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Abstract

With the explosive growth of location-based service on mobile devices, predict-

ing future places of mobile users is of increasing importance to support proac-

tive information services. In this paper, we model this problem as a supervised

learning task and present an approach using ensemble learning methods with

hybrid types of features. We first characterize the properties of users’ visited

places and movement patterns and then extract feature types (temporal, spatial,

and system) to quantify the correlation between places and features. Finally,

we propose to use ensemble methods to predict mobile users’ future locations

with extracted features. To evaluate the system performance, we use a real-life

dataset provided by the Nokia Mobile Data Challenge. Experiment results un-

veil three interesting findings: (1) For an individual algorithm-based predictor,

the J48 decision tree-based approach outperforms the Bayes-based approach

when data quality is poor; (2) Ensemble learning-based approaches always out-

perform individual state-of-the-art classifiers; and (3) The ensemble learning of

Stacking is better than other ensemble methods, such as Bagging and Boosting.
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1. Introduction

Smart-phones are becoming part of people’s daily life. Increasing pervasive

usage of location-based services and smart-phones around the world contributed

to vast and rapid growth of mobility data volume. The large size of heteroge-

neous mobility data gives rise to new opportunities for discovering characteris-5

tics and movement patterns of human mobility behaviors. Mobile data normally

consists of historical information of users’ visiting sequence, which includes the

detailed context of the visited locations and corresponding time-stamps.

Future location prediction is a specific topic in mobile data analysis. The

knowledge of mobile user positions fosters applications that need to know this10

information to operate e�ciently. Examples of such services are tra�c control,

location-based advertising, mobile network management, etc. Many location-

based services depend on the current or future locations of users.

In this work, we formulate the location prediction problem as a standard

supervised machine learning task, where a user-place pair is represented by a15

set of features and the future places are considered as targets. Our goal is to ex-

tract and properly select as many useful features as possible, and build accurate

classifiers (both individual and ensemble ones) with those features. We prefer to

extract features that have discriminative information among di↵erent locations,

such that locations can be identified from the observed features. Machine learn-20

ing techniques have been widely used to discover behaviors and patterns based

on large-scale empirical data. Machine learning algorithms can take advantages

of training data to capture characteristics of the unknown probability distri-

bution among di↵erent locations. They could automatically learn to recognize

complex patterns and make intelligent decisions based on the learned knowl-25

edge. In this work, we use WEKA [1], which is a comprehensive open source

tool for machine learning and data mining. WEKA provides implementations of

multiple machine learning algorithms, and we propose to apply ensemble meth-

ods to combine multiple individual predictors to achieve the best prediction

performance.30
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Machine learning can only make accurate classification, if high discriminative

features are constructed and useful patterns can be observed from the defined

features. However, traditional location prediction methods often separately con-

sider spatial or temporal context [2] [3]. Although there have been some e↵orts

to integrate spatial and temporal features for location prediction, most of them35

su↵er from over-fitting problems due to the large number of spatial-temporal

trajectory patterns. Some existing works model next place prediction as a clas-

sification problem [4] [5]. However, issues such as the consideration of other rich

contextual data, such as accelerometer, Bluetooth/WiFi connectivity, call/sms

logs, information about running applications, etc. have not been investigated40

systematically. In order to accurately predict the future place of a user, it is

fundamental to identify and extract a number of descriptive features for each

place that has been visited by the user. Therefore, our approach focuses on

selecting a wide range of discriminative features, including temporal, spatial,

and smart-phone system features.45

The Nokia Mobile Data Challenge (MDC) data set [6] holds great potential

for providing fine-quality information to predict a user’s next place. It includes

the mobility profiles of nearly 180 users for almost 2 years. From the study of

the MDC dataset and the ground truth, we could find out that people visits

of certain places follow some regular patterns. Moreover, people behaviors at50

specific locations also provide useful information for certain predictions. For

example, if a person is taking public transportation, he/she must have a certain

speed or speed variation.

In this work, we extract features that have discriminative information among

di↵erent locations. With the extracted features, we use WEKA to xxx. The55

main contributions of this work are summarized as follows.

• First, we characterize the properties of users’ visited places and movement

patterns from a real-life dataset and then extract feature types (temporal,

spatial, and system features) to quantify the correlations between places

and features.60
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• Second, we evaluate prediction accuracies of multiple machine learning

algorithms (individual and ensemble ones).

• Third, from the experiment results, we unveil some interesting findings

about how the prediction performance is a↵ected by various factors such

as mobility trace qualities, extracted features, types of ensemble methods,65

etc.

The structure of this paper is as follows. Section 2 discusses existing e↵orts

on location prediction from mobile data. Section 3 describes the dataset that has

been used in this work. Section 4 details how we define the features and which

features are used in our prediction system. Section 5 explains the individual70

and ensemble predictors that are used in this study. Section 6 discusses the

performance evaluation, and the paper concludes in Section 7.

