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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Multipath-Routing in drahtlosen Mesh-Netzwerken
(wireless mesh networks, WMNs). Ein WMN zeichnet sich dadurch aus, dass die Teilnehmer
ohne zentral koordinierende Instanz direkt über mehrere Hops miteinander kommunizieren.

Um Verbindungen über die maximale Reichweite einzelner Knoten hinaus zu ermöglichen,
suchen spezielle Routing-Algorithmen nach der besten Verbindung zwischen jeweils zwei Teil-
nehmern, ggf. über mehrere Zwischenknoten. Gegenstand dieser Arbeit ist die Implementation
und Evaluation einer Erweiterung zu einem solchen Adhoc-Routing-Protokoll, um ungenutzte
Netzkapazität durch den Miteinbezug alternativer Pfade nutzbar zu machen.

Auf Basis einer bestehenden Implementation von AODV, dem Ad-hoc On-demand Dis-
tance Vector-Protokoll, erfolgte die Realisierung der Multipfad-Erweiterung AODVM, welche
anschliessend in einem Mesh-Netzwerk mit gut einem Dutzend Teilnehmer getestet wurde.
Anhand einer statistischen Auswertung der gewonnenen Daten konnte dann die Leistung von
AODVM mit der des ursprünglichen AODV verglichen werden.

Entgegen der Theorie, welche deutliche Vorteile bei der Kommunikation über mehrere Pfade
verspricht, bewirkte die Erweiterung keine Durchsatzsteigerung. Die Verwendung zusätzlicher
Pfade führte nicht zu einer Zunahme der Netzwerkkapazität, sondern im Gegenteil zu einem
instabilen Netz, in dem zeitweise gar kein Datenverkehr mehr möglich war.

Die Ursachen für dieses Problem sind vielseitig. So führte die Erhöhung der Anzahl der
Datenpakete im Netzwerk zu mehr Interferenzen, der zusätzliche Datenverkehr kollidierte mit
den Daten auf den anderen Pfaden. AODVM stellt zwar sicher, dass kein Knoten gleichzeitig
Teil von mehr als einem Pfad einer Route ist, lässt jedoch die Möglichkeit, dass sich Daten
zweier verschiedener Pfade trotzdem stören können, ausser Acht.

Nicht nur Nutzdaten waren von Kollisionen betroffen, sondern auch die sowohl in AODVM
wie auch in AODV periodisch ausgesendeten HELLO-Pakete, mit denen sich Knoten gegen-
seitig über ihre Präsenz informieren. Bereits der Verlust weniger aufeinanderfolgender solcher
Pakete führte nun dazu, dass Knoten annahmen, zuvor gesichtete Nachbarn seien nicht mehr
erreichbar, die bestehenden Routen kappten und eine neue Routenerkennungsphase einleiteten.

Darüberhinaus zeigte sich AODVM anfällig auf das Problem von sog. communication
gray zones, eine Situation, in welcher Verbindungen zwar für die Routenerkennung ausreichend
gute Übermittlung bieten, Nutzdaten jedoch nicht transportieren können. Die Ursache hierfür
liegt darin, dass Management-Pakete einerseits nur sehr kurze Nachrichten sind und folglich
mit höherer Wahrscheinlichkeit unversehrt am Ziel ankommen, und andererseits als Broadcast-
Pakete mit einer tieferen Übertragungsrate versendet werden als Datenpakete, was wiederum die
Fehlerwahrscheinlichkeit senkt. Eine einzelne solche Verbindung zwischen zwei Knoten führt
nun zu einem Pfad, welcher zwar wegen seiner scheinbaren Existenz für die Datenübertragung
verwendet wird, jedoch keine oder nur sehr wenige Daten fehlerfrei übertragen kann. Da
AODVM keine Möglichkeit kennt, auf solche Situationen zu reagieren, kann somit eine Hand-
voll schlechter Verbindungen das Netzwerk empfindlich stören.

Aus diesen Beobachtungen lässt sich schliessen, dass ein Protokoll wie AODVM zur Be-
wertung der auszuwählenden Pfade sowohl Interferenzen wie auch communication gray zones
berücksichtigen sollte.
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Abstract: Multi-path routing can provide robustness and load balancing to com-
munication in wireless mesh networks (WMNs). We present a Linux implementa-
tion of an existing multi-path routing scheme and evaluate it in our inhouse WMN
testbed. In addition to our implementation, we describe the testbed where we per-
formed evaluations regarding end-to-end delay and packet loss. Furthermore, we
identify the limitations of the implemented protocol in a real-world scenario with
interferences due to dense node placement as well as third-party networks and dis-
cuss possible enhancements and general directions of research.

