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Abstract—In this paper, we introduce and evaluate an
elementary fuzzy logic engine designed to assist TCP
error detection mechanism in wireless mobile ad hoc
networks. Our fuzzy logic engine aims at distinguish-
ing packet loss due to congestion from packet loss by
wireless channel induced errors, which is of great im-
portance for TCP performance in such environments.
The key idea behind fuzzy logic is its robustness in
dealing with data encompassing uncertainties and non-
linearities. We evaluate in this paper two end-to-end
metrics, namely packet delay and its variance, which
are inherently uncertain and non-linear but efficient in
providing useful information for the desired discrimi-
nation. By using this approach, a TCP sender does not
need to rely on any specific cooperation from the in-
termediate nodes, which is quite appealing in terms
of deployment. The preliminary evaluation results
show that this approach can provide accurate results,
but improvements in terms of responsiveness might be
needed.

Keywords— Ad hoc networks, Round Trip Time, Con-
gestion Control, Fuzzy logic, End nodes.

I. INTRODUCTION

IRELESS mobile ad hoc networks have become

more and more investigated in the research
community over the past few years. These networks
are challenging since they do not rely on any fixed
infrastructure to establish communication. In ad
hoc networks, nodes communicate exclusively through
wireless connections and can move freely. Every node
is required to forward data for the others, thereby act-
ing as both host and nodes. Since there is no central-
ized point of coordination, these networks are labeled
self-organizing networks, where topology changes may
occur quite dynamically and unpredictably.

Ad hoc networks pose some tough challenges to the
Transmission Control Protocol (TCP) [1] because it
was not designed to work in such highly dynamic and
unpredictable environments [2]. Rather, TCP was de-
signed to work in wired networks where packet loss
can safely be associated to network congestion. Hence,
regular TCP relies on the assumption that any packet
loss is a result of congestion inside the network, and
appropriately reacts to that by slowing down its trans-
mission rate.

This assumption is not valid for ad hoc networks
though, where packet loss may also be related to both
the inherently lossy wireless medium and link inter-
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ruptions by mobility. The typically high bit error rate
(BER) of wireless channels induce packet losses that
are wrongly detected by TCP as congestion . In such
cases, TCP sender improperly reduces its sending rate
by halving its transmission rate. Concerning the link
interruptions by mobility, they may lead TCP to long
interval of idle state if sequential timeouts take place,
which depends naturally on the length of the interrup-
tion and current round trip time [1], [2]. In both cases,
the end-to-end throughput may be severely impaired.
Thus, the TCP error detection mechanism really has
to be adjusted to this challenging framework.

In general, proposed solutions are either end-to-end
[3], [4], [5] or network oriented [6], [7], [8]. In the for-
mer, only the end nodes need to be changed, which
is quite encouraging in terms of deployment. In the
latter, the intermediated nodes are required to cooper-
ate with the end nodes by providing them with explicit
signaling messages about the internal state of the net-
work. Our approach is end-to-end oriented. The idea
here is to monitor the regular TCP flow and record
useful data to infer the current state of the network
when lost packets are perceived. In this way, not only
deployment is facilitated but also security concerns are
avoided since only the end nodes have full access to
the packet header.

A robust TCP sender needs to have dedicated ac-
tions for each of the constraints found in ad hoc net-
works, namely congestion, channel error, and link in-
terruption. Considering end-to-end approaches, link
interruptions will always be detected by the TCP
timeout timer. The exact protocol response will de-
pend on the current internal state of the network
though. This means that the sender needs to be per-
manently aware of the ongoing congestion and chan-
nel error conditions inside the network. With these
issues in mind, we propose here a basic fuzzy logic
engine for distinguishing between bit error and con-
gestion induced losses using Round Trip Time (RTT)
values as input variables. We do not address in this
paper packet losses associated to link interruptions.
The rationale for using RTT as indicator of the net-
work internal state is that TCP already relies on such
a parameter for computing its fundamental timeout
interval. Besides, as we will show later, RTT measure-
ments suffer distinct impacts under congestion and bit
error constraints.

