

Theory and Hands-on Exercises for

E-Learning on Distributed Systems

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von:
Christine Rosenberger

2004

Leiter der Arbeit:
Prof. Dr. Torsten Braun

Forschungsgruppe Rechnernetze und Verteilte Systeme (RVS)
Institut für Informatik und angewandte Mathematik

 2

Leiter der Arbeit:

Prof. Dr. Torsten Braun
Forschungsgruppe Rechnernetze und Verteilte Systeme (RVS)

Institut für Informatik und angewandte Mathematik

Betreuer der Arbeit:
Marc-A. Steinemann

Forschungsgruppe Rechnernetze und Verteilte Systeme (RVS)
Institut für Informatik und angewandte Mathematik

 3

Zusammenfassung

Das Projekt Virtual Internet and Telecommunications Laboratory of Switzerland (VITELS) ist
eines von verschiedenen Projekten innerhalb des Programms Swiss Virtual Campus (SVC).
Das SVC Programm wurde vom Schweizerischen Bundesamt für Bildung und Wissenschaft
gegründet, damit e-learning Projekte an Schweizerischen Universitäten, an den
Eidgenössischen Technischen Hochschulen, sowie an den Fachhochschulen koordiniert
werden können. Das Hauptziel des VITELS Projektes ist es, Studenten virtuelle Labors zur
Verfügung zu stellen, damit die Studenten ihre Fähigkeiten auf dem Gebiet
Computernetzwerke vertiefen können. Die Studenten sollen über das Internet auf die e-
learning Module zugreifen können, um sich grundlegendes und spezialisiertes Wissen
anzueignen. Die beteiligten Universitäten und Fachhochschulen haben Zugriff auf alle Online
Module, welche in den bestehenden Studienplan integriert sein sollen, wobei die Universitäten
die e-learning Module unabhängig von einander entwickeln.

Um den Studenten eine echte verteilte Umgebung zur Verfügung zu stellen, wurde in einer
ersten Phase eine Hardware Architektur entwickelt und realisiert, auf welche die Studenten
über das Internet zugreifen können. Beim Design und der Entwicklung der Software
Architektur wurde bereits vorhandene VITELS Software angepasst und integriert.

Diese Diplomarbeit erweitert das VITELS Angebot um zwei weitere Module. Das erste Modul
behandelt „Remote Method Invocation“, während das zweite Modul eine Einführung in
„Application Server“ gibt. Bei der Entwicklung der beiden Module wurde darauf geachtet, die
didaktischen und gestalterischen Richtlinien für VITELS Module einzuhalten. Diese geben vor,
dass jedes e-learning Modul aus einem Theorieteil, aus Aufgaben und mindestens einer
praktischen Übung (hands-on session) bestehen muss.

Das Modul „Remote Method Invocation“ erklärt wie verteilte Applikationen, welche aus
mehreren zusammenarbeitenden Programme bestehen und in verschiedenen Prozessen
laufen (auf einem oder mehrerer Rechnern) implementiert werden können. Studenten lernen
das Konzept „Remote Method Invocation“, ein Objekt basiertes Modell, welches die
Kommunikation zwischen Objekten in verschiedenen Prozessen ermöglicht. Ein
Hauptaugenmerk liegt auf den praktischen Übungen, in denen die Studenten Client/Server
Programme selber entwickeln sollen.

Das Modul „Application Server“ erklärt das Konzept von Applikations-Servern, welche viele
Middleware Dienste übernehmen. Weiter beschreibt dieses Modul, wie Softwarekomponenten
entwickelt werden, damit sie von einem Server verwaltet werden können. In den praktischen
Übungen beschreiben die Studenten deklarative Eigenschaften von Softwarekomponenten. In
einem zweiten Schritt entwickeln und kompilieren die Studenten ihre eigene Komponente und
installieren sie in einem Applikations-Server.

Die beiden implementierten Module wurden von Testern geprüft. Dabei zeigte sich, dass die
entwickelte Laborumgebung für den Fernzugriff auf die Computer die hohen Anforderungen
betreffend Funktionalität und Verfügbarkeit erfüllt.

 4

Abstract

The project Virtual Internet and Telecommunications Laboratory of Switzerland (VITELS) is
one of several projects within the Swiss Virtual Campus (SVC) program. This program was
founded by the Swiss Ministry of Education and Science to coordinate e-learning projects at
the Swiss universities, the Swiss federal institutes of technologies and the Swiss universities
of applied science. The principle aim of the VITELS project is to build a virtual laboratory
where students can improve their skills in the realm of computer networks. The course
modules can be accessed through the Internet and use for basic and advanced education.
The online courses are shared between universities and are integrated in existing curricula,
but the modules are developed independently by the various partners.

In a fist phase, a hardware architecture that offers students the possibility to develop
programs for truly distributed systems has been designed and realized. A set of third party
software that was already in use by other VITELS project partners has been adapted and
integrated into the new modules.

In this thesis, the portfolio of available VITELS course modules is extended by two additional
modules on the subjects of “Remote Method Invocation” and “Application Server”. Special
emphasis is put on designing and deploying an appropriate laboratory environment which is
accessible over the Internet and where students can investigate real-world scenarios. Both
course modules are prepared according to the VITELS Didactics and Design Guide which
imposes that a course module must consist of a theory section, exercises and at least one
hands-on session.

The “Remote Method Invocation”-module explains how to implement distributed applications
composed of cooperating programs running in multiple processes that can reside on the same
or different computers. Students learn the concept of Remote Method Invocation, an object-
based programming model, which allows objects in different processes to communicate with
each other. A strong emphasis is on the hands-on session where students develop a
client/server program.

The “Application Server”-module explains the concept of an application server which provides
many common middleware services. The module also shows how to implement software
components that run within such a server. In the hands-on session, students define
declaratively attributes of a component in a deployment descriptor. In a second step, students
implement, compile and deploy their own component on an installed application server.

Both modules have been tested. It turned out that the laboratory environment was well
designed and developed to satisfy the high requirements regarding its functionality and its
availability.

 5

My diploma thesis is dedicated to
Karl, Pascal and Thomas

 6

Acknowledgment

In addition to the people mentioned below, I would like to thank those people who supported
me through this year and who made it possible that I was able to write this diploma thesis.

My special thanks go to Prof T. Braun who kindly accepted to supervise this diploma thesis. I
would also like to thank Marc-Alain Steinemann who supported me with his experience and
guidance. He proofread the thesis several times and very much improved its readability.
Furthermore, I want to thank Attila Weyland, who gave me very helpful advises about
technical and design issues. Many thanks also to Roland Balmer, who helped me to solve
technical and security problems. In addition, I would like to express my gratitude to the
ISCeco staff, namely Yannick Beaud, Regina Engel, Oldrich Milde and Anton Rumo. I owe
Rachel Montani many thanks as she gave me many tips in terms of English expressions. My
partner Karl Guggisberg gave me technical advises, reviewed my work and took care of mine
and the childrens’ well-being – thank you! Finally, I thank my wonderful boys, Pascal and
Thomas, for being so patient with their mother when she was working instead of spending
time with them.

 7

Table of Contents

1 Introduction 10
2 E-Learning 12
2.1 Terminology 12
2.2 E-Learning in Higher Education of Switzerland 14
2.2.1 Organization 14
2.2.2 Main Goals 15
2.2.3 Projects 15
2.3 Virtual Internet and Telecommunications Laboratory of Switzerland (VITELS) 16
2.3.1 Architecture 17
2.3.2 Modules 18
3 Designing E-Learning Courses 20
3.1 Didactical Issues 20
3.1.1 Common Introduction for all Modules 20
3.1.2 Modules (Detailed Description) 21
3.2 Design Issues 23
4 Laboratory 24
4.1 Required Software Infrastructure 24
4.1.1 WebCT – a Corporate Training Software Environment 24
4.1.2 LDAP – Managing E-Learning Participants 25
4.1.3 PHP - Implementing Dynamic E-Learning Applications 27
4.2 Laboratory Architecture 29
4.2.1 Multi-Tier Architecture 30
4.2.1.1 2-Tier Architecture 30
4.2.1.2 N-Tier Architecture 31
4.2.2 Architecture Proposal and Discussion 32
4.2.2.1 System Architecture for the Module “Remote Method Invocation” 32
4.2.2.2 System Architecture for the Module “Application Server” 35
4.3 Reservation Infrastructure 38
4.4 Laboratory Setup 39
4.4.1 Authentication and Authorisation for the VITELS Course and the Laboratory Equipment 39
4.4.2 Security Infrastructure: SSH – Providing Security to Distributed E-Learning Participants 40
4.4.3 Preparing and Resetting Laboratory Equipment for a Hands-on Session 42
4.4.4 Error Detection and Correction 44
5 Module 1 – Remote Method Invocation 45
5.1 Motivation 45
5.2 Goals of the Module 46
5.3 Structure and Theory of the Course 47
5.3.1 Structure 47
5.3.2 Theory 48
5.4 Provided Examples 53
5.4.1 Fazuul – an RMI example program 53
5.4.1.1 Description 53
5.4.1.2 Implementation of Fazuul 54
5.4.1.3 Hands-on Session: Fazuul 56
5.4.2 Mastermind – an RMI Example Program 58

 8

5.4.2.1 Description 58
5.4.2.2 Implementation of Mastermind 59
5.4.2.3 Hands-on Session: Mastermind 61
6 Module 2 – Application Server 66
6.1 Motivation 66
6.2 Goals of the Module 67
6.3 Theory and Structure of the Course 67
6.3.1 Structure of the Course 68
6.3.2 Introduction to Java 2 Platform, Enterprise Edition (J2EE) 68
6.3.3 Architectural Overview 69
6.3.3.1 Object Model 70
6.3.3.2 Deployment Descriptor 71
6.3.3.3 Client 72
6.3.4 Developing Beans 73
6.3.4.1 Session Beans 74
6.3.4.2 Entity Beans 76
6.3.4.3 The Primary Key 77
6.3.5 Persisting and Querying Data 78
6.3.5.1 Container Managed Persistence (CMP) for Entity Beans 78
6.3.5.2 Query Entity Beans 81
6.3.6 Services 82
6.3.6.1 Naming 82
6.3.6.2 Transaction 82
6.3.6.3 Security 83
6.4 Provided examples 84
6.4.1 The Application Server 84
6.4.2 The Client for the Bank Examples 84
6.4.3 Scenario 1: The Bank Teller as a Stateless Session Bean 85
6.4.3.1 Description 85
6.4.3.2 Implementation 85
6.4.4 Scenario 2: The Bank Teller as a Stateful Session Bean 87
6.4.4.1 Description 87
6.4.5 Scenario 3: Customer and Account as Entity Beans 91
6.4.5.1 Description 91
6.4.5.2 Implementation 91
6.4.6 Scenario 4: Deployment Descriptor 94
6.4.7 Scenario 5: Developing an Entity Bean 96
7 Related Work 100
7.1 Authentication, Authorization and Resource Reservation for Distributed Laboratories 100
7.2 Internetportal für Computernetz-Praktika 100
7.3 The Virtual Internet and Telecommunications Laboratory of Switzerland 100
7.4 Architectural Issues of a Remote Network Laboratory 101
7.5 Didactical Issues of a Remote Network Laboratory 101
7.6 VITELS, Didactics and Design Guide 101
8 Discussion and Conclusions 102
9 Outlook 103
List of Figures 105

 9

Listings 107
Abbreviations 108
Glossary 110
Bibliography 113

 10

1 Introduction

The area of distributed systems is a well established field of research in computer science.
There are two major reasons why the subject “distributed systems” is part of standard
curricula of higher education for Information Technology (IT) professionals, i.e. in curricula for
master diploma at universities. First, the theory of distributed systems is one of the
cornerstones of computer science and IT professionals with a higher education should,
therefore, at least have a basic understanding of its theory and a minimal experience in
applying modern concepts of distributed systems. Second, important employers in the field of
financial services, government or the IT industry, expect IT professionals to successfully apply
concepts of distributed systems in their daily work.

Distributed systems are the dominant architectural style for today’s information systems.
Since the early seventies, the then predominant architectural style of centralized monolithic
applications became less and less important in favour of the more flexible architectural style of
distributed systems. This change in the architectural style was initially motivated by
technological progress in networking and computer architecture. This technological progress
provided the base for IT systems being built up from geographically distributed,
interconnected and possibly heterogeneous computing nodes. This evolution was further
supported with the advent of object-oriented computing in the eighties, which led to the
architectural style of distributed object systems, as well as with the advent of the World Wide
Web in the nineties.

Lately, the concept of component based software engineering has influenced the field of
distributed systems. Computer scientists recommend that software applications be split into
software components, i.e. individually identifiable, replaceable and deployable units of
software which would be hosted at runtime by dedicated component execution environments.
The IT industry was quick to adopt this concept which led to the specification of J2EE
Application Server and the component model Enterprise Java Bean (EJB), both widely used
technologies for implementing distributed systems on the Java platform.

Clearly, there is a need to teach both the theory and concepts of distributed systems and the
applied technologies for building distributed systems. The need for the former is given by the
relevance of distributed computing in contemporary computer science and by the importance
it has in application and system engineering. It is advisable to teach the latter, because
current work environments require IT professionals to be familiar with these technologies.
Furthermore, hands-on experience with these technologies will help students to understand
the conceptual and theoretical issues in the field of distributed systems.

The group “Computer Networks and Distributed Systems” (in German: Rechnernetze und
Verteilte Systeme, RVS) a research group of the Institute of Computer Science and Applied
Mathematics (IAM) at the University of Bern is the leading party in the Virtual Internet and
Telecommunications Laboratory of Switzerland (VITELS). The major goal of this project is to
provide a set of structured online courses covering topics in the area of telecommunications
and computer science. At the beginning of 2003, four modules were available for students on
the common VITELS platform. These modules already cover fundamental topics required for

 11

distributed systems, i.e. Internet Protocol (IP) network configuration, IP security, socket
programming, or remote procedure calls. But in particular, two important subjects of
distributed object computing, “Remote Method invocation” (RMI) and “Application Server”,
were missing.
In this diploma thesis, the gap in the VITELS course portfolio is closed. Two modules have
been prepared for the VITELS platform: (1) a module about remote method invocation (see
chapter 5) and a module about application servers (see chapter 6).

A major requirement of the VITELS project is to provide a laboratory environment accessible
over the Internet and where real-world scenarios can be tested. The preparation of hands-on
sessions for courses about distributed systems poses some problems specific to the subject.
One problem is to provide an environment in which real-world scenarios for building
distributed systems can be implemented. In order to simulate real-world scenarios like
implementing and deploying a distributed application, a network of distributed computing
nodes, or looking up and addressing a remote component on a distributed computing node, a
realistic laboratory environment should consist of several computing nodes connected to a
network. If these scenarios were simulated on a single computer, students would fail to realize
the special conditions of a truly distributed environment.

This thesis addresses the specific problems of providing hands-on sessions for distributed
systems. In Chapter 4, it discusses alternative architectures for the laboratory environment
and proposes a system architecture suitable for providing practical tutorials. Section 5.4 and
Section 6.4 give examples of hands-on sessions for the subject of Remote Method Invocation
and the subject of Application Servers.

The structure of this thesis is as follows:
The second chapter introduces the subject of e-learning. It explains reasons why students
should use a distance learning course to acquire knowledge instead of working in real
laboratories at the university. E-learning in higher education of Switzerland as well as the
VITELS project are explained in detail. The third chapter emphasises the need of a didactics
and design guide and summarizes the content of an existing guide. The fourth chapter
describes the infrastructure of the laboratory environment, such as the required software
infrastructure, the laboratory architecture, the reservation infrastructure and the laboratory
setup for both e-learning modules. Chapter five and six present the developed modules. A
motivation for each subject is given, the goals are described and the theory of each topic is
summarized. Chapter 8 and chapter 9 conclude this work and give a short outlook.

 12

2 E-Learning

Nowadays each person should take part in the process of life-long learning. Especially
students have to go on with their education after finishing their studies. Life-long learning
many times happens in the form of distance courses and more often in the form of electronic
courses. Electronic courses (e-learning courses) give students the freedom to study
independently from place or time.
Thanks to the number of computers that exist in almost any household and the availability of
broadband Internet connections e-learning courses can be easily attended by almost
anybody. Educational institutions and enterprises very quickly recognized the gigantic
potential to spread knowledge over the Internet. But with time they became aware that it was
not enough to simply make PowerPoint and Acrobat files available on the network. Students
have to be motivated to acquire knowledge on the net.
But what are the reasons that more and more educational institutions and enterprises are
preparing content for e-learning?

• Web Based Training (WBT) can be used as a preparation to achieve an equal entry level

for courses and seminars.
• Knowledge acquired by traditional training methods can be supplemented, deepened and

consolidated by stimulating tools.
• The tutor is supported and unburdened through quizzes and exercises that are

automatically graded as well as the auto didactical study process of the learner.
• The education’s quality and efficiency can be increased.
• Solutions which are not self-elaborated are quickly forgotten. With e-learning, one can

deal with a subject independently and overcome important knowledge gaps (Just-in-time-
learning).

• Students can determine their speed themselves: If they already know a subject, they can
skip it. This increases motivation.

2.1 Terminology

The Internet introduced a new way of learning with features such as e-mail, chat, bulletin
board, etc. Those features opened a bidirectional way for communication between students
and tutors.

E-learning over the Internet has many advantages:
• Independence of place: Anywhere a computer and Internet are available distance e-

learning is possible. There is no need to bring students and tutors together at the same
physical place.

• Independence of time: Mostly the access to e-learning courses is not limited and not
bound to a certain time span. Learning is possible whenever the student has time. The
student may start a course at a desired time and not only at the beginning of a semester.

• Communication: Distance learning may be a very lonely experience. The Internet,
however, offers a new network of human relations and allows communicating with people

 13

“spread all over the world”. It provides a variety of tools to connect a learner with the tutor
or other students.

• Individuality: With e-learning, the courses can be adapted to individual needs and goals
more easily than in traditional education (seminar and courses). “Non-linear-learning” -
which means learning does not occur in a neat sequence of events - is possible: the
learner may repeat a chapter as many times as needed to understand the material, other
chapters may be skipped.

• Interactivity: Interactive elements can be integrated into multimedia documents to
encourage student interaction with learning materials and facilitate the assimilation of
information [34]. An example is the feature “Question and answer” - where students are
asked a question and must submit an answer (e.g. multiple choice). The interactive
system can then respond and tell students if the answer is correct and explain the correct
answer. Another feature is “drag and drop”: Objects can be selected with the mouse,
dragged and dropped to construct images and objects on the screen.

• Multimedia: The Internet offers a great variety of interactive features, such as videos,
audio images and animations. Reader/viewers will be able to pick and choose what they
want to watch or hear at any time.

There is no widely accepted or canonical definition for e-learning. Here are five definitions
from various authors [26]:

• “The convergence of the Internet and learning, or Internet-enabled learning.”
• “The uses of network technologies to create, foster, deliver, and facilitate learning,

anytime and anywhere.”
• “The delivery of individualized, comprehensive, dynamic learning content in real time,

aiding the development of communities of knowledge, linking learners and practitioners
with experts.”

• “A phenomenon that delivers accountability, accessibility, and opportunity allowing people
and organizations to keep up with the rapid changes that define the Internet world.”

• “A force that gives people and organizations the competitive edge to allow them to keep
ahead of the rapidly changing global economy.”

Recapitulating, e-learning is a new way of distance learning, usually from home or from any
conveniently located off-campus place, supported by new technologies to acquire knowledge
at any place and at any time wherever a computer is available. The difference to conventional
learning is that the student acquires the material to learn all alone using digital devices such
as the Internet (online) or CD-ROM (offline).

 14

2.2 E-Learning in Higher Education of Switzerland

In 1999, the Swiss ministry of Education and Science founded a project called Swiss Virtual
Campus (SVC). The purpose of this project is to enable the Higher Education Institutions
(IHE) to integrate the new Information and Communication Technologies (ICT) and to
combine new learning methods with ICT services. The project promotes learning over the
Internet at university level with high-quality teaching materials and methods.
The following sections give an overview of the SVC organisation, providing a description of
the project as well as its main objectives.

2.2.1 Organization

According to the Federal Council’s message, the Swiss Virtual Campus is run by the existing
Swiss University Conference (SUC) [20]. Figure 1 shows the structure of the Swiss Virtual
Campus.