Keywords: wireless mesh networks, multi-path routing, experimentation, AODVM,
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1 Introduction

These days, wireless networks are a common element of everyday life. In most cases, however,
these networks are infrastructure networks relying on centralized entities (“access points”) for
coordination and routing. In some cases, setting up such an infrastructure can be impractical,
especially when the network has to be up and running as quickly as possible and/or when in-
stalling a wired backbone network is undesirable or impossible. This is where so-called wireless
mesh networks (WMNs) become important. A WMN consists of independent nodes commu-
nicating with each other over wireless links and therefore without the presence of any wired
infrastructure.

Such networks, while generally easier to deploy, have a high risk of link failure due to en-
vironmental changes, e.g., weather or other wireless networks. Moreover, nodes may leave the
network, been shut down or change their position at random times. The nodes in a WMN have
to rely on presence announcements from their neighbors. In times of heavy data traffic, how-
ever, this information can be lost due to interference between data and management traffic. This
can cause nodes to falsely assume link failures and possibly re-run the route discovery process,
unnecessarily disrupting network activity.

In order to add additional redundancy and/or capacity to such a network, several multi-path
extensions to existing ad hoc routing protocols have been proposed. These extensions allow any
member of the network to find multiple paths to any other member which can then be used either
as fallback routes or to distribute the payload, thus allowing for better utilization of available
bandwidth.

1 / 12 Volume 17 (2009)



Multi-Path Routing in Wireless Mesh Network

In this paper we are going to present our experience with one of those protocol extensions,
explaining its operation, how we implemented it in Linux, how we tested it and which results
those tests yielded.

Our contribution is the implementation and evaluation of a multi-path routing scheme in a
Linux-based wireless mesh testbed deployed at our institute.

2 Related work

Research on wireless multi-path routing protocols produced several proposals for multi-path
extensions to existing single-path ad-hoc routing protocols, namely to the Ad hoc On-Demand
Distance Vector (AODV [PBD03]) and the Dynamic Source Routing (DSR [JHM07]) protocols.

Among the distance-vector routing protocols, proposed extensions to AODV include Ad hoc
On-Demand Distance Vector Multipath (AODVM [YKT03]), the Ad hoc On-Demand Multipath
Distance Vector (AOMDV [MD02]) and the Similar Node-disjoint Multipath Routing (SNDMR
[XYX05]) protocols. They differ in the way route discovery works and, as a result, in the amount
of “disjointness” between multiple paths, e.g. AODVM paths are node-disjoint while paths in
AOMDV are link-disjoint, meaning that in AOMDV several paths can use common nodes which
is not possible in AODVM (see Figure 1).

source

destina tion

source

destina tion
link d is jo int

node  d is jo int

Figure 1: Link-disjoint and node-disjoint paths

However, source-routing also has its multi-path proposals, e.g. Split Multipath Routing (SMR
[LG01]), based on DSR. SMR differs from the AODV derivates not only in it being a source-
routing protocol but also in the fact that the number of paths is specified before the route dis-
covery process and the protocol will try to make those paths as disjoint as possible (“maximally
disjoint”).
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3 Multi-Path Routing Scheme: AODVM

The Ad-hoc On-demand Distance Vector Multipath (AODVM [YKT03]) routing protocol is a
multi-path extension to the Ad-hoc On-demand Distance Vector (AODV [PBD03]) protocol. The
main difference lies in the route discovery process (see Figure 2). As in AODV, the process starts
with the source node broadcasting a route request (RREQ) packet (1) which is then forwarded
by intermediate nodes (2). However, instead of dropping duplicate RREQs packets, intermediate
nodes also forward them to the destination as well and store information on all forwarded RREQs
in an RREQ table. For each forwarded RREQ, an entry in the so-called neighbor list is created
(3). These entries contain information on the neighbor which sent the RREQ as well as the
distance (hop count) to the RREQ source.
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Figure 2: AODVM route discovery

In AODV, the destination only replies to the first RREQ it receives, any further requests are
ignored (4). In AODVM, however, each RREQ is answered by sending a route reply (RREP)
packet back to the RREQ’s origin (5). The destination node then selects the shortest path to the
source node in its neighbor list, forwards the RREP to that node and removes the corresponding
RREQ entry from its RREQ table (6/7).

