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& This work addresses the evolution of an artificial neural network (ANN) to assist in the
problem of indoor robotic localization. We investigate the design and building of an autonomous
localization system based on information gathered from wireless networks (WN). The article focuses
on the evolved ANN, which provides the position of a robot in a space, as in a Cartesian coordinate
system, corroborating with the evolutionary robotic research area and showing its practical viability.
The proposed system was tested in several experiments, evaluating not only the impact of different
evolutionary computation parameters but also the role of the transfer functions on the evolution of
the ANN. Results show that slight variations in the parameters lead to significant differences on
the evolution process and, therefore, in the accuracy of the robot position.

INTRODUCTION

Mobile robot navigation is one of themost fundamental and challenging
directions in the mobile robotics research field, and it has received great
attention in recent years (Fu, Hou, and Yang 2009). Intelligent navigation
often depends on mapping schemes, which depend on the localization
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scheme. For either indoor or outdoor environments, the mapping and
localization schemes have their own features. Thereby, localization is a
key problem in mobile robotics and it plays a pivotal role in various success-
ful mobile robot systems (Thrun et al. 2001).

This article describes an investigation on the evolution of a system for
indoor localization, which estimates the position of one robot based on
information gathered from wireless networks (WNs). The signal strength
of several wireless nodes are used as input in the ANN in order to deter-
mine the position of one robot in an indoor space. The evolution of the
ANN, detailed in the section ‘‘Evolutionary Localization’’ is done using
particle swarm optimization (PSO) (Eberhart, Kennedy, and Shi 2001;
Engelbrecht 2005). We show the complete hardware and software architec-
ture for the robotic system developed so far. Our main focus in this work is
to report findings that corroborate the use of evolutionary computation
techniques to create autonomous intelligent robots (Fogel 2006). This
article is an extended version of our previous work (Pessin et al. 2012). It
aims to describe in a more thorough way the applied methodology, the
experiments, and the discussion about the results. The main novel aspect
in this article is the investigation on several new parameters of the PSO.

In indoor spaces, sensors such as laser range finders and cameras might
be used for pose estimation (Napier, Sibley, and Newman 2010), but they
require landmarks (or maps) in the environment and a fair amount of
computation to process complex algorithms. These sensors also have a lim-
ited field of vision, which makes the localization task more difficult. In the
case of video cameras, the variation of light is also a serious issue. Another
commonly used sensor is the encoder, which provides odometry. Odometry
is a useful source of information in some cases (Martinelli 2002) but it has
an incremental error that usually invalidates its use in real systems.

WNs are widely available in indoor environments and might allow
efficient global localization while requiring relatively low computing
resources. Other advantages of this technology are that it may provide high
degrees of scalability and robustness. However, the inherent instability of
the wireless signal does not allow it to be used directly for accurate position
estimation. One machine learning technique that could reduce the insta-
bility of the signals of the WN is the artificial neural Network (ANN)
because of its capacity to learn from examples, as well as the generalization
and adaptation of the outputs (Mitchell 1997).

In Elnahrawy, Li, and Martin (2004), it has been shown that obtaining
an absolute performance in localization, by means of a WN, depends on
the environmental configuration. This means that different approaches
are required for different environments, such as using different kinds of
signals and filters. Evaluations in large indoor areas (such as a building)
present specific difficulties not always the same as in small indoor areas
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(such as a room). These difficulties are related to the problem of attenu-
ation and reflection of the signals on the walls and the different sources
of interferences. The use of WNs addressing localization inside a building
can be seen in Espinace, Sota, and Torres-Torriti (2008) and Ladd and
colleagues (2004). Another approach for localization uses the wireless
sensor network (WSN) in which a large number of small sensors are used
to pick up information from the environment. The information acquired
by the sensors can be regarded as a fingerprint (Robles, Deicke, and
Lehnert 2010).

This article has the following structure: ‘‘Methodology’’ outlines the
methodology that is employed to set up and to evaluate the experiments.
Experimental Results and Discussion describes all the evaluations and
discussions that have been carried out. The final section makes some
concluding comments and examines the future prospects of this area of
research.