Programme Co-ordination
SUC

(Swiss University
Conference)

Implementation
SC

(Steering Committee)
Management/Administrator

Programme Support
CSVC

(Commission Swiss Virtual
Campus)

Monitoring and Auditing
FES

(Federal Office for Education
and Science)

Module/Project
Project Leader

Figure 1: Structure of the Swiss Virtual Campus

• The Swiss University Conference is the common organ of the Swiss Confederation and

the cantons to support the cooperation of universities.
The following list shows some of the projects that the SUC fosters:
“Equal opportunities”: The goal of this project is to raise the awareness of equal
opportunities for men and woman. For example by promoting gender equality and raising
the proportion of women in the institutes [17].
“Swiss Network for Innovation”: The SNI-RSI promotes technology transfer of innovations
from universities to industries, start-ups and spin-offs [52].
“Trainee program for academic staff”: In this project, the Swiss Confederation provides
financial support for a number of academic positions [51].
“Swiss Virtual Campus”: A Federal programme on the promotion of new information and
communication technologies in third-level academic institutions [17].

 15

The federal council delegated the management of the SVC programme to the Swiss
university conference. The SUC makes the final decisions regarding the financing of
projects and mandates recommended by the steering committee.

• The Steering Committee (SC) is an execution organ; it develops the financial plan, which
needs to be approved by the SUC. The committee also evaluates the incoming
proposals, selects the projects to be supported, negotiates the financing of the individual
projects and mandates, evaluates the projects [20].

• “The SVC Commission” was founded to help the universities to understand their role and
involvement in the programme [42]. It makes preparatory work for the call for papers, like
establishing contacts with interested parties from the university, cantonal, federal, and
business communities.

• The Federal Office for Education and Science (FES) [18] is in charge of monitoring and
reviewing the projects.

2.2.2 Main Goals

Bernard Levrat [41], the spiritual father of the SVC programme, wants the lectures with
completely passive students to disappear [43]. "The idea is that the way in which knowledge is
communicated should be attractive and thanks to interactivity more efficient ", he says.
Another aim of the SVC programme is specified on the web page of The Swiss Federal Office
for Professional Education and Technology [17]: The principal concrete aim of the programme
is to develop accessible teaching modules through the Internet for basic and specialised study
programmes, particularly for subjects that attract large numbers of students.
The SVC itself was founded with three main goals in mind: (1) Improving the quality of student
learning processes and strengthening interactive teaching (2) Strengthening the collaboration
between the universities (3) Developing high-quality teaching materials and methods.
With these goals in mind the SVC issued two tenders for SVC projects in 1999 and 2000.

2.2.3 Projects

Currently, there exist 50 projects in numerous disciplines, notably medicine (11 projects),
technology (8), humanities (7), management and administration (6), natural sciences (6),
educational sciences (4), physics, mathematics, IT (4), and economics and law (4). In order to
approve the cooperation between the institutions of higher education each project must be
backed by at least three higher education institutions. Figure 2 shows the networking among
the various types of institutions: Swiss Federal Institutes of Technology (ETH), Swiss
Universities of Applied Sciences (UAS) and Swiss Universities.

 16

25

7

5

4

3

6

0

Universities

Universities of
Applied Sciences
(UAS)

Federal Institutes of
Technology (ETHs)

Figure 2: Networking among the Higher Education Institutions

One of these projects lead by the University of Bern is the Virtual Internet and
Telecommunications Laboratory of Switzerland [21].

2.3 Virtual Internet and Telecommunications Laboratory of
Switzerland (VITELS)

Four Swiss universities (the Universities of Bern, Fribourg, Genève and Neuchâtel) and one
engineering school (Fribourg) collaborate in the project Virtual Internet and
Telecommunications Laboratory of Switzerland (VITELS). The project partners launched
VITELS because they have common interests in developing e-learning resources for their
students. A common interest is the sharing of knowledge. With VITELS, each university can
concentrate their efforts on few topics but give their students access to the topics of the
partner universities. Each university has to spend less money than before (w/o VITELS) but
can offer a wider spectrum of interesting and well maintained e-learning modules. Another
interest is given by the fact that students should become familiar with e-learning, because
e-learning will become more and more important during their professional career, after their
graduation from university. For Information Technology (IT) professionals, e-learning is
especially useful because constant learning is crucial for professionals in information
technologies and because significant portions of product and technology based training and
education can be provided as e-learning resources.

 17

2.3.1 Architecture

The objective of the VITELS project is to offer a structured modular online course where
students work from remote computers and achieve the same level of education as in a
traditional course. Special tools (e.g. white board) and automated rating of the students’ work
shall limit human and financial resources. A special focus lies on hands-on experience where
students have access to real network equipment and simulated laboratories via the Internet.
The need of an open and flexible architecture for remote courses in which many locally
distributed clients attend exercises on many locally distributed servers is obvious. Such an
architecture is described in [5] and shown in Figure 3.

Course ServerLDAP Client
(Administration

 or Student)

Internet

Portal Server

Laboratory
Equipment

LDAP Server
Student Data
Scheduling
Module Data

Security
Root Certification
Authority

Figure 3: Global architecture for the VITELS course

Lightweight Directory Access Protocol (LDAP) clients (students and administration personnel)
have access to the course server, the LDAP server, and via a portal server, to the laboratory
equipment. A description of the course server is given in “4.1.1 WebCT – a Corporate Training
Software Environment” and the LDAP server in “4.1.2 LDAP – Managing E-Learning
Participants”, the portal server in “4.4.1 Authentication and Authorisation for the VITELS
Course and the Laboratory Equipment”.
The architecture includes a scheduling system [10] for managing students’ laboratory
reservations (see 4.3 Reservation Infrastructure).

 18

2.3.2 Modules

To this time, VITELS offers six modules. This section gives a short description of the following
modules: “Simulation of Internet Protocol (IP) Network Configuration”, “IP Security”, “Firewall
Management”, and “Sockets and Remote Procedure Calls (RPC)”. Chapter 5 and chapter 6
provide detailed descriptions of the “Remote Method Invocation” (RMI)-module and the
"Application Server”-module.

Simulation of IP Network Configuration introduces basic networking concepts, the most
common local area network technologies, the Internet protocol as well as the functioning and
the operational area of the most common network components. In a simulation, the user
optimizes routing table entries, adds and corrects interfaces and routing table configurations.
In addition, an emulation is used to help students to layout, configure and validate a network
consisting of multiple routers. At the end, students know how to set up IP networks, especially
the selection of appropriate address ranges and the configuration of interfaces and routes.

Logo 1: Simulation of IP Network Configuration

IP Security presents the basic security concepts of today’s Internet. It includes theoretical
modules about discovering the world of Virtual Private Networks (VPN) as well as security
issues due to hackers. In the hands-on session, students are asked to configure two different
Cisco routers (2620 and 3620) and to set up the Routing Information Protocol (RIP). After a
successful configuration, students have to establish a virtual private network tunnel between
those two routers. In addition, students learn to use Tcpdump, to interpret the network dumps,
to generate and analyze network traffic, and to perform bandwidth measurements in IP
networks by applying a measurement tool on generated traffic with and without encryption.

Logo 2: IP Security

 19

Firewall Management introduces firewall concepts of today's Internet. The module explains
the mechanisms of packet filtering, Network Address Translation (NAT) possibilities, the basic
concepts of packet filter rule base generation and firewall architecture and their different
modes. It shows how to protect a network from attacks from the Internet by implementing a
firewall. In the hands-on session, students have the possibility to fully configure a Netscreen
5XP firewall and to set up network address translation. In a further step, they completely set
up and configure the firewall in a small business environment which consists of three clients, a
mail, a web and a DNS server.

Logo 3: Firewall Management

Sockets and Remote Procedure Calls explains a fundamental structure in many computer
networks: a client-server relationship. In the first part of this module, students are introduced
to socket programming, an intuitive way to develop applications that enable computers to use
TCP/IP communication, as well as many other protocols (e.g. UDP, ICMP, etc.). In the second
part of this module, the concept of remote procedure calls is introduced. This is a very early
example of a client/server architecture that has its own specification language. In the practical,
part students have the possibility to develop their own socket and RPC applications.

Logo 4: Sockets and RPC

Other modules are planned or under development: Linux Systems Installation and
Configuration teaches the installation and configuration of Linux computers from scratch.
Performance Evaluation in Real IP Networks explains theoretical and practical aspects of
performance metrics in real IP networks. Client/Server Programming discusses the
theoretical and practical aspects of the client/server model. In the Protocol Analysis-module,
students enter the field of the layered Internet protocol [14].

 20

3 Designing E-Learning Courses

An e-learning course mostly consists of several modules that are equivalent to book chapters.
A detailed content description, based upon the predefined course goals and the definition of
the target group, need to be specified before starting with the implementation.
Before an e-learning course can be designed, course designers should understand how their
targeted students learn and how they acquire and retain skills or how they access information.
Course modules must have an identical structure in order to allow an easy navigation. Each
course module should be designed and developed in such a way that students are provided
with interesting interactive learning material, enhanced with didactical elements.
Course participants should be informed about the goals and procedures to be reached. The
course provider should furthermore give a description of the different support forms. Because
no tutor is permanently available, self-evaluation tools such as self tests and quizzes have to
be offered to students to test their success. A self test is a test with multiple choice questions
where students receive the answer immediately. This helps to minimize the theoretical work if
the test is done before reading through the theory. Students may use this instrument to check
what they have learned and to find knowledge gaps (students gave wrong answers). For
every answered question, the learning program points out the chapter to be repeated,
recommends further readings and/or describes the way to find the correct answer.
In a quiz, students must answer different types of questions (e.g. multiple choice questions,
yes or no questions, essay questions). In contrast to the self test, the answers are not
immediately given, but are sent to and graded by a tutor. The evaluation of the quiz helps
tutors to discover missing theory parts or to discover lazy students [7].
A schedule helps students to plan the time they are going to spend in the course. Students
like to communicate and to see if other fellow students are online at the same time. Therefore,
communication tools should be offered and actively integrated into the learning content.
A course development guide [7] for the VITELS project helps the topic experts to develop
valuable content efficiently. No time will be lost with didactic or layout issues. The guide
enables VITELS module designers to create a uniform and interesting course with identically
structured and designed modules. The document is divided into two parts: the didactical and
the design part. In general, the guide describes a constructivist approach for a hands-on
session oriented e-learning course. It can be adapted (i.e. can be a base) for other courses
than VITELS.

3.1 Didactical Issues

The didactical part of the guide explains the course structure, why certain chapters were
chosen and also provides specific implementation rules [7]. It was developed with the support
of Technologies de Formation et Apprentissage [28].

3.1.1 Common Introduction for all Modules

The task of the „General Introduction and FAQ“ is to avoid reiterations in the various VITELS
modules. It provides information that is valid throughout the whole course and in each module.
It points out the goals of the learning platform (mission), explains the VITELS way of teaching

 21

(pedagogical approach), gives students a short overview of the module structure, presents the
module designers, introduces traditional students into the new way of studying, explains the
laboratory reservation system that is needed to reserve the laboratory equipment of some
VITELS modules (see 4.3 Reservation Infrastructure), provides links that are not module
specific, explains students how to record their progress, motivates students to use the
discussion board, shows students how to get help and last but not least points them to
“Frequently Asked Questions”, which gives answers to questions that concern all modules.

3.1.2 Modules (Detailed Description)

In this section the designers are provided a description on how to create and follow a uniform
course structure throughout their course module. All VITELS modules are split into four
sections. To give students a better orientation, each section has its own colour. Figure 4
shows the layout of the e-learning modules:

Figure 4: Layout for e-learning Modules [24]

In the Introduction students get a welcome message and a very short introduction to the
module. The main goals of this section are described as informing students on what they are
going to learn. In a further step, students must write down their expectations of the course.
The position to other modules is reflected in a Position Map (Figure 5), and in a Mind Map
(Figure 6) the associations are depicted. The FAQ gives answers to questions concerning the
module topic.

 22

Figure 5: The position map for the remote method invocation module

Figure 6: The mind map for the remote method invocation module

 23

In the pre laboratory section (Theory), the students are introduced to the topic of the module.
The theoretical part prepares students for the hands-on session. After the theoretical part, a
list of required and recommended readings is offered. In a “Personal Synthesis” students get
the possibility to express what they have learned and experienced. Students use a tool called
self test to find out what they should read in addition to pass the quiz.

The laboratory section (Knowledge Application/Exploration), is the most important section of
each module. Students apply what they have learned in the theory section: they solve
problems with either simulations, emulations or they work on real devices.

In the post laboratory section (Prove Your Knowledge and Skills), students write a personal
synthesis. In a short essay, they explain what they did in the laboratory section. They then
have to pass a graded final quiz to see what they have really learned.

3.2 Design Issues

Each participating university develops and maintains its modules within its own laboratory
environment, but allows remote students to access and use the laboratory infrastructure via
Internet technologies. The entire course must appear to the user as being homogeneous,
although it is distributed over several locations in Switzerland [5]. The second part of the guide
ensures that all the modules are homogeneous. It explains the visual design, the page layout
(as well as the corresponding design and layout mechanisms) and the course platform
settings.

 24

4 Laboratory

The VITELS architecture, already described in “2.3.1 Architecture” is an open architecture for
remote courses in which geographically distributed clients attend exercises on geographically
distributed servers. The existing software infrastructure is explained in the first section (4.1).
The next sections discuss the controlling of additional hardware resources (4.2) and the
scheduling system (4.3). Finally, in section “4.4 Laboratory Setup”, different aspects like
authentication and security are discussed.

4.1 Required Software Infrastructure

This section explains WebCT, the platform to integrate the e-learning modules, the
Lightweight Directory Access Protocol server, a directory server integrated in the current
architecture for user and data management as well as for scheduling functions, and the
Hypertext Preprocessor (PHP), a scripting language.

4.1.1 WebCT – a Corporate Training Software Environment

Individual modules are integrated on a common platform WebCT which acts as unifying portal
(single point of entry) for students and also as common management platform for course
administrators. WebCT is a Content Management System (CMS), which is tailored to the
needs of higher-education and helps providing the course content. It enables course creators
to tag, store, reuse, reassemble and share learning objects (assessments, lessons, lectures,
tutorials, activities, simulations, graphics, multimedia, and other intellectual assets) [22]. It also
offers the possibility to track how content is used, and by whom. As there is mostly no tutor or
other student available to whom one can ask questions, WebCT offers many helpful tools
such as e-mail, forum, whiteboard, chat room etc. to communicate. Students may also use the
discussion board to ask questions to the tutor or to other students if they can rely on receiving
an answer within a short time. WebCT offers multiple-choice questions, yes or no questions
and text questions. Students find definitions, phrases and acronyms as well as computer
related words in the integrated online glossary.
When studying a paper hardcopy, students are used to take notes; the e-learning platform
opens an additional browser window where students can enter their notes. Figure 7 shows a
list of notes a student has already taken.

 25

Figure 7: WebCT notes - list

4.1.2 LDAP – Managing E-Learning Participants

The e-learning modules offered by the VITELS project are provided to a closed user group
which typically consists of students of one course/class. The project’s modules are restricted
to a closed user group for the following reasons:

• Limited resources. The e-learning resources (available computers) for laboratory

sessions are limited. Resources have to be reserved for and assigned to a specific
student for a specific period of time. Each student therefore needs to be known in
advance.

• Security. E-learning resources like dedicated computers could be misused for activities
which are not part of the practical tutorials.

• Credit administration. Credits earned with the completion of practical tutorials can only
be assigned to known users.

The users which are granted access to the e-learning resources vary over time. A user
administration subsystem ensures that at any time
• the right to access can be revoked from some users
• the right to access can be granted to some users
• a new user account can be created
• an existing user account can be modified
• an existing user account can be deleted

Administrative data about users is kept in a directory on the user administration system of the
“VITELS” platform. The purpose of electronic directories is to provide names, locations and

 26

other information about people and organizations [15]. The directory entries are organized in
hierarchical name space capable of supporting large amounts of information. The data can be
manipulated using the standard lightweight directory access protocol that defines a standard
method for accessing and updating information in a directory.

Lightweight Directory Access Protocol

Early directories were proprietary directories and many of them were incompatible with other
systems. It needed a giant effort to share access to or maintenance of directory databases
with more than one application. Therefore, it became apparent that standards were needed.
The Consultative Committee on International Telephony and Telegraphy (CCITT) created the
X.500 standard in 1988, which became ISO 9594, 9594, Data Communications Network
Directory, Recommendations X.500-X.521. Today, it is still commonly referred to as X.500. In
X.500, the communication between the client and the server uses the Direct Access Protocol
(DAP) that requires the entire Open System Interconnection (OSI) protocol stack to operate.
For many small directory implementations it was too complex to address the X.500 server with
DAP. The University of Michigan developed LDAP to be used on the internet as an interface
to an X.500 directory server (or to a proprietary directory) using a less resource-intensive
protocol. Figure 8 shows an LDAP server acting as a gateway to an X.500 server. LDAP uses
the more popular TCP/IP protocol stack for the communication between the LDAP client and
the LDAP server (also called front end to a X.500). The LDAP server accepts requests from
the LDAP client and forwards them to the X.500 server by using the OSI protocol [16].

LDAP
Client

TCP/IP OSI

LDAP
Server

X.500
Server

Directory

Figure 8: LDAP server acting as a gateway to an X.500 server

Initially, the LDAP server was used as a front-end to X.500, but now it supports access to a
stand-alone directory server. This makes the LDAP server much more complicated (it must
store and retrieve directory entries) and eliminates the need for the OSI protocol stack. Figure
9 shows a stand-alone LDAP server [16].

 27

LDAP
Client

TCP/IP

LDAP
Server

Directory

Figure 9: Stand-alone LDAP Server

In the VITELS project, an LDAP server has been integrated, as it has several advantages: the
fast handling of read access, a powerful student management with a minimum of student
account administration and an implementation that can be obtained for free from OpenLDAP
[47].

4.1.3 PHP - Implementing Dynamic E-Learning Applications

PHP: Hypertext Preprocessor [36] is a widespread scripting language for developing
interactive web applications. Similar to other development environments in this realm, for
instance Active Server Pages (ASP) [35] or Java Server Pages (JSP) [37], it supports a
programming model, in which scripting code and mark-up for the web-based user interface
are mixed in the same source document. A PHP program (also called a PHP script) is
executed by an interpreter, the PHP engine. In contrast to JSP or ASP.NET (a modern dialect
of ASP) there is no compilation step for PHP scripts, because the PHP scripting language is
an interpreted language. Similar to other technologies, the PHP engine is however tightly
integrated with a web application container. There are PHP engines for the Apache Web
Server and for the Internet Information Server (IIS).

PHP has been chosen among available web application platforms for the following reasons:
• Deployment Platform. A PHP based web application can be deployed on a UNIX

platform and on a Windows platform, whereas the deployment of an ASP based
application is in general restricted to a Windows platform and to a specific web
application container (Microsoft’s Internet Information Server)1. Because Linux is installed
on the VITELS laboratory servers, PHP has been chosen over ASP.

• Flexibility. Because PHP is an interpreted scripting language without explicit compilation
step, the development of a PHP based web application benefits from flexibility,
adaptability and short development roundtrips. In this sense, the development is more
flexible than with web application environments such as JSP.

1 There are products available for running ASP-based applications on a UNIX platform, i.e. Apache:ASP [49] or
SunONE ASP [50], but they are either not yet widely used in the web development community or only available as
commercial products.

 28

Figure 10 shows a sample PHP script. The code enclosed by <? and ?> is interpreted by the
PHP engine. The text outside these brackets is sent verbatim to the client software. Since this
script runs within a web application container, it can receive parameters from a Hyper Text
Transfer Protocol (HTTP) based invocation. For instance, if the PHP script in Figure 10 is
available under the Uniform Resource Locator (URL)

http://your.host.com/show-user.php

it can be invoked with parameters. The URL
http://your.host.com/show-user.php?user=christine

invokes show-user.php with a parameter called user whose value is christine. The
value of this parameter is accessible within the script in the global array $_REQUEST[“user”]
(see line 6 in Figure 10). The output of the interpreted script in Figure 10 is shown in Figure
11. From this listing we can see that the output consists of mark-up only. The scripting code
within <? and ?> has been evaluated and filtered out by the PHP engine.
Because a PHP script is interpreted when a user invokes it from a web browser and because
it can respond depending on user parameters, PHP scripts are well suited to implement
dynamic web applications.

Finally, Figure 12 shows the rendered output from the sample script.

