
A Delay-based Approach Using Fuzzy Logic to
Improve TCP Error Detection in Ad Hoc Networks

Ruy de Oliveira, Torsten Braun
Institute of Computer Science and Applied Mathematics

University of Bern
Neubrueckstrasse 10, CH-3012, Bern, Switzerland

Email: oliveira,braun@iam.unibe.ch

Abstract— In recent years, a great deal of effort has been
devoted to make the TCP protocol more resilient to the random
packet losses inherent in the wireless channels in ad hoc networks.
In this paper, we investigate the use of fuzzy logic theory for
assisting the TCP error detection mechanism in such networks.
An elementary fuzzy logic engine is presented as an intelligent
technique for discriminating packet loss due to congestion from
packet loss by wireless induced errors. The architecture of
the proposed fuzzy-based error detection mechanism is also
introduced and discussed. The full approach, for inferring the
internal state of the network, relies on Round Trip Time (RTT)
measurements only. Hence, this is an end-to-end scheme which
requires only end nodes cooperation. Preliminary simulation
evaluations show how viable this approach may be.

I. INTRODUCTION

The self-organizing mobile ad hoc networks have become
more and more topical in the research community over the past
few years. These networks are remarkable for not depending
on any fixed infrastructure to communicate. The main chal-
lenge for such networks is the development of robust protocols
able to cope with the high probability of topology changes and
wireless impairments in place. In particular, ad hoc networks
pose some tough challenges to the Transmission Control Pro-
tocol (TCP) since it was not designed to work in such highly
dynamic environments. Rather, TCP was designed to work in
wired networks where a packet loss can safely be associated to
network congestion. So, regular TCP assumes that any packet
loss is the result of congestion and appropriately responds to
it by slowing down its sending rate.

In wireless mobile ad hoc scenarios, however, such losses
may occur not only by congestion but also due to both the
typically high Bit Error Rate (BER) of the wireless channels
and link interruptions (by mobility). Channel errors induce
TCP to mistakenly reduce its transmission rate (by halving
its congestion window - cwnd). Mobility induced losses (link
interruption) may lead TCP to incredibly long periods of
inactivity due to its ”exponential backoff mechanism”. In both
cases the TCP end-to-end throughput will be impaired. These
problems may be solved by providing the TCP error detection
mechanism with the real cause of every packet loss.

Existing approaches may be classified into two classes:
Network oriented [1], [2], [3] and end-to-end [4], [5], [6], [7]
solutions. In the former, the end nodes rely on explicit message
notifications from inside the network to detect congestion

or link interruptions. The main drawbacks here are high
dependence on lower layer protocols to carry the messages
and necessity of changes in the intermediate nodes, which
may not only delay deployment but also pose security con-
cerns as such nodes need full access to the packet header.
End-to-end approaches, on the other hand, do not need any
explicit cooperation of the intermediate nodes and may be
somewhat independent of lower layer protocols. This makes
such approaches easier to deploy since changes are limited to
the end nodes. Our approach is end-to-end based as follows.

The key idea of our approach is to monitor permanently the
TCP flow and record useful data to infer the current state of
the network when packet losses are perceived. Actually, Round
Trip Time (RTT) measurements are used as indicator of the
internal state of the network. The rationale here is that TCP
already relies in this parameter for computing its fundamental
retransmission timeout (RTO) timer, and such measurements
may be really valuable to reflect the condition inside the
network [4], [5], [6]. Nevertheless, RTT measurements are
not that trivial to be evaluated as they contain imprecision
and uncertainties under certain conditions, which calls for an
elaborate tool in order to extract the useful data.

We make use of Fuzzy Logic theory [8], [9], [10], for
distinguishing between bit error and congestion induced losses,
using RTT values as input variables. By using fuzzy logic, the
continuous and imprecise behavior of the information can be
handled without the necessity of arbitrary rigid boundaries. Be-
sides, it is low processing demanding. This renders fuzzy logic
quite suitable for evaluating RTT values where imprecision
and uncertainties are effectively present and the processing
requirements (at the end nodes) must be as low as possible.
In this paper, which is an extension of [7], we focus on our
approach for enhancing the TCP error detection mechanism
using fuzzy logic as its main part. TCP recovery strategy is
left for future work.