Fuzzy logic [9], [10] is a powerful tool for decision
making processes involving information characterized
by imprecision and uncertainties. It was first intro-
duced by L. Zadeh in the 1960’s as a means to model
the uncertainty of natural language. Fuzzy logic the-
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ory combines human expertise and uncertainties into
an efficient set of decision making rules. By using
fuzzy logic, the continuous and imprecise behavior of
the information can be handled without the necessity
of arbitrary rigid boundaries. A great advantage of
this theory is that it is by far less computational in-
tensive than other similar intelligent theories. There-
fore, fuzzy logic is quite suitable for evaluating RTT
measurements where imprecision and uncertainties are
effectively present and the processing requirements (at
the end nodes) must be as low as possible.

II. RTT PATTERNS IN MULTIHOP WIRELESS
NETWORKS

In ad hoc networks, RTT values reflect the impact
of the following distinct factors: Congestion, wire-
less channel errors, changes in the number of hops
crossed by the connection between sender and receiver,
packet size, and lower layer protocol mechanisms such
as MAC layer retransmission strategy [2], [11].

We assume in this work that the packet size of the
connection and the lower layer protocols are fixed.
Both assumptions should, however, not be too restric-
tive for future ad hoc networks. Small packet sizes
have been claimed as a proper way for avoiding packet
collisions in such environments [11], and so their use
would not be costly. Concerning the lower layer proto-
cols, IEEE 802.11 MAC protocol [12] is already stan-
dardized and both AODV [13] and DSR [14] routing
protocols are the most prominent frameworks to be
standardized in the near future. So, it is reasonable
to consider that these two routing protocols will be
effectively present in future ad hoc networks. This is
important because both AODV and DSR ensure sym-
metric links, which is also a requirement of our initial
approach.

Therefore, taking the two assumptions above into
consideration (fixed packet size and conventional lower
layer protocols), RTT values might be really useful
for distinguishing the effect of the other three factors,
namely congestion, bit error and link interruptions.

In [4] we have shown that both the growth in the
number of hops between sender and receiver and con-
gestion conditions may impose similar behaviors to
RTT measurements. Thus, sender and receiver should
exchange information to detect the exact number of
hops in place. We do not address this issue in this
work, although it can be easily implemented using the
Time To Live field in the IP header [1] at the end
nodes. Actually, we focus here on the discrimination
of packet losses by congestion from packet losses by
channel error, having a fixed number of hops end-to-
end.

Fig. 1 shows the result of two simulation runs, using
ns-2 simulator. AODV and IEEE 802.11 are the rout-
ing and MAC layer protocols in place, respectively.
The packet size is set to 1000 bytes, and both the
main flow and the background flow are generated by
FTP applications over TCP. A uniform distribution
function is used as wireless channel error pattern for

generating the different levels of BERs, and the wire-
less bandwidth is 2 Mbps. We use hereafter Packet
Error Rate (PER) instead of BER to represent the
channel error because PER  is the metric in fact simu-
lated.
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Fig. 1. RTT characteristic under congestion and wireless losses

Fig. 1a depicts RTT and SRTT (Smoothed or av-
erage RTT) measurements on a typical 2-hop ad hoc
network under varying levels of congestion and dis-
tinct packet error rates, starting at 100 seconds. Be-
tween 100 and 400 seconds there are three stages of
congestion, i.e., 1-3 competing flows. Between 400 and
600 seconds, there is no congestion, but only two levels
of packet error rate, i.e., 5 and 10%. At last, between
600 and 800 seconds there is only one competing flow
and a packet error rate of 5%. In the last 100 seconds
the channel is free of any constraint again. Fig. 1b il-
lustrates the same conditions but for a 3-hop scenario.

Figs. 1a and 1b show clearly that under operative
congestion conditions (having at least a minimum flow
of ACKs) and without mobility, RTT mean values
(roughly given by SRTT) should suffice to indicate
congestion inside the network. The channel error con-
straint increases RTT as well, but at a far lower de-
gree. The only possibility of mistake, although rare,
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would be a very high level of packet error rate being
misdetected as congestion, since high PERs could in-
crease the RTTs considerably. This possibility is quite
low, however, because at such a high level of PERs
practically no packet gets through. Besides, typical
wireless environments do not have so lossy channels.