1: <html>

2: <head>

3: <title>Demo PHP application</title>

4: </head>
5: <?
6: $user = $_REQUEST[“user”];
7: // get firstname and lastname from an SQL database
8: // (details hidden in the procedure lookup_user_in_database)
9: list($firstname, $lastname) = lookup_user_in_database($user);
10: ?>

11: <body>

12: <h1>Demo PHP Application</h1>
13: Welcome, <?= $firstname ?> <?= $lastname ?>,

14: to the PHP Demo Application !

15: </body>

16: </html>

Figure 10: Sample PHP script (show-user.php)

 29

1: <html>

2: <head>

3: <title>Demo PHP application</title>

4: </head>

5: <body>

6: <h1>Demo PHP Application</h1>

7: Welcome, Christine Rosenberger,

8: to the PHP Demo Application !

9: </body>

10: </html>

Figure 11: Output of sample PHP script (show-user.php)

Figure 12: Rendered output of sample PHP script

4.2 Laboratory Architecture

This section explains the architecture of the laboratory that students can access remotely to
do their practical work. The laboratory architecture consists of two conceptually distinct, but
nevertheless closely related architectures:
1. The system architecture, i.e. the computing nodes, operating systems, networks topology,

and hardware equipment used.
2. The software architecture, i.e. the set of required software components, their roles and

how they relate to each other.
This chapter explains the concept of multi-tier architecture, i.e. the kind of software
architecture given by both RMI-based and application server based distributed applications.
Alternative system architectures are discussed in the next section according to which the
laboratory could be configured. Finally, the system architecture which turned out to match
best with our evaluation criteria is presented.

 30

4.2.1 Multi-Tier Architecture

Software systems are often conceptually divided into tiers, i.e. software layers with distinct
responsibilities (providing a user interface, managing persistent data, performing business
logic, etc.) which often may (but must not) be deployed on distinct distributed network nodes.
Multi-tier (application) architecture provides a model for developers which can be used to
create a flexible and reusable application.
The term multi-tier architecture is a generalization of two other well-known architectural styles:
First, the client-server architecture (which can be described as 2-tier architecture), and
second, the web application architecture (which can be described as 3-tier architecture).

The e-learning modules teach how to use the two technologies "Remote Method Invocation"
and "Application Servers". The first is fundamental technology in 2-tier architecture, whereas
the later is a cornerstone in n-tier architectures (where n >= 3).
In the following two sections we present these two flavours of multi-tier architectures.

4.2.1.1 2-Tier Architecture
A 2-tier architecture splits processing into two or more processes, often using two or more
machines [3]. This architecture is often used to display a simple web page, as the display of a
Hyper Text Markup Language (HTML) page is simple and requires very little data
manipulation. Figure 13 shows a scenario where the client (browser) sends an HTTP request
to the web server. The server sends the page as a stream of text to the client that formats and
displays it based on the HTML tags.

Figure 13: 2-tier architecture (web application)

An other example of a client/server architecture is a 2-tier business application. It consists of a
client application which accesses a database where the data is stored. But as a system gets
more complex there has to be found a location for the business logic (the applications
intelligence). Figure 14 shows the possibilities.

 31

ClientClient

Business Logic

Business Logic

Database Database

Figure 14: Hosting the business logic in a 2-tier architecture

The first possible choice, shown in Figure 14, is to put the business logic in the database, but
databases do not provide convenient languages to write business logic. The other alternative
is to put the business logic in the client, which leads to what is commonly called the “fat client”
problem. The business code is copied to every deployed client. It will be very complicated to
ensure that the code remains consistent across all client applications. The maintenance will
prove even more difficult, as different types of clients (like a standalone, web or mobile client)
are used. The problem can be solved by adding an additional tier which will host the business
logic.

4.2.1.2 N-Tier Architecture
By adding a new layer between the client application and the database the application is
extended to a 3-tier architecture. The new layer can host the business logic. Figure 15 shows
how this new tier might fit into an application architecture.

Application Server
(middle tier)

Business Logic

Database

Presentation
Logic Data Layer

Client

Figure 15: A 3-tier architecture

 32

The system is partitioned into three logical layers and every layer has different responsibilities:
• The presentation logic resides in the client, dealing with the user interfaces and user

transactions. The technologies used here may be Visual Basic for a stand alone
application. For a web application the client could use JSP, ASP or Java Applets.

• The business logic resides in the application server (middle tier), executing a part of the
application logic to solve business problems. Typically, this layer is written in type-safe
languages such as Java or C++.

• The data layer, on the backend, is used by the business logic layer to persist state
permanently. The database is now isolated from the presentation layer. This way, the
presentation is not related to the manipulation of data [1].

An application can be broken down into an n-tier application, by adding more layers to the
architecture and by distributing the logic into these layers. (“n” is the number of distinct tiers
used in the architecture). For example, the business logic tier in Figure 15 might be broken
down into a business logic tier and a data access tier.
N-tier systems are more complex and therefore more difficult to design and to implement than
monolithic or 2-tier systems. In the hands-on session, students will have to develop client- and
server programs. The following chapters discuss the different possibilities how and where to
install the machines.

4.2.2 Architecture Proposal and Discussion

N-tier systems are more complex and therefore more difficult to design and to implement than
monolithic or 2-tier systems. In the hands-on session, students will have to develop client- and
server programs. This chapter discusses the different possibilities how and where to install the
machines.

4.2.2.1 System Architecture for the Module “Remote Method Invocation”
In the hands-on session of the "Remote Method Invocation"-module, students must complete
a client program and a server program.

Scenario 1: Students Works Locally on their Client Workstation
Approach: The students download the given client and server testing-programs from the
course server. They write, compile and test their own client/server programs on their local
machines.

Course Server

HTTP(S)

Client/Server Programs
Local

Internet

Figure 16: Students work on their local machines

 33

Discussion
This approach is not compliant with the requirements of a VITELS course module. A VITELS
course module must be accessible and fully functional in such a way, that the students do not
have to install any software components other than a standard web browser (with Java
support) on the client machine. This approach, however, urges students to install a Java
Virtual Machine (VM) on their workstation.

Scenario 2: Simulation of the Distributed Computing Environment on one Dedicated
Server
Approach: A dedicated server machine is assigned the role of a server in a distributed
computing environment. Students have access to this server for two tasks:
• compiling and deploying both the client and the server part of the distributed application
• testing the client part against the server part

Students can either edit the client and the server on their local workstations using a locally
installed text editor or do this task remotely on the server-machine.

Course Server

HTTP(S)

Student

Internet

Server-Machine With
Client/Server Programs Client Program

For Testing
Server Program

For Testing

Simulation:
On One
Machine

Gateway

SSH

Figure 17: Simulation on one dedicated machine

Discussion:
As mentioned above, the students’ task in the hands-on session of the RMI-module is to
develop client/server applications. In order to invoke an object’s method on the server, the
client process must acquire a remote reference of the remote object from a binder in the
server process (For more details see chapter “5.3 Structure and Theory of the Course”). To
look up a remote reference on another Java virtual machine a string (like
“rmi://iam.unibe.ch:1000/HelloWorld”) is used. In this string “iam.unibe.ch” is the
target machine where the VM is located. If students do not specify a target machine in the
exercise, the localhost is taken by default. For the architecture shown in Figure 17, this would
be correct, but in a real distributed system on separated machines an error would occur. As
this is very often the first time students deal with client/server programming, it seems
important to offer them an environment as close to reality as possible. The next section
proposes such an architecture.

 34

Scenario 3: Client- and Server on Remote Machines
Approach: The laboratory is equipped with three dedicated machines: the “Portal Server”, the
“RMI Client”, and the “RMI Server”. Students complete both the server and the client part of
the distributed application on those workstations using an installed text editor. They then
compile the programs and test the distributed application in a truly distributed environment.

HTTP(S)

Portal

Course ServerStudent

Switch

RMI
Client

RMI
Server

InternetHTTP(S)

SSH

SSH

SSH

SSH

Figure 18: Client- and server program on dedicated machines

Discussion
In this configuration, the client and the server code for the RMI-module are placed on two
dedicated machines. This helps students to understand a truly distributed execution
environment or deployment architecture.
• The students have to locate the remote reference on a remote machine. If they forget to

specify the URL to the target machine or if they enter the wrong URL, an error occurs
because the registry is not on the “localhost”.

• Client and server do not need the same files on their system. Some files are only used by
the client process, some are only used by the server process and others have to be
deployed on both. In a distributed environment, students have to copy some of the files
(stubs and interfaces) generated on the server to the client (which is not the case if client
and server process run on the same machine). This results in a better comprehension of
the components and modules in a distributed environment.

• To keep the user administration on the client and server machines as simple as possible,
laboratory accounts (e.g. “rmi1” on the server) are set up on those machines.

 35

Evaluation Criteria for System Architecture
Table 1 shows the evaluation results for the system architecture: In scenario 1, students work
locally on their client workstation. In scenario 2, the distributed computing environment is
simulated on one dedicated server. In scenario 3, client- and server programs are deployed
on two separated remote machines.

 Scenario 1 Scenario 2 Scenario 3

No additional software has to be installed. x x

Students can either edit the program local
on their own workstation or on the
laboratory machine(s).

 x x

Students get experience in a truly
distributed environment.

 x

Students must specify the URL to the target
machine.

 x

Students learn where and how to deploy the
interfaces, stubs and skeletons.

 x

Table 1: Evaluation for the system architecture

4.2.2.2 System Architecture for the Module “Application Server”
The goal of this module is to enable students to deploy and run their own server-side
components by using an application server (see chapter6). A client program will invoke
methods on those components.

Approach: The application server is placed on an additional machine, so that the students
who access the hand-on session of the “Application Server”-module do not interfere with the
students who access the laboratory equipment of the “RMI”-module. When deploying the
client program within the same VM as the application server, no special configuration to
create an initial context (the initial context is used to obtain a reference to a remote
component) has to be performed. When using the naming service (see 6.3.3.3) to a remote
application server, the initial context can be specified by either using a hash table with the
desired properties or by making a property file available on the client’s classpath. In order to
enable a client to connect to a remote application server, only one property (the URL) in the
property file must be changed. Listing 1 shows a sample property file for connecting to the
local host. Listing 2 shows a sample property file for connecting to a remote application
server.

 36

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost

Listing 1: The JNDI property file with the URL “localhost”

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=jnp://10.1.1.35

Listing 2: The JNDI property file with the URL “kif.unibe.ch”

This minor modification in one configuration files to access an application server running on
another machine does not justify the cost to configure an additional machine. Therefore, only
one machine is used. Figure 19 shows the final architecture.

HTTP(S)

Portal

Course ServerStudent

Switch

RMI
Client

RMI
Server

InternetHTTP(S)

SSH

Application
Server

SSHSSHSSH

SSH

Figure 19: The architecture for the “Application Server”-module

Alternatively, a second portal server for the “Application Server”-module could be installed
which would increase the availability in case a portal server fails. This approach, however,
would create additional administration overhead. Even the slightest change in the system
configuration has to be replicated on several portal servers which results in a lot of repetitive
work. If the availability is to be increased, a backup-server would be a much better solution, as
it keeps the installation of the machine as simple and as consistent as possible.

 37

Unlimited concurrent usage of resources is possible if the usage of one user does not
interfere with the usage of another user. This is certainly the case for accessing the portal
server.

Users need limited concurrent usage to solve practical exercises which require exclusive
access to the laboratory equipment. To grant exclusive access to the laboratory hardware, an
existing resource reservation system [8] is used. The next section describes this reservation
system which is part of the VITELS platform.

 38

4.3 Reservation Infrastructure

The access to the timetable is granted by an additional authentication with username and
password. The users choose if they log in as “VITELS Student” to get normal access or as
“VITELS Staff” to get the respective privileges.
For accessing students’ and module data on the LDAP directory server, a scheduling script
[10] connects the LDAP server with a Graphical User Interface (GUI). Figure 20 shows the
scheduling timetable where students can book, change or delete module reservations.

Figure 20: The scheduling system for the VITELS course

If a VITELS staff member is logged in, the administration menu shown in Figure 21 is
displayed below the timetable. With the menu item “view names” the administrator is shown
the names of the students that have reserved time slots. He/she may delete greedy students
that have reserved too many time slots at a time. With the “add/remove slots” menu item, the
administrator is shown a screen on which he/she can add and remove timeslots; with the
“change module settings” menu item, the administrator can define the duration of the slots,
the number of slots per day and he/she can also update the starting time of the first slot.

 39

Figure 21: Administration menu

For more details about the graphical user interface for VITELS scheduling see [11].

4.4 Laboratory Setup

The laboratory for the hands-on session consists of four dedicated machines: the portal server
(finster.unibe.ch) to log in, the server for the RMI-module (martian.unibe.ch) on which the
server programs are deployed, the client for the RMI-module (elmer.unibe.ch) on which the
client programs are deployed and the machine for the “Application Server”-module
(kif.unibe.ch) where the application server is installed (see 4.2). The document “Hands-on
Session, Hardware Setup” [13] describes the installation and configuration of the involved
machines required for the distance learning modules “Remote Method Invocation” and
“Application Server”.
The following sections describe the authentication process to access the laboratory
equipment, how the laboratory machines are reset to their original state when a new user
accesses the system and how students can reset the machines in case they get lost.

4.4.1 Authentication and Authorisation for the VITELS Course and the
Laboratory Equipment

Students accessing the VITELS course are from different educational institutes all over
Switzerland. Only students registered for a hands-on training shall have access to the
laboratory equipments, which means that a user administration is required. The course
administrator gives the accessing permission, and the participant will be entered in a local
database at the university. In order to authenticate2 the students on the VITELS platform, the
students are assigned a user id and a password which they enter in a web form. Userid and
password are sent to the VITELS web server using an encrypted HTTPS request. On the
VITELS web server, they are validated against the user credential stored in the VITELS user
directory.

After a successful authentication, the students get access to some of the resources
(authorisation3).
Examples:
• viewing a course web page
• reserving a laboratory time slot in the laboratory reservation system
• loading and executing an active course module
• accessing laboratory resources in a specific time slot
• being able to view and evaluate work results of student sessions

2 Authentication is the process of determining whether someone is, in fact, who he claims to be[1].
3 Authorisation is the process of granting some principal permission to do an operation on a specific resource[1].

 40

A permission to access the VITELS course does not give students immediate access to the
laboratory equipment. They have to follow an additional authentication and authorisation
process. A portal server [10] for the “Simulation of IP Network Configuration “-module is
already realized, and this portal has been used, modified and integrated to undertake the task
of authentication for the “Remote Method Invocation”-module and for the “Application Server”-
module. The portal does not contain any student data but connects to the central LDAP
directory server to get the needed information.
Figure 22 shows the modified portal for the “Application Server”-module.

Figure 22: Modified portal for the hands-on session

Students and teachers connect with secure shell through the portal to the laboratory
equipment; the setup is described in the following chapter.

4.4.2 Security Infrastructure: SSH – Providing Security to Distributed E-
Learning Participants

Very often, Telnet is used to connect to and to work on a remote computer. By using Telnet,
data is passed unencrypted over the network inviting eavesdroppers to sniff the traffic. The
connection can be secured by establishing a secure Shell connection between the student’s
computer and the gateway. With the Java applet called Mindterm [27] such a connection can
be established without installing an SSH client on the student’s computer. The usage of the
Java applet is described in [12].

After having logged in to the hands-on session, the students can start the Mindterm applet by
either clicking on the computer icons or on the links below the computers. Figure 23 shows
the login page to access the client- and server machine for the “RMI”-module.

 41

Figure 23: The login page to the client- and server machine

In a first step, the Mindterm applet initializes an SSH connection from the student’s computer
to the gateway. This connection will be automatically redirected to either the server or the
client machine. To redirect the login from the portal server to the client and server machines
new users (for example “user1”) had to be added on the portal. For each new user a new file
(e.g. “user1”) must be created in the directory “/root/”. Listing 3 shows the content of one of
these files.

#!/bin/sh
/usr/bin/ssh 10.1.1.35

Listing 3: Content of the file “/root/user1” on the gateway

Now the student has a SSH window for each machine. Figure 24 shows an SSH session with
“martian.unibe.ch”.

 42

Figure 24: SSH session with the “Server”

It is possible to transfer source files to the laboratory computers using the “Send ASCII
File“-command from Mindterm's File menu. Since the laboratory devices are behind the
university’s firewall, Mindterm's “SCP File Transfer”-command is not supported, which
means that no files can be transferred from the laboratory machines to the student machine.

4.4.3 Preparing and Resetting Laboratory Equipment for a Hands-on Session

After a student has finished his/her laboratory session, the client and server machines must
be reset to their original state to be ready for the next student. Every time a new student logs
in to the laboratory, a script is called that resets the machines to their original state. In order to
find out if the user in the current session is different from the last user, the current user’s
name is compared with the last user’s name written into a file. If the user names are identical
the user can log in. If not, a script is called which deletes all files in the directory
“/home/rmi1” and “/home/rmi2” on “10.1.1.20” and “10.1.1.21” or “/home/apps0” on
“10.1.1.35”. Then, new passwords for the users are generated and set. The new username is
written into the username-file. Listing 4 shows the cleanup script for the server and the client
machine for the “RMI”-module.

 43

#!/bin/bash

cleanup script for Module 9: RMI

delete old user directories and create new user directories
ssh root@10.1.1.20 "rm -rf /home/rmi1;cp -a /root/rmi1/ /home" ssh root@10.1.1.21 "rm
-rf /home/rmi2;cp -a /root/rmi2/ /home"

create new password
passwd=`openssl rand -base64 6`

change user passwords
(echo $passwd;sleep 1;echo $passwd)|passwd rmi1 2>/dev/null
(echo $passwd;sleep 1;echo $passwd)|passwd rmi2 2>/dev/null

change applet parameters
sed /password/s!value=\"........\"!value=\"$passwd\"! [LF]
 /home/portal/public_html/module_9/module_9.php > temp

su portal -c 'cp temp /home/portal/public_html/module_9/module_9.php'

rm -f temp

Listing 4: The cleanup script for the server and for the client machine (RMI)

To run the script the command “sudo /root/cleanup.scr” is used, and the user “www-
data” must get permission to access the cleanup script.
The command sudo (superuser do) allows a system administrator to give certain users (or
groups of users) the ability to run some (or all) commands as root or another user while
logging the commands and arguments. The sudoers file is composed of two types of entries:
aliases (basically variables) and user specifications (which specify who may run what) [23].
Listing 5 shows the “/etc/sudoers” – file that gives the user “www-data” permission to run
the cleanup script.

This file MUST be edited with the 'visudo' command as root.

See the man page for details on how to write a sudoers file.

User privilege specification
www-data localhost = NOPASSWD: /root/cleanup.scr
www-data finster = NOPASSWD: /root/cleanup.scr
www-data finster = NOPASSWD: /root/cleanup_server.scr
www-data finster = NOPASSWD: /root/cleanup_client.scr

Listing 5: The sudoer file

 44

4.4.4 Error Detection and Correction

One of the major disadvantages of a remote laboratory session is the fact that most of the
time there is no tutor and no other students available to ask question. There is a certain
danger that students may get lost or do not know how to respond to a critical system failure
during the execution of the laboratory session. As part of the recovery functions, a virtual
“emergency button” (Reset Button) should be provided that allows students to restart the
exercise session at any time. At the bottom of the “Hands-on Session” side for the “Remote
Method Invocation”-module and the “Application Server”-module, buttons are integrated. With
these buttons, the students can reset a machine. Since this action will delete all files and
entries students have written so far, they will be warned before the cleaning action takes
place.
The exercises should be supervised, and the students should get a feedback, which increases
the motivation for learning. For the evaluation of the hands-on sessions, the students must
copy their programmed code into the final quiz of the e-learning modules. The final quiz will be
evaluated by a tutor manually, and the students can earn points.

 45

5 Module 1 – Remote Method Invocation

This module deals with the programming of distributed applications, which are applications
composed of cooperating programs running in multiple processes. Students will become
familiar with the concept of Remote Method Invocation, an object-based programming model
which allows objects in different processes to communicate with each other. The objective of
this module is to enable students to develop a client/server program using Java RMI.

