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ABSTRACT

Localization is information of fundamental importance to
carry out various tasks in the mobile robotic area. The ex-
act degree of precision required in the localization depends
on the nature of the task. The GPS provides global po-
sition estimation but is restricted to outdoor environments
and has an inherent imprecision of a few meters. In indoor
spaces, other sensors like lasers and cameras are commonly
used for position estimation, but these require landmarks
(or maps) in the environment and a fair amount of compu-
tation to process complex algorithms. These sensors also
have a limited field of vision. Currently, Wireless Networks
(WN) are widely available in indoor environments and can
allow efficient global localization that requires relatively low
computing resources. However, the inherent instability in
the wireless signal prevents it from being used for very ac-
curate position estimation. The growth in the number of
Access Points (AP) increases the overlap signals areas and
this could be a useful means of improving the precision of
the localization. In this paper we evaluate the impact of
the number of Access Points in mobile nodes localization
using Artificial Neural Networks (ANN). We use three to
eight APs as a source signal and show how the ANNs learn
and generalize the data. Added to this, we evaluate the
robustness of the ANNs and evaluate a heuristic to try to
decrease the error in the localization. In order to validate
our approach several ANNs topologies have been evaluated
in experimental tests that were conducted with a mobile
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node in an indoor space.

1. INTRODUCTION

The ability to estimate position correctly is a prerequisite
to undertake a number of tasks in the autonomous mobile
robotic area. Moreover, knowledge about localization can be
used to track animals and people (e.g. to track the move-
ment of people while practicing sports). Sensors like GPS
can be used to provide global position estimation but this
is restricted to outdoor environments and has an inherent
imprecision of a few meters. While the use of GPS is quite
common outdoors as a primary source for locating a posi-
tion, a more accurate estimation can be obtained through a
fusion of other sensors, like lasers and cameras [1].

In indoor spaces, sensors like lasers and cameras can be
used for pose estimation [12, 16], but they require landmarks
(or maps) in the environment and a fair amount of compu-
tation to process complex algorithms. These sensors also
have a limited field of vision, which makes the task of local-
ization harder. In the case of video cameras, the variation
of light is also a serious issue. Another commonly used sen-
sor is the encoder, which provides odometry. Odometry is a
useful source of information in some cases [2, 14] but it has
an incremental error that usually invalidates its use in real
systems.

Wireless Networks are widely available in indoor environ-
ments and allow efficient global localization, while requir-
ing relatively low computing resources. Other advantages of
this approach are scalability, robustness, and independence
of specific features of the environment. However, the in-
herent instability of the wireless signal does not allow it to
be used directly for accurate position estimation. One ma-
chine learning technique that could reduce the instability
of the signals of the WN is the Artificial Neural Networks;
this is due to its capacity to learn from examples, as well
as the generalization and adaptation of the outputs. It is
a method that is widely used in applications that require



approximation, prediction or classification [15].

The main objective of this paper is to make an evalua-
tion of the ability of ANNs to obtain the position of mo-
bile nodes by means of measurements from wireless devices
(802.11b/g). The measurement from the wireless network is
the Received Signal Strength Indication (RSSI). This value
is used as the input of an ANN to learn the localization with-
out any another information or any need to adopt a mathe-
matical approach. Several topologies of ANNs are evaluated
as well as the impact of the number of Access Points (APs)
in mobile nodes localization by using Artificial Neural Net-
works. We use three to eight APs and show how the ANNs
learn and generalize the data. In addition, we evaluate the
robustness of the ANNs and broadening an idea outlined in
[20], which aims to reduce the error in the localization by
calculating the average of multiple measurements from the
wireless network.

This paper has the following structure: Section 2 intro-
duces a short theoretical description and discusses the ap-
plications of artificial neural networks and wireless networks.
Section 3 outlines the methodology that is employed to set
up and evaluate the experiments. Section 4 describes the
evaluation of all the experiments that are carried out. The
final section makes some concluding comments and examines
the future perspectives of this area of research.

2. THEORETICAL BACKGROUND
2.1 Artificial Neural Networks

An Artificial Neural Network is a collection of units (neu-
rons) connected by weighted links (synapses). Input and
output units receive and transfer signals from and to the
environment. The internal units are described as hidden
because they do not have any contact with the external en-
vironment [17]. The basic attributes of an ANN can be
divided into architecture and neurodynamics. The architec-
ture determines the structure of the network, i.e. the num-
ber of neurons and their interconnectivity. Neurodynamics,
in turn, defines the functional properties of the network, that
is how it learns, recovers, combines and compares new in-
formation with knowledge that has already been stored [8].
In mathematical terms, ANNs are universal approximators,
that carry out mappings in multivariable functions spaces
[6]. The ability to learn and generalize' is one of the main
advantages of ANNs, since it gives them a power that ex-
tends far beyond the simple direct mapping of inputs and
outputs.