To make the distinction of congestion from wireless
induced losses even more robust, RTT variance can
be used to address the remote possibility mentioned
above, as indicated in table I. The values in this ta-
ble are computed over each interval using equations
(2) and (3) presented in section III. Table I shows
how much the RTT variance increases under chan-
nel error conditions. It is worth to compare the case
in which there is just one competing flow (100-200)
with the instant of the highest PER (500-600). One
can notice here that for both scenarios the channel er-
ror constraint induces higher RTT variance, namely
215 and 537 against 97 and 135 for both scenarios,
respectively. For lower congestion level, which could
be achieved with other forms of competing traffic, the
discrimination would be even better since the variance
under congestion would be smaller.

TABLE I
RTT MEAN AND VARIANCE
| [ 2-hop | 3-hop |

Interval mean | variance | mean | variance
0-100 (1 flow) 22 7 32 25
100-200 (2 flows) 82 97 99 135
200-300 (3 flows) 136 304 162 246
300-400 (4 flows) 128 820 189 980
400-500 (5% PER) 32 176 47 646
500-600 (10% PER) 47 215 60 537
600-800 (2 flows 115 840 136 863

+ 5% PER)

In the last part of the simulation under constraint
(600-800) depicted in Figs. la and 1b, there is only
one competing flow and a packet error rate of 5%. It
can be seen that both the RTT mean (roughly given
by SRTT) and variance grow (higher magnitude of the
oscillations). Table I supports this observation as well.
The key point here is to note that the congestion de-
tection has priority over the channel error detection,
as TCP sender has to slow down anyway under conges-
tion regardless of simultaneous channel error losses. In
other words, if congestion is perceived, then the detec-
tion algorithm can ignore the channel error detection.

III. A Fuzzy ENGINE FOR DISTINGUISHING
BETWEEN LOSSES BY CONGESTION AND
CHANNEL ERROR

The behavior of the RTT measurements presented
in the last section suggests that an intelligent mecha-
nism may be able to distinguish congestion from chan-
nel error induced losses inside the network. In partic-
ular, such a mechanism should be simple and flexible
in terms of easy adaptation to this highly dynamic
scenario, and also computational inexpensive. With
these aspects in mind, we have designed a basic fuzzy

logic engine for handling both the RTT mean and vari-
ance values toward an effective packet loss discrimina-
tion.

Fuzzy logic is a superset of conventional (Boolean)
logic that has been extended to handle the concept of
partial truth. Unlike classical sets of Boolean logic, in
which there are only the elements 0 and 1 (false and
true), fuzzy sets can have values in between. In Fuzzy
logic, input values (i.e., discrete values) are mapped
into membership functions that have smooth transi-
tion from 0 to 1. As an example, let us say that a given
input is assigned the value 0.5 in the fuzzy space. This
means that the degree of truth for this input value, de-
termined by the fuzzy process, is 50%. In other others,
fuzzy logic systems perform the fuzzyfication of input
data (called crisp value) into membership functions in
the fuzzy space.

Let U be the universe of discourse which the input
data belong to, then an element z in U is mapped
by the membership function pX(x) into the range
[0,1] within the fuzzy space, as shown in equation (1).
This equation shows that membership functions de-
fine the degree of membership assigned to the input
data, where 1 denotes full membership and 0 denotes
no membership at all. Thus, fuzzy sets are indeed an
extension of the classical sets in which only 0 (false)
and 1 (true) degrees of membership exist.

uX :U —[0,1] (1)

By avoiding sharp transition from false to true,
fuzzy logic provides better reasoning on data that have
overlapping values. This is done by carefully adjust-
ing the shape of the membership functions and setting
the involved fuzzy rules properly, as addressed below.

A typical fuzzy engine performs the following proce-
dure: First it maps the discrete input values into the
predefined membership functions (fuzzification), then
it applies predefined fuzzy rules to the mapped inputs
(inference process), and lastly the engine combines the
result of each individual rule into a discrete output
value (defuzzification). The fuzzy rules are mostly de-
fined on the basis of the observed features of the input
data. Human expertise may be taken into account as
well. The key point of any fuzzy logic engine is to
define really representative membership functions.
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Fig. 2. Fuzzy engine membership functions

In this paper, RTT mean and variance were com-
puted through equations (2) and (3), respectively.
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Where n refers to the number of samples used in each
computation, and ¢; is the value of each sampled RTT.
We have classified the input data observed in Fig. 1
into three fuzzy sets, where each fuzzy set is repre-
sented by a distinct membership function. Specifi-
cally, the input data have been split into Small (S),
Medium (M), and Large (L) values. Fig. 2a depicts
the input membership functions which are identical for
both RTT mean (t) and variance (6t). We have cho-
sen Gaussian membership functions simply because
this is the most widely used in the literature. Never-
theless, different membership functions might surely
be tried. Besides, more precision in the results might
be achieved by splitting the input data into a larger
number of fuzzy sets.