Logo 5: Remote Method Invocation

The following sections describe the motivation for developing this module in the VITELS
project. They define the learning objectives and summarize the theory of the “Remote Method
Invocation”-module. Descriptions of the examples (Fazuul and Mastermind) which are used in
the hands-on session as well as implementation details are given

5.1 Motivation

“The network is the computer” – this well-known advertisement slogan used by Sun
Microsystems, one of the leading IT companies, propagates that our idea of computers and
how we make use of them is more and more influenced by the fact that computers are
connected to networks. Computers and applications are more and more organized the same
way we are used to organize our work: they are no longer just busy with computing but also
with communicating, collaborating, and interacting.
The module “Remote Method Invocation” explains a fundamental technology for
interconnecting applications running on multiple computers. In other words, those applications
are running in a remote context or a distributed environment. Application developers working
with object-oriented programming languages know how to design classes, specify and
implement methods on these classes, create objects as instances of these classes, and
invoke methods on objects in order to execute a part of the application logic in a local context.
RMI enables an application developer to use the same concepts in a remote context, for
instance to create references to objects running on a remote computer and to remotely invoke
a method on these objects.
VITELS is designed for students who have already acquired a two years’ knowledge in
computer sciences or similar branches. Their already acquired knowledge provides the basics
for understanding each module's new lecture material [7]. In the “Remote Method Invocation”-
module, it is assumed that students have basic knowledge of the object-oriented programming
language Java. They should be able to use interfaces and understand why and how they are
defined. They should also know the difference between an object reference and an object
itself as well as understand the passing mechanism of objects in a single process, how to
invoke an object’s method, how to define, throw and catch exceptions, and how Java handles
garbage collection.

 46

5.2 Goals of the Module

To implement Remote Method Invocation, several different objects and modules are required.
In the theory section, the students will be studying the presented programming model for
distributed applications used by RMI, the use of middleware and the different objects and
modules of RMI shown in Figure 25.

Figure 25: Modules and objects in RMI [2]

• Client and remote object
• Communication module,
• Remote reference module and remote object table,
• Proxy,
• Skeleton & dispatcher
• Binder (location service)

Students learn how object-oriented concepts used in a local context have to be extended and
adapted to fit into a remote context.
Students are able to complete a given piece of client code in such a way that the client-
program finds, addresses and references objects running on remote computers. The
completed client then invokes a method remotely and sends the method parameters over the
network to the remote computer.
Students study how to complete a server-application until they are able to write the server
code in such a way that it can publish its own objects on the network and other programs can
access them by using RMI. As soon as the server-code responses to the client's invocation,
students know they have successfully completed the exercise.

 47

5.3 Structure and Theory of the Course

The theory section has been divided into the following eight subchapters: Introduction,
Middleware, The Distributed Object Model, Implementation of RMI, Programming Restriction
in a Distributed System, Parameter-passing Mechanism in Java RMI, Object Serialization and
Problems with Java RMI. At the beginning of the theory, the general concept of Remote
Method Invocation is explained. The “HelloWorld” example is used to illustrate this concept
in Java RMI, which is a realization of the RMI concept. Figure 26 shows the table of contents
for the RMI-module.

5.3.1 Structure

1 Introduction
2 Middleware
3 The Distributed Object Model
3.1 Remote Object Reference
3.2 Remote Interface
4 Implementation of RMI
4.1 Communication Module
4.2 Remote Reference Module
4.3 Proxy
4.4 Dispatcher
4.5 Skeleton
4.6 Generation of Proxy, Dispatcher and Skeleton
4.7 Binder
4.8 RMI URLs
4.9 Server Program
4.10 Client Program
5 Programming Restriction in a Distributed System
5.1 Access to Variables
5.2 Pointer
6 Parameter-passing Mechanism in Java RMI
6.1 Parameters between Processes
7 Object Serialization
8 Problems with Java RMI

Figure 26: Table of contents for the RMI-module

 48

5.3.2 Theory

Introduction
The introduction gives a brief description of RMI. RMI supports communication between
distributed objects, which is a major requirement to create distributed applications. It also
gives an overview of the required modules and components.

Middleware
RMI is connectivity software (middleware) gluing software together or mediating between two
separate and sometimes already existing programs. It hides the details of marshalling,
message passing and locating remote objects from client and server programmers.

Distributed Object Model
The distributed object model extends the object model to support distributed objects [2]. This
chapter also provides an animation explaining the difference between local and remote
method invocation. Local method invocation is used to invoke an object’s method in the same
process; the remote method invocation is used for objects which are deployed in different
processes (on the same or on different computers). Two subchapters (remote object
reference and remote interface) help to understand the distributed object model.

• Remote Object Reference is an identifier used to refer to a particular unique remote

object that can be accessed via a remote object reference. To guarantee uniqueness
throughout a distributed system, the representation of the remote object reference differs
from the local object reference. There are several ways to construct a remote object
reference. Figure 27 shows a possible representation of a remote object reference.

Figure 27: Possible representation of a remote object reference

• The Remote Interface, which is implemented by the remote object, as well as by the

stub and skeleton, exposes the object’s methods which can be invoked remotely. At the
end of this subchapter, a remote interface for the HelloWorld-example shows how an
interface is turned into a remote interface. Figure 28 shows how a client uses a remote
interface to invoke a server’s object method.

 49

Figure 28: Remote object with remote and local interface

Implementation of RMI
Several objects and modules are involved in invoking a remote method. The RMI software
consists of the proxy, the dispatcher and the skeleton running over the communication and
remote reference module. The communication and the remote reference module are
integrated in Java RMI, which means that the programmer can ignore them. However, the
programmer has to generate the stubs and the skeletons by using an RMI compiler. For
writing a server and a client program, the programmer must be able to retrieve a remote
reference from a binder by using an RMI URL (Uniform Resource Locator). The objects and
modules are described below:

• The two Communication Modules carry out the request-reply protocol. They transmit

request and reply messages between client and server. In this subchapter, an animation
shows the request-reply communication in a scenario where a client invokes a method in
a remote object.

• The Remote Reference Module is responsible for the translating process between the
local and the remote object reference and for creating remote object references. In each
process, the remote reference module has a remote object table that records the
corresponding local object reference for every remote object reference in this process.

• The purpose of a Proxy is to make the remote method invocation transparent to the
client. The proxy behaves like a local object to the invoker, but instead of executing an
invocation, it forwards it in a message to a remote object. The proxy hides the details of
the remote object reference, the marshalling of arguments, the unmarshalling of results
and the sending and receiving of messages from the client. In Java RMI, the proxy is
called stub and is generated automatically with the help of an RMI compiler by passing
the implementation class as a parameter.

• In the server process, a Skeleton method unmarshals the arguments in the request
message, and the server object accepts calls from a skeleton that is local to it. Then, the
skeleton waits for the invocation to complete and marshals the result, together with
exceptions, in a reply message to the sending proxy’s method. In Java RMI, the skeleton
is also generated automatically with the help of an RMI compiler. Figure 29 shows how
client and server process cooperate by using stubs and skeletons.

 50

Figure 29: Stub and skeleton

• A Binder in a distributed system is a separate service that maintains a table containing

mappings from textual names to remote object references. The binder is used by the
server to register their remote objects by name and by clients to look them up. In Java
RMI, the binder is called rmiregistry and can be started from the command line as well as
out of a server program. A client uses an RMI URL to locate a Java object on another
Java virtual machine.

• The Server Program contains the classes for all remote objects, the remote interfaces,
the skeletons and the dispatchers. Very often a server program has a server class that
contains an initialisation section for creating and initialising at least one of the remote
objects and to register the remote object with a binder. A Java object (implementation
class) extends the java.rmi.server.UnicastRemoteObject to become remote
and implements its remote interface.

• The Client Program contains the “invoker”-class and all the proxies for the remote
objects. The client class can use a binder to look up remote object references. To invoke
a method on a remote object the client can use the same syntax as for a local invocation.
However, it is aware that it is invoking a method on a remote object because it must
handle Remote Exceptions.

Restriction in a Distributed System
The following chapter describes the Programming Restriction in a Distributed System. Most
modern programming languages provide a means of organizing a program as a set of
modules that can communicate with each other. Either the modules exchange information and
data by procedure calls or by direct access to the variables in another module [2]. In a
distributed system, there are some restrictions. First of all, it is not possible for one module
running in one process to get direct access to the variable of a module in another process. If
an access to variables in other processes is needed, getter and setter methods must be
implemented. Secondly, pointers cannot be passed over the network. They will not point to
the right address space on the target machine.

 51

When invoking another object’s method (such as getter and setter methods mentioned
above), very often parameters have to be passed, and return values have to be accepted.
When passing a non-remote-object or a remote-object to another process, they behave quite
differently.

Parameter-passing mechanism in Java RMI
Application developers who have already used an object-oriented language are familiar with
the parameter-passing mechanism in a single process: primitive data types are passed by-
value and objects are passed by-reference.
If primitive data types are passed to a remote method as parameters, the mechanism is the
same as in a local context: The parameters are copied to the target machine. If an object (a
so called non-remote object) is passed to a remote method, however, the “pass-by-value”
mechanism is applied. This mechanism is not compliant with the Java language, which uses a
“pass-by-reference” calling convention. A Java object can be a complex object structured in a
graph-like manner and Java RMI must send additionally to the objects all referred objects as
well. To solve this problem, RMI uses Object Serialization, a technology described in the
following chapter. Because passing large serialized object graphs over the network can lead
to inefficiencies (they use a lot of CPU time and network bandwidth), Java RMI simulates a
pass-by-reference convention: the corresponding argument or result is passed as a remote
object reference (passing remote objects). The server receives a stub to the remote object in
the client process and can use it to invoke a method. The operation will occur on the local
host (client).

Object Serialization
As mentioned above, Java RMI uses a concept called Object Serialization in order to pass an
object which contains references to other objects over the network. The term serialization
refers to the activity of flattening an object or a connected set of objects into a serial form that
is suitable for storing on disk or transmitting in a message.
Deserialization consists in restoring the state of an object or a set of objects from their
serialized form [2].
Serialization and Deserialization of arguments and results of remote invocations are generally
carried out automatically by the middleware, without any participation of the application
programmer. However, the programmer has to define which instances of an object are
allowed to be serialized. To do so, the objects implement the java.io.Serializable interface.
This interface is simply a marker interface that identifies the object as something that can be
serialized and deserialized. Any basic primitive type is automatically serialized. Objects
marked with the “transient” keyword are not serialized, and objects that are not marked with
the transient keyword must implement the Serializable interface. If an object is neither
transient nor implements the java.io.Serializable interface, a
java.io.NotSerializableException is thrown.

 52

Figure 30: Object serialization

When serializing “MainClass”, object serialization will recursively step through the
dependencies shown in Figure 30.
MainClass, Class_A, Class_B, String and int will be entirely packaged up in a graph
of objects as a stream. Class_C and long b are marked as transient and will not be
serialized.

Problems with Java RMI
While studying a new technology and developing new programs there are many problems that
may occur. The subchapter “Problems with Java RMI” lists three frequent problems that may
occur when using RMI for the first time.
• The student has forgotten to add the current working directory to the class path and

receives a “class not found” error.
• The student did not copy the stubs - generated by the server - to the client application,

and ClassNotFound Exception occurs.
• Under Java2, with the default security policy in place, an AccessControl Exception

occurs. The security policy must be modified to allow these activities to take place.

After having studied the theory section, the student may attend the hands-on session that
provides two examples.

 53

5.4 Provided Examples

The goal of the hands-on session is to enable students to write their own server and client
program on two single machines using Remote Method Invocation as middleware to
exchange data. In the first scenario, students must complete client code for a game called
“Fazuul”. In the second scenario, students complete the server program for the (well known)
game “Mastermind”.

5.4.1 Fazuul – an RMI example program

The game Fazuul is used in [1] to explain the concept of stateful and stateless Enterprise
Java Beans (EJB) as well as the Java 2 Platform, Enterprise Edition (J2EE). In the first hands-
on scenario of the RMI e-learning module this example has been adapted. This version now
uses Java RMI as middleware to connect the client program with the server program.

5.4.1.1 Description
Fazuul is a simple puzzle that has an infinite amount of funny components (such as Snarf or
Vrommell etc.). The objective is to put two components together to obtain another interesting
component (such as Lucia). Whenever combining two components to create a new one, the
old components are destroyed. But not all components fit to each other. A description of the
components helps to determine the components that can be combined. The game is over as
soon as the “winner” component is formed.

Commands:

gimme pops out three new components

attach <component> to
<component>

attaches two components to a new one and
destroys the old one

inv lists the component you have

drop <component> discards a component

examine <component> gives a description of the component

suspend <filename> writes the current game state to disk

resume <filename> resumes a suspended game

quit quits the game

 54

5.4.1.2 Implementation of Fazuul
Figure 31 shows the class diagram (without stubs and skeletons) for the game Fazuul. The
Client, MachineImpl_Stub and ComponentImpl_Stub are deployed on the client
machine only. MachineImpl, MachineImpl_Skel, ComponentImpl and
ComponentImpl_Skel are deployed on the server machine only, whereas the interfaces
Machine and Component need to be installed on the server as well as on the client machine.

Client <<interface>>
Machine

<<interface>>
Remote

MachineImpl

machine <<interface>>
Component

ComponentImpl

UnicastRemote-
Object

Server

Figure 31: Class diagram for the game “Fazuul”

Component.java: This is the component’s remote interface clients use to invoke a method on
the server. It represents any component such as Snarf or Vrommell. The class
ComponentImpl must implement this interface. The component interface exposes three
methods:
• attachTo(): This method attaches two components. If attaching is successful, a new

combined object will be generated and returned. The two old objects will be deleted. If
two components cannot be attached, a ComponentException will be thrown.

• getName(): This method returns the short name of the component (e.g. Snarf).
• getDescription():This method returns the long description of this component (e.g. “This

is a snarf. The hole looks big enough to fit a Vrommell inside.”).

 55

ComponentImpl.java: This class implements the remote interface Component and is the
class that provides the programming logic. The class must extend the
UnicastRemoteObject to receive the ability to be a remote object. To make the game data-
driven, the component uses a property file FazuulRsc to map its short name to its long
description.

ComponentException.java and MachineException.java: A remote exception is thrown
when there is a network problem, such as machine crashing or network dying. These classes
are used to distinguish between a remote exception and an application-level exception. They
delegate all calls to their super class (java.lang.Exception).

Machine.java: This is the machine’s remote interface clients use to invoke a method on the
server. MachineImpl must implement this interface. The Machine interface exposes one
method:
• makeComponent(): This method generates a new component. This can be either a

specific component, if its name is passed as a parameter, or a random component if no
name is provided.

MachineImpl.java: This class implements the remote interface Machine. Like
ComponentImpl, MachineImpl must also extend UnicastRemoteObject.
Beside the makeComponent() method, this class also provides the main-method: the server
connects to the existing registry, creates an instance of MachineImpl, makes it known to the
RMI registry (under the name “Machine”) and then waits for a client to invoke a method.
With the command gimme, the user gets three new basic components (a Snarf, Vrommell or
Rector). The property file is used to retrieve a list with the basic components in order to check
which components the machine can create.

Client.java: The Client program is the invoker class and accesses the remote objects by
using a stub. The client uses the RMI registry on the server machine to look up the remote
object. In a simple loop, the Client waits for the user’s commands and delegates them to
the server. This class also provides a text-based interface to play the game.

FileLoader.java: This class is used to open and save a game state.

 56

5.4.1.3 Hands-on Session: Fazuul
In the first scenario of the hands-on session, students have to start the binder, get the server
program running, and then complete a given piece of client code for the game Fazuul. The
server program is already developed, compiled and deployed on the server-machine. Figure
32 shows the students’ tasks:

Figure 32: The student’s tasks in scenario 1: Client programming

The students must

1) open a shell and start the RMI Registry on port 2003 on the server machine
(Listing 6).

2) open another shell and get the server-program running, including the security
policy (Listing 7).

3) complete the client program that connects to the server object (Listing 8).

4) compile and start the client in such a way that it can invoke methods on the
server (Listing 9).

Listing 10 shows a typical client interaction.

> rmiregistry 2003

Listing 6: Command to start the registry

> java -Djava.security.policy=../wideopen.policy
 ch.unibe.iam.rvs.fazuul.MachineImpl

Listing 7: Command to start the server

 private final String targetMachine = "rmi://10.1.1.20:2003/Machine";

 /*
 * Set the security manager
 */

 if(System.getSecurityManager() == null){

 57

 System.setSecurityManager(new RMISecurityManager());
 }

 /*
 * Get a reference to the machine
 */
 Remote remObject = null;

 try{
 remObject = Naming.lookup(targetMachine);
 } catch(Exception e) {
 System.out.println(e.getMessage());
 }

 /**
 * Perform a quick check to make sure the object is of
 * the expected Machine interface type.
 * if it is the right type cast the object else throw
 * an exception
 */

 if (remObject instanceof Machine) {
 machine = (Machine) remObject;
 System.out.println("machine is ready to use.");
 }else {
 System.out.println("Bad object returned from" +
 " remote machine");
 return;
 }

Listing 8: Client program

> javac -d ../classes ch/unibe/iam/rvs/fazuul/Client.java
> java -Djava.security.policy=../wideopen.policy
 ch.unibe.iam.rvs.fazuul.Client

Listing 9: Command to start the client

backupuser@elmer:~/Fazuul/classes$ java -Djava.security.policy=../wideopen.policy
ch.unibe.iam.rvs.fazuul.Client
machine is ready to use.

> help

Syntax: [attach <item1> to <item2> | examine <item> | inv | gimme | drop <item> |
suspend <filename> | resume <filename> | quit]

> gimme

The machine pops out a Rector
The machine pops out a Vrommell
The machine pops out a Snarf

> examine Rector

Oh no, it's Rector! Rectors are dangerous, disease-spreading devices. You don't
want to hold on to this one for very long. Perhaps if you fed the Rector a peanut
or disc, it would be pacified.

> gimme

The machine pops out a Vrommell
The machine pops out a Rector
The machine pops out a Snarf

> inv

Rector
Vrommell

 58

Snarf
Vrommell
Rector
Snarf

> drop Snarf

You dropped your Snarf

> inv

Rector
Vrommell
Vrommell
Rector
Snarf

> attach Vrommell to Snarf

Fitting the Vrommell into the Snarf, out pops a Subbert!

> inv

Rector
Vrommell
Rector
Subbert

> quit

Clearing game state...

Listing 10: Typical client session

5.4.2 Mastermind – an RMI Example Program

Mastermind is a simple multiplayer game. Many different implementations exist on the
Internet. The “code-maker” secretly places a colour-combination which the other player, the
“code-breaker”, must guess. The example has been chosen because the computer can take
the role of the code-maker (on the server) and generate the colours to be guessed at random.
The code of the game can be extended in such a way that two people can play together over
the Internet. The graphical interface of the game may vary from very fancy to very simple. In
this hands-on session, a simple text based interface is used.

5.4.2.1 Description
The objective of the game is to guess the sequence of four colours (out of six) which the
computer has randomly selected. The colours are: r (ed), g (reen), b (lue), y (ellow), c (yan)
and o (range).
To play the game, the user enters four colours by typing the first letter of every colour,
separated by a comma.

(i.e. “r,g,b,y”)
After every completed guess, the computer will respond by giving one letter for each correct
colour – (b)lack if both colour and position is correct, (w)hite if only the colour is correct. If the
correct sequence is not found after eight guesses, the game is over. A new game can be
started by typing “new”. To quit the game enter “quit”.

 59

5.4.2.2 Implementation of Mastermind
Figure 33 shows the class diagram (without stubs and skeletons) for the game Mastermind.
Client, MastermindImpl_Stub, MastermindRowImpl_Stub are deployed on the
client-machine only. MastermindImpl, MastermindImpl_Skel, MastermindRowImpl
and MastermindRowImpl_Skel are deployed on the server machine only, whereas the
interfaces MastermindRowResult, Mastermind and MastermindRow need to be installed
on the server as well as on the client machine.

Client <<interface>>
Mastermind

<<interface>>
Remote

MastermindImpl

mastermind <<interface>>
MastermindRow

MastermindRow-
Impl

UnicastRemote-
Object

UnicastRemote-
Object

goal

<<interface>>
Serializable

MastermindRow-
Result

Server

 Figure 33: Class diagram for the game “Mastermind”

Mastermind.java: This is the Mastermind’s remote interface clients use to invoke a method
on the server. It represents the game. The MastermindImpl must implement this interface.
The Mastermind interface exposes five methods:
• newGame(): The client wants to play a new game and sends a “new”-request to the

server (mastermind). When starting a new game this method randomly selects a
sequence of four new colours to be guessed in the current game. The active-game state
is set to “true”.

 60

• playRow(): If the game state is active, the player can start guessing colours which the
client program wraps into the class MastermindRow. This method then checks the given
colours and returns the result as MastermindRowResult: (b)lack if the colour was also
in the right place, (w)hite if only the colour was correct. If no game is active, a
NoGameException will be thrown.