Since all nodes constantly overhear the wireless medium they know about all RREPs sent by
their neighbors. If a node detects a RREP transmission, it removes the RREP’s sender from its
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neighbor list to ensure that no further route replies concerning the same route request are sent to
that node. This mechanism guarantees that all routes discovered are node-disjoint, i.e. there are
no routes to the same destination sharing any common nodes (see Figure 1).

The node which initiated the route discovery stores a route to the destination for each RREP
received and the destination stores a reverse-route to the source for each RREQ received. The
traffic can then be distributed over the discovered paths according to a packet allocation scheme.

4 Implementation

Our implementation of AODVM [YKT03] is based on AODV-UU [Nor], an AODV implementa-
tion which runs in the ns-2 network simulator [BEF+00] as well as on real Linux machines[Wib02].

4.1 Operation


































Figure 3: AODV-UU architecture

AODV-UU consists of two main parts: a kernel module (kaodv) and a user space agent (see
Figure 3). The kernel part uses netfilter hooks to listen to incoming and outgoing traffic. It
communicates with the user space agent over a netlink socket, e.g., to initiate a route discovery
process when packets to unknown destination hosts show up or for route maintenance. The user
space agent handles all the routing packets for route discovery and route maintenance. In order
to implement AODVM, we had to modify both, the kernel module and the user space agent.

Since AODV-UU usually identifies a route by its destination, we had to add information about
the next hop because in general in AODVM several routes with the same destination exist. We
modified the netlink messages sent from the kernel module to contain the next hop’s MAC ad-
dress.

The user space application was modified to keep track of the next hop’s MAC address in each
route. Also, the agent uses a netlink socket to communicate with the kernel. We enhanced the
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Figure 4: Netlink message to add a multi-path route. Below the RTA MULTIPATH attribute, the
different next hops are contained and form a multi-path route.

corresponding code to allow adding multi-path routes. In AODVM mode we send a message to
the kernel, asking to add a new route (RTM NEWROUTE) with a specific multi-path attribute
(RTA MULTIPATH) describing the possible next hops, that is, all the paths (see Figure 4). Since
there is no easy way to remove a single path from a multi-path route, the whole route is deleted
and then replaced by a new one without the no-longer valid path. Other changes we made to the
user space application include:

• Add support for route discovery error (RDER) messages

• Modify the application to request an acknowledgement (RREP ACK) for every RREP sent
to reduce the effect of lost RREP packets

• Keep track of neighbor nodes (RREQ table, neighbor list)

• Modify the way intermediate nodes reply when they receive an RREQ

• Allow for multiple routes in the internal routing table

• Make sure the kernel loads the multipath rr module

• Modify route management messages to support multipath routes

4.2 Route Selection

Multipath route selection in AODVM was achieved with the equal cost multi-path feature sup-
ported by recent Linux kernels, specifically with the multi-path round robin algorithm (see Fig-
ure 5). The kernel routing table holds several routes (next hops) per single destination. The
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routing entries maintained by the multi-path routing protocol. A lookup in the kernel routing
table only delivers one route per destination out of all the entries. The selection of the route is
made according to scheduling algorithms (e.g., round robin). Therefore, the multi-path imple-
mentation is fully transparent for the applications. User-space communication software does not
need to care about route selection.













 









 







 
 
 
 
 



Figure 5: Kernel route selection

4.3 Challenges

During our implementation, we were confronted with several challenges, such as:

• Linux’ netlink interface is not particularly well documented. Since, however, we needed
to use netlink for managing our routes, we ended up stripping the code of iproute2 [KH]
down to the bare minimum required for our route management and importing the parts of
the code which were not already covered by AODV-UU into our code.

• Kernel APIs kept changing (and are still in constant flux) preventing us from using up-to-
date kernel versions without constantly adjusting our code. This was especially unfortu-
nate because wireless drivers for older kernels had stability and reliability issues.

• During the course of our work, several new versions of AODV-UU were released which
meant additional porting efforts to ensure compatibility of our code with the new versions.