Neural networks are often used in applications that require
approximation, prediction or classification. The study [19]
examines an ANN that is able to perform the navigation of
a robot in a simulated two-dimensional environment. The
ANN controls the direction of the robot to areas with a lower
density of occupation by vegetation; the inputs of ANN are
the vegetation densities observed and the output is the angle
at which the agent should move. In [18] there is an ANN
which performs the navigation of a robot in a simulated
three-dimensional environment; the ANN inputs consist of
information collected from sensors (localization, orientation,
distance to obstacles) while the outputs are the speed and
angle which have to be applied to the linear and angular

! Generalize can be considered as the production of accept-
able outputs for inputs not presented during learning.

motors, respectively. In addition, the study [22] discusses
an ANN that is used to classify navigable and non-navigable
regions in images; the ANN inputs are attributes of color,
formed by the average of color channels and entropy. Other
studies using ANNs can be seen in [15, 25].

In this paper, the development of the ANN was under-
taken with the aid of the Stuttgart Neural Network Simula-
tor (SNNS) [24]. The SNNS is an environment created to de-
velop topologies and to train ANNs which have a large num-
ber of learning algorithms, such as backpropagation, quick
propagation, and resilient backpropagation, among others.
The core system is developed in C and it can be operated
entirely through command line, although it also has an inter-
face developed in JAVA (JavaNNS). An application package
from SNNS, (the SNNS2C), allows the ANN to be converted
into a C code, which can be easily inserted into another ap-
plication.

2.2 Wireless Networks

In most cases, a signal from a wireless network is propa-
gated in a radial range. It can be directional depending on
the type of antenna being used. The signal power decreases
according to the distance from the server station. By means
of trilateration, and by using at least 3 server stations, we
can do a simple calculation to obtain the localization, in a
similar way to the GPS system. However, unlike GPS, the
signal from the wireless network shows a greater degree of
instability and suffers more from interference [5, 7, 21].

In [3] it has been shown that obtaining an absolute per-
formance in localization, by means of a wireless network,
depends on environmental configuration. This means that
different approaches are required for different environments,
such as using different kinds of signals and filters. Evalu-
ations in large indoor areas (like a building) presents more
difficulties in localization due to the problem of attenuation
and reflection of the signals on the walls and the different
sources of interferences. The use of wireless localization to
address the problem of localization inside a building can be
seen in [4, 9, 10, 11].

Another approach for localization is the use of a Wireless
Sensor Network (WSN); the main difference in these ap-
proaches is that in a WSN there is a large number of small
sensors that pick up information from the environment. The
information acquired by the sensors can be regarded as a fin-
gerprint. This is an interesting solution, but it requires a lot
of resources which could make the system expensive. Exam-
ples of work involving the use of WSNs to obtain localization
can be found in [13, 23, 26].

3. METHODOLOGY

We have evaluated the use of an Artificial Neural Network
to obtain the position of a mobile node in an indoor environ-
ment using data provided by a wireless network (802.11b/g).
Our approach relies on the ANN learning and generalization
capabilities in an attempt to reduce the effect of unstable
data (due to signal strength oscillation), and increase the
accuracy of the position estimation of the node.

The indoor environment used to obtain data can be seen
in Fig. 1 and 2. The working area® of the mobile node is

2The Fig. 2 shows a little robot inside the plane; however,
a mobile computer was used to scan the WNs and to ob-
tain the data used as the ANN input. The GNU/Linux



Figure 1: Graphical representation of the working
area. It represents an area of 270cm x 270cm.

inside a room and is represented as a Cartesian plane. There
are 8 access points (APs), as shown in Fig. 1. Fig. 2 only
shows a partially mounted environment. The mobile node is
located inside the plane with one wireless card which is used
to scan the networks and signals provided by the APs. The
data used to train the ANN was collected in 15 readings,
each marked point — with a displacement of 90cm (Fig. 2)
mapping out a plane of 270cm x 270cm; this means there
were 16 points to read, resulting in 240 readings altogether.