2. Related Work

With a large number of built-in sensors, smartphones are able to record rich

types of quality data without the need of any additional devices. Compared75

to the check-in data collected from the location-based social networks such as

Foursquare [7], which only records the discrete checked-in data at di↵erent lo-

cations, smartphones have the unique advantage to record data in a continuous

way. Therefore, human mobility analysis has become an active research topic

thanks to the fast development of continuous location tracking techniques. Song80

et al. [8] presented a study on predictability of human mobility by analyzing the

entropy of location traces. Several prediction methods have been proposed for

human mobility in di↵erent contexts. Ashbrook et al. [9] proposed to extract

significant places and represent location traces as strings and then use Markov

models to predict the next place that a user will visit. NextPlace [10] proposed85

a location prediction solution based on nonlinear time series analysis of the ar-

rival and staying duration of users in relevant places. However, the work is only

focusing on GPS coordinates-based prediction. Zhao et al. [11] [12] proposed
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a Dynamic Bayesian Network-based model to predict the future cells of mobile

users to optimize telecommunication network operations. He et al. [13] pro-90

posed a Time-based Markov predictor for the location prediction of stationary

and mobile users. However, their works are limited to specific methods, which

can only produce a prediction accuracy of nearly 60%. Moreover, the transition

matrix-based approaches have clear drawbacks, since they take only the visit

logs as model inputs, but completely ignore the rich context information.95

In the next place prediction task of Nokia Mobile Data Challenge 2012, the

best methods relied only on spatial-temporal information to predict future lo-

cations [14], [15], [16], [17]. For instance, Lu et al. [17] focused on using the

transitions between places for each individual user, as well as the time context,

to make predictions. They also tried to explore other context information such100

as call-logs and accelerometer data in the current place. However, they only

applied a support vector machine (SVM) for each user to predict their future

locations. Tran et al. [18] applied an user-specific decision tree, which was

learned from each user’s movement history, to predict their future locations.

However, their works were limited to the decision tree-based predictor. [19]105

proposed to learn the time distribution for each place as well as the transi-

tion patterns between places by using the kernel density estimation to capture

spatial-temporal context features. Zhu et al. [20] proposed a feature engineer-

ing mechanism to predict semantic meaning of places. However, their works

were also limited to very few individual classifiers. As we can see, most of the110

existing works focused on applying only individual machine learning algorithms

to improve prediction accuracy. However, ensemble learning has been proven to

obtain better performance than could be obtained from any of the constituent

algorithms alone [21] [22]. Therefore, we focus on applying di↵erent ensemble

learning methods to optimize prediction accuracy.115
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3. MDC Dataset

Our experiment data is from the Nokia Mobile Data Challenge (MDC) [6],

a dataset that was collected using Nokia N95 smartphones on a 24/7 basis in

Switzerland from October 2009 to March 2011. About 180 volunteers partici-

pated in the campaign, where they were asked to carry the smartphones during120

their daily life with recording software running in the background. Even though

volunteers agreed to carry the smartphones during the campaign, their di↵erent

behaviors lead to di↵erent trace qualities. Moreover, users also had di↵erent

movement patterns, and some users traveled regularly while others did not.

Based on these observations, we divided the users into multiple categories, de-125

pending on the number of available data points, so called instances, that have

been recorded and the movement patterns of the mobile users.

3.1. User Classification

3.1.1. User Trace Quality

Di↵erent behaviors of users lead to di↵erent trace qualities. Some users130

carry the smartphones all the time. Therefore, the recorded data is complete

and useful for making prediction. However, some others forgot to carry the

devices or to charge them in time, such that data recordings are discrete and

useless for prediction. In the MDC dataset, whenever a user stayed in a place

for more than 10 minutes, an entry will be created in the table. The instance135

includes: User ID, Place ID, Starting Time, Ending Time. Samp Dist Corr,

which means a user with User ID has arrived at a place (with Place ID) from

Starting Time and left the place at Ending Time. Therefore, we define 5 cat-

egories of quality, depending on the number of instances recorded in a user’s

movement traces.140

• Very good: more than 1500 instances

• Good: 1200-1500 instances

• OK: 1000-1200 instances

• Bad: 800-1000 instances

• Very bad: less than 800 instances145
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3.1.2. User Movement Patterns

In addition to the trace quality, user movement patterns also have signifi-

cant impact on location prediction. Users had di↵erent mobility patterns. Some

users moved regularly, they traveled between home and o�ce during working

days with a homogeneous movement pattern, and, thus, it is easy to find out pat-150

terns. However, some other users traveled randomly and visited a lot of di↵erent

places for very few times during the data collection period. Their movements

are heterogeneous and it’s hard to predict their future locations even though the

recorded number of data entries is high. Based on this, we defined two types

of user movements: homogeneous and heterogeneous. Homogeneous movement155

means that the user’s mobility pattern is quite regular and repeatable, and the

user visits some places quite frequently. In contrast, heterogeneous movement

means that the movement traces are rather random and non-repeatable. In the

experiments we retrieved the visited places of each user, and classify users’ move-

ments types based on the number of places a user has visited and the number of160

the visit. Figure 1 show an example of homogeneous movement, since the user

visits very few places frequently. Figure 2 shows an example of heterogeneous

movement, where the user visited many di↵erent places occasionally.