METHODOLOGY

The indoor localization system uses an evolved ANN.1 The inputs of the
ANN are signals strength measurements from WNs (802.11b=g) received by
the robot2 from eight statically positioned access points (AP) as shown in
Figure 1(a) and 1(b). The signal obtained from the WN is the received
signal strength indication (RSSI). This value is obtained with the aid of
the GNU=Linux command iwlist.3 Because we have used the iwlist com-
mand, there was no need to establish a connection (or login) with different
specific networks. The scan of the networks, without a connection, provides

FIGURE 1 (a) Graphical representation of the working area. It represents an area of 180 cm by 180 cm.
(b) Picture of the working area with the robot, similar to what is represented in Figure 1(a). Each small
cross is placed 60 cm apart (color figure available online).
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enough information for this evaluation. Without a connection, the system
becomes easier to use, more lightweight and flexible. Furthermore, as the
Nao robot has an operating system based on GNU=Linux, this approach
may be generalized to any other GNU=Linux based system.

The evolution of the ANN is carried out using data collected by the
robot. We use the robot within the working area (Figure 1(b)) and col-
lected readings over 3 minutes (i.e., �180 readings) at each marked point.
With a displacement of 60 cm, mapping out a plane of 180 cm by 180 cm, it
means 16 points to read resulting in �2880 readings altogether.

Our approach relies on the ANN learning and generalization capabili-
ties in an attempt to reduce the effect of unstable data (due to signal
strength oscillation), and to increase the accuracy of the position esti-
mation of the robot. However, as the values obtained from the reading of
the APs are quite unstable, we improve the learning capability using the
noise filter previously evaluated in Pessin and colleagues (2011). The beha-
vior of the noise filter can be seen in Figure 2(a), where two lines represent
scanning of one AP over a period of time. The red line shows the raw value
and the black line shows how the median filter removes some of the noise.
Although it generates a delay of �8 seconds in acquiring the new position,
it was shown in Pessin and coauthors (2011) that the accuracy turns out to
be widely better.

The number of neurons in the input layer is equivalent to the number
of available APs—because we use 8APs, the inputs of the ANN use one
neuron for each network signal. The order is important, and hence, AP
1 was linked to neuron 1, AP 2 with neuron 2, and so on. The outputs of

FIGURE 2 (a) Sample of filter behavior. The red line shows the raw value from one of the access points.
The black line shows how the median filter removes some of the noise. (b) Example of ANN topology
(color figure available online).
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the network are two values, in other words, the coordinates (x, y). We mea-
sure the output errors by using the Euclidean distance, as shown in Equa-
tion 1. The value d is the error (distance, in centimeters), (x1, y1) are the
expected values from the ANN validation set, and (x2, y2) are the obtained
value while using the ANN.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ

2
q

ð1Þ

Evolutionary Localization

As we seek to evaluate ANN characteristics and also the evolutionary
process, we started with a simple ANN topology as can be seen in
Figure 2(b). We evaluate changes in the ANN topology and in the role of
the transfer function. Furthermore, because the evolution is carried out
using PSO (Eberhart, Kennedy, and Shi 2001; Engelbrecht 2005), we
evaluate several aspects that influence the search efficiency in the PSO.
These aspects are related to confidence models, neighborhood topology,
and inertia, among others.

We use PSO to evolve two different structures. In the first, we use the
PSO to evolve just the ANN weights. In the second, we evolve the ANN
weights plus the slope of the transfer function. As an example, the ANN in
Figure 2(b) has 80 connections plus 10 weights for bias, hence, the PSO
particle has 90 positions (i.e., it is a vector with 90 positions). For the slope,
we consider its use just in the hidden layer, and it is the same value for all
neurons. Hence, it adds only one more value to the PSO particle.

The PSO is a stochastic optimization technique, inspired by the social
behavior of birds flocking and fish schooling (Eberhart, Kennedy, and
Shi 2001; Engelbrecht 2005). The optimization process occurs in two differ-
ent ways simultaneously: through cooperation (group learning) and com-
petition (individual learning) among particles (individuals) from a swarm
(population). It shares many concepts with evolutionary computation tech-
niques such as genetic algorithms (GA), in which there is an initial popula-
tion (where each individual represents a possible solution) and a fitness
function (whose value represents how far an individual is to an expected
solution). However, unlike GA, PSO has no explicit concepts of evolution
operators such as crossover or mutation. In the PSO, there is a swarm of
randomly created particles. At each algorithm iteration, each particle is
updated as follows: (1) the best population fitness; (2) the best fitness
found by the particle (considering past generations of the particle). Each
particle has a position x (or a position vector) and a velocity v (or velocity
vector). The position represents a solution for the problem, and the
velocity defines the particle’s displacement direction weight.
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The new particle’s position is given by Equation (2). Where xik is the
position of particle i at instant k, and vik is the particle’s i velocity at k
moments. The particle’s velocity is updated according to Equation (3).