The remainder of this paper is organized as follows. The
next section characterizes RTT patterns in ad hoc networks
and exhibits the simulation scenario in place. In section III we
explain the proposed fuzzy-based error detection mechanism.
Section IV introduces fuzzy logic. Section V describes our
fuzzy engine for distinguishing congestion from channel error
losses. Section VI presents the performance evaluation of our
fuzzy engine, and section VII concludes the paper.

II. RTT PATTERNS

We assume in this paper that the packet size of the connec-
tion and the strategy of the lower layer protocols are fixed.
Both assumptions should, however, not be too restrictive for
future ad hoc networks. Small packet sizes have been claimed
as a proper way for avoiding packet collisions in such environ-
ments [11], and so their use would not be costly. Concerning
the lower layer protocols, IEEE 802.11 MAC protocol [12]
is already standardized and both AODV [13] and DSR [14]
routing protocols are the most prominent frameworks to be
standardized in the near future. So, it is reasonable to consider
that these two routing protocols will be effectively present
in future ad hoc networks. This is important because both
protocols ensure symmetric links, which is required here.

Taking the two assumptions above into consideration, RTT
values might be really useful for distinguishing the effects of
congestion from bit error effects. We have shown in [5] that
both the growth in the number of hops from sender to receiver
and congestion conditions may impose similar behaviors to
RTTs. Thus, sender and receiver should exchange information
to detect the number of hops between them. We propose to use
the Time To Live field (TTL) in the IP header, as explained in
the next section. We focus here, however, on the discrimination
between congestion and channel error induced losses having
a fixed number of hops end-to-end.

A. Simulation Environment

Fig. 1 shows the result of two simulation runs, using ns-2
simulator. AODV and IEEE 802.11 are the routing and MAC
layer protocols in place, respectively. The packet size is set
to 1000 bytes, the maximum congestion window is set to 8,
and both the main and the background flows are generated by
FTP applications over TCP. A uniform distribution function is
used as error pattern for generating the different BER levels,
and the channel bandwidth is 2 Mbps.

B. RTT measurements

Fig. 1(a) depicts RTT and SRTT (Smoothed or average
RTT) values on a typical 2-hop ad hoc network under varying
levels of congestion and distinct bit error rates, starting at
100 seconds. From 100 to 400 seconds there are three stages
of congestion, i.e., 1-3 competing flows. From 400 to 600
seconds, there is no congestion, but only two levels of bit
error rate, i.e., 5 and 10% of Packet Error Rate (PER) which
is the unit used here for expressing bit error constraints. From
600 to 800 seconds there is just one competing flow and a
PER of 5%. In the last 100 seconds, the channel is free of
any constraint again. Fig. 1(b) shows the same situation for a
3-hop scenario.

Fig. 1 shows clearly that under operative congestion con-
ditions (minimal number of incoming ACKs) and without
mobility, RTT mean values (roughly given by SRTT) should
suffice to indicate congestion inside the network. The bit
error constraint increases RTTs as well, but at a far lower
degree. The only possibility for mistakes would be a very
high level of bit error rate being misdetected as congestion,

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

M
ea

su
re

d
va

lu
e

(m
s)

Time (s)

 no

constr

1 competing

 flow

2 competing

 flows

3 competing

 flows

1 competing flow +

 5% of PER

5% of

 PER

10% of

 PER

 no

constr

RTT
SRTT

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

M
ea

su
re

d
va

lu
e

(m
s)

Time (s)

 no

constr

1 competing

 flow

2 competing

 flows

3 competing

 flows

1 competing flow +

 5% of PER

5% of

 PER

10% of

 PER

 no

constr

(a) 2-hop scenario.

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

M
ea

su
re

d
va

lu
e

(m
s)

Time (s)

 no

constr

1 competing

 flow

2 competing

 flows

3 competing

 flows

1 competing flow +

 5% of PER

5% of

 PER

10% of

 PER

 no

constr

RTT
SRTT

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

M
ea

su
re

d
va

lu
e

(m
s)

Time (s)

 no

constr

1 competing

 flow

2 competing

 flows

3 competing

 flows

1 competing flow +

 5% of PER

5% of

 PER

10% of

 PER

 no

constr

(b) 3-hop scenario.

Fig. 1. RTT characteristics under congestion and wireless losses.

since high PERs could increase the RTTs considerably. This
possibility is quite low, however, because at such a high
level of PERs practically no packet gets through. Furthermore,
typical wireless environments do not have so lossy channels.