Figure 1: Homogeneous movements.
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Table 1: Visited Place Categories

Label Place Label Place

1 Home 6 Outdoor sports

2 Friend home 7 Indoor sports

3 O�ce 8 Restaurant

4 Transportation 9 Shop

5 Friend o�ce 10 Holiday

Figure 2: Heterogeneous movements.

3.2. Place Category

The raw location data from the MDC dataset were recorded as sequences of165

GPS coordinates. In our work, we defined places as circular area that are cir-

culated around GPS coordinate points. As most works on MDC-based location

prediction, we defined ten categories of places, which are shown in Table 1.

4. Features

As stated before, a proper feature construction is fundamental to apply170

supervised machine learning algorithms to make accurate prediction. Therefore,

we need to construct features from a tremendous amount of raw data and assign

a set of features (feature vector) to each user-place pair. Features selection is
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a process of selecting a subset of relevant features (attributes) for their use in

prediction model construction. It is the process of choosing a subset of original175

features such that the feature space is optimally adapted and the appropriate

features are selected for classification. The collected MDC raw data is of huge

size. Therefore, it is important to select a subset of data by creating feature sets,

and identify redundant and irrelevant information. Table 3 shows the association

between all the features (e.g., number of detected WLAN, acceleration data,180

etc.) and places that are used in this work.

4.1. Feature Construction

Most of the MDC-based prediction works use only temporal or spatial fea-

tures. We combine both and additionally consider the smartphone system-

related features, which include context like battery level, charging frequency,185

detected WiFi network, etc. Below we describe the three categories of features

that are used in our system.

4.1.1. Temporal Features

Temporal features include context information relevant to the staying time

of a visit. Our visits to certain places tend to have some temporal characteristics190

that are relevant to the places. For instance, we stay at o�ces normally between

8:00 to 12:00 and 14:00 to 18:00, and we are at restaurants for lunch between

12:00 to 14:00. Below we detail the extracted temporal features and the feature-

place association. We used a time granularity of 1 hour to divide a day of 24

hours. An example of a day time decomposition is shown in Figure 3.195

Figure 3: Day time decomposition.
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• Weekday: to indicate which weekday is the visit.

• Leaving time: the ending time of the visit. We defined 6 time intervals,

and each time period could be mapped to a specific place. For instance,

if the visit is between 07:00 and 08:00, then the place is a transportation

hub of a certain probability.200

• Duration: time duration of the visit at a place.

4.1.2. Spatial Features

Spatial features include context relevant to the geographical information of

the visits. We have selected the following feature.

• Visiting frequency: how often to re-visit a place during the data collec-205

tion period.

4.1.3. System Features

Smartphone system features also have discriminative characteristics in di↵er-

ent places, and include context information relevant to the smartphone’s system

information. We suppose that this information is also helpful when predicting210

users’ future locations. For instance, places like restaurants or homes tend to

have more WiFi networks visible than other places, and people tend to have

di↵erent types of applications running on their phones when they are working

in the o�ce or enjoying holidays in a resort.

• WiFi connection: the number of visible WiFi networks.215

• Acceleration variation: movement speed variation, which can be de-

rived from the smartphones’ embedded motion sensors. It can be used

to detect changes of movement types, for instance if a user is detected

to change from slow speed movement to fast speed movement, then most

probably he is at transportation places.220

• Running application: the type of running application. This feature is

mainly used to detect that whether the users are in indoor or outdoor
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environments. For instance, map applications are mostly used outdoors,

while a connected WiFi network indicates the user is more probably in an

indoor environment. These information could further help us to improve225

the location prediction accuracy.

• Smartphone profile statement: profile of the phone, for instance nor-

mal or silent mode. Silent mode is more used during o�ce time or concerts,

which helps us to predict those places.

• Charging frequency: how often the smartphones are charged during230

the whole period of data collection. People tend to charge their phones in

o�ces and home, which helps us to detect home and o�ce areas.

4.2. Feature Importance

Given the extracted features, the next step is to select those features that

influence the prediction output more than others. WEKA has many algorithms235

to do this automatically, and we choose the Logistic Regression algorithm [23].

The Logistic Regression algorithm is very e�cient for the MDC data set, since

it has both nominal and numerical features. Table 2 represents the feature coef-

ficients, which are generated automatically by Logistic Regression from WEKA.

It shows that Detected WLAN has the best contribution for the prediction re-240

sult. The Charging frequency, Acceleration variation and Duration of staying

at a place are ranked on second level, third level features include the Visiting

frequency and Leaving Time and the Week day is the feature with lowest impact

on prediction output.