xikþ1 ¼ xik þ vikþ1 ð2Þ
vikþ1 ¼ w � vik þ c1 � r 1ðpbest � xikÞ þ c2 � r 2ðgbest � xikÞ ð3Þ

In Equation (3), vik is the particle actual velocity, w represents a particle
inertia parameter, pbest is the best position among all positions found by
the individual (particle best), gbest is the best position among all positions
found by the group (group best), c1 and c2 are trust parameters, r1 and r2
are random numbers between 0 and 1. Parameters (w, c1, c2, r1 e r2) are
detailed following.

The velocity is the optimization’s process guide parameter (Engelbrecht
2005) and reflects both the particle’s individual knowledge and group know-
ledge. Individual knowledge is known as the cognitive component whereas
group knowledge is known as the social component. Velocity consists of
a three-term sum: (1) previous speed, utilized as a displacement direction
memory and can be seen as a parameter that avoids drastic direction
changes; (2) cognitive component, directs the individual to the best
position found so far (i.e., memory of the particle); (3) social component,
directs the individual to the best particle in the group.

Parameters c1 and c2 (confidence or trust) are used to define individual
or social tendency importance. Default PSO works with static and equal
trust values (c1¼ c2), which means that the group experience and the
individual experience are equally important (called Full Model). When
parameter c1 is zero and parameter c2 is higher than zero, PSO uses only
group information (called Social Model). When parameter c2 is zero and
parameter c1 is higher than zero, PSO uses only particle’s information,
disregarding the group experience (called Cognitive Model). Random value
introduction (r1 and r2) on velocity adjustment allows PSO to explore the
search space in a better way (Engelbrecht 2005). The inertia parameter
aims to balance local or global search. As the value approximates to 1.0,
search gets close to global while lower values allow local search. Usually this
value is between 0.4 and 0.9. Some authors suggest its linear decay, but they
warn that it is not always the best solution. Most parameters are problem
dependent (Engelbrecht 2005; Yao 1999).

EXPERIMENTAL RESULTS AND DISCUSSION

This section describes the six evaluations we have performed, consider-
ing several changes in the ANN and PSO techniques. Results are always
presented from the validation dataset (optimum generalization point).
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We performed 25 runs for each parameter set, considering different ran-
dom seeds on each initialization. The evolutionary process considers 2=3
of the dataset as training data and 1=3 as validation data.

Range of Velocity and Position

Velocity is the optimization’s process guide parameter (Engelbrecht
2005) and reflects both the particle’s individual knowledge and group
knowledge. In mathematical terms, it specifies the weight of the displace-
ment vector. Higher velocity leads to larger displacement in the position
and it is an issue related to global and local search (Pant, Thangaraj, and
Abraham 2009; Herrera and Zhang 2009). PSO’s position, in this work,
is regarded as the synaptic weight of the connections.

We evaluate the impact of using different range values in the initializa-
tion of PSO’s velocity and position. Furthermore, we also evaluate how the
number of generations and the swarm size impact the evolution. Table 1
shows the evaluation set related to swarm size and the number of genera-
tions. Table 2 shows the evaluation set for weights of connections (i.e., pos-
ition) and velocity parameters in the PSO. Results can be seen in Figure 3.

We can see in Figure 3(a) thatmore generations and larger swarm size pro-
vides better results (E9). However, even using a swarm size equal to 1,000 and
number of generations equal to 2,000, the evolutionary process was not reach-
ing learning stabilization (the learning curve still had slight improvements).

In Figure 3(b) we can see that the two sets that obtained the best (lower
error) results considering the range of velocity and position are A8 and A2.

TABLE 1 Evaluation Set Used to Investigate the Swarm
Size and the Number of Generations in the PSO

Swarm size

Generations 200 500 1,000

500 E1 E2 E3
1,000 E4 E5 E6
2,000 E7 E8 E9

TABLE 2 Evaluation Set Used to Investigate the Weights of Connections
(i.e., Position) and Velocity Parameters in the PSO

Position

Velocity f�2.0;2.0g f�5.0;5.0g f�20.0;20.0g

f�2.0;2.0g A1 A2 A3
f�5.0;5.0g A4 A5 A6
f�20.0;20.0g A7 A8 A9

Indoor Robotic Localization System Based on Wireless Networks 749
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Both use positions between f�5.0; 5.0g but have different velocity ranges.
We can see that although A2 has the lowest minimum error, it has the
widest dispersion among all. The A8 set has the lowest median and a mini-
mum error close to A2. Although, considering the graph scale (2 cm), all
results are not much different. Thereafter, for the next steps, we maintain
the set A8 in the PSO. Moreover, given that the evolutionary process was
not reaching complete stabilization, we extrapolate E9 with 10,000 genera-
tions instead of 2,000 generations.