To make the distinction of congestion from wireless induced
losses even more robust, the RTT variance can be used to
address the remote possibility mentioned above. Fig. 1 shows
that the RTT variance (magnitude of the oscillations) increases
under bit error conditions. It is worth to compare the case in
which there is just one competing flow (100-200) with the
instant of highest PER (500-600). Note that for both scenarios
(2 and 3-hop) the channel error constraint induces higher RTT
variance. For lower congestion levels, which could be achieved
with other forms of competing traffic, the distinction would be
even better as the variance under congestion would be smaller.

Figs. 1(a) and 1(b) show that in the last part of the simula-
tion under constraint, (600-800), both RTT mean and variance
grow. The key point here is that congestion detection has
priority over bit error detection, as the TCP sender must slow
down anyway under congestion, regardless of simultaneous
bit error losses. Thus, if congestion is perceived, the detection
algorithm may ignore the bit error detection.

III. FUZZY-BASED ERROR DETECTION

The proposed Fuzzy-based Error Detection Mechanism
(FEDM) only relies on fuzzy logic for discriminating losses
due to congestion from losses by channel errors. Losses by
link interruptions are identified differently, as shown in [5],
since no ACK is received in such conditions. Additionally,
the designed fuzzy engine has to be adjusted in accordance
with the number of hops traversed by the connection, which
requires that the FEDM monitors permanently the number of
hops end-to-end, as explained in the following.

Fig. 2 depicts the general architecture of our approach. The
NH (Number of Hops) and RR (RTT increase Rate) blocks
are needed for detecting the number of hops in the end-to-
end connection and steep increases in the RTT measurements,
respectively. C, U and B represent the signaling flags for
Congestion, Uncertain, and Bit error, respectively.

The NH block keeps track of the number of hops in the
TCP session so that the Improved Error Detector (IED) can set
the Fuzzy engine parameters properly. This is needed because
such parameters change according to the number of hops in
the end-to-end connection, i.e., the more hops the higher delay
range. At this stage, the parameters for every number of hops
have to be determined in advance by simulation or experiment.
Having distinct settings for every connection length, in terms
of hops, solves the problem that arises by the similarity of
RTT behaviors (steep increase) when either congestion starts
or the number of hops between the end nodes increase [5].

IED

Fuzzy
engine

Error
recovery

mechanism

Timers
RTT rate

Changes
in hops

ACK
C

U

B

NH RR

Output flags

Fig. 2. Fuzzy-based Error Detection Mechanism.

We propose to use the Time To Live (TTL) field within
the IP header for identifying the mentioned number of hops,
mainly because it is standard in current implementations.
This demands a simple interoperation between transport and
network layer protocols and the use of either an IP or TCP
option inside the packet header. Upon packet receipts, the NH
block may use the current TTL along with the TTL sent to
compute the exact number of hops crossed by the connection.

The RR block monitors the rate at which the RTT changes.
The idea here is to set a threshold for triggering detections
of persistently high rate increase in the RTTs faster than the
fuzzy engine might do, thereby avoiding network collapse.
Specifically, this mechanism detects a predefined number n
of subsequent increases in RTT, in which every increment
is larger than a given degree α. Based on our preliminary
simulation evaluations, shown in Fig. 1, n=2 and α = 20%
perform well with a RTT granularity of 100 ms (mimimum

interval between successive samples). When triggered, this
mechanism notifies the IED which can set the congestion flag
(C) if no extra hop is detected simultaneously. NH and RR
blocks work together as the RTT persistently high rate growth
has to be detected only when no increase in hops is identified.

The three blocks around the IED provide it with enough
information about the state of the wireless channel, so that
it may take decisions more accurately. The outcome of the
decision is set in the output flags. The flag Uncertain (U) refers
to the undefined output of the fuzzy engine which may not
always provide a conclusive output, as discussed below.

Losses by link interruptions will be detected by the timeout
timer along with the state flags. Timeout with Congestion (C)
call for retransmission and slowdown, while timeout plus bit
error (B) ask for retransmission only. Timeout with uncertain
(U) should also call for retransmission and slowdown consider-
ing a conservative approach. Observe that the fast retransmit
mechanism is also in place for speeding up retransmissions
before timeouts may occur. The exact actions to be taken
depend on the error recovery mechanism strategy in use. In
any case, whenever an action is taken under the uncertain (U)
condition, the current TCP state variables such as congestion
window and slow start threshold should be saved for possible
recovery upon effective condition detection.