• getGoal(): If the sequence is not found by the 8th guess, the game is over and the player
is shown the correct sequence. This method returns an instance of MastermindRow that
contains the colours randomly selected by the computer.

• setActiveGame(): This method sets the game state: “true” if a new game is started,
“false” if the game is over.

• createRow(): This method creates a new mastermind row with the colours guessed by
the player.

MastermindImpl.java: This class implements the remote interface Mastermind. It is the class
that provides the programming logic. The class must extend the UnicastRemoteObject to
receive the ability to be a remote object. It also provides the main-method: the server creates
and connects to the registry with the port number (from the command line) as parameter,
creates an instance of MastermindImpl, makes it known to the RMI registry (under the name
“Mastermind”) and then waits for a client to invoke a method.

MastermindRow.java: This is the interface for the MastermindRowImpl. In order to
become a remote object, the interface "MastermindRow" implements the java.rmi.Remote
interface. The methods exposed in this interface are setter and getter-methods to access the
private variables described below.

MastermindRowImpl.java: This class represents a row in the Mastermind game. It is used by
the “code-maker” (server) to generate the colours to be guessed. Every time a client plays a
new row, Mastermind creates an instance of MastermindRowImpl based on the colours
guessed. The class provides two private variables: colors, where the guessed colours are
saved and activeGame that saves the game state (true or false).

MastermindRowResult.java: This class is used to save the result of a user’s guess (the
number of black and white pegs). One possibility to pass a parameter over the network is to
use a remote object. Another one is to serialize the object: the class implements the interface
java.io.Serializable to flatten itself into a serial form that is suitable for being
transmitted over the network.

NoGameException.java: A remote exception is thrown when there is a network problem,
such as machine crashing or a dying network. This class is used to distinguish a remote
exception from an application-level exception. It delegates all calls to its super class
(java.lang.Exception).

 61

Client.java: The Client program is the “invoker”-class and accesses the remote objects
with the help of a stub. The Client uses the RMI registry on the server machine to look up
the remote object (under the name “Mastermind”). This class also provides a text-based
interface to play the game. In a simple loop, the Client waits for the user’s commands and
delegates them to the server. As an example, Figure 33 shows how the client delegates the
“newGame”-command to the Mastermind object in order to start a new game.

„new“

newGame()

newGame()

Client Mastermind-
Row

Mastermind

setColor()

setGameState(true)

loop

Until Reaction = „quit“

Figure 34: New game scenario (sequence diagram)

5.4.2.3 Hands-on Session: Mastermind
In the second scenario, students must write and compile the code on the server side for the
Mastermind game. To test the game a compiled client code is deployed on the client machine
which can be started with the command ./run_client.sh. Listing 11 shows the bash file to
start the client.

 #!/bin/sh
 cd classes
 java -Djava.security.policy=../wideopen.policy ch.unibe.iam.rvs.mastermind.Client
 cd ..

Listing 11: The bash file to run the client

 62

Figure 35 shows the student’s tasks:

Figure 35: The students tasks in scenario 2: Server programming

1) The students have the following tasks on the server machine:

• complete the remote interface Mastermind.java in such a way that the class
imports the necessary packages and classes, extends the right super class and
throws the necessary exception(s).

• complete the implementation class MastermindImpl.java in such a way that the
class exports "Mastermind" to the RMI registry (Listing 12), creates an RMI
registry on the specified port (Listing 13) and sets the security manager (Listing
14).

• complete the class MastermindRowImpl.java in such a way that this object
becomes a remote object: the class imports the necessary packages and classes,
extends the right class and throws the necessary exception(s). In addition, the
constructor has to be completed (Listing 15).

• change the class MastermindRowResult.java in such a way that it becomes a
non-remote-object: the class implements the java.io.Serializable interface
(Listing 16).

• compile the code and generate the stubs and skeletons (Listing 17).

2) In a second step, the required files must be copied from the server to the client (stubs
and interfaces).

3) Students can now test the code by starting the mastermind-server and pass the
portnumber “2003” as an argument to the server program not forgetting to include the
security policy (Listing 18).

Listing 19 shows a typical client interaction.

 63

 /**
 * bind the mastermind to the RMI registry
 */

 try{
 reg.rebind(“Mastermind”,this);
 System.out.println(“Mastermind object bound to the “ +
 “registry.”);
 }catch(Exception e){
 System.out.println(“Error: while binding the name to the “ +
 “object: “ + e.getMessage());
 }

Listing 12: Binding the “Mastermind”-object to the RMI registry

 /**
 * start RMI Registry at specified port.
 */

 int port = new Integer(args[0]).intValue();
 Registry reg = null;
 try{
 reg = LocateRegistry.createRegistry(port);
 }catch(Exception e) {
 System.out.println("Error: creating registry " +
 e.getMessage());
 }
 if (reg == null){
 System.out.println("Error: There is no registry. “
 + Aborting the program..”);
 System.exit(0);
 }
 System.out.println("Successfully created registry.");

Listing 13: Creating the RMI registry on the specified port

 /*
 * Set the security manager
 */
 if(System.getSecurityManager() == null){
 System.setSecurityManager(new RMISecurityManager());
 }

Listing 14: Setting the security manager

 /**
 * Constructor MastermindRow.
 */
 public MastermindRowImpl(char[] colors) throws RemoteException{
 this.colors = colors;
 }

Listing 15: Constructor of the MastermindRowImpl-class

 64

 import java.io.Serializable;

 /**
 * implement Serializable
 */
 public class MastermindRowResult implements Serializable{
 …
 }

Listing 16: Creation of a non-remote-object

>cd src
// compiling class files
>javac -d ../classes ch/unibe/iam/rvs/mastermind/*.java
>cd ..

>_MY_CP="/home/backupuser/Mastermind/Solution/classes"

>cd classes
// generating stubs and skeletons
>rmic -classpath $_MY_CP ch.unibe.iam.rvs.mastermind.MastermindImpl
>rmic -classpath $_MY_CP ch.unibe.iam.rvs.mastermind.MastermindRowImpl
>cd ..

Listing 17: Compiling the Java classes and generating stubs and skeletons

>cd classes
>java -Djava.security.policy=../wideopen.policy [LF]
 ch.unibe.iam.rvs.mastermind.MastermindImpl 2003
>cd ..

Listing 18: Starting the server

===========================
mastermind is ready to use.
===========================

possible colors are r(ed),g(reen),b(lue),y(ellow),c(yan),o(range)
Syntax: [new | x,x,x,x where x in {r,g,b,y,c,o} | quit]
Start a new game with <new>

0> new
0> r,g,b,y
 r g b y | w w w
1> c,o,c,o
 c o c o |
2> g,b,y,g
 g b y g | b b
3> k
Syntax: [new | x,x,x,x where x in {r,g,b,y,c,o} | quit]
3> g,b,r,r
 g b r r | b b
4> y,b,y,r
 y b y r | b b w
5> g,g,g,g
 g g g g | b
6> g,b,r,r
 g b r r | b b
7> g,b,r,r
 g b r r | b b

=================
Sorry, Game over!

 65

=================

Start a game with <new>

Goal was: g y y r
8> new
0> r,g,b,y
 r g b y | w w w
1> c,o,c,o
 c o c o | b
2> c,b,y,r
 c b y r | w w
3> c,y,g,b
 c y g b | b b w
4> c,y,r,g
 c y r g | w w
5> b,y,g,o
 b y g o | b w w w
6> y,o,g,b

============================
Well Done, you won the game.
============================

Start a game with <new>

0>

Listing 19: A typical client session

 66

6 Module 2 – Application Server

This module provides an introduction to application servers which are an important
architectural element in present-day distributed systems. In a first step, the module gives an
overview of the most important concepts of an application server as well as the role
application servers play in distributed systems. In a second step, it teaches how to implement,
configure and deploy software components in the J2EE technology environment and, more
specifically, how to use Enterprise Java Beans (EJBs) and J2EE application servers. The
module also explains how recurring problems in distributed computing (e.g. naming and
accessing distributed services, securing access to remote services and handling transactions)
are solved in this environment.

Logo 6: Application Server

The following sections describe the motivation for developing this module in the VITELS
project. They define the learning objectives and summarize the theory of the “Application
Server”-module. Descriptions of the provided examples which are used in the hands-on
session as well as implementation details are given.

6.1 Motivation

The architecture of modern information systems is influenced by technological progress in
information technology and by the business needs information systems are designed and
implemented for. These two factors are responsible for a shift in the way large information
systems are designed today:
• away from the monolithic server applications of the past, and toward a system

architecture which assembles a set of small, interchangeable software components into a
running system.

• away from the classic separation of an information system into a client and a server part,
and toward an architecture which assigns the complex task of a modern information
system to software components in several architectural tiers.

This module gives an introduction to application servers, which is software to manage the
complexities associated with developing distributed business systems. One of the major
objectives of this software is to free the developer from programming issues like security,
transactional integrity, distribution, concurrency and persistence.

 67

The theoretical part also gives an introduction to Enterprise JavaBeans (EJB), i.e. software
components that live within an application server. The EJB specification defines interfaces for
developing server-side components with distributed technologies. One of the most important
features in EJB is platform independence: “Write once, install anywhere”. This means that a
component that is developed and deployed in one application server, such as an open source
application server, can be moved to a different server.

6.2 Goals of the Module

The development of distributed systems with the help of an application server is quite
challenging. In the theory section, students will study multi-tier architectures, the J2EE
platform and, especially, the different types of Java Enterprise.
By reading the theory and passing the quiz, students learn how an application server may
automatically perform services such as security, transaction, persistence, naming and bean
life cycle management. At the end of the module, students should understand the architecture
of contemporary distributed systems. They should know how to develop, configure and deploy
an EJB component and be able to access and use it from a client application.

6.3 Theory and Structure of the Course

The theory section of the Application Server”-module has been divided into eigth sub
chapters, starting with an introduction to the chapter “multi tier architecture” (already explained
in chapter 4.2.1). The next theory chapter gives an overview of the Java 2 Enterprise Edition
(J2EE) platform and explains how the technologies bundled therein are mapped to the tiers of
a modern n-tiered information system.
The major part of this chapter explains how business logic can be implemented using a J2EE
application server. The chapter contains a description of the J2EE application server
architecture and the concept of Enterprise Java Beans (EJBs), i.e. the type of software
components used in this context. It will be shown how clients can look up and access the
services provided by a remote application server. The different types of EJBs are described,
namely stateless session beans, stateful session beans and entity beans. A detailed
description on how to describe, implement and deploy them will be provided. It will
furthermore be discussed how security requirements and transaction integrity can be enforced
using the respective services provided by a J2EE application server. Figure 36 shows the
table of contents for the “Application Server”-module.

 68

6.3.1 Structure of the Course

1 Introduction
2 Multi Tier Architecture
2.1 Two Tier Architecture
2.2 N-Tier Architecture
3 Introduction to Java 2 Platform, Enterprise Edition (J2EE)
3.1 The J2EE Technologies
3.2 The Application Server
3.3 Enterprise Java Bean
4 Architectural Overview
4.1 Object Model
4.2 Home Object, Home Interface and javax.ejb.EJBHome
4.3 EJB Object, Remote Interface and javax.ejb.EJBObject
4.4 javax.ejb.EnterpriseBean
4.5 Deployment Descriptor
4.6 Ejb-jar file and jakarta’s Ant
4.7 Client
5 Developing Beans
5.1 Session Beans
5.2 Entity Beans
5.3 The Primary Key
6 Persisting and Querying Data
6.1 Container Managed Persistence (CMP) for Entity Beans
6.2 Query Entity Beans
7 Services
7.1 Naming
7.2 Transaction
7.3 Security
8 Deployment Descriptor Reference

Figure 36: Table of contents for the “Application Server”-module

6.3.2 Introduction to Java 2 Platform, Enterprise Edition (J2EE)

J2EE is a specification suite that defines a platform for application servers. Over the past few
years, several application servers which can host distributed applications have appeared on
the market. In order to ensure portability, Sun has produced a complete development platform
called the Java 2 Platform, Enterprise Edition (J2EE).
J2EE is a collection of Java’s Enterprise APIs, integrated in a development platform that
enables the programmers to develop scalable, reliable, and secure server-side applications.
J2EE brings together components (EJBs, JSPs), containers (EJB container, Web Browser),
and resource connectors (e.g. to a database), in one architecture. In addition, the J2EE
defines how these technologies work together. Figure 37 shows some J2EE technologies.

 69

Figure 37: A Java 2, Enterprise Edition (J2EE) deployment [1]

6.3.3 Architectural Overview

An application server hosts Enterprise Java Beans (EJB) which is a standard for building
server-side components in Java. The first section explains an object model for a component.
The second section provides an introduction to the deployment descriptor that every
component must include. Finally, the last chapter provides a closer look at the components’
clients.

 70

6.3.3.1 Object Model
A bean component is made up of many classes and interfaces: some of them are provided by
the container, some have to be written by the bean provider, some come along with the EJB
distribution, and some come with the Java 2 platform. Figure 38 shows an object model for an
example bean.

<<home interface>>
BankTellerHomeRemote

<<remote interface>>
BankTellerRemote

<<Stateless Session>>
BankTellerBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

<<interface>>
javax.ejb.SessionBean

<<interface>>
java.rmi.Remote

<<interface>>
javax.ejb.EnterpriseBean

<<factory>>
Home Object

<<guard>>
EJB Object

<<interface>>
java.io.Serializable

Comes with Java 2 platform

Comes with EJB distribution

Provided by
Bean Developer

Generated by a
container’s tool

Figure 38: An object model for a component (in this case a stateless session bean)

• The home object is usually generated during the deployment process by the container. It

implements all the methods defined in the home interface.
• Because clients do not know where exactly an EJB object resides, they cannot instantiate

a bean object (location transparency). The home interface, implemented by the bean
programmer, exposes methods for getting a reference to the EJB component, for
destroying objects or for finding EJB objects.

• The home interface must extend the javax.ejb.EJBHome interface that defines methods
all home interfaces must support.

• The home interface acquires the ability to be remote by extending the Remote interface
provided in the java.rmi package (see the “Remote Method Invocation”-module).

 71

• The EJB object, generated by the container, is a network-aware object that supports
networking, transaction, security, and other services. The container uses the EJB object
to intercept calls from the client and to delegate them to the bean instance.

• The remote interface exposes all business methods that a client can invoke.
• All remote interfaces must extend javax.ejb.EJBObject. This superclass provides

methods4 that the EJB object must implement.
• The EnterpriseBean interface is the basic interface which must be implemented by every

bean class. The EnterpriseBean interface is a common super interface for
javax.ejb.SessionBean and javax.ejb.EntityBean interfaces. In fact, it is a simple marker
interface indicating that the implementation class is indeed a bean.

• Because the EnterpriseBean class extends the java.io.Serializable, it can be converted
into a bit-blob. For more information about serialization have a look at the “Remote
Method Invocation”-module.

6.3.3.2 Deployment Descriptor
The deployment descriptor (DD) is an xml file5 providing information regarding the structure
and the behaviour of the components (e.g. the fully qualified name of the home and remote
interface). The DD enables the EJB container to provide implicit middleware services (like
security, transaction, naming) to enterprise bean components. Listing 20 shows the ejb-jar.xml
file for a stateless session bean.

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>BankTellerEJB</ejb-name>
 <home>ch.unibe.rvs.bank.teller.BankTellerHomeRemote</home>
 <remote>ch.unibe.rvs.bank.teller.BankTellerRemote</remote>
 <ejb-class>ch.unibe.rvs.bank.teller.BankTellerBean
 </ejb- class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full

 access to the Bank Teller.
 </description>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>BankTellerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>

4 getEjbHome(), getPrimaryKey(), remove(), getHandle(), isIdentical()
5 It is possible to write the DD by hand. Integrated Development Environment (IDE) or some EJB container supply tools
to generate the DD file.

 72

 <ejb-name>BankTellerEJB03</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 </assembly-descriptor>
</ejb-jar>

Listing 20: ejb-jar.xml file for a stateless session bean

The code in the first line between the signs <?xml and ?> is called the XML declaration, and it
contains XML-processor specific information. The first element in the XML document is
<!DOCTYPE>. This element describes the organization that defined the Document Type
Definition (DTD) for the XML document, the DTD’s version, and a URL location for the DTD
[4]. All other elements in the ejb-jar.xml file are EJB specific.

6.3.3.3 Client
Many different types of clients can access the EJB server: a stand-alone application on the
same or on a different machine, an applet running inside a Web browser, other enterprise
beans, a client that uses JSP to access the EJB bean and more. Implementing the client is
quite simple and typically a programmer has to do the following steps [1]:

1) Look up a home object
The EJBs rely on the Java Naming and Directory Interface (JNDI), a key technology for object
binding and for looking up a remote object’s home interface across the network. For more
information about JNDI see [1] Appendix A.
Before a client can obtain a reference from a naming service, the server has to register the
component. The name under which the object is registered is specified in the deployment
descriptor. Then, the container automatically binds the name of the component to the home
object.

2) Use the home object to create or find an EJB object
Once a reference to the EJB home is obtained, it can be used to create Enterprise
JavaBeans.

3) Call business methods on the EJB object
The remote reference to the bean can be used like a normal Java object to call methods that
the bean’s remote interface exposes.

4) Remove the EJB object
When the bean is not used anymore, it can be destroyed by calling the method “remove()” on
the remote reference.

 73

UML Diagram
Figure 39 shows the UML sequence diagram for the above mentioned steps.

Client EJB
Home

EJB
Implementation

JNDI
Service

lookup()

reference to
home object

create() or find()

reference
to bean

business methods

return value

Figure 39: UML sequence diagram for accessing a bean

6.3.4 Developing Beans

An enterprise bean is a server-side software component that can be deployed in a distributed
environment. Currently, three types of server-side components exist: session beans, entity
beans, and message driven beans. Message driven beans are not covered by this module.
The next chapter explains the primary key which is used to identify an entity bean.

All bean types have to implement the management call back methods. The following sections
explain these methods.

Management Callback Methods
As mentioned earlier, the components have to implement management callback methods, as
the container calls these methods to interact with the bean. At runtime, the container invokes
the callback methods on the bean instance when appropriate life-cycle events occur. Every
bean type has its own life-cycle. Therefore, session beans, entity beans and message driven
beans do not need to implement the same methods.

 74

6.3.4.1 Session Beans
Session beans are business process objects that implement business logic and business
rules. By working together with entity beans (see 6.3.4.2) and other resources, the session
beans can control the workflow. When the client disconnects from the server, the container
may destroy the session bean instance. Although session beans can perform database
operations, session beans themselves are non-persistent (they are not saved to permanent
storage).

1) Stateless Session Beans
Some methods do not need to maintain state between method invocations. Each method is
completely independent: it may take parameters, performs computing and may give a return
value. Stateless session beans, which are very efficient and easy to develop, are used to
perform services that are rather generic and reusable. But stateless session beans never
store any client data between two method invocations.

Because a stateless session bean is not dedicated to one client, it can be easily reused by
many clients. This has the advantage that the container can pool stateless session beans and
does not have to destroy them after usage.

The Life Cycle of a Stateless Session Bean
The container is responsible for managing the deployed bean’s life cycle. The container
decides when to create, destroy, activate or passivate beans, but it informs the bean by using
management call back methods. The life cycle for a stateless session bean, shown in Figure
40, is quite simple and has only two states: “Does Not Exist” and “Method-Ready Pool”. In the
module theory, the transitions between those two states, as well as the management callback
methods are explained.

Does Not Exist

Method-Ready
Pool

ejbRemove()
Class.newInstance()
setSessionContext()
ejbCreate()

business method

Figure 40: Life cycle of a stateless session bean [4]

 75

2) Stateful Session Bean
Like stateless session beans, stateful session beans are used to model business processes.
Unlike stateless session beans, the stateful session beans support a conversation between a
client and a bean. The business process performed in a stateful session bean’s method can
change the bean’s state, and this change may affect the next method call. The client state
between the method invocations must be saved as long as the client session lasts. But,
stateful session beans are not persistent, just like stateless session beans.

The Life Cycle of a Stateful Session Bean
In order to achieve the effect of pooling for stateful session beans, the life cycle of a stateful
session bean has an additional state, the “Passive”-state. Figure 41 shows the life cycle of the
stateful session bean, when a bean can transition between the different states and the
management callback methods. In the module theory, the transitions between those states, as
well as the management callback methods are explained.