Confidence Models, Inertia, and the Role of the Transfer Function

The confidence model is an issue directly related to how one particle is
influenced by another particle of the swarm or by itself. It is very closely

FIGURE 3 (a) Results using different swarm sizes and numbers of generations (an shown in Table 1).
We can see that more generations and larger swarm size provides better results (E9). (b) Results using
different initialization in PSO velocity and position (an shown in Table 2). Best (lower error) can be
seen in A8 and A2. The graphs are in different scales. The x axes represent the error in centimeters.
Sets A3, A6, and A9 are not presented in the figure because of average errors larger than 55 cm.

750 G. Pessin et al.

D
ow

nl
oa

de
d 

by
 [

G
us

ta
vo

 P
es

si
n]

 a
t 0

6:
00

 1
8 

Se
pt

em
be

r 
20

13
 



related to the diversity of the population. Greater diversity may lead to
better global search, whereas small diversity may lead to premature conver-
gence (Ozcan and Mohan 1999; Kennedy 1997).

The inertia, as presented in the section ‘‘Evolutionary Localization’’
aims to balance local or global search. As the value approximates to 1.0,
search gets close to global while lower values allow local search. The
inertia weight (w) controls the momentum of the particle by weighting
the previous velocity (Malik et al. 2007).

Transfer functions are related to the production of a scalar neuron
output (Dorofki et al. 2012; Haykin 2008). Usually, a transfer function
(or activation function) is used to limit or smooth the output of a neuron.
It is related to the learning and generalization capabilities of the ANN.

We seek to understand the behavior of the PSO evolving the ANN
considering confidence models, the inertia, and the role of the transfer
function. Table 3 shows the evaluated parameter set. Linear and logistic
are the two types of transfer function used in the ANN hidden layer.

We can see that results (Figure 4) using the Cognitive Model or the
Social Model were worse than using the Full Model. The four best sets

TABLE 3 Evaluation Set Used to Investigate the Inertia and Confidence Models
(in the PSO) and the Transfer Function (in the ANN)

Inertia

Full Social Cognitive

Linear Logistic Linear Logistic Linear Logistic

0.3 Fi3 Fo3 Si3 So3 Ci3 Co3
0.5 Fi5 Fo5 Si5 So5 Ci5 Co5
0.7 Fi7 Fo7 Si7 So7 Ci7 Co7

FIGURE 4 Results using different PSO confidence models and inertia, as shown in Table 3. We show
the sets where the average error was lower than 80 cm – 8 of 18 sets. The x axis represents the error
in centimeters. The best set (lowest median) is Fo3 (PSO full model. Transfer function logistic and iner-
tia equal to 0.3).
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are fFi3, Fi5, Fo3, Fo5g. We can see that the sets with the logistic transfer
function obtained best results near to 15 cm, whereas the sets with linear
transfer function obtained best results near to 45 cm. In these sets, we
can also see that when inertia was used as 0.3, we have better results
than using inertia equal to 0.5 or 0.7. It makes sense because the lower
the inertia, the better the local search (fine tuning). Hence, the best para-
meter set that we maintain in order to go to the next steps is Fo3.

We have used the logistic transfer function with a slope of 0.02. We also
had a different PSO evolving the slope, however, the results when we leave
the PSO to evolve the slope were similar to the use of the predefined value.
Of course, the finding of slope equal to 0.02 was not trivial because it was
encountered by analyzing the output of the sum of the hidden layers. Such
a situation may encourage the use of the PSO in order to find the slope of
the transfer function. Some evaluations taking into account nonlinear
inertia will be show in the Section titled ‘‘Nonlinear Inertia.’’

Number of Neurons in the Hidden Layer

The number of neurons in the ANN hidden layer is related to the learn-
ing and generalization capabilities. Too few neurons can lead to underfitting
(lack of learning) whereas too many neurons can lead to overfitting (learn-
ing too well the training data and lacking generalization capabilities) and
waste of computational resources (Teoh, Tan, and Xiang 2006; Huang 2003).