IV. FUZZY LOGIC

Fuzzy logic is a superset of conventional (boolean) logic that
has been extended to handle the concept of partial truth. It was
first introduced by L. Zadeh in the 1960s [8] as a means to
model the uncertainty of natural language, and has been widely
used for supporting intelligent systems. A key feature of Fuzzy
logic is to handle uncertainties and non-linearities, existing
in physical systems, similarly to the reasoning conducted by
human beings, which makes it very attractive for decision
making systems. A fuzzy logic system comprises basically
three elements: A fuzzifier, an inference method (rules and
reasoning) and a defuzzifier. Their roles are as follows.

A. Fuzzifier (toward Fuzzy Sets)

A fuzzifier is responsible for mapping discrete (also called
crisp) input data into proper values in the fuzzy logic space.
This is done by using membership functions (fuzzy sets)
which may provide smooth transitions from false to true (0
to 1). Mathematically, a membership function associates each
element µX(x) in the universe of discourse U with a number
in the interval [0,1] as shown in (1):

µX : U → [0, 1] (1)

Therefore, a fuzzifier maps crisp data x ∈ U into a fuzzy set
X ∈ U, and µX(x) gives the degree of membership of x to
the fuzzy set X , i.e., a real number in the range [0,1]. Where
1 denotes full membership and 0 denotes no membership. So,
fuzzy sets are indeed an extension of the classical sets in which
only full membership or no membership exist. Fuzzy sets, on
the other hand, allow partial membership.

B. Fuzzy Rules and Fuzzy Reasoning

Fuzzy systems perform reasoning on the input data by
following a predefined inference method (section IV-D) and
fuzzy rules. The amount of rules depends on both the number
of inputs and membership functions associated to each input.
The general form of the lth fuzzy rule in the rulebase is:

Rl : if (x1 is F l
1) and (x2 is F l

2) and . . . (xp is F l
p)

then (y is Gl) (2)

Where F l
k and Gl are fuzzy sets associated with the input

and output fuzzy variables xk and y, respectively, being k =
1, ..., p. As an example of (2), we could have: if (temperature
is high) and (humidity is high) then (room is hot).

C. Defuzzifier

Once the input data have been numerically processed by
fuzzy reasoning, they are converted back to crisp values. This
task is performed by the deffuzifier which combines together
mathematically the result of each rule into a single crisp value.
There are several methods for doing so, and we use here the
most widely used algorithm called gravity-of-mass (GOM)
[9], [10], which computes in the simplest case the weighted
average over all rule outputs, as explained below.

D. Min-max Inference Method as an Example

For further clarification, we briefly describe here, via an
example, a variant of the most widely used inference method
labeled min-max. Fig. 3 illustrates the method considering
two inputs and two rules only. There are two fuzzy sets
labeled ”low” and ”medium” (linguistic variables) for both
the input (x1, x2) and output (y) membership functions. The
crisp input values are mapped into the membership functions
(fuzzification) and assessed according to the rules in place.

Each rule (see Fig. 3) is applied to the involved membership
functions in x1 and x2 and the minimum (min) of them is
mapped into the associated output membership function in
y (low or medium). The output of each rule is aggregated
(max) into the deffuzifier which gives the final crisp value that
will indicate, in this example, whether the outcome is to be
assigned to ”low” or ”medium”. As mentioned earlier, several
schemes for defuzzification exist, and for this simplified sort of
output membership function (single value in y), the gravity-
of-mass method gives the weighted average over all output
values in y.

V. PROPOSED FUZZY LOGIC ENGINE

The behavior of the RTT measurements presented in sec-
tion II suggests that an intelligent mechanism may be able
to distinguish congestion from channel error induced losses
inside the network. In particular, such a mechanism should be
simple and flexible in terms of easy adaptation to this highly
dynamic scenario, and also computationally inexpensive. Thus,
a fuzzy logic engine has been designed for handling RTT
measurements toward effective packet loss discrimination. The
fuzzy engine design follows the work presented in [10] where
packet delay behavior is used for detecting wireless links.

A. Fuzzy Engine Input

The input variables of the fuzzy engine are defined as the
RTT mean t in (3) and the RTT variance δt in (4), being
i=1, 2, ... , maxSamples. Since the maximum value of RTT is
always limited by either the timeout timer or the fast retransmit
mechanism, it is reasonable to assume that it is limited to [0,
Tmax] without loosing generality.