Several ANN topologies have been evaluated to validate
our approach by means of experimental tests conducted with
a mobile node in this indoor environment. The inputs of the
ANN are the signals received by the mobile node antenna
from the 3, 4, 6 and 8 static positioned APs. The value
obtained from the wireless networks is the Received Signal
Strength Indication (RSSI). This value is obtained with the
aid of the GNU/Linux command swlist>. As we use the
iwlist command, there is no need to establish a connection
(or login) with the different specific networks. The scan
of the networks, without a connection, provides enough in-
formation for this evaluation. Without a connection, the
system becomes easier to use, more lightweight and flexible.

RSSI is a metric of the signal strength present in a received
radio signal. The main advantage of using RSSI is its low
cost. Since every wireless device implements the possibility
to deliver this value in its circuitry, there is no need for the
development or adaptation of any additional hardware [5,
21].

The experiments are conducted in four steps: (i) We eval-
uate several ANN topologies seeking to obtain the topology
which can achieve the lowest error; (ii) We use the best ANN
(best hidden layer) obtained in the previous stage and an-
alyze the behavior of the ANN when more than 3 inputs
are used (we use 3, 4, 6 and 8 inputs — respectively 3, 4, 6

command jwlist used to scan the networks has not yet been
implemented in the robot.
3Used as iwlist <interface> scanning

Figure 2: A section of the picture of the working
area with the robot, similar to what is represented
in Figure 1. The yellow rectangles show two sources
of network signals (APs). The large arrow points to
the robot. The small arrows show the plane marks
(each 90cm long).

and 8 APs providing RSSI values); (iii) We evaluate how the
ANN deals with errors in the inputs — we simulate failures
in the APs, by injecting null values in some of the inputs;
and (iv) We evaluate an idea to try to decrease the error
in the localization by using averages and medians of mul-
tiple measurements from the wireless network, broadening
the idea outlined in [20].

The number of neurons in the input layer is equivalent to
the number of APs available in each evaluation. As we use
3 to 8 APs, the inputs of the ANN use one neuron for each
network signal. The order is important, and hence, AP 1
was linked to neuron 1, AP 2 with neuron 2 and so on. The
outputs of the network are two values, the coordinates (z, y)
of the receiving antenna in the plane, a.k.a. the mobile node
position. We trained the ANN with the power signal of each
source antenna in the expectation of obtaining the position
of the mobile node in the Cartesian plane. As a result, after
training the ANN, we could use it to obtain the localization
and to track the displacement of the mobile node along a
path.

The error is measured in centimeters, using the distance
formula (distance between two points), as shown Eq. 1. The
value d is the error (distance, in centimeters), (z1, y1) are the
expected value from ANN validation set and (z2,y2) are the
obtained value when using the ANN.

d= \/(x2—$1)2+(y2—y1)2 (1)

4. EXPERIMENTS AND RESULTS

In this section we describe the four experiments conducted
for this article*. In the first, we evaluated several ANN
topologies seeking to obtain the topology which could achieve
the lowest error. In the second, we used the best ANN (best
hidden layer) obtained in the previous stage and analyzed

4Scripts, ANN topologies and data files are available in
http://goo.gl/sjgnd



Table 1: Results of the best ANN for each topology (in cms).
ANN Topology
3x4x2  3x4x4x2  3x8x2 3x8x8x2 3x12x2 3x16x2 3x20x2 3x24x2 3x28x2 3x32x2
Average error 120.37 127.49 123.78 120.04 122.10 120.94 120.44 121.31 122.36 122.25

Std. dev. 59.63 51.89  54.59 58.38 54.07 58.12 59.08 53.28 52.84 53.80
Larger error 220.30 221.66 204.67 213.06  238.31 246.33 220.76 208.89 194.53  203.86
Smaller error 2.77 28.30  12.22 0.76 18.46 0.98 6.32 4.39 18.21 22.71

Figure 3: Graphical representation of values from Table 1 — results of the best ANN for each topology.



Table 2: Results of the best ANN for each different
input layer (in cms).

ANN Topologies
3x24x2  4x24x2 6x24x2 8x24x2

Average error  121.31  114.37 97.58 90.46
Std. dev. 53.28 49.55 59.92 52.16
Larger error 208.89  225.36  296.22  227.48
Smaller error 4.39 15.45 16.05 4.43

the ANN behavior when more than 3 inputs were used (we
used 3, 4, 6 and 8 inputs — respectively 3, 4, 6 and 8 APs
providing RSSI values). In the third stage, we evaluated
how the ANN deals with error in the inputs — we simulated
failures in the APs, by injecting null values in some of the
inputs. In the fourth, we evaluated an idea for reducing the
error in the localization by using averages and medians of
multiple measurements from the wireless network.