We evaluate different numbers of neurons in the hidden layer to under-
stand the learning and generalization capabilities. Hence, we evaluate the
use of 2, 4, 8, 12, and 16 neurons. Results can be seen in Figure 5. We can
see poorest results using 2 and 4 neurons. Using 8 and 12 neurons leads
to good minimum errors but high dispersion. The ANN with 16 neurons
presents the lowest error and the more homogeneous results. Statistical
analyses (Welch Two Sample t-test4) on N12 and N16 showed p-value of

FIGURE 5 Results using a different number of neurons in the ANN hidden layer. The x axis represents
the error in centimeters. We can see poorest results using 2 and 4 neurons. Using 8 and 12 neurons
shows good minimum errors but high dispersion. The ANN with 16 neurons presents the lowest error
and the more homogeneous results, being �12% better than N12.
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0.011, i.e. with 95% of confidence, the hypothesis that the two population
means are equal is rejected, in other words, the use of 16 neurons does
improve the system accuracy in �12%.

Neighborhood Topologies

Neighborhood topologies are related to the choice of the best particle
to follow. In the star model, all particles follow the best among all (example
in Figure 6(a)). Nevertheless, it may sometimes be more susceptible to
local minima. Other neighborhood topologies may be less susceptible to
local minima, in which the particle does not follow the global best but
the best of some subpopulation (example in Figure 6(b)). In general, it
could increase the diversity. We have evaluated seven different types of
neighborhood topologies:

. The star model (ST). As shown in Figure 6(a), all the particles (light
gray) follow the best particle among all (light orange).

. Two subpopulations – i.e., 2 groups of neighbors having two gbests, one
for each subpopulation (S2). As shown in Figure 6(b), the particles (light
gray) follow the best particle of its neighborhood (light orange).

. Four subpopulations – i.e., four groups of neighbors having four gbests,
one for each subpopulation (S4).

. Two subpopulations having one gbest, which is the average of the gbest
of each subpopulation (AV2). As shown in Figure 6(c), the particles
(light gray) follow the average of the best particle of each neighborhood
(light green).

. Four subpopulations having one gbest, which is the average of the gbest
of each subpopulation (AV4).

FIGURE 6 Examples of neighborhood topologies. (a) Star model – every particle may see any other
particles (dashed line), although they follow (straight line) just the global best (light orange). (b)
Two subpopulations – i.e., 2 groups of neighbors having two gbests, one for each subpopulation. Every
particle may see any other particles (dashed line) in their subpopulation, although they follow (straight
line) the global best (light orange) of each subpopulation. (c) Altered two subpopulations—there are
two subpopulations and the gbest is the average of the gbest of each subpopulation. The particles (light
gray) follow (straight line) the average of the best particle of each neighborhood (light green) (color
figure available online).

Indoor Robotic Localization System Based on Wireless Networks 753

D
ow

nl
oa

de
d 

by
 [

G
us

ta
vo

 P
es

si
n]

 a
t 0

6:
00

 1
8 

Se
pt

em
be

r 
20

13
 



. Two subpopulations in which each position of a particle follows one or
another position of the gbest randomly (RPR).

. Two subpopulations in which the particle follows one or another gbest
randomly – i.e., following all the particles (RPO).

We can see in Figure 7 the results of using different types of neighbor-
hood topologies. We can see the poorest results in RPO, RPR, and AV4. The
sets ST, S2, S4, and AV2 were evaluated statistically and showed a p-value
from the Kruskal-Wallis rank sum test5 equal to 0.355 – i.e., the hypothesis
that the sets come from the same distribution is not rejected using 95% of
confidence; hence we consider it as similar results. Because the statistical
test leads us to consider it as similar results, we believe is better to use
the least complex option, which is the Star Model (ST).

Nonuniform Inertia

In previous sections we have presented some explanations about the
inertia influence. We have shown that maintaining the inertia uniform,
equal to 0.3 have had better results than inertia equal to 0.5 and 0.7.

Works (Silveira et al. 2010; Deep, Arya, and Bansal 2011; Kentzoglanakis
and Poole 2009) have evaluated nonuniform inertia showing that some-
times it may improve the PSO. Hence, this section aims to evaluate the
impact of using nonuniform inertia in the localization problem. We
have evaluated four different types of inertia behavior: one uniform
(Figure 8(a)) and three nonuniforms, with linear decay (Figure 8(b)), expo-
nential decay (Figure 8(c)) and sinusoid behavior (Figure 8(d)).