Equations (3) and (4) imply that the universe of discourse
of the fuzzy input variables t and δt should be [0, Tmax]. A
fuzzifier has to map the crisp values t and δt into fuzzy data.

t =
1
n

n∑

i=1

ti (3) δt =
1
n

n∑

i=1

(ti − t)2 (4)

For computing simplicity and better control of the spread
of the curves [10], we use in this paper Gaussian membership
functions for the input memberships (Fig. 4(a)). The universe
of the fuzzy input variables t and δt are divided into three
fuzzy sets as shown in Fig. 4(a). Observe that here we have
one more fuzzy set than in the example of Fig. 3. The fuzzy
linguistic variables used are S (Small), M (Medium) and L
(Large). Thus, the input values have to be mapped to these
fuzzy sets, as illustrated in the example of Fig. 3. Note that
the more fuzzy sets, the more accurate may be the input
discrimination. The number of fuzzy rules and complexity
increase though.

B. Fuzzy Engine Output

The output of each fuzzy rule in our fuzzy engine is assigned
to a corresponding output fuzzy set. The output of the fuzzy
engine might take several distinct forms. For instance, there
might be two fuzzy output sets, one for bit error detection and
another for congestion detection. Another possibility should
be to have both detections in just a single fuzzy output. The
universe of the fuzzy output has to be set accordingly. In this
paper, we use just a single fuzzy output φ (Fig. 4(b)).

Hence, the output of the fuzzy engine is set as the discrimi-
nation of congestion from bit error effects, and the universe of
the fuzzy output variable is split into three singleton (single
value) fuzzy sets as depicted in Fig. 4(b). This means that
each rule output will be placed at either 0 or 0.5 or 1 in the
universe of the single output φ.

The corresponding fuzzy linguistic variables are CO (Con-
gestion), UC (Uncertain) and BE (Bit Error). As congestion
has priority over bit error, the CO variable covers also con-
ditions of simultaneous congestion and bit error constraints.
The specific fuzzy rules are shown in table I.

Table I shows, for instance, that small (S) ”RTT mean” and
large (L) ”RTT variance” indicate clearly that the measured
flow is facing bit error constraint (BE). Likewise, large (L)
”RTT mean” suggest congestion (CO), regardless of the vari-
ance value. The other rules are similarly set up according to the
RTT evaluation discussed in section II. The fuzzy reasoning
is done on the basis of the min-max method explained as
an example in section IV-D, and the gravity-of-mass is the
deffuzifier in place.

x1 x2 y

rule 1

rule 2

low medium

medium

low

y1

y2

Defuzzification
crisp input values

min

max

1

1

0

0

rule 1 : if (x1 is low) and (x2 is low) then (y is medium)

rule 2 : if (x1 is medium) and (x2 is low) then (y is low)

Fig. 3. An example of the min-max inference method.

Membership

1

0
t0

S M L

t1 Tmax

t or t

(a) Input.

Membership

1

0 10.5

CO UC BE
(CO+BE)

(b) Output.

Fig. 4. Fuzzy memberhip functions.

TABLE I

FUZZY RULES OUTPUT (φ)

var \ mean S M L
S BE CO CO
M BE UN CO
L BE BE CO

VI. PERFORMANCE EVALUATION OF THE FUZZY ENGINE

We conducted simulations using the ns-2 simulator for
collecting representative data to feed our fuzzy engine. The
simulation setup is the same described in section II, and we
considered only the 3-hop scenario since the procedure is the
same for all the others cases.

We ran similar conditions presented in section II except
that we considered only two extra FTP flows for disturbing the
wireless channel. The rationale here is that three flows generate
so many losses that it becomes difficult to have representative
results with the short runs performed here. Unless otherwise
mentioned, each interval under constraint lasts 100 seconds.

In order to find out the proper parameters to set up the fuzzy
engine (Fig. 4(a)), the most critical conditions were taken into
account. As stated in section II, low congestion level might
be misdetected as bit error and vice-versa. Hence, the case in
which the connection is facing only one competing flow and
the one with 10% of PER were taken as boundaries.