With the aim of obtaining the topology which can achieve
the lowest error, we have evaluated the impact of using 10
different hidden layers in the ANN. The input of the ANN
takes account of three RSSI values from 3 different access
points (we use values from APs {3,5,8} — Figure 1). The
output are the expected (z,y). The hidden layers are with
{4, 4x4, 8, 8x8, 12, 16, 20, 24, 28, 32}. Table 1 shows
the best ANN for each topology with the results converted
to centimeters. We ran the ANN training until it reached
200.000 cycles and used a script to analyze the results and
obtain the training cycle with the Optimum Generalization
Point (OGP), in which the ANN has the best generalization
capabilities. As neural networks are susceptible to random
values used in the initialization of the weights, we ran each
ANN 5 times with different random seeds.

As can be seen, from Table 1 and Figure 3 the results
for all the evaluated ANN topologies are fairly similar. In
this way, there is no significant difference in using any of the
hidden layers evaluated. Although quite similar, the ANN
which had the lowest error (taking into account the sum of
the average errors and standard deviation) was the ANN
with 24 neurons in the hidden layers. Because of this, we
will use this ANN topology in the next stage.

To analyze the ANN behavior when more than three ac-
cess points are included, we use 4, 6 and 8 RSSI values from
different access points. When using four inputs, we use val-
ues from APs {1,3,5,7} and when using six inputs, we use
values from APs {1,2,3,5,6,7}. These choices were made in
an attempt to maintain a balance on all sides of the working
area. When using eight inputs, we used all the available APs.
We trained these ANNs by means of the same methodology
employed for the previous set, but with different input lay-
ers being considered. Table 2 shows the best ANN for each
topology with the results converted to centimeters. Figure
4 shows the graphical representation of Table 2.

As can be seen from Table 2 and Figure 4, when the num-
ber of access points is increased, the average error decreases
considerably. The average error falls from 121.31cm (using
3 inputs) to 90.46cm (using 8 inputs). But the standard
deviation remains very similar in all cases.

Figure 5 shows the histogram of the error when account
is taken of the different input layers. Using 3 (Figure 5(a)),
4 (Figure 5(b)), 6 (Figure 5(c)) and 8 (Figure 5(d)) inputs,
it is clear that Figures 5(c) and 5(d) shows the errors are

Figure 4: Graphical representation of values from
Table 2 — results of the best ANN for each different
input layer.

Table 3: Comparison between ANN using the orig-
inal 8 inputs and using simulated failure inputs (in
cms).

Original Injecting
8 inputs error
Average error 90.46 286.37
Std. dev. 52.16 269.37
Larger error 227.48 1137.05
Smaller error 4.43 6.73

more concentrated at the beginning of the histogram than
is the case with Figures 5(a) and 5(b). In addition, it can
be seen in Figure 5(d) that there is a lower tail in relation
to Figure 5(c), which means there are fewer results with a
large error. Moreover, Figure 5(d) shows the errors are more
concentrated at the beginning of the histogram than is the
case with Figure 5(c), which means there is a lower error in
Figure 5(d).

In the third stage, we sought to evaluate how the ANN
deals with the problem of errors in the inputs — we simu-
lated failures in the APs, by injecting null values in some
of the inputs. In this way, we pick the best ANN from the
previous stages (ANN with 8 inputs and 24 neurons in the
hidden layer). We used the trained ANN to read the orig-
inal validation set and obtain the output values for all of
the sets. For each complete reading in the validation set,
we put a null value in one input neuron (keeping the true
values of the other seven). This meant that we ran the ANN
eight times, one for each AP, and in this way obtained the
difference between the expected and obtained values.

Table 3 shows the results of the best ANN using the orig-
inal inputs and using the simulated failure inputs. In the
light of this data set, it is evident that the ANN with sim-
ulated input error really produces worse results. Figure 6
shows the histogram of the error taking account of the ANN
with original 8 inputs and with simulated input error. It
can be seen in Figure 6(b) that it has a big tail, and obtains
really worse errors than Figure 6(a).

In the fourth stage, we sought to evaluate a simple idea
to reduce the error; to achieve this, we made a compari-
son between the use of average and the use of medians of
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Figure 5: Histogram of the error considering different input layers. (a) Using 3 inputs. (b) Using 4 inputs.
(c) Using 6 inputs. (d) Using 8 inputs. The z axis represents the error in centimeters.