FIGURE 7 Results using different types of neighborhood topologies. We can see the poorest results in
RPO, RPR, and AV4. The sets ST, S2, S4, and AV2 were evaluated statistically and showed a p-value from
the Kruskal-Wallis rank sum test equal to 0.355—i.e., these four sets are considered as equivalent, using
95% of confidence.
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Figure 9 shows the result of the evolution considering the four evalu-
ated types of inertia behavior. We can see that the use of uniform inertia
has presented better results than nonuniform inertia. The result of the stat-
istical test (Welch Two-Sample t-test) showed p-values lower than 0.000 for
the sets f(ST, EX), (ST, LN), (ST, SN)g; in other words, the hypothesis that
the population means are equal is rejected, using 95% of confidence.
Hence, for this problem, we can see that the use of uniform inertia showed
significant better results than other types of inertia.

FIGURE 8 Example of inertia behavior: (a) uniform (w¼ 0.3), (b) linear decay, (c) Exponential, (d)
Sinusoid. Values are normalized between 0.8 and 0.2 (color figure available online).

FIGURE 9 Result of the evolution considering the four evaluated types of inertia behavior. We can see
that the use of uniform inertia has presented better results than nonuniform inertia.
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More Generations

As a last step, we performed a new evaluation considering the best set
found so far but running the evolutionary process for 100 k generations
instead of 10 k. Results can be seen in Figure 10. The data shown in
Figure 10(a) and 10(b) presents an average error and standard deviation,
respectively, of (14.6, 18.4) and (10.2, 14.4); in other words, running the
PSO for 100 k generations allowed us to decrease the average error by more
�30%. We can see that Figure 10(a) has less results in the first class (0 to
5 cm) and a bigger tail than Figure 10(b). Statistical evaluation using
the Mann-Whitney test (because it can be considered as a non-normal
distribution) showed p-value equal to 1.517e�11 (the hypothesis that the
two populations are the same is rejected using 95% of confidence).
Figure 11 shows a section of the plane (Figure 1(a)) with expected and
obtained values for four positions, using the best acquired ANN. For all
positions in the evaluated plane, 86% of the errors are below 20 cm.

FIGURE 10 Histogram of the localization error using the best acquired ANN. (a) Using 100 k genera-
tions in the PSO. (b) Using 100k generations in the PSO. The x axes represent the error in centimeters.

FIGURE 11 Section of the plane (Figure 1(a)) with expected and obtained values for four coordinates
using the best evolved ANN. The black dots are the expected value; diamonds show the obtained values.
Each color represents a different position. Axes x and y are in centimeters. For all positions in the full
evaluated plane, 86% of the errors are below 20 cm (color figure available online).
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CONCLUSION AND FUTURE WORK

In this article we have described an investigation addressing the evol-
ution and the use of an ANN to assist in the problem of indoor localization
by using data gathered from WNs. With the data obtained from the WN, we
employed a median noise filter as shown in Pessin and collegues (2011).
We evaluated several PSO and ANN settings. Results showed that the use
of the transfer function in the ANN together with the PSO Full Model
allowed us to decrease the average error from �45 cm to �15 cm. Also,
we might see that the use of PSO neighborhood topology and the nonuni-
form inertia did not allow any significant improvement. Finally, the system
could be improved using a larger number of neurons in the hidden layer
and a larger number of generations, leading to an average error of �10 cm.

Nevertheless, it is important to notice that results presented in this
paper cannot be directly compared with results from Pessin and coauthors
(2011) because the studies have not employed the same data; they were col-
lected in different environments and with different robots. Future work
may include an investigation to improve the local search, because, even
using a significantly vast number of generations, we still have a slightly
decreasing error. Further, we are considering the other two approaches,
that is, the comparison with other evolutionary techniques and a compari-
son with classical ANN learning algorithms to verify accuracy and efficiency.

NOTES

1. Source code and data files used to evolve the ANN are available in goo.gl=vfXN2.
2. Although we have used the humanoid robot NAO, the proposed methodology may be applied to any

kind of device with wireless capabilities.
3. Used as iwlist< interface> scanning.
4. Sets N12 and N16 can be considered as normal distributions. We have used the Shapiro-Wilk

normality test, which showed p-values equal to 0.634 and 0.928.
5. We have used Kruskal–Wallis rank sum test because the hypothesis of AV2 being a normal

distribution was rejected by the Shapiro-Wilk normality test.
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