Due to lack of space we do not show in detail here how
much of overlapping exist between the RTT mean and variance
computed under congestion and channel error constraints from
the measurements of Fig. 1(b). We have shown in [7] that RTT
mean and variance distributions for this scenario contain very

small and medium overlapping areas, respectively. In fact, RTT
mean can be distinguished quite easily since its spread is really
low, while RTT variance spreads much more as discussed in
section II and shown in Fig. 1.

One can see roughly in Fig. 1(b) that the interval (500-
600) contains a RTT mean around 50 ms and practically
no overlapping with the values in the interval (100-200). So
the parameters t0, t1 and tmax for RTT mean in Fig. 4(a)
were set to 40, 50, 60, respectively. Analogously, the RTT
variance distribution (refer to [7]) shows that the variations
from congestion and channel errors overlap mostly in the range
0-200 ms, and so the parameters t0, t1 and tmax for RTT
variance in Fig. 4(a) were set to 50, 100, 150, respectively.
These settings ensure that the reasoning for transitions between
the different conditions inside the network take place smoothly.

The universe of the input variables is 500 ms (maximum
RTT measured). And the ranges assigned to the output pa-
rameters CO, UC and BE are: [0,0.3), [0.3,0.7], (0.7,1],
respectively, i.e., neighborhood of 0.0, 0.5 and 1.0 in Fig. 4(b).
Recall that the fuzzy engine will provide an output value in
the range [0,1], and the ranges above will define if such a
value represents congestion, uncertain, or bit error.

Fig. 5 shows the fuzzy engine performance concerning the
number of correct detections over three distinct conditions,
namely under congestion, bit errors (10% of PER) and the
combination of both (5% of PER + 1 competing flow). For
each of the three conditions we ran three different RTT
sampling rates, namely 20, 40 and 60 RTTs per sample. In
these evaluations we enabled the TCP timestamp option, so
that each incoming ACK carried its experienced RTT. So the
RTTs depicted in Fig. 5 correspond to the incoming ACKs.
The purpose here was to determine not only the accuracy itself
but also the tradeoff between accuracy and detection delay.
The results show that for any of the three RTT sampling rate,
congestion is detected over 98% in all cases, while bit error
constraints detection decreases considerably for lower number
of sampled ACKs. The results could certainly be fine tuned
by using more elaborate membership functions and different
settings, and more accuracy from the input values could be
achieved by including more fuzzy sets into the fuzzy engine.

The results depicted in Fig. 5 make it clear that the fuzzy
engine may provide accurate results as long as a reasonable
number of RTTs is taken in each sampling for computing
the mean and variance from (4). Nevertheless, abrupt changes
toward congestion might lead the network to collapse if the
engine does not detect that in advance. Because of that we
have proposed the RR block in Fig. 2 to make sure that, in
such cases, congestion will always be detected before the first
packet loss is perceived by the TCP sender.

Hence, we simulated conditions in which the channel was
initially facing some level of PER (1, 3 and 5%) and suddenly
a heavy congestion started. The n and α parameters of the
RR block were set to 2 and 20%, respectively. The results are
depicted in Fig. 6 where the delays are normalized to the time
the regular TCP takes to detect the first lost packet. The main
outcome is that even without the RR block, the Fuzzy-based

60

70

80

90

100

110

20 40 60

C
or

re
ct

 d
et

ec
tio

n
(%

)

Number of RTT samples

Bit error
Both

Congestion

Fig. 5. Correctness of the fuzzy engine.

0.25

0.5

0.75

1

0 1 2 3 4 5

N
or

m
al

iz
ed

 d
et

ec
tio

n
tim

e

Packet Error Rate (%)

With RR block
Without RR block

Fig. 6. FEDM (Fig. 2) under abrupt congestion.

0

2000

4000

6000

8000

0 200 400 600 800 1000

S
e
q
u
a
n
c
e

N
u
m
b
e
r

(
p
a
c
k
e
t
)

Time (s)

Optimized TCP

Regular (Reno) TCP

Fig. 7. Modified TCP performance, PER=10%.

Error Detection Mechanism (FEDM) in Fig. 2 was able to
detect incipient congestion quicker than the regular TCP. The
improvements from the RR block were not so significant and
at higher PERs the detections occurred faster.

To substantiate our discussions, we extended the simulator
code so it did not slow down in the event of packet loss due
to medium error. We simulated a condition in which the only
constraint in the wireless channel was 10% of PER, and the run
lasted 1000 seconds. The sequence numbers of the successfully
transmitted packets are shown in Fig. 7, in which the modified
TCP clearly outperforms the well-known TCP Reno by getting
more transmissions over the same interval.