Does Not Exist

Method-Ready

ejbRemove() Class.newInstance()
setSessionContext()
ejbCreate()

business method

Passive
ejbPassivate()
ejbActivate()

timeout timeout

system exception

Figure 41: Life cycle of a stateful session bean [4]

 76

6.3.4.2 Entity Beans
Session beans live about as long as a client session last. In reality, some beans exist for
months or years, and therefore, there has to be a way to store the bean's data. This is what
entity beans are used for: They perfectly model the behaviour and the data of business
objects and they contain core business data. Session beans perform complex business logic
and workflow processes (e. g. closing a bank account). In such processes, the entity bean is
the object, for example the customer or the bank account.
The main asset of entity beans is that they are persistent objects which know how to store
themselves permanently. To put themselves into permanent storage, they use persistence
mechanisms such as serialization, object-relational mapping to relational database (O/R
mapping) or an object database.

The Life Cycle of an Entity Bean
The life cycle of an entity bean starts with its instantiation and ends when it is garbage
collected. The entity bean has the most complicated life cycle of all beans. The states are:
"Does Not Exist", "Pooled" and "Ready". Figure 42 shows the life cycle of an entity bean. In
the module theory, the transitioning between those states, as well as the management
callback methods are explained.

Does Not Exist

Ready

Class.newInstance()
setEntityContext()

business
method

Pooled

ejbActivate()

Object.finalize()
unsetEntityContext()

ejbRemove()ejbPassivate() ejbCreate()
ejbPostCreate()

ejbLoad()
ejbStore()
ejbSelect()

ejbHome<METHOD>()
ejbSelect<SUFFIX>()
ejbFind<SUFFIX>()

Figure 42: Life cycle of an entity bean [4]

 77

An entity bean component is made up of several files:

The entity bean class is an abstract class that models persistent data and can expose
simple methods to manipulate or access data. It must fill in some standard callback
methods. The container will use this abstract class for generating a persistence entity
class.

The remote interface exposes the methods that can be invoked by a client application.
This concept is the same as with session beans.

The remote home interface specifies how an entity bean can be created, located or
destroyed by remote clients. The home interface for an entity bean defines three basic
kinds of methods: Zero or more create()-methods, one or more finder methods and zero
ore more select methods.

Environment properties are used in the same manner as for session beans.

Entity bean’s deployment descriptor. Many of the entity bean’s elements are similar to
the elements of a session bean, but there are some new deployment descriptor entries
that are particular to entity beans.

Entity Bean’s Primary Key Class is a unique identifier of the entity bean class and helps
locating data that describes a unique record or entity in the database

6.3.4.3 The Primary Key
A primary key is an object that identifies an entity bean. A client can retrieve a bean’s primary
key by calling getPrimaryKey() on the remote or local interface.

EJB allows two types of primary keys:
Single field primary key: Very often, primitive wrapper classes (such as Integer or the class
String) are used as primary key class. They are called single field primary keys because they
map to exactly one of the bean’s persistence fields.

Compound primary key: It is possible to use custom-made classes as primary key classes
defined by a bean provider. Compound primary key classes contain one or more public fields
that map to persistence fields in the bean implementation class.

Sometimes, it is not possible to declare the primary key type at development time. For this
case, undefined primary keys are used to defer the definition of the primary key type to the
“deployer “.

 78

6.3.5 Persisting and Querying Data

Two subtypes of entity beans exist: Container Managed Persistence (CMP) and Bean
Managed Persistence (BMP).
For CMP, the data is stored in a database by the container; the bean provider does not have
to take care about the storage. With BMP, the bean provider is responsible for the data
storage. This means that the bean provider must write the corresponding SQL statements.
Only CMP is covered in this module. The next subchapter “Query Entity Beans” explains how
existing beans can be found.

6.3.5.1 Container Managed Persistence (CMP) for Entity Beans
With CMP, the container handles the persistence of entity beans. The container knows how a
bean’s instance and relationship fields map to the database fields and automatically takes
care of inserting, updating and deleting the data associated with entities in the database [4].
This has the advantage that the bean providers do not have to write any code to manipulate
the database.

Virtual Fields
In CMP 2.0, the attributes of an entity bean are declares with a set of abstract accessor
methods (Virtual Fields). The container will store those fields in the database. Basically, a
virtual field is declared by defining an abstract get and an abstract set method in the
implementation class.
Because the container will perform persistence, the bean providers do not have to hard-code
any persistence logic into the beans. To inform the container which fields it should manipulate,
the deployment descriptor contains a description of the virtual fields.
Two types of virtual fields exist:
• Virtual Persistence Fields: Persistence fields can be Java serializable types (e.g.

java.lang.String) and Java primitive types (e.g. boolean). The implementation of the
methods is generated at deployment time by the container. The attributes are set by
calling the set()-methods (e.g. setId()) and the value of the fields can be retrieved by
calling the get()-methods (i.g. getId()). The local or remote interface of the bean
implementation can expose the getter and setter methods defined in the implementation
class (Listing 21).

• Virtual Relationship Fields: Entity beans can form relationships with other entity beans.
The relationship fields are declared by a pairs of abstract accessor methods, in the same
way persistence fields are declared.

Listing 21 shows the virtual field "id". For virtual fields there is no declaration of an instance
variable.

 /*
 * abstract accessor methods (persistence field)
 * ==
 */

 public abstract Integer getId();
 public abstract void setId(Integer id);

Listing 21: Virtual fields declared in the implementation class

 79

Properties of a Relationship
Entity beans can have different types of relationships with each other. This theory section
describes those relationship types and how the bean’s code and the deployment descriptor
work together to define the relationships.
The properties that can differ are the navigability (unidirectional, bidirectional), the multiplicity
(one, many) and the deletion (which can be handled differently).

Navigability
The navigability defines the direction of a relationship. A relationship is called unidirectional, if
it is possible to go from the bean1 to bean2, but not the other way around. Figure 43 shows a
unidirectional relationship: The customer has a reference to the address, but the address has
no reference to the customer.

<<entity bean>>
Customer

<<entity bean>>
Addressx

Figure 43: Unidirectional relationship between entity beans

Relationships that are navigable in both directions are called bidirectional. For example, a
customer knows that he owns a credit card, and it is necessary to find the owner of a credit
card (Figure 44).

<<entity bean>>
Customer

<<entity bean>>
Credit_Card

Figure 44: Bidirectional relationship between entity beans

Multiplicity
The multiplicity (or cardinality) specifies how many instances of data can participate in a
relationship.

Three different types of multiplicity exist:
One-to-One: A one-to-one relationship between entity beans indicates that each bean can
have exactly one relationship with the other bean. Figure 45 shows this relation: a customer
can have no address or one address, and each address belongs to exactly one customer.

<<entity bean>>
Customer

<<entity bean>>
Address

0..11x

Figure 45: One-to-one relationship (unidirectional)

 80

One-to-Many: In a one-to-many relationship, an entity bean can maintain multiple relations
with other beans. In Figure 46 a customer can open several accounts and each account
belongs to exactly one customer

<<entity bean>>
Customer

<<entity bean>>
Account

1 0..*
x

Figure 46: One-to-many relationship (unidirectional)

Many-to-Many: A many-to-many relationship occurs when many beans maintain a collection-
based relationship field with other beans, and each bean referenced in the collection may
maintain a collection-based relationship field with the aggregating [4]. Figure 47 shows a
bidirectional many-to-many relationship: A customer may have several funds and one fund
may belong to several customers.

<<entity bean>>
Customer

<<entity bean>>
Fund

1..* 0..*

Figure 47: Many-to-many relationship, bidirectional

Deletion
When a client application invokes the remove()-method on an entity bean, the bean’s data will
be removed from the database. But what happens with the entity beans which have a
relationship with other beans? In case that nothing is specified, the container will dissolve all
the bean’s relationships with other entity beans.

There are two cases to differentiate:
• With a single EJB object relationship, the relationship field is set to null.
• With collection-based relationships, the entity bean will be removed from the collection.

In some cases, it is desired that the deletion of an entity bean causes the removal of other
related entity beans. For this case, in one-to-one and one-to-many relationships, it is possible
to mark an entity bean as <cascade-delete/>. For example, if the bean “fund” in Figure 47
is marked as <cascade-delete/>, then if the customer is deleted, the related funds should
be deleted as well.

 81

6.3.5.2 Query Entity Beans
The home interface not only provides life-cycle operation and metadata for a bean, it also
provides methods for creating, removing and finding beans. This chapter shows how to find
permanently stored entities by using finder methods and select methods.

Finder methods are used to find data within a database. Only entity beans have finder
methods. Session beans, which handle business logic and not business data, do not have
finder methods, as they are not persistent. Every entity bean’s home interface must expose
the findByPrimaryKey()-method. This method takes the entity bean’s primary key type as its
only argument and returns a reference of the bean’s remote interface. The home interface can
expose other finder methods, which have to start with “find” (e.g. findByName()).

Select methods are similar to finder methods: they can do anything finder methods can do
and even more. The following list points out the differences:
• Select methods can only be used internally, by the bean class. That means that they are

not exposed in the local or remote home interface.
• Select methods are declared as abstract methods using the suffix “ejbSelect” in the bean

implementation class (e.g. ejbSelectRichestWoman). Finder methods are not declared in
the bean implementation class.

• Select methods can return the value of a virtual field (not only the remote interface or the
local interface, a collection or a set), e.g. the name of the richest woman.

EJB Query Language
The finder methods and the select statements are not implemented by the bean
implementation class; they are declared in the deployment descriptor by using a query
language (EJB QL). The EJB query language uses elements of the deployment descriptor to
describe a query:
• The abstract schema name is used to identify a bean.
• The persistence fields are used to specify values.
• The relationship fields are used to navigate through relationships.

In this theory section, the syntax of EJB QL expressions is explained with some examples
(e.g. SELECT, FROM, WHERE, etc.).

 82

6.3.6 Services

Because an EJB server automatically manages some system-level services, the application
developers that use an application server, do not have to write complicated services. The
following chapters in the theory give a short introduction to three important services: Naming,
transaction and security.

6.3.6.1 Naming
All beans have a default JNDI context called JNDI Environment Naming Context (JNDI ENC),
which is a special JNDI name space. The JNDI ENC allows enterprise beans to access 1) the
home interface of other beans, 2) the resources (e.g. databases) and 3) the environment
properties.

1) Obtaining a Reference to a Bean’s Home Interface
When a bean is deployed, any beans it uses are mapped into the directory
“java:comp/env/ejb”. A bean’s reference can be obtained by using the JNDI default context. If
a bean wants to access another bean, the reference of this bean must be declared in the
deployment descriptor.

2) Obtaining a Resource Connection (Database)
A bean-managed, persistent entity bean must have access to a database to which it will
persist itself. The bean usually obtains a resource factory from the JNDI ENC; a new context
is created and a data source is looked up in the JNDI ENC. The deployment descriptor maps
the JDBC DataSource to a context in the ENC.

3) Obtaining Environment Properties
It is possible to declare named properties in the deployment descriptor. A bean accesses
those properties by using the JNDI ENC. This way, the bean deployer can change the
property values in the deployment descriptor, rather than change the program code.

6.3.6.2 Transaction
A transaction is a unit of work that accesses one or more shared resources, like databases. A
unit of work is a set of activities that must be completed together. Take the transfer of money
as an example: Charging one account and crediting the other must be completed together –
or nothing should be done.
It is more difficult to handle transactions in a distributed system than in a pure client/server
database system. The money transfer example may require changes on two databases which
cannot communicate with each other and may have different locations. In order to maintain
data consistency, a transaction manager ensures that all database operations are either
committed or that all of them are rolled back.

Two Phase Commit Protocol
The transaction manager uses a two phase commit protocol to guarantee data integrity. An
animation in the theory section illustrates the two phase commit protocol: A client manipulates
two databases, and the transaction is controlled by a transaction manager.

 83

Transactional EJBs
Every J2EE application server has to support distributed transactions. Therefore, every server
has a transaction manager and communicates with the resources using the two phase commit
protocol. In J2EE, the bean providers have two possibilities to use server-side transaction:
• Container Managed Transaction (CMT): The bean provider can let the container manage

the transaction. CMT is one of the most important features of the EJB component model:
The container manages the complicated task of transaction. The bean provider can
specify the transaction attributes in the deployment descriptor declaratively.

• Bean Managed Transaction (BMT): The bean provider can manage transaction in the
bean. For most cases, CMT is powerful enough and much easier to handle than BMT.
Only CMT is covered in the theory section.

6.3.6.3 Security
The goal of every security system is to protect the available resources (like data in a
database, data sent over the network, bandwidth, etc.) An application server can support
three kinds of security: 1) Authentication, 2) Authorization and 3) Secure Communication. EJB
addresses only authorization specifically, but most application servers support authentication
(by using the JNDI API) and secure communication [4].

1) Authentication
Authentication validates the identity of the user. For example, the access to a resource is
granted by authentication with username and password.
Username and password can be validated against the user credentials stored in a user
directory6. Once a user has successfully passed the authentication system, he has access to
the resources. Other authentication systems may be based on ID cards, swipe cards, security
certificates, and other forms of identification.
Many application servers realized authentication by using the JNDI API. A client uses JNDI to
send the authentication information to the server.

2) Authorisation (Access Control)
Authorisation ensures that users access only the resources for which they have been given
permission. A manager may have permission to manipulate certain data, whereas an
employee may only read the same data.
EJB provides a possibility to define authorisations declaratively in the deployment descriptor.
Deployment descriptors include elements that declare which logical roles are allowed to
access which bean methods. Roles are mapped to real-world user groups and users when the
bean is deployed.
In a next step, the roles have to be assigned to EJB methods; this part of the deployment
descriptor maps the roles into actions that are either allowed or forbidden.

6 In many projects, an existing user database (e.g. an LDAP directory) must be integrated. The EJB specification does
not define a full interface for the manipulation of user data. But an application server must support the user and group
management.

 84

3) Secure Communication
Communication channels between clients and servers have to be secured to prevent attacks
(eavesdropping, data manipulation, etc.). One way to secure communication is to physically
isolate the network. This solution is expensive and limiting. Another solution is to encrypt the
data transferred between the client and server machines. Most application servers support
secure communication, usually by the Secure Socket Layer (SSL). For more information
about security see the module “IP Security”.

6.4 Provided examples

The goal of the hands-on session in the “Application Server”-module is to enable students to
write their own components that run within an application server. The hands-on provides the
bank examples discussed in the theory section for a stateless session bean, for a stateful
session bean and for an entity bean. Furthermore, the two exercises are discussed: In the first
exercise, students must complete a deployment descriptor. In the second exercise, they
develop their own component. In the following chapters, these examples are discussed.

6.4.1 The Application Server

J2EE is a specification (not a product), specifying the rules of engagement that have to be
agreed on when writing enterprise software [1]. Many vendors have implemented the J2EE
specification and created a multitude of application servers: BEA’s Weblogic, IBM’s
WebSphere, Oracle’s Oracle 9i, Borland’s Enterprise Server and many more. In order to
demonstrate examples and to provide an environment to solve the exercises, an application
server has been installed on a laboratory machine. The server is from the JBoss Group [54],
as the JBoss server has many advantages:
• JBoss application servers are widely spread and very popular.
• JBoss is a flexible service-oriented J2EE application server.
• The server is used by thousands of new java developers to learn EJB.
• The JBoss Group provides a detailed documentation that is downloadable.
• The JBoss server is easy to install.
• JBoss is open source and can be obtained for free.

6.4.2 The Client for the Bank Examples

The client program is the invoker class: in a simple loop, the client waits for the user’s
command and delegates it to the bank teller bean. The class provides a text-based user
interface.
The following list shows the steps that a client performs to access a remote component:
• It acquires a JNDI initial context.
• It looks up the home object using the initial context.
• It uses the home object to create a bank teller.
• It reads the next command from the standard input.
• It delegates the command to the bank teller.
• At the end, the client removes the bank teller.

 85

6.4.3 Scenario 1: The Bank Teller as a Stateless Session Bean

The first bank teller example is a simple stateless session bean which acts as a bank teller. It
is used to demonstrate the needed steps to deploy and run a bean. The characteristics of
stateless session beans are:
• They do not have a conversational state.
• There is only one way to initialize them.
• The container can pool and reuse them.

6.4.3.1 Description
In the first example, the bank teller only knows how to change Swiss Francs into EURO, USD,
GBP or JPY. Pressing <Enter> will display a list of available operations. Entering “0” will quit
the application.

6.4.3.2 Implementation
Figure 48 shows the class diagram for the bank teller as a stateless session bean.

Client

BankTeller

teller

Server

Figure 48: Class diagram for the bank teller as a stateless session bean

The “Bank Teller” is the component consisting of many classes (see 6.3.3.1): The bean
provider has to write the home interface, the remote interface, the implementation class and
the deployment descriptor7. These classes are now discussed:

1) Constructing the “Bank Teller” Home Interface (BankTellerHomeRemote.java)
The bank teller’s home interface specifies only one method “create()”. The bank teller is a
stateless session bean, therefore, there is only one create()-method that can not take any
parameters to initialize the bean.

2) Constructing the “Bank Teller” Remote Interface (BankTellerRemote.java)
The bank teller’s remote interface defines the business logic methods exposed publicly. It is
the component’s remote interface clients use to invoke a method on when they want to
interact with the bank teller. This simple bank teller exposes only one method "convert()".
• convert(): The method “convert()” takes an amount and a currency as parameters. The

bank teller then changes the amount in Swiss francs into the new currency. If the input
amount is not a valid amount (e.g. -1) or if the currency is not a valid currency, a
CurrencyException will be thrown.

7 There are some code generation tools available, that generate the home interface, remote interface and other
necessary files to deploy the bean. One of the free tools is XDoclet, which uses JavaDoc to define additional information
and to generate the additional files.

 86

3) Constructing the “Bank Teller” Implementation Class (BankTellerBean.java)
The bank teller’s implementation class implements its business method “convert()”, declared
in the remote interface and adds the required management callback methods (which are
empty). The bean is stateless and does not contain any client-specific data that spans over
method calls. Besides the “convert()-method, describe above, the class contains the following
private methods:
• getExchangeFactor(): This method checks if the currency given by the user is a valid

currency. If this is the case, the method returns the exchange factor for this currency. If
the input currency is not a valid currency, a CurrencyException will be thrown.

4) Writing the Deployment Descriptor (ejb-jar.xml)
A deployment descriptor is one of the key features of EJB because they allow to declaratively
specify attributes of the bean [1].
Listing 22 shows the ejb-jar.xml file for the bank teller example. In the theory section of the
module, all the elements used in the deployment descriptor are explained.

 <?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>BankTellerEJB</ejb-name>
 <home>ch.unibe.rvs.bank.teller.BankTellerHomeRemote</home>
 <remote>ch.unibe.rvs.bank.teller.BankTellerRemote</remote>
 <ejb-class>ch.unibe.rvs.bank.teller.BankTellerBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full

 access to the Bank Teller.
 </description>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>BankTellerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>BankTellerEJB03</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 </assembly-descriptor>
</ejb-jar>

Listing 22: ejb-jar.xml file for a stateless session bean

 87

Listing 23 shows a scenario of a client session: the customer exchanges 10 SFR into USD.
>
===
Choose an operation by entering a number from the list:
===

 0) Exit

======
Others
======
 40) Money Exchange

> 40
==============
Money Exchange
==============

Enter the amount in swiss francs: 10
Choose a currency: USD

10 SFR are 7.63 USD

>

Listing 23: A client session

6.4.4 Scenario 2: The Bank Teller as a Stateful Session Bean

So far, the bank teller in the first example is designed as a stateless session bean. Normally,
a bank teller deals with a particular client for a longer period of time. After changing money,
the client may want to deposit funds into his/her account and perform other operations. This is
a good example for a stateful session bean: The customer can be stored into a non-transient
variable and be reused by the next client’s invocation.

6.4.4.1 Description
The second bank teller can do everything the first bank teller does – and more: Besides
exchanging money, the teller knows the customer he is serving, he can open accounts for this
customer, he can deposit and withdraw money from the account and can close a customer’s
account.

Implementation
Figure 49 shows the class diagram for the bank teller as a stateless session bean. The bank
teller can serve no customer or one customer at a time. This customer can have no account
or many accounts. The customer and the account are “normal” Java objects which have to
implement the Java.io.Serializable interface.

 88

Client
<<stateful session>>

BankTeller

teller

Server

<<auxiliary>>
Account

<<auxiliary>>
Customer

Figure 49: Class diagram for the bank teller as a stateful session bean

There are no changes to the new bank teller’s home remote interface; it is the same interface
as the stateless session bank teller uses.
In this version of the bank teller, the remote interface exposes more methods. They are
explained in the next section.