5. Predictors245

In this section, we describe the predictors we used to evaluate our prediction

system. We focus on the individual predictors as well as on ensemble predictors.
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Table 2: Feature coe�cients

Feature Coe�cient

Detected WLAN (1-4) 97.2

Charging frequency (90-100) 85.35

Acceleration variation 32.06

Staying duration (48-120) 30.19

Leaving time (12:30-14:00) 20.5

Frequency of visit (20-60) 29.89

Weekday (Thursday) 21.44

Is weekend 7.41

Table 3: Place-Feature Correlation

Place

Feature Leaving

Time

Duration

(Minutes)
Weekday

Visit

Freq.

# Visible

WiFi

Acce.

Var. (M/s2)

Running

APP

Phone

Profile

Charge

Freq.

Home 20:00⇠07:00 [480, 2880) MON to SUN [300, 450] [1, 4) [10, 100) Indoor Normal [250, 300)

Work
08:00⇠12:30

13:30⇠18:30
[120, 480) MON to FRI [200, 300) [4, 6) [10, 100) Indoor Silent [90, 250)

Restau. 07:00⇠09:00 [40, 120) MON to SAT [60, 250) [6, 12) � � Normal �

Transp.
07:00⇠08:30

18:00⇠19:30
[0, 40) MON to SUN [20, 100) [4, 6) [100, ) � Normal �

Outdoor

Sports
12:00⇠14:00 [0, 60) SAT to SUN [15, 70) � [50, 100) Outdoor Normal �

Indoor

Sports
18:00⇠20:00 [0, 60) SAT to SUN [15,80) [1, 3) [50, 100) � Normal �

Shopping

Center
� [40, 120) FRI to SAT [30, 130) [6, 12) [10, 100) Outdoor Normal �

Holiday

Resorts
� � � [5, 30) � � Outdoor Normal �

Friend

Home
19:00⇠22:00 [60, 180) FRI to SUN [5, 10) [1, 4) [10, 100) � Normal [20, 90)

Friend

O�ce
� � � � [4, 6) [10, 100) � Normal �
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5.1. Individual Predictor

Three categories of individual predictors are mostly used in machine learn-

ing: Decision Tree predictors, Bayes predictors, and Neural Networks predic-250

tors/Multilayer perceptron.

5.1.1. Decision Tree

A decision tree is a hierarchical structure for classifying objects, composed

of nodes that correspond to primitive classification decisions. At the top of the

tree is the root node that specifies the first dividing criterion. The root, and255

every non-leaf node, has multiple child nodes, which can be classified further

by checking other criteria. The root node contains all the visits of the training

data, while child nodes contain those visits that match the dividing criteria

along the path from root to that node. In our experiments, we used the J48

and the Random Forest algorithms. Figure 4 shows the J48 decision tree with260

the extracted features. In this example, the first dividing feature is the number

of detected WLAN networks, and the features along the path towards the leaf

are: duration of a visit in a place, acceleration variation, charging frequency,

leaving time from a place, visit frequency of a place, whether the visit is on a

weekday or not. The feature ranking is consistent with the feature coe�cient265

shown in Table 2.

13



Figure 4: A J48 decision tree.

5.1.2. Bayesian Networks

Bayesian Networks are a class of statistical models to define conditional de-

pendencies between attributes and parent node, represented by a graph. To do

so, the Bayesian Network uses a Directed Acyclic Graph (DAG), to create con-270

nections between a set of attributes A={attribute1, attribute2, ..., attributen}

and the parent node. In our case the parent node is visited Place-IDs, be-

cause we believed that the current place has a strong connection with the user’s

next place. Figure 5 shows an example of the Directed Acyclic Graph with the

extracted features and parent node.275

Figure 5: A Directed Acyclic Graph (DAG) of Bayesian networks.
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5.1.3. Neural Networks

Artificial Neural Networks are a mathematical model to solve a variety of

problems in pattern recognition and classification. ANNs can be viewed as

weighted directed graphs in which defined attributes are input layer, classes

(Place-IDs) are output layer and directed edges with weights are connections280

between input and output. In this work, we used the WEKA implementation of

ANNs called Multilayer Perceptron (MLP). Figure 6 shows the MLP with ex-

tracted features in our case. In this model, connections are organized into layers

that have unidirectional connections between them. Weights are determined to

allow the network to produce answers as close as possible to the known correct285

answers. The network usually must learn the connection weight from available

training patterns. Performance is improved over time by iteratively updating

the weights in the network.

Figure 6: A typical two-layer Multilayer Perceptron Architecture.
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5.2. Ensemble Predictors

Ensemble learning is an approach to combine individual predictors to achieve290

better performance. As di↵erent users tend to have di↵erent mobility patterns,

there is no single predictor that could outperform the others for all users. There-

fore, we focus on finding the suitable prediction model for a certain mobility

pattern and e�ciently combine all the models to deliver the optimized per-

formance. The task of constructing an ensemble classifier can be broken into295

two sub-tasks: (1) selection of a diverse set of base models or classifiers with

consistently acceptable performance; and (2) appropriate combinations of their

predictions with appropriate weights. In this work, three types of ensemble

predictors are applied: Boosting, Bagging, and Stacking.