In short, the results have shown that the fuzzy engine may
indeed distinguish congestion from channel error conditions,
and consequently assist the TCP error detection. However,
improvements are certainly possible as the model here studied
is rather modest. For instance, independent fuzzy outputs for
each of the evaluated conditions (congestion and medium er-
ror) could provide more flexibility in adjusting the engine. The
membership functions can be optimized by using advanced
learning/training techniques such as ANFIS [15], and self-
adaptive setting models can render our approach very robust.

VII. CONCLUSIONS

We have introduced and evaluated a fuzzy logic engine
for supporting TCP error detection mechanism in ad hoc
networks. The architecture of the enhanced error detector has
been explained, and its primary features discussed.

The main conclusion is that efficiency can be obtained
provided that the input data are taken precisely enough to
reflect the actual changes inside the network. This implies that
a minimum number of ACKs is needed to ensure efficiency
in the results. This may render this algorithm a bit slow for
detecting transitions between distinct channel states. On the
other hand, the proposed mechanism will be quite robust in
dealing with steady stead scenarios, where abrupt changes are
not too frequent, for instance a lossy channel. We proposed
supporting schemes for accelerating our mechanism, which
may boost the performance of our model as a whole.

Therefore, the overall evaluation is positive in the sense
that we applied an intelligent algorithm for inferring statis-
tically the internal state of the network, and the outcome
was surprisingly accurate. However, different scenarios and

more elaborate inference models have to be checked to render
our proposal even more generic. Its integration with the error
recovery mechanism is also to be assessed in future work.

ACKNOWLEDGMENTS

The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

REFERENCES

[1] K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash. A Feedback
Based Scheme For Improving TCP Performance In Ad-Hoc Wireless
Networks, In Proceedings of International Conference on Distributed
Computing Systems- ICDCS‘98. pp. 472-479, 1997.

[2] G. Holland and N. Vaidya. Analysis of TCP performance over mobile
ad hoc networks, Mobicom‘99, August 1999.

[3] J. Liu, S. Singh. ATCP: TCP for Mobile Ad Hoc Networks, IEEE
Journal on selected areas in communications, pp. 1300-1315, July 2001.

[4] Z. Fu, B. Greenstein, X. Meng, S. Lu. Design and Implementation
of a TCP-Friendly Transport Protocol for Ad Hoc Wireless Networks,
ICNP‘02, November 2002.

[5] R. Oliveira and T. Braun, M. Heissenbuettel, An Edge-based Approach
for Improving TCP in Wireless Mobile Ad Hoc Networks, ASTC/DASD
2003, pp. 172-177, March/April 2003.

[6] J. Liu, I. Matta and M. Crovella. End-to-End Inference of Loss Nature
in a Hybrid Wired/Wireless Environment, WiOpt‘03, March 2003.

[7] R. Oliveira and T. Braun, A Fuzzy Logic Engine to Assist TCP Error
Detection in Wireless Mobile Ad Hoc Networks, New2an 2004,
February 2004.

[8] L. A. Zadeh, Fuzzy logic = computing with words, IEEE Transactions
on Fuzzy Systems, Vol. 4, No 2, pp. 104-111, 1996.

[9] Fuzzy Logic Toolbox User’s Guide, Version 2.1.2, MathWorks, July
2002.

[10] L. Cheng and I. Marsic, Fuzzy Reasoning for Wireless Awareness,
International Journal of Wireless Information Networks, Vol. 8, Issue 1,
Jan. 2001, pp. 15-26.

[11] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol work
well in multihop wireless ad hoc networks?, IEEE Communications
Magazine, Vol 39, No. 6, pp. 30 -137, June 2001.

[12] The Institute of Electrical and Electronics Engineers, inc. IEEE std
802.11 - Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, The Institute of Electrical and Electronics
Engineers, inc., 1999 edition.

[13] C. Perkins and E. Belding-Royer, S. Das, Ad hoc On-Demand Distance
Vector routing, IETF RFC 3561, July 2003.

[14] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless
networks, In T. Imielinski and H. Korth, editors, Mobile computing,
Kluwer Academic. 1996.

[15] J. Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System,
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, Nr. 3,
pp. 665-685, 1993.

