over pure service discovery by mak-
ing use of information about frequently used
network environments. Since users tend to use
the same small set of networks most of the
time, and since the basic network properties
of most networks don’t change very often, it
is beneficial to configure this information stat-
ically, in order to speed up and automate net-
work configuration. Service discovery is then
used only in unknown networks.

An aspect completely ignored in the pro-
posed solution is security. It is relatively easy
for a hostile network to intercept and analyse
network probes, and then to act as a different
network. This may lead to a situation where
the mobile node is lowering his defences and of-
fering private services to the wrong network. If
all friendly networks would authenticate them-
selves to the mobile node, this weakness could
be avoided. The mobile node would then main-
tain a high security profile in all unauthen-
ticated networks. However, this means that
a change to the network is necessary, which
would break one of the original requirements
of this work.

Work is currently ongoing in integrating pro-
files into the FreeBSD base system.

References

[1] Rémy Card, Èric Dumas, Frank Mével, “The
Linux Kernel book”, Wiley & Sons, Jun. 1998.

[2] Marshall Kirk McKusick, George V. Neville-
Neil, “The Design and Implementation of
the FreeBSD Operating System”, Addison-
Wesley, Aug. 2004.

[3] Luke Mewburn, “NetBSD: Platform for the
future”, BSDcon 2000, Oct. 2000.

[4] Erik Guttman, “Autoconfiguration for IP
Networking: Enabling Local Communica-

5



tion”, IEEE Internet Computing Magazine,
Jun. 2001.

[5] P.J. Connolly, “Say ’howdy’ to Bonjour”, In-
foWorld Media Group Magazine, Issue 23,
Jun. 2005.

[6] J.H.M. Dassen, Chuck Stickelman et al.,
”The Debian GNU/Linux FAQ”, Free Soft-
ware Foundation, 1996.

[7] Hellmuth Michaelis, “The setnetparm util-
ity for FreeBSD”, [Online, visited May 2005],
Available:
http://www.kts.org/hm/download/setnetparm

[8] Lars Eggert, “The location.sh script”, [Online,
visited May 2005], Available:
http://www.isi.edu/larse/etc.html

[9] Andrew McMillan, “Whereami network auto-
configuration utility”, [Online, visited May
2005], Available:
http://debiana.net/whereami

[10] Enrico Zini, ”Guessnet Resources”, [Online,
visited May 2005], Available:
http://guessnet.alioth.debian.org/

[11] Luke Mewburn, “The design and implementa-
tion of the NetBSD rc.d system”, in Proceed-
ings of the USENIX 2001 Annual Technical
Conference, Jun. 2001.

[12] Michael W. Lucas, “Absolute OpenBSD:
UNIX for the Practical Paranoid”, No Starch
Press, Jun. 2003

[13] Marcus Brinkmann, “The GNU Hurd”,
UKUUG Linux Developers’ Conference, Jul.
2002.

[14] C. P. Wright and E. Zadok, “Unionfs: Bring-
ing File Systems Together”, Linux Journal,
Issue 128, Dec. 2004.

[15] Gerlof Langeveld, “Copy-on-write loop
driver”, [Online, visited May 2005], Available:
http://directory.fsf.org/network/security/cowloop.html

[16] Dirk von Suchodoletz, “Jump Starting the
Network”, Linux Magazine, Issue 27, Feb.
2003.

[17] Paul Hudson, Andrew Hudson, Bill Ball, Hoyt
Duff, “Red Hat Fedora 4 Unleashed” , Sams,
Jun. 2005.

[18] David Cantrell, Chris Lomens, Michele Mem-
brila, “Slackware Linux Essentials”, Walnut
Creek, Jul. 2000.

[19] Christopher Negus, “Linux Bible”, Wiley &
Sons, Jan. 2005.

6