5.2.1. Boosting300

This is an ensemble method that begins with a base classifier, which is

selected from a first experiment results performed on the training data. A

second classifier is then created behind it to focus on the instances in the training

data that the first classifier got wrong. The process continues to add classifiers,

until an accurate threshold is reached. Boosting relies on iteration, which uses305

the outcome of the previously built models as inputs of the second model to

improve performance. The AdaBoost algorithm was the first practical boosting

algorithm, widely used and studied in numerous applications and research fields

[24]. WEKA uses an updated version of AdaBoost, called AdaBoostM1 scheme.

In this work, we integrate individual algorithms like: J48, Random Forest, Bayes310

Network, Naive Bayes and MLP with AdaBoostM1.

5.2.2. Bagging

This is an ensemble method that divides the training data set into several

di↵erent sets (called subsets) with the same sizes. Then, it creates a classifier

for each subset. Afterwards, the final decisions are calculated by getting average315

values from the results obtained using the individual data sets. In this work,
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we used Bagging to integrate J48, Random Forest, Bayes Network, Naive Bayes

and MLP.

5.2.3. Stacking

The Stacking method focuses on a function to combine the outputs of the320

base learners using a meta-learner, which called Simple Logistic. In this work,

we integratedJ48, Bayes Network, and MLP with Stacking.

6. Performance Evaluation

This section presents the experimentation parameters and detailed perfor-

mance evaluation of the discussed prediction methods. The evaluation metrics325

we use are: prediction accuracy and prediction execution time, which indicate

how accurate the algorithm is and how long it takes to generate the prediction

results. From these evaluation results, we further analyze the potential influenc-

ing factors on the prediction accuracy performance. We highlight the impacts

of temporal and hybrid features, as well as trace quality. Finally, the paper also330

includes the theoretical analysis about the performance of di↵erent algorithms

under di↵erent conditions.

All experiments were run on a laptop with Intel vPro (64-bit-X68 architec-

ture) core i7 CPU 3.2 GHz. The laptop is running Windows 8.1 Enterprise,

with 16 GB memory. WEKA is installed and properly configured.335

6.1. Machine Learning Approaches and Parameters

In this work we use WEKA [1], which is an open source machine learning

framework, to discover the behaviors and mobility patterns of the mobile users

by learning from their historical trajectories. WEKA includes several types of

machine learning algorithms, such as Tree-based, Bayesian Networks-based and340

Neural Network-based. Moreover, it also provides ensemble learning methods,

such as Bagging, Boosting and Stacking. We study J48, Random Forest (from

Decision Tree predictors), Bayes Network, Naive Bayes (from Bayes predictors)

and Multilayer Perceptron (MLP) (from Neural Network predictors) machine
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learning algorithms. In order to improve the accuracy of individual algorithms,345

we apply Boosting and Bagging to individual algorithms and apply Stacking

to integrate multiple individual predictors. We carry out all experiments us-

ing temporal+spatial features and hybrid (temporal+spatial+system) features.

The experiments are performed using traced data sets of fifteen users, which

are randomly selected from di↵erent quality categories, and results are averaged350

over those users. For each user, we divide available trace data into ten subsets,

using 10-fold cross-validation. Each time, one of the 10 subsets is used as the

test set and the other 9 subsets are put together to form a training set. The ad-

vantage of this method is that it matters less how the data gets divided. Every

data subset gets to be in a test set exactly once, and gets to be in training set355

9 times. Table 4 shows some of the experiment parameters.

Table 4: Experiments parameters.

Parameter Definition Value

Confidence fac-

tor

Reduce the size of the decision tree

by removing insignificant nodes

0.25

Number of ob-

jects

Minimum number of instances per

leaf in the decision tree

2

Hidden layers Hidden layers of the neural network 45-55

Validation Number of iterations to run after ob-

serving lower prediction accuracy in

Boosting

2

Maximum depth Maximum depth of a tree in J48 and

Random Forest

1000

level

Training time Duration of training for individual al-

gorithms per iteration in Boosting

300 sec

T Number of trees to generate in Ran-

dom Forest

20

L Number of possible iterations for in-

dividual algorithms in Boosting

10

N Number of new generated training

sets in Bagging

10

J Number of new generated training

sets in Stacking

10
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6.2. Evaluation Results

In this subsection, we present the evaluation results of di↵erent predictors.

We focus on two metrics: prediction accuracy and prediction time. Prediction

accuracy refers to the percentages of correct location prediction, and prediction360

time refers to the execution time of performing the prediction task.

6.2.1. Average Prediction Accuracy of Individual Algorithms

Fig. 7 and Fig. 8 show the average prediction accuracy of di↵erent individ-

ual algorithms using temporal, spatial, as well as hybrid features. The results

clearly demonstrate that the mechanisms relying on the Decision Tree family365

(specially the J48 algorithm) outperform others, while using the traced data

with lower quality. We can also see that the Bayes Network scheme provides

better performance (> 84% accuracy) for the traced data with higher quality.

Moreover, it can be observed that the estimated accuracy is improved signifi-

cantly when the hybrid features are used instead of using only temporal+spatial370

features. For instance, Bayes Network delivers an accuracy of 84.76% with hy-

brid features, while only 55.47% can be reached with temporal+spatial features.