- %it @)
5= 231y )

Accordingly, the fuzzy rules were established as
shown in table II, where each rule is obtained from
the generic equation (4) below. The number of rules
depend on both the amount of input variables and the
amount of fuzzy sets associated with each input vari-
ables. In our engine we have nine rules resulting from
the combination of two inputs (t and dt) each having
three fuzzy sets. Equation (4) shows how the ny, rule
is obtained for an engine containing p input variables.
Where F}' and G™ are fuzzy sets associated to the in-
put and output fuzzy variables xj, and y, respectively,
being k=1,...,p. For instance, in table II we have: if
(variance is Small) and (mean is Large) then (output
is Channel). Alternatively, other example could be:
if (temperature is High) and (humidity is High) then
(room is hot).

R" : if(xyis F7') and (z2 is Fy') and
o (wp s B

then (yis G") (4)

The fuzzy rule outputs (¢) were assigned to the out-
put memberships shown in Fig. 2b and table II. As
already stated, the process by which the value of each
fuzzy rule output is combined into the output mem-
berships is called defuzzification. There are a number
of ways for doing so, and we have chosen the most
widely used method called gravity-of-mass [10].

TABLE II
Fuzzy RuLes Outpur (¢)

| var \ mean || Small | Medium | Large |
Small Channel Congestion Congestion
Medium Channel Uncertain Congestion
Large Channel Channel Congestion

The fuzzy outputs (¢) were split into Channel error
(BE), Congestion (CO), and Uncertain (UN), as de-
picted in table II. This table shows that Large value
of RTT mean indicates that the connection is facing
congestion regardless of the RTT wvariance. Similarly,
Small value of RTT mean points out that any packet
loss in such a condition has to be assigned to channel
error regardless of the variance value. Medium value
for both RTT mean and variance is a non conclusive
output since this might be caused by either congestion
or channel error conditions, as already explained. Un-
der this output, the fuzzy engine needs to go on with
its evaluation until obtain an effective output.

In our evaluation, we have set our engine based on
the values found in the simulation shown in Fig. 1. It
is worth to note that, even though the scenario simu-
lated is just a particular one, the results are general.
What is important in these simulations is the range
in which the measured values have to be related to
congestion or channel errors. This will not change in
presence of more competing flows or different levels of
packet error rate. On the other side, the fuzzy settings
will change in accordance with the number of hops in
place. More elaborate fuzzy engines could allow these
settings to be done adaptively, but we do not address
this issue in this work.

IV. Fuzzy ENGINE PERFORMANCE

The evaluation of the proposed engine has been con-
ducted by providing it with RTT mean and variance
values obtained by simulations. The engine output is
then compared to the actual reason of the detected
packet loss. The simulation setup is the same dis-
cussed in the previous section.

RTT Mean under Error RTT Mean under congestion

Occurrence
]
Occurrence

i
00 300 200 500 0 100 200 300 400 500
Time(ms) Time(ms)

(a) Channel error (10%) (b) Congestion

Fig. 3. RT'T mean distribution

The simulation results, after applying equations (2)
and (3), are depicted as histograms in Figs. 3 and 4. It
is important to note that only the most critical condi-
tions have been taken into consideration. As stated in
section I, it might happen that low congestion condi-
tion is misdetected as lossy channel. Because of that,
we took the case in which the main connection is fac-
ing only one competing flow and the one in which only
10% of PER constraints the medium. Additionally,
longer runs of 500 seconds were simulated for each
condition. These conditions are used as boundaries




NEW2AN 2004

St.Petersburg, Russia

for setting the fuzzy engine parameters.

Figs. 3a and 3b depict the RTT mean under the
critical conditions mentioned above. One can see here
that even though the level of PER is relatively high,
it is still possible to distinguish both conditions by
simply comparing their RTT mean values. Fig. 3a
shows that the experienced RTT mean values for the
high PER are concentrated around 50 ms. So, we set
the parameters to, t1, and tmax for RT'T mean in Fig.
2a to 40, 50 and 60, respectively.