5 Testbed Setup

The nodes in our testbed were connected to a wired management network. We used two note-
book computers and thirteen intermediate wireless mesh nodes. The notebooks served as source
and destination. They were both run Linux with 2.6 kernels. For wireless connectivity, they
were equipped with Cisco Aironet PCMCIA cards (Atheros chip, madwifi driver). For the sake
of simplicity, both notebook were connected by Ethernet to the management network. For the in-
termediate mesh nodes we used the Wireless Router Application Platform (WRAP[Dor]), loaded
with a custom-made Linux distribution [SBLB07] based on Kernel 2.6.22.2. Like the notebooks,
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Figure 6: Setup of our testbed with Wireless Mesh Network and management network.

the mesh nodes were connected to the management network via Ethernet, the ad-hoc network
interface was running on an Atheros-based mini-PCI cards with the madwifi driver (0.9.3.3).

The nodes were distributed in two buildings of our institute to create a scenario where most of
the intermediate nodes had a direct link, the endpoints, however, did not. This setup was chosen
in order to have a realistic scenario where interference and weak links pose additional challenges
to the routing protocol.

The measurements were coordinated via the management network. A script would initialize
all nodes with the correct routing protocol, start a video stream (see Section 5.1), shut down some
nodes at the appropriate time (in scenarios with forced node failure), terminate the experiment
and collect and store the log files afterwards.

5.1 Traffic and Measurement Parameters

The network load was created by streaming a high-resolution video file. We used the movie
“Elephants Dream” 1 and converted it to an MPEG-1 video (1024x576, 24fps, MPEG1 200kbps)
using ffmpeg. The movie was streamed via UDP from the source notebook to the destination
notebook for five minutes, streaming was done using the VLC media player, the movie was
stored on the source notebook.

The parameters measured were end-to-end delay and packet loss. For the delay, an ICMP echo
request (“ping”) packet was sent from the source to the destination. To account for lost packets,
both the source and the destination notebook were running tcpdump during the experiment. The
generated log files were analyzed with tshark[Com] and filtered using Unix shell programs.

5.2 Failure Scenarios

Each protocol was evaluated in two scenarios: First, the experiment was run for five minutes
without node failure. Then, in order to see how well the protocols recover from lost routes, the
same scenario was repeated with a forced node failure at the next hop in the route from the source
1 http://orange.blender.org/download
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notebook to the destination after two and a half minutes. In multi-path scenarios, only one of
the routes was disabled this way. We repeated our real-world experiments 20 times in order to
reduce the effects of temporary interferences.

6 Performance Evaluation

6.1 Packet Loss

Figure 7 shows the average packet loss with each protocol and scenario over 20 runs in the 2.4
GHz ISM band. This was calculated by comparing the number of packets sent with the number
of packets which actually arrived at the receiver.
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Figure 7: Average packet loss in 2.4 GHz ISM band

Strong interferences with several neighboring wireless networks around our institute caused
some base packet loss in all the experiments inside the 2.4 GHz ISM band (IEEE 802.11b). In
general, packet loss with AODVM was higher than with AODV, meaning that the multi-path
extension actually performed worse than the single-path variant. While these results might come
as a surprise initially they do make sense in our case for the following reasons.

Our issue with AODVM was that our testbed was pretty small. Thus most nodes had a di-
rect link to most other nodes, meaning not only that communication would be possible between
them, but also that traffic sent over one path would interfere with traffic sent over another path.
In AODV, only one such path is used, thus traffic can flow without any major inter-flow interfer-
ences. In AODVM however, traffic is spread over multiple paths. This now leads to a high risk
of collisions on the wireless medium meaning that instead of a single sent packet receiving its
destination, two sent packets collide and are both lost.

This became obvious after the first attempts at running real-world experiments: AODV peri-
odically sends out HELLO packets (RREP packets with a TTL of 1) to inform a node’s neighbors
about the node’s presence. Initially, one such packet was sent every second and if a node missed
two consecutive packets from a neighbor it assumed that the neighbor was no longer there. This
worked fine as long as the network was idle. As soon as we started to generate traffic, how-
ever, we could literally see the network break down. Many HELLO packets never reached their
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destination, supposedly due to collisions with data packets. Our first solution was to double the
amount of HELLO packets. This did not work particularly well (the network was still very un-
stable) so we drastically increased the HELLO timeout (to 20 seconds) which finally resulted in
a stable network. As there is no mobility in our network the increased HELLO timeout does not
limit the protocol’s performance.

Still, we do not consider this an ideal solution since other management traffic such as RREP /
RREQ messages might also collide with data traffic. The problem could be addressed by multi-
channel protocols where not all links use the same wireless channel for communicating.