Figure 7: Prediction accuracy of individual algorithms using Temporal+Spatial features.
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Figure 8: Prediction accuracy of individual algorithms using Hybrid features.

Fig. 9 shows two confusion matrices that help to explain the nature of the

errors made by the classifier with temporal+spatial and hybrid features[25]. A

confusion matrix is a table that is often used to describe the performance of a375

classifier on a set of test data for which the true values are known. For instance,

row 1 of the table shows that 78 places whose real class type are 1 were wrongly

predicted as class 2, and 171 places with real class type of 1 were correctly

predicted. These matrices are generated by the J48 algorithm over the 10 most

visited places (indicated by IDs). For instance, the matrix of Fig. 9a shows380

that when the prediction algorithm uses only the temporal+spatial features,

accuracy of prediction is lower and several incorrect predictions are observed.

The number of correct predictions are significantly improved when the hybrid

features are used, as shown in Fig. 9b.
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(a) Temporal. (b) Hybrid.

Figure 9: Confusion matrices using di↵erent features.

6.2.2. Average Prediction Accuracy of Ensemble Learning Methods385

In this subsection, we present the prediction accuracy of di↵erent ensemble

learning algorithms. Fig. 10 and Fig. 11 present the prediction results of Boost-

ing and Bagging using hybrid features. The graphs show that using Boosting,

prediction accuracy is improved by around 10% compared to when individual

algorithms are applied. It can also be observed that Boosting outperforms Bag-390

ging. Di↵erent algorithms provide di↵erent prediction performance values. For

instance, J48 using Boosting performs better when the traced data is of low

quality. However, using traced data with higher quality, the integration of the

Bayes Network and Boosting outperforms the others.
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Figure 10: Prediction accuracy of Boosting.

Figure 11: Prediction accuracy of Bagging.

Fig. 12 shows the evaluation results of the Stacking learning method built395

by Simple logistics as a meta-learner for the hybrid features. Due to generating

higher accuracy results by J48, Bayes Network, and MLP, we decided to inte-

grate them using Stacking. The Random Forest and Naive Bayes are ignored as

they do not improve prediction accuracy. The graph shows that by integrating

J48 and MLP, prediction performance is improved by 10% to 14% compared to400

the individual algorithms even for trace data with low quality. Another signifi-

cant improvement can be observed when we used an integration of J48, Bayes
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Network and MLP mechanisms, particularly when the trace data is of high

quality.

Figure 12: Prediction accuracy of Stacking

6.2.3. Average Execution Time of Individual Algorithms405

In addition to prediction accuracy, we are also interested in the execution

time to make the prediction. We measure the execution time of each individual

algorithm using temporal+spatial features and hybrid features. The obtained

results, as shown in Fig. 13 and Fig.14, indicate that the Decision Tree and

Bayes families could generate the prediction faster. MLP is the one needing410

more execution time compared to the others.
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Figure 13: Average execution time of individual algorithms using Temporal+Spatial features.

Figure 14: Average execution time of individual algorithms using Hybrid features.

6.2.4. Average Execution time of Ensemble Learning Methods

Fig. 15 16, Fig. 17 18, and Fig. 19 20 present the average execution time

of Boosting, Bagging and Stacking learning methods, using temporal+spatial

and hybrid features. The results show that Boosting outperforms Bagging for415

di↵erent algorithms. When J48 and MLP are combined using Stacking, the

execution time is 12’012 seconds for very good quality traces and 109 seconds

for very bad quality traces. When J48, Bayes Network and MLP are combined
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with Stacking, the execution time is 15’078 seconds for very good quality traces

and 187 seconds for very bad quality traces.420

Figure 15: Average execution time of Boosting with Temporal+Spatial features.

Figure 16: Average execution time of Boosting with Hybrid features.
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Figure 17: Average execution time of Bagging with Temporal+Spatial features.

Figure 18: Average execution time of Bagging with Hybrid features.
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Figure 19: Average execution time of Stacking with Temporal+Spatial features.

Figure 20: Average execution time of Stacking with Hybrid features.

6.3. Performance Comparison with Past Studies

In this section, we present the performance comparison with past correlated

studies to show the superiority of our solutions. We take relevant location

prediction accuracy results from [17] [5], which are the winners of the mobility

prediction task in the Nokia Mobile Data Challenge. The results are shown in425

Table 5.
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Table 5: Accuracy comparison.

Work Algorithms Features Best Accuracy (%)

Our work Stacking Hybrid features 83.37

HKUST [17] Gradient Boosting Trees Limited hybrid features 76.32

EPFL [5] Blending Temporal features 56.22

As we can see from Table 5, our solutions significantly outperform the others.