In Fig. 4, we have the variance distribution for
a channel without any constraint and for a channel
facing either congestion or channel error. Compar-
ing Fig. 4b with 4c, one can see that channel error
constraints impose indeed higher spread to the RTT
variance. Nonetheless, there is an overlapping area
roughly in the range (50,200), which has to be taken
into consideration for setting the fuzzy membership
functions associated with the RTT variance.
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Typical RTT Channel variance
30
25

20
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i b1
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200 300
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(a) No constraints

RTT Variance under congestion
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30 RTT Variance under Error
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Time(ms)
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Fig. 4. RTT variance distribution in a 3-hop multihop network

In reality, the range of this overlapping area would
not be too wide if we had a more precise comparison
by simulating lower level of congestion. The smaller

the congestion level, the closer the histogram of Fig.
4c from the one in Fig. 4a. We set the parameters to,
t1, and tmax for RTT variance in Fig. 2a to 50, 100
and 150, respectively. The universe of discourse of the
input variables is set to 500 ms, which means that no
RTT greater than 500 ms is found in our evaluations.

The ranges assigned to the output parameters CO,
UC and BE (Fig. 2b) are set to [0,0.3), [0.3,0.7], and
(0.7,1], respectively. These values are strategically es-
tablished to reflect the neighborhood of 0.0, 0.5, and
1.0 in Fig. 2b.

Fig. 5 shows the fuzzy engine performance concern-
ing the number of correct detections over the simu-
lated scenarios. For each scenario we ran three differ-
ent RTT sampling rates, namely 20, 40 and 60 RTTs
per sample. The purpose here was to determine not
only the engine accuracy itself but also the tradeoff
between accuracy and detection delay. The results
show that for any of the three RTT sampling rate,
congestion is detected over 98% in all cases, while bit
error constraints detection decreases considerably for
lower number of RTTs. The results could certainly be
fine tuned by using either more elaborate membership
functions or different settings. Besides, more accuracy
from the input values could be achieved by including
more fuzzy sets (membership functions) into the fuzzy
engine. These are desired goals for future work.
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Fig. 5. Fuzzy engine performance

The results depicted in Fig. 5 make it clear that the
fuzzy engine may provide accurate result as long as a
reasonable number of RTTs is taken in each sampling
for computing the mean and variance from equations
(2) and (3). This may render the fuzzy engine a bit
slow for detecting abrupt transitions in the network
internal state since the engine has to await a certain
number of incoming acks to trigger its detection. On
the other hand, this approach will be quite efficient in
making inference over systems under reasonable sta-
bility in which RTT mean and variance do not change
neither too often nor too abruptly. Additionally, spe-
cial mechanisms such as the "history discount" pro-
posed in [15], in which the old values of the measure-
ments are discarded when necessary, may speed up our
engine, but we have not evaluated that in this work.
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V. CONCLUSIONS

We have designed a simple fuzzy logic engine to infer
the network internal state on the basis of RTT mea-
surements. The approach is end-to-end oriented since
no explicit intermediate node cooperation is needed
and inexpensive in terms of processing demand.

Our main conclusion is that the designed fuzzy en-
gine may really provide useful input to TCP error de-
tection mechanism. A TCP sender relying on such in-
puts will certainly outperform standard TCP in lossy
environments, where the enhanced TCP will simply
retransmit instead of slowing down as standard TCP
does. Under congestion, there is nothing that TCP
can do to improve its performance since the commu-
nication channel is impaired. Thus, as far as TCP
friendly behavior is concerned, the enhanced TCP
should slow down as the standard TCP does. And
finally, when facing link interruptions, the sender will
timeout and should start probing the network for con-
nectivity in order to avoid long idle periods.

The primary aspect to be enhanced in this approach
is its reaction time during transition of states such as
congestion to channel error and vice versa. Therefore,
at the moment our approach demands reasonable net-
work stability to provide optimal performance. Addi-
tionally, more elaborate engines may be designed to-
ward optimization. In particular, adaptive models for
setting the fuzzy engine parameters automatically are
of interest. These are open issues to be addressed in
future work.
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