Also, when we switched our testbed to IEEE 802.11a, the lower range of wireless signals at
5 GHz meant that more hops per path were required and this in turn made us realize an even
deeper problem: due to the nature of AODV’s route discovery process, routes with very bad
connectivity were chosen over much better routes with more hops (see Figure 8). In addition,
the communication gray zones [LNT02] significantly affected the measurements in the 5 GHz
setup. Some nodes were able to successfully exchange HELLO messages between each other,
but no data messages could be exchanged. This meant that we were hardly ever able to com-
municate through the network with the other end point because we would always have at least
one extremely poor link in between. In order to make the network operating, we eliminated the
completely dead links (with no possible data transmission) by MAC filter. But still when doing
this, we observed similar packet losses than shown in Figure 7 for the 2.4 GHz ISM band due
to selection of bad paths with low hop count. The integration of a link quality metric such as
ETX [DABM03] in the route-selection process taking the link quality into account would cer-
tainly improve the results. Moreover, the proposed solutions to the communication gray zone
problem of AODV presented in [LNT02] have to be implemented for future measurements. The
disadvantageous managing of unstable links has been also observed in [BD07].










 





 









Figure 8: Selecting bad paths over good ones

In order to reduce the problem of interfering multiple paths, a modified route discovery process
which tries to find interference-disjoint paths is required. While several such paths might not
always exist, taking interference into consideration during route discovery could also be done on
a best-effort base, that is the discovery process could try to avoid interfering paths if possible,
yet not completely forbid them.
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6.2 End-To-End Delay

In order to calculate the end-to-end delay, 20 ICMP echo requests were sent from the source to
the destination at the start of the experiment in the setup with transmission in the 5 GHz band
(IEEE 802.11a).
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Figure 9: Average round trip time using ICMP echo in 5 GHz

Figure 9 compares the end-to-end delays for the different protocols. We ran the end-to-end
delay measurement twice in each scenario, in order to eliminate the initial delay due to route
discovery in the second run.

As the Figure 9 shows, we observed good round trip times. The bad links do not influence the
results for the small ICMP echo packets (64 bytes). In general, the results were slightly better
when the route-discovery process was done before the actual round-trip-time measurement.

In general, as we have expected, there is no significant difference between the end-to-end de-
lays of AODV and AODVM. Nevertheless, the end-to-end delays in AODVM are usually a little
higher. Other than AODV, AODVM does not only use the best path but also other, worse alter-
natives (see Figure 10). As traffic is now sent over all routes using a simple round-robin scheme,
there are packets using the fastest path and other packets using slower ones, thus producing
higher average values. Note that these routes typically went via four (or more) intermediate
nodes.

faste r pa th

s lower pa th

Figure 10: AODVM may create additional, slower paths
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7 Conclusion

Our results confirmed the disadvantageous route selection in AODV and AODVM. By simple
selection of the shortest paths (hop count), the protocols integrate links with high packet losses
or even completely dead links due to the communication gray zone problems. They further
show that “compact” network topologies yield increased interferences when using multi-path
routing, up to a point where the bandwidth benefits from the additional paths are more than
annihilated by the additional interferences. If tested in a bigger testbed, AODVM might create
more interference-disjoint paths than in our case.

In order to fully profit from the strengths (redundancy, load balancing) of multi-path rout-
ing protocols in compact networks, we propose combining multi-path routing protocols with
multi-channel communication. For this, improved metrics such as MIC [YWK05] + iAWARE
([SBM06]) are necessary. This will be addressed in further research.

Moreover, efficient usage of the frequencies in one of the license-free industrial, scientific and
medical (ISM) bands is rather complex and remains a yet unsolved issue. Today, for example,
the 2.400-2.500 GHz range is crowded with lots of different communication networks. They
are all causing interferences and therefore affect the overall communication performance. We
have observed this even at our institute during the measurements as there are several networks
operated by other groups which caused some base packet loss in our experiment. Therefore,
investigations on dynamic channel allocation schemes that take their environment into account
are required. They should try to employ the temporarily unused “white spaces” in the available
frequency band to reduce the interferences to a minimum. This would lead to a more efficient
and robust communication infrastructure.

Acknowledgements: The work presented in this paper was supported by the Swiss National
Science Foundation under grant number 200020-113677/1.
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