This is because in [5], authors applied the Blending technique, which is an en-

semble learning approach similar to Stacking, to deliver the best accuracy using

only temporal features. They considered information such as starting/ending430

time of a visit, the visit is on weekday or weekend. In [17], authors explored

temporal and smartphone system features with the Gradient Boosting Trees ap-

proach. However, they did not consider a wide range of features as we did. For

instance, they only used the mean and variance of visit duration at a place for

the temporal features. Therefore, by applying ensemble learning using a wide435

range of hybrid features, our solutions provide the best performance.

6.4. Theoretical Analysis

In this section, we analyze the performance of di↵erent predictors from a

mathematical perspective. We would like to find out the impacting factors

of di↵erence predictors, and understand theoretically why they have di↵erent440

performance under di↵erent conditions.

6.4.1. Analysis of Individual Algorithms Performance

Section 6.2.1 presents the prediction accuracies of individual predictors. As

we can see from the results, Decision Tree-based approaches (specially the J48

algorithm) outperform others when the trace data is of lower quality, while the445

Bayes Network scheme provides better performance (> 84% accuracy) for trace

data with higher quality. To better understand these behaviors, we highlight

the performance comparison of J48 and Bayes Network by decomposing the

mathematical components of each model to explain why di↵erent predictors
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Figure 21: Prediction accuracy of J48 and Bayes Network

have di↵erent performance. Fig. 21 shows the average prediction accuracy of450

the J48 and Bayes Network algorithms using temporal or hybrid features as a

function of trace qualities, which are summarized in Fig. 7. It is interesting to

observe that for both cases, J48 outperforms Bayes Network when the quality

of traced data is low (e.g., with 100-500 instances). This is due to the fact that

the algorithms relying on the decision tree use the surrogate splits approach,455

which is a method to estimate missing data, to overcome the deficit of missing

data on the trace files [26]. However, the Bayes Network has no future action

in presence of a trace file with a lot of missing data, and its prediction is based

only on available data.

When making a prediction, J48 estimates the missing instances based on460

the present ones, resulting in higher accuracy of the prediction outcomes. As-

suming that ai denotes either numerical attributes (e.g., leaving time, duration

of staying in each place, place id, etc), or nominal attributes (e.g., application

type, is weekend, is weekday, etc), whose values could be missing randomly.

The missing attribute parameters with nominal value can be estimated based465

on available instances with the same attribute. Assuming that the day of vis-

iting a particular place (e.g., Place-ID = 1) for a user is missing, the surrogate

split approach [27] can estimate the missing value (e.g., day of a visit), knowing

that (using users previous trajectories) on which day the user often visits the
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location with the same Place-ID. Our problem can be modelled by Eq. 1.470

bVi,j u argmaxvi,j2(ai)|�ai = vi,j and y = yip D| (1)

bVi,j defines the estimated parameter, vi,j represents the missing parameter of

attribute ai with index j, �ai includes the subset of missing parameters for

attribute ai, yip shows the value of the target attribute (e.g., duration time,

application type) and D is the provided data set. If the missing parameter of

attribute ai has a numerical value, the estimation is performed by calculating

the mean (average) of the existing data instances with the same attribute. The

outcome of the estimation of the decision tree-based algorithms is more similar

to the original data if there is no continuously missing data on the trace files.

As shown in Fig. 21, the J48 and Bayes Network algorithms generate similar

results when the trace data is of low quality (e.g., with 100-200 instances). J48

performs better for improved quality of trace data (e.g., with 200-500 instances).

However, it is interesting to observe that Bayes Network overtakes J48, when

the quality is better (e.g., with 700-1500 instances). This is due to the fact

that Bayes Network follows a graphical model, making possible relations be-

tween the parameters with particular probabilities [28]. When the number of

existing instances raises, the generated graph used in the model requires more

computation overhead, but resulting in more accurate prediction. The graph is

integrated with set of local probability distributions to define the joint proba-

bility distribution [29]. The joint probability distribution is defined as in Eq. 2.

Pr(X|m, ✓) = ⇧n
i=1Pr(Xi|⇧(Xi), ✓) (2)

Xi, denotes attributes in DAG, ⇧(Xi) shows the set of parents (e.g., Place-ID

= 1, Place-ID = 2,...), ✓ is a vector of conditional probabilities, m represents

the DAG model and local probability distributions are the distributions corre-

sponding to the terms in the product of Eq. 2.
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Figure 22: Directed Acyclic Graph (DAG) of Bayes Network.

6.4.2. Analysis of Ensemble Learning Algorithm Performance475

As presented in Fig. 11 and Fig. 12, the experiment results show that the

integration of the individual algorithms (e.g., J48, Bayes Network and MLP)

using ensemble learning methods can e�ciently improve prediction accuracy.

This is because for machine learning algorithms, the bias error and variance

error, as explained in Eq. 3, are the main components of the prediction errors.

However, all ensemble learning methods are able to mitigate these errors such

that the prediction performance could be enhanced. The bias error defines

the di↵erence between values of the expected prediction (average of estimated

predictions) and the real one. The variance error determines the variability of

the prediction accuracy due to small modifications in the training set.