1) Constructing the “Bank Teller” Implementation Class (BankTellerBean.java)
A stateful session bean can maintain a state and the bank teller can now store the data of the
current customer. The convert()-method remains the same (as the convert()-method in the
stateless session bean).
• createNewCustomer() creates a new customer. If a customer exists already, it will be

discarded. The method take the customer’s first and last name as parameters and
passes the name into the new customer object. Then the new customer’s id is return to
the caller.

All other methods in the bank teller bean implementation take the arguments, validate the
customer and delegate the method call to the customer. These methods are discussed in the
customer class.

2) Constructing the “Customer” Class (Customer.java)
The customer is an ordinary Java class that implements the java.io.Serializable interface, so it
can be converted into a bit-blob (for passivation). The customer has four instance variables:
its identification number, its first name, its last name and a vector that represents the
accounts. When creating a new customer, the customer’s constructor takes the identification
number to initiate the customer. The empty constructor is private: It is not allowed to create a
customer without an identification number. Getter and setter methods for instance variables
are not described here.

 89

• createNewAccount() creates a new account with the account type <type> and adds it to
the list of accounts. It calls the private method “createAccountNumber()” that creates a
new account number by adding an extension to the customer’s identification number. If
no customer is in the bank, a TellerException is thrown.

• closeAccount() removes the account (identified by the account number as parameter)
from the customer’s account list and returns the money left in the account to the bank
teller. If no customer is in the bank, a TellerException is thrown.

• getBalances() returns a list with the customer’s name, account numbers and account
funds. In case the customer does not have an account a TellerException is thrown.

• withdraw() and deposit(): Those methods take the account number to be charged or
credited and the amount as parameters. If the account exists, the method call is
delegated to the account class, otherwise a TellerException is thrown.

• getName() wraps the customer’s first and the last name in a name object and returns the
new created name object .

• setName() sets the first and last name of the customer, which are passed in to the
method with a name object.

• private createAccountNumber(): This is a helper class to create a new account. In case
the customer does not have an account yet, the new account number is a combination of
the customer’s identification number and the extention “<1> (e.g. 98761234.1). In case
the customer has accounts, the smallest not used int is added to the customer ID. The
method returns the new account number.

• private getAccount() returns the account object that has the account number
<accountNo> (parameter). The account number can be the fully account number or only
the extension (e.g. <2342355.1> or only <1>. If the account does not exist a
TellerException is thrown.

3) Constructing the “Account” Class (Account.java)
Like the customer class, the account is an ordinary Java class that implements the
java.io.Serializable interface. The account class has three instance variables: its type (e.g.
saving account), its number, and its fund. The account has two constructors: the first takes the
type and the number and creates an account with fund equals zero. With the second
constructor a starting amount can be passed in to the account. Besides the getter and setter
methods, this class provides only two methods:
• deposit(): This method is used to credit the account and returns the new amount to the

caller. If the amount to be credited is less than “0”, an AccountException is thrown.
• withdraw(): This method is used to charge the account and returns the new balance to

the caller. If the amount to be charged is less than “0”, an AccountException is thrown.

4) The BankTellerBean’s Deployment Descriptor
It is necessary to adapt the deployment descriptor of the bank teller in order to convert it from
a stateless into a stateful session bean. This can be done by simply changing the <session-
type> element from “Stateless” to “Stateful” (Listing 24).

 90

<enterprise-beans>
 <session>
 …
 <session-type>Stateful</session-type>
 …
 </session>
 </enterprise-beans>

Listing 24: Deployment descriptor for the stateful bank teller bean (ejb-jar-xml)

Listing 25 shows a client interaction: The bank teller creates a new customer and a new
account for this customer and deposits money into the account. Note: the bank teller
remembers the customer number between the client’s method calls. This is in stark contrast to
a stateless session bean.

===
Choose an operation by entering a number from the list:
===

 0) Exit

========
Customer
========
 2) Create new bank customer

=======
Account
=======
 8) Create a new account for a customer
 10) Show all account from a customer

 11) Close an account
 14) Withdraw money
 15) Deposit money
======
Others
======
 40) Money Exchange

> 2
========================
Create new bank customer
========================
Teller object created.
Enter the customer's first name: Christine
Enter the customer's last name: Rosenberger

865174048

> 8
===================================
Create a new account for a customer
===================================
Enter the account's type (e.g. saving account): saving

Account number: 865174048.1 Account type: saving

> 15
=============
Deposit money
=============
Enter the account number or the account extention (e.g. <1>): 1
Enter the amount: 100

 91

Successfully credited account: 100.0

> 10
================================
Show all account from a customer
================================

customer name: Rosenberger account number: 865174048.1 account fund: 100.0

>

Listing 25: A Client Session with a Stateful Session Bean

6.4.5 Scenario 3: Customer and Account as Entity Beans

In the previous example, the situation is as follows: The bank teller takes a customer’s money,
and as soon as the customer leaves the bank, the bank teller forgets all about this customer.
In reality, however, a bank customer exists for months or years. Therefore, there it is
necessary to store the customer’s data, his accounts and the money in the accounts.
Changing the customer and account class into entity beans enables the container to save the
state of those beans to a persistent storage.

6.4.5.1 Description
The bank teller as a stateful session bean fits perfectly the application’s need of hosting the
business methods. The “new” bank teller knows everything the second teller knew, and more.
The customer bean is designed as a persistent bean; the bank teller can now return a list of all
customers in the bank. It is possible to search for an existing customer by its first and/or last
name, and besides crediting and charging an account, it is possible to transfer money
between accounts.

6.4.5.2 Implementation
Figure 50 shows the class diagram for the bank with the bank teller designed as a stateful
session bean, and the customer and account bean as entity beans.

Server

<<stateful session>>
BankTeller

<<entity>>
Account

<<entity>>
Customer

x

Figure 50: Class diagram for the bank with customer and account as entity beans

Only the new classes and methods are discussed in the following sections.

 92

1) Constructing the “Bank Teller” Implementation Class (BankTellerBean.java)
The new methods are:
• changeCustomer(): This method changes the current customer at the counter. The

parameter customerId is used to identify a customer. If the customer with the specified id
does not exist a TellerException is thrown.

• searchCustomerNumberByName():This method searches a customer number by its
first- and last name. If only the first name is specified, it calls the method
findCustomerByFirstName(). If only the last name is specified, it calls the method
findCustomerByLastName and if both, first and last name are specified, it calls the
method findCustomerByName(). In case that the bank does not have a customer or does
not find the specified customer a TellerException is thrown.

• showAllCustomers(): This method returns a lists of all existing bank customers. In case
the bank does not have any customer, a TellerException is thrown.

• transfer(): This method transfers a specified amount (funds) from one account
(accounNo1) to another account (accountNo2). It calls the bank teller’s methods
withdraw() and deposit().

• private findCustomerByName(), private findCustomerByFirstName() and private
findCustomerByLastName(): Those are private helper methods. They find a customer
entity by its first and/or last name. The methods call the finder method “findByName()”,
“findByFirstName()” or “findByLastName()” which the customer’s local home interface
exposes.

2) Constructing the “Customer” and “Account” Local Home Interface
(CustomerHomeLocal.java)
A client should not directly interact with entity beans, as the client would be tied directly to the
details of the implementation. To enforce clients to use a session bean to interact with an
entity bean (customer and account bean), the customer and account component have only
local (home) interfaces and no remote (home) interfaces. The customer’s local home interface
exposes methods for creating new customers (create()), and methods to find existing
customers (findByPrimaryKey(), findByName(), findByLastName(), queryAllCustomers()). The
account’s local home interface exposes two create()-method, the obligate findByPrimaryKey()-
method, and a method called findByNumber(). These methods are not implemented in the
beans implementation class; the queries are declared in the deployment descriptor.

Listing 26 shows a client interaction: The bank teller creates a new customer and two
accounts for this customer and deposits money into the account. Then the client credits and
charges its accounts.

>
===
Choose an operation by entering a number from the list:
===

 0) Exit

========
Customer
========
 1) Show all bank customers

 93

 2) Create new bank customer
 3) Search customer number(s) by name
 9) Set new active customer (enter a new customer number)

=======
Account
=======
 8) Create a new account for a customer
 10) Show all account from a customer

 11) Close an account
 13) Transfer money
 14) Withdraw money
 15) Deposit money
======
Others
======
 40) Money Exchange

> 1
=======================
Show all bank customers
=======================
Teller object created.

*** The bank has no customers ***

> 2
========================
Create new bank customer
========================
Enter the customer's first name: christine
Enter the customer's last name: rosenberger

1982717516

> 10
================================
Show all account from a customer
================================

*** Customer has no accounts ***

> 8
===================================
Create a new account for a customer
===================================
Enter the account's type (e.g. saving account): saving

Account number: 1982717516.1 Account type: saving

> 8
===================================
Create a new account for a customer
===================================
Enter the account's type (e.g. saving account): saving

Account number: 1982717516.2 Account type: saving

> 10
================================
Show all account from a customer
================================

customer name: rosenberger account number: 1982717516.1 account fund: 0.0
customer name: rosenberger account number: 1982717516.2 account fund: 0.0

> 14
==============
Withdraw money
==============
Enter the account number or the account extention (e.g. <1>): 1

 94

Enter the amount: 1

Your balance is 0.0! You cannot withdraw 1.0!

> 15
=============
Deposit money
=============
Enter the account number or the account extention (e.g. <1>): 2
Enter the amount: 2

Successfully credited account: 2.0

> 14
==============
Withdraw money
==============
Enter the account number or the account extention (e.g. <1>): 2
Enter the amount: 1

1.0

> 0
====
Exit
====

Listing 26: Client session with an entity bean

6.4.6 Scenario 4: Deployment Descriptor

In the first scenario of the hands-on session, students must integrate an existing component
(Phone) into the bank system. The phone component’s Java classes are already developed.
Students must write the deployment descriptor, and compile and deploy the code by using the
ant8 tool. Figure 51 shows the class diagram for the bank system with the component
“Phone”.

Server

<<stateful session>>
BankTeller

<<entity>>
Phone

<<entity>>
Account

<<entity>>
Customer

x
x

Figure 51: Class diagram for scenario 4 in the hands-on session

8 In order to compile the classes, to build the JAR file and to deploy the examples and exercises, a Java-based tool
called “Ant” is used. The configuration files used by Ant are XML-based (the name of the file is build.xml), calling out a
target tree. Ant provides many tasks to help compiling, archiving, copying with filtering etc. For more information about
Ant see [55].

 95

The students must

1) Declare a component “Phone” in the deployment descriptor (Listing 27).

2) Declare a reference to the phone component (Listing 28)

3) Define the “Customer-Phone”-relationship with its cardinality (one-to-many) and the
direction (unidirectional) (Listing 29).

<!-- Solution for the address component -->
<entity>
 <ejb-name>PhoneEJB</ejb-name>
 <local-home>ch.unibe.rvs.bank.phone.PhoneHomeLocal</local-home>
 <local>ch.unibe.rvs.bank.phone.PhoneLocal</local>
 <ejb-class>ch.unibe.rvs.bank.phone.PhoneBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Phone</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>number</field-name></cmp-field>
 <cmp-field><field-name>type</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
</entity>
<!-- End of solution for the address component -->

Listing 27: Declaration of the phone bean in the deployment descriptor

<!-- Solution for the reference to the phone -->
<ejb-local-ref>
 <ejb-ref-name>PhoneHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>ch.unibe.rvs.bank.phone.PhoneHomeLocal</local-home>
 <local>ch.unibe.rvs.bank.phone.PhoneHomeLocal</local>
 <!-- ejb-link is required by jboss for local-refs. -->
 <ejb-link>PhoneEJB</ejb-link>
 </ejb-local-ref>
<!-- End of the solution for the reference to the phone -->

Listing 28: Declaration of the reference to the phone component

<!-- Solution for the relationship Customer-Phone -->
<ejb-relation>
 <ejb-relation-name>Customer-Phone</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-many-Phone-numbers
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>phoneNumbers</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Phone-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>

 96

 <relationship-role-source>
 <ejb-name>PhoneEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
</ejb-relation>
<!-- End of the solution for the relationship Customer-Phone -->

Listing 29: Defining a the relationship “customer-phone”

The bank teller example code is placed in the directory “Bank_Ex_Hands_on_01/src/main”
and the configuration files in the directory “Bank_Ex_Hands_on_01/ src/resources/META-
INF”. In order to develop, compile, deploy and run the program, students must execute the
following steps:
(1) Login to the laboratory machine
(2) Start up the application server JBoss by typing: “./run_jboss.sh”.
(3) Open a second shell.
(4) Change into the directory “Bank_Ex_Hands_on_01”.
(5) Use the Ant-tool to compile the source code by typing “ant”. Ant uses the build.xml

file to compile the source code into the directory “classes”, to build the jar file and to
deploy the bean.

(6) Start the client by typing: “./run_client.sh”

6.4.7 Scenario 5: Developing an Entity Bean

In the second scenario of the hands-on session, students must develop an entity bean
“Address”. Students must write the local home interface, the remote interface and the bean
implementation class. Then, they must compile and deploy the code by using the ant tool.
Figure 52 shows the class diagram for the bank system with the component “Address”.

Server

<<stateful session>>
BankTeller

<<entity>>
Account

<<entity>>
Phone

<<entity>>
Customer

<<entity>>
Address

x

x
x

Figure 52: Class diagram for scenario 5 in the hands-on session

 97

The students must:

1) Develop the local home interface for the address component. The local home interface
exposes three methods: The createAdress()-method is used to create a new address
entity. The findByPrimaryKey()-method finds an existing address by its primary key. The
findByCity()-method finds all addresses in one city (Listing 30).

2) Develop the local interface for the address component. The address component is an
entity bean and should not contain any methods that handle (complex) business logic.
Therefore, the local interface exposes the getter and setter methods to access the
address bean’s persistence fields (Listing 31).

3) Develop the address bean’s implementation class. The ejbCreateAddress()-method takes
the street, the city and the zip code as parameters to initialize the persistence fields.
Furthermore, students have to implement the persistence fields, and they must declare
the management callback methods (Listing 32).

4) Define the “findByCity” statement in the deployment descriptor (Listing 33).

package ch.unibe.rvs.bank.address;

import java.util.Collection;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import ch.unibe.rvs.bank.customer.CustomerLocalH;

// Address EJB's local home interface
public interface AddressHomeLocal extends javax.ejb.EJBLocalHome
{
 public AddressLocal createAddress(String street, String city, String zip)
 throws javax.ejb.CreateException;

 public AddressLocal findByPrimaryKey(Integer primaryKey)
 throws javax.ejb.FinderException;

 public Collection findByCity(String city)
 throws javax.ejb.FinderException;

}

Listing 30: The local home interface for the address component

package ch.unibe.rvs.bank.address;

// Address EJB's local interface
public interface AddressLocal extends javax.ejb.EJBLocalObject
{
 public String getStreet();
 public void setStreet(String street);
 public String getZip();
 public void setZip(String zip);
 public String getCity();
 public void setCity(String city);
 }

Listing 31: The local interface for the address component

 98

package ch.unibe.rvs.bank.address;

import java.util.Collection;
import javax.ejb.EntityContext;
import javax.ejb.FinderException;
import javax.ejb.CreateException;
import ch.unibe.rvs.bank.customer.CustomerLocalH;

public abstract class AddressBean implements javax.ejb.EntityBean
{

 private static final int IDGEN_START = (int)System.currentTimeMillis();
 private static int idgen = IDGEN_START;

 public Integer ejbCreateAddress(String street, String city, String zip)
 throws CreateException
 {
 setId(new Integer(idgen++));
 setStreet(street);
 setCity(city);
 setZip(zip);
 return null;
 }

 public void ejbPostCreateAddress(String street, String city, String zip)
 {
 }

 /*
 * =================
 * persistent fields
 * =================
 */
 public abstract Integer getId();
 public abstract void setId(Integer id);
 public abstract String getStreet();
 public abstract void setStreet(String street);
 public abstract String getZip();
 public abstract void setZip(String zip);
 public abstract String getCity();
 public abstract void setCity(String city);

 /*
 * ==
 * standard call back methods
 * The methods below are called by the Container,
 * and never called by client code.
 * ==
 */
 public void setEntityContext(EntityContext ec){}
 public void unsetEntityContext(){}
 public void ejbLoad(){}
 public void ejbStore(){}
 public void ejbActivate(){}
 public void ejbPassivate(){}
 public void ejbRemove(){}

}

Listing 32: The bean implementation class for the address component

 99

<entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>ch.unibe.rvs.bank.address.AddressHomeLocal</local-home>
 <local>ch.unibe.rvs.bank.address.AddressLocal</local>
 <ejb-class>ch.unibe.rvs.bank.address.AddressBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Address</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>street</field-name></cmp-field>
 <cmp-field><field-name>zip</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
 <query>
 <query-method>
 <method-name>findByCity</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(a) FROM Address a
 WHERE a.city = ?1
 </ejb-ql>
 </query>
</entity>

Listing 33: The deployment descriptor for the address component

 100

7 Related Work

7.1 Authentication, Authorization and Resource Reservation for
Distributed Laboratories

“Authentication, Authorization and Resource Reservation for Distributed Laboratories” is a
diploma thesis at University of Bern [8].
The VITELS hardware resources for the laboratory sessions are limited: An important goal
was to provide access to the laboratory resources only to authorized participants. To achieve
this goal, an online timetable and underlying scheduling script have been implemented.
The e-learning modules offered by the VITELS project are provided to a closed user group.
Each university can maintain its own student database needed for the VITELS authentication.
In order to manage the e-learning participants, the proposed architecture in this work uses the
Lightweight Directory Access Protocol (see 4.1.2). Furthermore, the security architecture for
the VITELS project has been implemented and tested.

7.2 Internetportal für Computernetz-Praktika

“Internetportal für Computernetz-Praktika” is a diploma thesis at the University of Bern [12].
This work focuses on the transformation of an in-house laboratory exercise module (IP
security) towards a remotely accessible course module [5]. A portal server that allows
registered students to configure available Cisco Routers over a Web interface has been
implemented. Moreover, the portal enables the students to access Linux-machines remotely
and to measure network traffic. The portal has been integrated in the above mentioned
reservation system (see 7.1).

7.3 The Virtual Internet and Telecommunications Laboratory of
Switzerland

This paper introduces to the Virtual Internet and Telecommunications Laboratory of
Switzerland (VITELS) course [9]. The VITELS course provides practical hands-on exercises
for computer science students. The prerequisites to attend the VITELS courses are described,
as well as the course contents. A short overview of the implementation architecture (see
chapter 7.4) and the didactical approach (see 7.5) is given. At the end, the students’
experiences gained with the online courses are summarized.

 101

7.4 Architectural Issues of a Remote Network Laboratory

This paper [5] describes the global architecture for the VITELS courses and remote
laboratories. The course platform includes automated student data administration and a
scheduling system. In addition, implementation issues (like security, error recovery and rating
students) are discussed.

7.5 Didactical Issues of a Remote Network Laboratory

In order to get (at least) the same level of education in the remote courses as in a traditional
one, many didactical issues have to be considered. In a first step, an in-house laboratory
exercise module was extended towards a remotely accessible course module. This paper [6]
describes the structure of the traditional and the remote exercises. The students’ experiences
with both forms of learning were evaluated and the differences between them are pointed out.

7.6 VITELS, Didactics and Design Guide

The Didactics and Design Guide [7], a course development guide for the VITELS project,
helps the topic experts to develop valuable content efficiently. The guides requirements and
guidelines must be fulfilled by each VITELS module in order to provide a homogeneous
course to the students [9]. The guide is described in chapter 3.

 102

8 Discussion and Conclusions

This diploma thesis proved the usability of the VITELS architecture and the VITELS Didactics
and Design Guide. It turned out that the VITELS architecture was well-designed and flexible
enough to serve as blueprint for the two additional VITELS modules developed in this diploma
thesis. Also, it was straightforward to integrate the learning material and the tests into the
existing course platform. Adhering to the VITELS Didactics and Design Guide allowed me to
focus on the module content rather than the visual design and the technical structure of the
module, thus shortening the time needed to develop a module.

In this thesis a set of third party software products for various tasks have been selected. Most
of these software packages turned out to fit very well with the intended usage.

• For managing e-learning participants and scheduling laboratory sessions, the VITELS
reservation system was successfully used [8].