Table 4: Results of the best ANNs trained with av-
erage and median of multiple scans (in cms).
ANN Inputs
Avg of Mdn of Avgof Mdn of
4 scans 4 scans 8 scans 8 scans
Average error 45.92 43.19 34.69 27.40

Std. dev. 26.35 33.08 24.72 17.98
Larger error 116.04  150.04 132.32 91.79
Smaller error 8.70 1.81 7.08 4.92

multiple readings of the wireless network signals as ANN
input. Hence, the average and medians of multiples read-
ings of wireless networks were used as input of the ANN. We
evaluated the average and medians of 4 and 8 readings of the
wireless network signals (scans of wireless signals). In this
evaluation, we used the best ANN topology chosen from the
second stage (ANN with 24 hidden neurons where all eight
APs were used). We also ran the training and validation of
the ANN 5 times using different random seeds. Table 4 and
Fig. 7 show the results, in centimeters, of the best ANNs.
It can be seen in Table 4 and in Fig. 7 that by using

the average and the median of the multiple readings from
the wireless network as the input in the ANN, we could
reduce the average error in the ANN learning from 90.46cm
(without using the average of the scan) to 34.69cm (using
an average of 8 scans) and to 27.40cm (using a median of
8 scans). We can see, from these tables and figures, that
the use of the median provides better values than the use of
the average. When the median of 8 readings is considered,
there is a reduction of 69.7% in the average error compared
with the situation when multiple scans were not used. In
addition, it was possible to reduce the standard deviation
from 52.16cm (without using the average of the scan) to
17.98cm (using a median of 8 scans). This means there was
a reduction of 67.9% in the standard deviation.

In the final stage, the mobile node was used to traverse
a path (and find the track) in the environment, taking ac-
count of wireless scanning (each with a 90cm x 90cm dis-
placement). The paths can be seen in Fig. 8. Fig. 8(b)
shows results that are significantly better than those in Fig.
8(a). We can see from Fig. 8 that the tracked path improves
with the use of the median.

The Fig. 9 shows the partial spatial distribution of the
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Figure 6: Histogram of the error. (a) Using original 8 inputs. (b) Injecting error (null value) in one neuron
in the ANN input. The z axis represents the error in centimeters.
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Figure 8: Paths using the best trained ANNs. (a) Just one scan in the ANN input. (b) Median of 8 scan in
the ANN input. Red line: original path. Blue line: ANN tracking. The z and y axis are in centimeters.



Figure 7: Results of the best ANNs trained with
average and median of multiple scans.

data used as ANN input. It shows four sets, that take ac-
count of the 3 APs. The axis x, y, and z are in dBm (RSSI

unit of measure).

5. CONCLUSION

Accurate position information is a requirement to accom-
plish several tasks in the mobile robotic area. Some sen-
sors like GPS provide global position estimation but it is
restricted to outdoor environments and has an inherent im-
precision of a few meters. In indoor spaces, other sensors
like lasers and cameras can be used for pose estimation, but
they require landmarks (or maps) in the environment and a
fair amount of computation to process complex algorithms.
These sensors also have a limited field of vision, which makes
the localization task harder. In the case of video cameras,
the variation of light is also a serious issue. Wireless Net-
works (WN) are widely available in indoor environments and
allow an efficient global localization that requires relatively
low computing resources. Other advantages of this approach
are scalability, robustness, and the independence of specific
features of the environment. However, the inherent insta-
bility of the wireless signal does not allow its direct use for
accurate position estimation.

In this paper we have evaluated the use of an Artificial
Neural Network to obtain the position of a mobile node in
an indoor environment by making use of the data provided
by the wireless network. We evaluated several topologies of
ANNs. The results from ANN learning show that regard-
less of the number of neurons in the hidden layer, they re-
main very similar. But, if a larger number of APs was used,
the error could be reduced from 121.31cm (using 3 APs) to
90.46cm (using 8 APs). In addition, when an error was in-
jected in the ANN, the results became really worse. This
fact might discourage the use of the ANN since a failure in
some AP might be identified. To further reduce the error,
it has been shown that the use of multiple readings and the
use of median instead of average can reduce the error from
90.46cm to 27.40cm.

6. FUTURE WORK

There are two major research projects being planned: (i)
Seeking improvements in the system to obtain the orienta-
tion of the mobile node and (ii) Making evaluations in large
buildings. The first step in making these evaluations is to
study how to reduce the signal fluctuation. Another future
work planned is to carry out an evaluation of this approach
in multi-node localization.
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