Err(X) = bias error2 + variance error + noise error

= (E[g(x)]� f(x))2 + E[(g(x)� E[g(x)])2] + ✏2e

(3)

f(x), g(x), E[g(x)] and ✏2e denote the correct value to predict (Place ID), es-

timated prediction calculated by the algorithm, expected prediction, and noise

error, respectively. Ensemble learning methods can be applied to enhance the

prediction performance of individual algorithms by mitigating the variance er-

ror.480

Even though ensemble learning could deliver better prediction accuracy than

individual algorithms, they also perform di↵erently according to how they ad-

dress the variance error. Bagging performs this by creating N new subsets of

training data sets with the same size, as shown in Table 4. The new data sets are

generated from the original data, randomly sampled and replaced [30]. There-
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fore, the total variance (Z) will be decreased as it is divided among the newly

generated training data sets. Variance of each new subset can be calculated

using Eq. 4.

V ariancej =
1

N
V ar(Z) j = 1, ..., N (4)

For Bagging, the training phase is performed independently over all the new

data sets. Later, as shown in Eq. 5, the final prediction accuracy (PrBagging)

is obtained by getting a simple-averaging over the outcomes computed in each

new data set (ej). This implies that there is no mechanism in Bagging to specify

whether the parameters are classified correctly or not. This means that all the

parameters appear with the same probability in newly generated data sets [31].

PrBagging =
1

N
⌃N

j=1ej j = 1, ..., N (5)

Boosting applies a sequential model in the learning phases [32]. After each

iteration, the weights of parameters are determined based on the current pre-

diction error, as shown in Eq. 6. Next, the weights are assigned to uncorrected

classified parameters. Therefore, the wrongly-classified parameters will appear

in the new training set with bigger weights than the correctly classified ones.

This repetition decreases the diversity of the parameters in the training sets,

which results in a reduction of the variance and consequently a better prediction

performance. The parameters used in this equation 6 are listed in Table 6.

wh+1
t =

wh
t �

(1�lth)
h

⌃N
i=1w

h
i �

(1�lth)
h

, w1
t 2 [0, 1], ⌃N

t=1w
1
t = 1 (6)
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Table 6: The notations and definition of parameters

Parameter

Name

Parameter Definition

w1
t = [1, ..., wN ] Set of possible weights for the first step of

iterations, usually w1
t =

1

N
h = 1, ..., L Number of iterations in Boosting

lht = 0, 1 Prediction in iteration h is incorrect (=0) /

correct (=1)

�
(1�lth)

h Current prediction error of algorithm in iter-

ation h

wh
t Current weight at iteration h

wh+1
t Calculated weight for iteration h+1

For Stacking, di↵erent kinds of individual algorithms can be integrated to

improve performance. Stacking achieves this through two steps. Firstly, the

given data set of D = {(yn, xn), n = 1, ..., N} is randomly split into J smaller

data sets (parameters defined in Table 4). The generated sets have almost equal

sizes, denoted by the d1, ..., dJ . Thereafter, the individual algorithms (level-0

algorithms) carry out prediction on the generated data sets independently [33].

The outcomes of each prediction algorithm (e.g., visited place in our scenario)

can be defined using Eq. 7:

zkn = {(P (d1)
k (xn), ..., P

(dj)
k (xn)), k = 1, ...,K, n = 1, ..., N} (7)

P
(dj)
k (xn) denotes the prediction of individual algorithms for each instance x in

the newly generated data sets (dj). Later, a new data set is created using the

IDs of the visited places (yn) and the output of the K individual algorithms

(zkn). Formally, the new data set is represented as:

LLevel�1 = {(yn, z1,n, ..., zk,n), n = 1, ..., N} (8)

LLevel�1 defines the input data for the second step, including the predicted val-

ues for each visited place. This input is di↵erent from the one for the first step.

The input of the first step includes the Place-ID and extracted features from

the trace data. Next, the meta-learner (Level-1 algorithm) uses the Weighted
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Majority method [34][35] to further improve prediction accuracy. Weighted485

Majority is an approach to decide weights of each algorithm based on their

individual prediction performances.

Based on the aforementioned description, we could imagine that a particular

algorithm could only provide a low prediction accuracy, due to the high variance

of the data set used in the learning phase. Afterwards, the Weighted Majority490

method can be applied to enhance the accuracy of the final prediction by getting

benefits of other algorithms, which provides more accurate results.

7. Conclusions

In this paper, we model the future place prediction problem as a standard

supervised learning task and ensemble learning methods with hybrid types of495

features. Our approach characterizes the properties of users’ movement pat-

terns and visited places, then extracts rich types of features (temporal, spatial,

and system features) to quantify the correlation between visited places and

features. Finally, we propose to use ensemble machine learning approaches to

predict users’ future locations. Our system is extensively evaluated using real-500

world datasets, and experiment results unveil three interesting findings: (1)

For individual algorithm-based predictors, a J48 decision tree-based approach

outperforms Bayes-based approach when data quality is poor; (2) Ensemble

learning-based approaches always outperform individual state-of-the-art classi-

fiers; and (3) Stacking is better than other ensemble methods such as Bagging505

and Boosting.
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