• The portal for the hands-on sessions was implemented using the VITELS portal
framework, a PHP based class and function library. Documentation of this framework
was complete, well-structured and very helpful. The framework was also flexible
enough to be customized and adapted to the special needs of the two modules
implemented in this diploma thesis. Modifications were necessary to improve crash
recovery for clients in the current laboratory session.

• The cleanup script, necessary to prepare the laboratory machines for a new student
at the beginning of a laboratory session, was based on an existing cleanup script.
This script was slightly modified to fit our needs.

• The hands-on sessions of the “Application Server”-module are based on the open
source application server JBoss. Our positive experiences with this product support
the view that JBoss is a stable and well-documented application server perfectly
suitable in teaching environments.

Since both RMI and Application Servers will be part of the laboratory session of the lecture
“Computer Networks”, both modules will be used in regular teaching activities at the University
of Bern.

 103

9 Outlook

This diploma thesis contributed two modules to the VITELS module portfolio. The list of
available VITELS modules is not yet completed and further modules could be implemented. If
the registration processes for the theoretical sections and the laboratory environments were
easy and straightforward for all students in Switzerland, the range of the available modules
could be improved. In fact, SWITCH, the Swiss Education and Research Network, recently
activated a new Authentication and Authorisation Infrastructure (AAI) among the Swiss
institutions of higher education, which facilitates the exchange of user information among
these institutions. VITELS is one of the first e-learning projects that is adapted to the Swiss
AAI, therefore an important technical obstacle for accessing VITELS will be removed.

The subject application server is complex and cannot be completely covered in a twelve hour
course. An additional module could be developed that covers further aspects of application
server technologies, for instance, message driven beans, bean managed persistence (BMP)
or bean managed transaction (BMT). The concepts of Remote Method Invocation could be
explained based on the .NET Remoting API [57], instead of the Java RMI Framework, an
equally viable real-world technology. Alternatively to using a J2EE application server to
demonstrate the concept of application servers, hands-on sessions for Microsoft’s Transaction
Server (MTS) and Microsoft’s COM+ could be prepared.

Mindterm, the Java applet which is used as SSH client to access the laboratory machines,
has some limitations:
• Currently, it is not possible to transfer a file using secure copy (SCP). The workaround

consist of copying the content of the file by repeatedly invoking copy/paste. A better
solution would be that Mindterm directly supports secure copy (SCP).

• Command completion using the tabulator key does not work in Mindterm. This should be
fixed.

• Sometimes Mindterm freezes. In this case, the browser with the embedded Mindterm
applet has to be restarted. The current session on the server is lost and there is certain
danger, that intermediate work on the server is lost as well.

It is therefore recommended to look for possible alternatives to Mindterm. Such alternatives
could either consist of another SSH client available as Java applet, or of a standalone SSH
client.

Currently, the scheduling approach for laboratory sessions is quite rigid. Students have to
complete their laboratory sessions in one continuous period of time, possibly consisting of
more than one adjacent time slot. A more flexible approach would allow them to reserve
several non-continuous time slots, i.e. three hours at the beginning of the week and three
hours at the end of the week. In this case, the laboratory management system would have to
make sure students can recover from a previously started laboratory session at any time
without loosing any intermediary data on the laboratory servers. Of course, such an approach
would require a more sophisticated approach for managing student sessions and for
preparing and backing up personal laboratory environments.

 104

The current VITELS Didactics and Design guide defines that students must only have access
to a standard web browser and an Internet connection in order to complete the hands-on
sessions in the VITELS laboratory. Although this restriction is favourable in the sense that
hands-on sessions are easily accessible from everywhere, it also means, that only a few basic
tools are available to students and that the quality of the user interface of these tools is
sometimes below current expectations. If this restriction was eased and hands-on sessions
could require students to download and install software on their computer, the situation could
be improved. In particular, hands-on sessions could provide standalone applications with
graphical user interface to be installed on the student’s local computer, in order to access and
test remote server components.

 105

List of Figures

Figure 1: Structure of the Swiss Virtual Campus... 14
Figure 2: Networking among the Higher Education Institutions .. 16
Figure 3: Global architecture for the VITELS course .. 17
Figure 4: Layout for e-learning Modules [24]... 21
Figure 5: The position map for the remote method invocation module... 22
Figure 6: The mind map for the remote method invocation module.. 22
Figure 7: WebCT notes - list.. 25
Figure 8: LDAP server acting as a gateway to an X.500 server ... 26
Figure 9: Stand-alone LDAP Server.. 27
Figure 10: Sample PHP script (show-user.php).. 28
Figure 11: Output of sample PHP script (show-user.php)... 29
Figure 12: Rendered output of sample PHP script.. 29
Figure 13: 2-tier architecture (web application) ... 30
Figure 14: Hosting the business logic in a 2-tier architecture ... 31
Figure 15: A 3-tier architecture.. 31
Figure 16: Students work on their local machines .. 32
Figure 17: Simulation on one dedicated machine ... 33
Figure 18: Client- and server program on dedicated machines .. 34
Figure 19: The architecture for the “Application Server”-module .. 36
Figure 20: The scheduling system for the VITELS course.. 38
Figure 21: Administration menu .. 39
Figure 22: Modified portal for the hands-on session ... 40
Figure 23: The login page to the client- and server machine.. 41
Figure 24: SSH session with the “Server” ... 42
Figure 25: Modules and objects in RMI [2].. 46
Figure 26: Table of contents for the RMI-module.. 47
Figure 27: Possible representation of a remote object reference ... 48
Figure 28: Remote object with remote and local interface .. 49
Figure 29: Stub and skeleton... 50
Figure 30: Object serialization... 52
Figure 31: Class diagram for the game “Fazuul”... 54
Figure 32: The student’s tasks in scenario 1: Client programming ... 56
Figure 33: Class diagram for the game “Mastermind”... 59
Figure 34: New game scenario (sequence diagram) .. 61
Figure 35: The students tasks in scenario 2: Server programming .. 62
Figure 36: Table of contents for the “Application Server”-module... 68
Figure 37: A Java 2, Enterprise Edition (J2EE) deployment [1] .. 69
Figure 38: An object model for a component (in this case a stateless session bean) 70
Figure 39: UML sequence diagram for accessing a bean... 73
Figure 40: Life cycle of a stateless session bean [4]... 74
Figure 41: Life cycle of a stateful session bean [4] ... 75
Figure 42: Life cycle of an entity bean [4].. 76
Figure 43: Unidirectional relationship between entity beans... 79

 106

Figure 44: Bidirectional relationship between entity beans ... 79
Figure 45: One-to-one relationship (unidirectional) ... 79
Figure 46: One-to-many relationship (unidirectional) .. 80
Figure 47: Many-to-many relationship, bidirectional ... 80
Figure 48: Class diagram for the bank teller as a stateless session bean.. 85
Figure 49: Class diagram for the bank teller as a stateful session bean .. 88
Figure 50: Class diagram for the bank with customer and account as entity beans............................. 91
Figure 51: Class diagram for scenario 4 in the hands-on session .. 94
Figure 52: Class diagram for scenario 5 in the hands-on session .. 96

 107

Listings

Listing 1: The JNDI property file with the URL “localhost”... 36
Listing 2: The JNDI property file with the URL “kif.unibe.ch”... 36
Listing 3: Content of the file “/root/user1” on the gateway... 41
Listing 4: The cleanup script for the server and for the client machine (RMI)....................................... 43
Listing 5: The sudoer file ... 43
Listing 6: Command to start the registry.. 56
Listing 7: Command to start the server ... 56
Listing 8: Client program.. 57
Listing 9: Command to start the client ... 57
Listing 10: Typical client session ... 58
Listing 11: The bash file to run the client... 61
Listing 12: Binding the “Mastermind”-object to the RMI registry ... 63
Listing 13: Creating the RMI registry on the specified port ... 63
Listing 14: Setting the security manager ... 63
Listing 15: Constructor of the MastermindRowImpl-class ... 63
Listing 16: Creation of a non-remote-object .. 64
Listing 17: Compiling the Java classes and generating stubs and skeletons 64
Listing 18: Starting the server.. 64
Listing 19: A typical client session... 65
Listing 20: ejb-jar.xml file for a stateless session bean ... 72
Listing 21: Virtual fields declared in the implementation class .. 78
Listing 22: ejb-jar.xml file for a stateless session bean ... 86
Listing 23: A client session .. 87
Listing 24: Deployment descriptor for the stateful bank teller bean (ejb-jar-xml) 90
Listing 25: A Client Session with a Stateful Session Bean.. 91
Listing 26: Client session with an entity bean.. 94
Listing 27: Declaration of the phone bean in the deployment descriptor .. 95
Listing 28: Declaration of the reference to the phone component .. 95
Listing 29: Defining a the relationship “customer-phone”.. 96
Listing 30: The local home interface for the address component.. 97
Listing 31: The local interface for the address component.. 97
Listing 32: The bean implementation class for the address component ... 98
Listing 33: The deployment descriptor for the address component .. 99

 108

Abbreviations

ASP Active Server Pages

CCITT Consultative Committee on International Telephony and Telegraphy

CMS Content Management System

CPU Central Processing Unit

DTD Document Type Definition

EJB Enterprise Java Beans

ETH Swiss Federal Institutes of Technology

FAQ Frequently Asked Questions

FES Federal Office for Education and Science

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol over Secure Sockets Layer

ICMP Internet Control Message Protocol

ICT Information- and Communication Technologies

IHE Institutions of Higher Education

IIS Internet Information Server

IP Internet Protocol

IPsec Internet Protocol Security

ISO International Organization for Standardization.

IT Information Technology

J2EE Java 2 Platform, Enterprise Edition

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

NAT Network Address Translation

OSI Open System Interconnection

 109

PHP PHP Hypertext Preprocessor

RIP Routing Information Protocol

RMI Remote Method Invocation

RPC Remote Procedure Call

RVS Rechnernetze und Verteilte Systeme

SC Steering Committee

SSH Secure Shell

SSL Secure Socket Layer

SUC Swiss University Conference

SVC Swiss Virtual Campus

TCP/IP Transmission Control Protocol/Internet Protocol

UAS Swiss Universities of Applied Sciences

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Java Virtual Machine

VPN Virtual Private Network

VITELS Virtual Internet and Telecommunications Laboratory of Switzerland

WBT Web Based Training

WWW World Wide Web

 110

Glossary

Apache is a very common web server running on Unix, Linux and Windows.

Authentication is the process of determining whether someone or something is, in fact,
who or what it is declared to be.

Authorisation is the process of giving someone permission to do something. Usually,
this is done after successful authentication.

Cron Job A cron job specifies a program and a point of time when the given
program is automatically run by the cron daemon.

Directory Service A directory is similar to a database, but tends to contain more
descriptive, attribute-based information. The information in a directory is
generally read much more often than it is written. As a consequence,
directories don't usually implement the complicated transaction or roll-
back schemes that regular databases use. Directories are tuned to give
quick responses to high-volume lookup or search operations.

DTD Document Type Definition. A DTD states what tags and attributes are
used to describe content in an SGML, XML or HTML document, where
each tag is allowed, and which tags can appear within other tags.

Encryption The translation of data into a secret code. Encryption is the most
effective way to achieve data security. To read an encrypted file, the
user must have access to a secret key or password that enables him to
decrypt it.

GUI Graphical User Interface. A program interface that takes advantage of
the computer's graphics capabilities to make the program easier to use.

Middleware Software that connects two otherwise separate applications.

OSI Open System Interconnection. An ISO standard for worldwide
communications that defines a networking framework for implementing
protocols in seven layers. Control is passed from one layer to the next,
starting at the application layer in one station, proceeding to the bottom
layer, over the channel to the next station and back up the hierarchy.

IP Internet Protocol. IP specifies the format of packets, also called
datagrams, and the addressing scheme. It allows addressing a package
and dropping it in the system, but there's no direct link between the
sender and the recipient.

IPsec Internet Protocol Security. IPsec is a developing standard for security at
the network or packet layer of network communication. IPsec is
especially useful for implementing virtual private networks and for
remote user access through dial-up connection to private networks.

 111

ISO International Organization for Standardization. Note that ISO is not an
acronym; instead, the name derives from the greek word iso, which
means equal. Founded in 1946, ISO is an international organization
composed of national standards bodies from over 75 countries.

LDAP Lightweight Directory Access Protocol. Directories containing information
such as, for such as, for example, names, phone numbers and
addresses. LDAP provides a relatively simple protocol for updating and
searching such directories. See Directory Service.

NAT Network Address Translation, an Internet standard that enables a Local
Area Network (LAN) to use one set of IP addresses for internal traffic
and a second set of addresses for external traffic. A NAT box located
where the LAN meets the Internet makes all necessary IP address
translations.

Open Source Open Source refers to the fact that the source code of Free Software is
open to the world to take, to modify and to reuse.

PHP PHP Hypertext Preprocessor (PHP) is a scripting language that is
especially suited for web development and can be embedded into
HTML.

Protocol An agreed-upon format for transmitting data between two devices. The
protocol determines the type of error checking to be used, data
compression method, how the sending device will indicate that it has
finished sending a message and how the receiving device will indicate
that it has received a message.

RIP Routing Information Protocol. An interior gateway protocol defined by
RFC 1058 that specifies how routers exchange routing table information.
With RIP, routers periodically exchange entire tables.

Socket In UNIX and some other operating systems, a software object that
connects an application to a network protocol. In UNIX, for example, a
program can send and receive TCP/IP messages by opening a socket
and reading and writing data to and from the socket. This simplifies
program development because the programmer need only worry about
manipulating the socket and can rely on the operating system to actually
transport messages across the network correctly.

SSL Secure Sockets Layer (SSL): A security protocol that provides
communications privacy over the Internet. The protocol allows
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery.

Sniffing Network sniffing is the process of gathering information (from a network)
that is designated for someone else.

Telnet A terminal emulation program for TCP/IP networks such as the Internet.

 112

The Telnet program runs on the client computer and connects it to a
server on the network. The user can then enter commands through the
Telnet program and they will be executed as if the user was entering
them directly on the server console.

VM Virtual Machine: A self-contained operating environment that behaves as
if it is a separate computer.

VPN A virtual private network is a private data network that makes use of the
public telecommunication infrastructure, maintaining privacy through the
use of a tunnelling protocol and security procedures.

 113

Bibliography

[1] Mastering Enterprise Java Beans and J2EE, Ed Roman, Wiley, 1999

[2] Distributed Systems, Concepts and Design, George Coulouris, Jean
Dollimore, Tim Kindberg Addison-Wesley, 2001

[3] Database Programming with JDBC and JAVA, Georges Reese, O’Reilly, 1997

[4] Enterprise JavaBeans, Developing Enterprise Java Components, Richard
Monson-Haefel, O’Reilly, 2001

[5] M.-A. Steinemann, S. Zimmerli, T. Jampen, T. Braun: Architectural Issues of a
Remote Network Laboratory, Networked Learning 2002 (NL 2002), Berlin,
Germany, May 1-4, 2002, ISBN 3-906454-31-2, pp. 133

[6] M.-A. Steinemann, T. Jampen, S. Zimmerli, T. Braun: Didactical Issues of a
Remote Network Laboratory, 4th International Conference on New
Educational Environments (ICNEE 02), Lugano, Switzerland, May 8-11, 2002,
ISBN 3-0345-0031-9

[7] M.-A. Steinemann, A. Weyland, J. Viens, T.Braun: VITELS Didactics and
Design Guide, April 2003

[8] Thomas Jampen, Authentication, Authorization and Resource Reservation for
Distributed Laboratories, June 2002, Institut für Informatik und angewandte
Mathematik der Universität Bern

[9] Torsten Braun and Marc-Alain Steinemann, The Virtual Internet and
Telecommunications Laboratory of Switzerland, ACM SIGCOMM 2003,
August 25-29, 2003, Karlsruhe, Germany.

[10] Stefan Zimmerli, Marc-Alain Steinemann and Torsten Braun, Resource
Management Portal for Laboratories Using Real Devices on the Internet,
Computer Communications Review Vol. 33 Issue 3, pp. 145-151, ISSN: 0146-
4833, July 2003.

[11] Thomas Jampen, VITELS – HOWTO, Graphical User Interface for VITELS
Scheduling, Institut für Informatik und angewandte Mathematik der Universität
Bern

[12] Stefan Zimmerli, Internetportal für Computernetze-Praktika, 2002, Institut für
Informatik und angewandte Mathematik der Universität Bern

[13] Christine Rosenberger, Attila Weyland, Günther Stattenberger: Remote

 114

Method Invocation, Hands-on Session Hardware Setup, Institut für Informatik
und angewandte Mathematik der Universität Bern

[14] VITELS - an acronym for a modern e-learning course

[15] Directories and X.500: An Introduction, Barbara Shuh, Network Notes #45,
ISSN 1201-4338, Information Technology Services, National Library of
Canada, March 14, 1997

[16] IBM: Understanding LDAP, Heinz Johner, Larry Brown, Franz-Stefan Hinner,
Wolfgang Reis, Johan Westman, June 1998

[17] Swiss Federal Office for Professional Education and Technology (OPET).

http://www.bbt.admin.ch/e/index.htm

[18] Swiss Federal Office for Education and Science

http://www.bbw.admin.ch

[19] Swiss Virtual Campus
http://www.virtualcampus.ch

[20] Swiss University Conference
http://shkwww.unibe.ch/

[21] Virtual Internet and Telecommunications Laboratory of Switzerland
http://www.vitels.ch

[22] WebCT
http://www.webct.com/

[23] Sudo in a Nutshell
http://www.courtesan.com/sudo/intro.html

[24] Attila Weyland, personal communication

[25] AK Wien
http://www.akwien.at/dat/elearning_leitfaden.pdf

[26] Line Zine
http://www.linezine.com/elearning.htm

[27] Mindterm: SSH Client
http://www.mindbright.se/mindterm/

 115

[28] TECFA, Technologies de Formation et Apprentissage
http://tecfa.unige.ch

[29] University of Bern
http://www.unibe.ch/

[30] Centre Universitaire d’Informatique
http://cui.unige.ch/

[31] University of Applied Sciences of Fribourg
http://www.eif.ch/

[32] L’Université de Fribourg
http://www.unifr.ch/home/intranet.php

[33] University of Neuchatel
http://www.unine.ch/info/welcome.htm

[34] The University of Melbourne
http://www.law.unimelb.edu.au/multimedia/what-

is/interactivity.html

[35] Official Microsoft ASP.NET
http://www.asp.net/

[36] Hypertext Preprocessor
http://www.php.net/

[37] Java Server Pages
http://java.sun.com/products/jsp/

[38] Mastermind
http://kal-el.ugr.es/~jmerelo/newGenMM/node1.html

[39] General Introduction and FAQ
http://webct.unibe.ch/

[40] Prof. Dr. Torsten Braun, Institute of Computer Science and Applied
Mathematics (IAM), Universität Bern
http://www.iam.unibe.ch/~braun/

[41] Prof. Bernard Levrat, Centre Universitaire d'Informatique, Université de
Genève

 116

http://cui.unige.ch/~levrat/

[42] Bernard LEVRAT, The Swiss Virtual Campus: present situation and
challenges
http://eee.uci.edu/programs/ifipconf/papers/levrat/

[43] Swissup
http://www.swissup.com/art_content.cfm

[44] Dr. Franziska B. Marti
2nd International Conference on NEW LEARNING TECHNOLOGIES, Berne,
8-30/31-1999

[45] How SSL Works
http://developer.netscape.com/tech/security/ssl/howitwork

s.html

[46] Secure Shell
http://www.ssh.com/

[47] OpenLDAP
http://www.openldap.org/

[48] Lightweight Directory Access Protocol.
http://www.ietf.org/rfc/rfc1777.txt

[49] Apache ASP

http://www.apache-asp.org/

[50] Sun ONE Active Server Pages 4.0
http://wwws.sun.com/software/chilisoft/index.html

[51] CRUS : Rector’s Conference of the Swiss Universities

http://www.crus.ch/deutsch/Nachw/

[52] SNI-RSI : Swiss Network for Innovation

http://www.sni-rsi.ch/english/main_e.html

[53] XDoclet

http://xdoclet.sourceforge.net/

[54] JBoss Group

 117

http://www.jboss.org/

[55] The Apache Ant Project

http://jakarta.apache.org/ant

[56] Hyper dictionary

http://www.hyperdictionary.com/dictionary/distributed+sys

tem

[57] Richard Wiener: “Remoting in C# and .NET”, in Journal of Object Technology,
vol. 3, no. 1, January-February 2004, pp. 83-100.
http://www.jot.fm/issues/issue_2004_01/column

